

Project IST-511599

RODIN
“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable D18

Intermediate Report on Case Study Development

Editor: Elena Troubitsyna (Aabo Akademi University, Finland)

Public Document

31st August 2006

http://rodin.cs.ncl.ac.uk/

http://rodin.cs.ncl.ac.uk/

Contributors:

Budi Arief (University of Newcastle upon Tyne, UK),
 Pontus Boström (Aabo Akademi University, Finland),

Alex Iliasov (University of Newcastle upon Tyne, UK),
Dubravka Ilic (Aabo Akademi University, Finland),
Ian Johnson (AT Engine Controls Ltd, UK),
Maciej Koutny(University of Newcastle upon Tyne, UK)
Linas Laibinis (Aabo Akademi University, Finland),
Sari Leppänen (Nokia, Finland),

 Mats Neovius (Aabo Akademi University, Finland),
Ian Oliver (Nokia, Finland),

 Mike Poppleton (University of Southampton, UK),
Alexander Romanovsky (University of Newcastle upon Tyne, UK),

 Mannu Satpathy (Aabo Akademi University, Finland),
Colin Snook (University of Southampton, UK),
Elena Troubitsyna (Aabo Akademi University, Finland),

 Marina Waldén (Aabo Akademi University, Finland)

Contents

Section 1 Introduction …………………………………………………………… 4
Section 2 Case Study 1: Formal Approaches to Protocol Engineering …..……… 6
Section 3 Case Study 2: Engine Failure Management System ……..…………… 27
Section 4 Case Study 3: Formal Techniques within MDA Context …………….. 56
Section 5 Case Study 4: CDIS Air Traffic Control Display System…………….. 81
Section 6 Case Study 5: Ambient Campus – the Lecture Scenario……………… 99

SECTION 1. INTRODUCTION

This document reports on the second year of the development of case studies in RODIN.
The case studies drive the development of the RODIN methodology and supporting
platform, validate it and evaluate its cost-effectiveness. In this deliverable we describe the
results achieved over the last year and outline the future plans.

In general, the development of the case studies proceeds according to the original plan.
Each of the case studies is contributing to the development of both the methodology and
the supporting platform. A number of methodological issues identified in year one have
been addressed in the second year. We have also started the work on validating the tool
platform. The case studies have been actively driving development of the tool plug-ins.
Besides contributing to the development and validation of initially planned plug-ins,
several new plug-ins have been proposed as a response to challenges discovered in the
case study developments.

In Section 2 we describe the advances made in the development of case study 1 – Formal
Approaches to Protocol Engineering. The case study investigates the use of formal
methods in model-driven development of communicating systems and communication
protocols. Over the last year this work was proceeding in two major directions –
formalization and extension of the existing UML2-based development method Lyra and
formal verification of the Lyra metamodel. We describe the progress in augmenting Lyra
with formal reasoning about fault tolerance advances in integrating model-based testing
as well as verification of the Lyra metamodel by refinement in B.

Section 3 presents the progress achieved in case study 2 – Engine Failure Management
System. The aim of the case study is to study how the methods and tools developed in
RODIN could improve design, maintenance and re-use of the failure management
systems developed by ATEC1. Observing the results of year one, the reviewers proposed
to leverage industrial evaluation of RODIN technology and increase level of the ATEC
expertise in formal modelling. To respond to this observation, during the second year,
ATEC performed a pilot evaluation study. We briefly present the experience gained from
it. Moreover, we report on continuing the work on development, instantiation and reuse
of the generic model developed in year one. To support this line of research, a prototype
plug-in, ‘the Requirement Manager’, was designed and implemented. Furthermore, in this
deliverable we also present the result of developing failure management systems by
classical refinement in B. The development has been undertaken by an academic partner
with the aim to transfer knowledge of formal modelling and design to the industrial
partner.

1 AT Engine Controls Ltd, U.K.

In Section 4 we describe the developments in case study 3 – Formal Techniques within
MDA Context. In the second year we have further investigated how the RODIN
techniques and tools can be applied in a model based environment and work flow by
using them to develop of a hardware based mobile phone platform known as NoTA. In
this deliverable we describe the advances made in combining modelling techniques of
UML, B, and hardware description languages to specify HIN – High Interconnect layer
of NoTA. Moreover, the use of animation, CSP and model-based testing, and theorem
proving for verifying the HIN layer is investigated.

In Section 5 we give an overview of work on case study 4 – CDIS Air Traffic Control
Display System. In the second year we have focused on developing a methodology for
constructing large formal specifications, eligible for tool-based formal analysis. The
major problem spotted in the CDIS development a decade ago was a lack of continuity
from the specification to design. Namely, the idealized view taken in the core
specification – an instantaneous update of information in all nodes – could not be mapped
into the implementation, which had to take into account inevitable communication delays
in information distribution. In this deliverable we report on patterns and generic
techniques for modelling and refinement developed to alleviate this problem.

Finally, in section 6 we reflect on the experience gained during the second year of work
on case study 5 – Ambient Campus. The aim of this case study is to investigate the use of
formal methods combined with advanced fault tolerance techniques in developing highly
dependable ambient intelligence applications. One of the directions of the work is
development of fundamental abstractions for formal development and verification of
ambient systems. We briefly describe the issues in formal development of distributed
middleware and present the set of formal decomposition patterns assisting development
of multi-agent ambient systems. Moreover, we outline our work on exception handling in
this domain and advances in the development of a plug-in for model-checking ambient
systems.

In general, during the second year the case studies have continued to actively drive the
development of the methodology and supporting tool platform. The joint research efforts
initiated in year one have been further expanded and strengthen over the last year. We
believe, that this provides us with a strong basis for successful accomplishment of the
goals set for the final year of the project.

SECTION 2. CASE STUDY 1:
FORMAL APPROACHES IN PROTOCOL ENGINEERING

2.1 Introduction

This section summarises the developments of Case study 1 – “Formal Approaches in
Protocol Engineering” – during the second year of the RODIN project. The goal of
CS1 is to investigate the application of formal methods for development of telecom-
munication systems and communicating protocols [2.11]. The work on the case study
focuses on formalisation and verification of the design method Lyra developed in the
Nokia research center. Lyra is an UML2-based service-oriented method for develop-
ment of telecommunication systems and communicating protocols. Within RODIN we
aim at providing support (in the form of formal techniques and tools) for various stages
of this approach.

During the first year of the RODIN project we have developed formal specification and
refinement patterns reflecting essential Lyra models and transformations. This allowed
us to conduct verification of the Lyra development using stepwise refinement in the B
Method. This work has been reported in [2.6,2.10].

In the second year of the RODIN project our work on the case study has progressed in
three directions:

1. Incorporating formal reasoning about fault tolerance into the formalized Lyra
development flow [2.5];

2. Developing an approach to verifying the consistency of the provided UML mod-
els [2.7];

3. Developing preliminary methodology for model-based testing of Lyra B models.

The work on CS1 in year 2 has been presented in a series of internal RODIN workshops
and presentations listed below.� Presentation at Zurich plenary meeting (September 2005);� Presentation to EU commission (October 2005);� Presentation at Aix-en-Provence workshop (April 2006).

In addition, the achieved results were presented at the following international confer-
ences and workshops:

� International Conference on Formal Engineering Methods (ICFEM’05) – the
work on verification of Lyra by B refinement [2.6],� Workshop on Consistency in Model Driven Engineering (C@MODE’05) – the
work on verifying the consistency of the provided UML models[2.7].

2.2 Major Directions in Case Study Development

Next we describe the contribution of the case study to methodology and plug-in devel-
opment achieved in the second year of the RODIN project. During this year our work
has focused on the taskT1.1.4:

T1.1.4 Investigate the use of refinement and model checking to verify decomposi-
tion and composition steps. Investigate the combination ofmodel checking and
refinement techniques in context of UML and B. Investigate the use of model
checking tools in combination with UML to B tool. Investigate the applicability
of formal reasoning about fault tolerance in this application area.

defined in [2.11]. We have progressed in three major directions described below.

First, to incorporate formal reasoning about fault tolerance into the formalized Lyra
development flow, the specification and refinement patterns for Lyra models have been
extended with explicit representation of possible errors and error recovery. The ex-
tension has affected the specifications of service components directly responsible for
controlling the service execution flow (called service directors). The recovery mech-
anisms allowing a service director to retry the failed service execution as well as to
”roll back” in the service execution flow have been incorporated in the specification
of a service director. Moreover, in the refinement steps modelling service decomposi-
tion and distribution over a given network, the fault tolerance mechanisms have been
distributed over the involved service components. Termination of potentially infinite
recovery process has been guaranteed by modelling the maximal execution time that is
gradually decreased by service execution.

Second, to automate translation and verification of Lyra UMLmodels in the B Method,
we have developed an approach to verifying the consistency of the provided UML
models. The approach consists of formalisation of the intra-consistency (i.e., express-
ing the relationships between models within the same Lyra development phase) and
inter-consistency (i.e., the relationships between different Lyra phases) rules for the
Lyra UML models. The formalisation is done using the B Methodin such a way that
the requirements are gradually (i.e., phase by phase) introduced and incorporated by

the corresponding B refinement steps. The achieved results create a basis for develop-
ing a formally verified UML profile for Lyra.

Third, to investigate the use of model checking and model-based testing techniques
in the context of UML and B, a preliminary methodology for model-based testing
of Lyra models has been developed. Once Lyra UML models are translated into the
corresponding B models, a finite coverage graph can be created by the model checking
tool ProB. Some paths starting from the initial state of thisgraph are then taken as test
cases. Finally, an extension of ProB called ProTest can simultaneously run both the B
model and the corresponding Java implementation using the test cases generated in the
previous step.

We now present these results in more detail.

2.2.1 Introducing Fault Tolerance in the Lyra Development Flow

Initially the Lyra methodology has addressed fault tolerance implicitly, i.e., by repre-
sentating failed service provision in the system models without modelling the mech-
anisms for fault detection and recovery – the fault tolerance mechanisms. We argue
that by integrating explicit representation of the means for fault tolerance into the en-
tire development process, we establish a basis for constructing systems that are better
resistant to errors, i.e., achieve better system dependability. Next we will discuss how
to extend Lyra to integrate modelling of fault tolerance.

Lyra consists of four main phases: Service Specification, Service Decomposition, Ser-
vice Distribution and Service Implementation. TheService Specificationphase focuses
on defining services provided by the system and their users. In theService Decompo-
sition phase the abstract model produced at the previous stage is decomposed in a
stepwise and top-down fashion into a set of service components and logical interfaces
between them. In theService Distributionphase, the logical architecture of services is
distributed over a given platform architecture. Finally, in theService Implementation
phase, the structural elements are integrated into the target environment and platform-
specific code is generated.

In the first development stage of Lyra we set the scene for reasoning about fault toler-
ance by modelling not only successful service provision butalso service failure. In the
next development stage –Service Decomposition– we elaborate on representation of
the causes of service failures and the means for fault tolerance.

In theService Decompositionphase we decompose the service provided by a service
component into a number of stages (subservices). The service component can execute
certain subservices itself as well as request the external service components to do it.

According to Lyra, the flow of the service execution is managed by aService Director
(often called a Mediator). It implements the behaviour of the service component as
well as co-ordinates the execution flow by enquiring the required subservices from the
external service components.

In general, execution of any stage of service can fail. In itsturn, this might lead to
failure of the entire service provision. Therefore, while specifyingService Director, we
should ensure that it not only orchestrates the fault-free execution flow but also handles
erroneous situations. Indeed, as a result of requesting a particular subservice,Service
Director can obtain a normal response containing the requested data or a notification
about an error. As a reaction to the occurred error,Service Directormight� retry the execution of the failed subservice,� repeat the execution of several previous subservices and then retry the failed

subservice,� abort the execution of the entire service.

The reaction ofService Directordepends on the criticality of an occurred error: the
more critical is the error, the larger part of the execution flow has to be involved in the
error recovery. Moreover, the most critical errors lead to aborting the entire service. In
Fig.2.1(a)we illustrate a fault free execution of the serviceScomposed of subservicesS1; : : : ; SN . The execution ofS in presence of various kinds of errors is shown in
Fig.2.1(b) - 1(d).

Let us observe that each service should be provided within a certain finite period of
time – themaximal service response time MaxSRT. In our model this time is passed
as a parameter of the service request. Since each attempt of subservice execution
takes some time, the service execution might be aborted evenif only recoverable errors
have occurred but the overall service execution time has already exceededMax SRT.
Therefore, by introducingMax SRTin our model, we also guarantee termination of
error recovery, i.e., disallow infinite retries and rollbacks, as shown inFig.1(e).

To derive the specification ofService Directorfor theService Distributionphase, we
have to take into account a given network architecture. In general, we should consider
two cases:

1. Service Directoris ”centralized”, i.e., it resides on a single network element,

2. Service Directoris ”distributed”, i.e., different parts of the execution flow are
orchestrated by distinct service directors residing on different network elements.

SS1 SS2 SS3 SSN-1 SSN

S

(a) Fault free execution flow

SS1 SS2 SS3 SSN-1 SSN

S

Retry

(b) Error recovery by retrying execution of
failed subservice

SS1 SS2 SS3 SSN-1 SSN

S

Rollback

(c) Error recovery by rollbacks

SS1 SS2 SS3 SSN-1 SSN

S

Unrecoverable error

Success

Service
 failure

(d) Aborting the service execution

SS1 SS2 SS3 SSN-1 SSN

S

Success

Service
 failure

Execution_time > Max_SRT

(e) Abort of the service due to timeout

Fig. 2.1: Service decomposition: faults in execution flow

Assume for simplicity that the set of subservices required to provideS consists of
three elements:S1; S2 andS3. At the Service Decompositionphase, in both cases
the model of the service component providing the serviceS looks as shown inFig.2.2.
The service distribution architecture diagram for the firstcase is given inFig.2.3. In
the second case, let us assume that the execution flow of the service component is
orchestrated by two service directors: theService Director1, which handles the com-
munication with the external users and also communicates with the service component
providingS1, andService Director2, which orchestrates the execution of the subser-
vicesS2 andS3. The service directors communicate with each other while passing the
control over the corresponding parts of the flow. The architecture diagram depicting
the overall arrangement for the second case is shown inFig.2.4.

In the Lyra B development, decomposition and distribution of services are modelled
as separate refinement steps. In the Service Decomposition phase we introduce the
abstract functionNextthat describes the Lyra execution flow from the point of view of
a service director. This function is used by a service director to decide which service is

I_ToS
 I_FromS

I_S1

I_S2

I_S3

I_ToS3

I_FromS3

I_FromS1

I_ToS1
I_FromS2

I_ToS2

Fig. 2.2: Service component

I_User

I_User

I_S3 I_S3I_S2

I_S2

I_S1
I_S1

Fig. 2.3: Architecture diagram (case 1)

I_User

I_User

I_S3
I_S3

I_S2
I_S2

I_S1
I_S1

 ServiceDirector1

 ServiceDirector2

I_SDir1-SDir2

I_SDir1-SDir2

Fig. 2.4: Architecture diagram (case 2)

to be executed next in the absence or the presence of faults. In the Service Distribution
phase the functionNextis instantiated taking into account a given network architecture.
The detailed B specification patterns of service componentswith incorporated fault
tolerance mechanisms are presented in Section 2.3 on demonstrators.

In the year 2 of the RODIN project we have extended the Lyra B specification and
refinement patterns with explicit representation of possible errors and error recovery.
Moreover, in the refinement steps modelling service decomposition and distribution,
the fault tolerance mechanisms have been distributed over the involved service compo-
nents. In the year 3 we are going to further enhance the Lyra B models by modelling
parallel execution and dynamic reconfiguration of services.

2.2.2 Verifying Consistency of Lyra UML models

One of the goals of CS1 is to develop a tool for automatic translation of Lyra UML
models into the corresponding B specifications. To achieve this, the consistency of
provided UML models should be formally verified. We start formal verification of
consistency by deriving the list of informal requirements for Lyra UML models. In
particular, for each Lyra stage we derive the list of requirements corresponding to a

particular Lyra model. For each model we group requirementsaround concrete model
elements. Once the complete list of requirements is obtained, we can distinguish be-
tween model-presentation, intra-, and inter-consistencyrules for each particular Lyra
model.

The informal requirements form the basis for formalizing Lyra models and consistency
rules in B. In general, the approach is as follows. For each Lyra model we introduce
the corresponding B machine specifying the way the model is constructed. The B
machines are created in the order defined by the Lyra development flow. Hence, the
set of models defined at each stage is represented by the corresponding set of B ma-
chines. The intra-consistency rules are defined as the invariant of a top machine – a
machine which includes this set of B machines. The models at each subsequent stage
are represented in the same way. Moreover, inter-consistency is ensured by refinement
between the corresponding top machines. The refinement relation defined as a part of
the invariant of the top machine contains inter-consistency rules. Next we present our
approach in detail.

Ensuring intra-consistency of Lyra models in B. Ensuring intra-consistency in Lyra
requires verifying that the models:� satisfymodel presentation rules, i.e., constraints expressing how to properly de-

fine its elements, and� arenot contradictorywith each other.

To achieve verification of these properties, we first represent each kind of Lyra models
as a B machine of a general form given inFig.2.5. The name of the machine cor-
responds to the name of the Lyra model and is followed by the acronymic name of
the stage, i.e., SS, SDe or SDi. The variables of this machinecorrespond to model
elements and their presentation rules are expressed as its invariant.

The machine operations simulate creation of model elements. Namely, for each model
element there is one correspondingCreate ModelElement operation which allows
the creation of the element by enforcing at the same time the model presentation and
the intra-consistency rules.

To ensure that the models are created in a certain order we introduce the variable
Model StageStatus. While creating the corresponding Lyra model, the operation
Start Model Stageassigns the valueCreating to Model StageStatusand this, in
turn, enables the creation of elements of the model. Let us observe that
Model StageStatus=Creatingis the guard of theCreate ModelElementA and
Create ModelElementB operations inFig.2.6. When a particular model is created,
Model StageStatusvariable is assigned valueFinished.

MACHINEModel StageEXTENDS < Previously reated model >VARIABLES < Names of model elements >; Model Stage StatusINVARIANT < Model presentation rules >INITIALISATION< Initialise the variables for model elements > kModel Stage Status := EmptyOPERATIONSStart Model Stage =BEGINModel Stage Status := CreatingEND;Stop Model Stage =SELECT < Model reation rules satis�ed >THENModel Stage Status := FinishedEND;Create ModelElementA =SELECTModel Stage Status = CreatingTHEN< Create a model element A while ensuring model presentationand intra� onsisteny rules >END;Create ModelElementB =SELECTModel Stage Status = CreatingTHEN< Create a model element B while ensuring model presentationand intra� onsisteny rules >END;:::END
Fig.2.5: General form of the B machine for Lyra model

The creation of models at each particular stage is orchestrated by the corresponding
top machine. Its general form is shown inFig.2.6. After one model is created, the
top machine corresponding to that stage defines which model is to be created next.
Namely, if Model2should be created afterModel1at the stage I then the guard of the
Create Model2 Stageoperation of this machine has the following form:Model1 StageI Status = Finished ^ Model2 StageI Status = Empty
where the valueEmptyassigned to the variableModel2 StageI Statusindicates that
the creation of Model2 has not started yet. The creation ofModel2 is then trig-
gered by the operationStart Model2 StageI called from the body of the operation
Create Model2 StageI.

Since we assume that the Lyra models are checked for consistency only after they
are created, the invariant of the machine corresponding to acertain Lyra stage guar-
antees that the intra-consistency rules for a particular model are satisfied only when
Model StageStatus=Finished.

To verify the intra-consistency rules, we should prove correctness of the defined top
machines and abstract machines representing Lyra models.

Ensuring inter-consistency of Lyra models in B. To verify inter-consistency, we
should ensure that the models at different development stages are not contradictory
with each other. In this section we propose refinement as a technique for establishing
model inter-consistency.

The models from each Lyra stage correspond to the B machines specified according to
the pattern given inFig.2.5. The rules of intra-consistency remain unchanged through
stages. However, the models starting from the second Lyra stage are obtained based on
the models from the previous stage. A B machine corresponding to the top machine of
subsequent Lyra stage is a refinement of the top machine for the previous Lyra stage
and its general form is shown inFig.2.7.

The top machineStageIIuses a specific form of data refinement called superposition
refinement [2.1]. Superposition refinement introduces new variables while leaving the
existing data structure unaffected. Observe that the general ideas of superposition
refinement and model transformation during the Lyra development process coincide.
Each development stage introduces a new set of models, whilethe models created at the
previous stage remain unchanged. The way that elements of the models from one stage
relate to the elements from the models in another stage defines the inter-consistency
rules between these two stages. These rules are enforced while creating the elements
of Lyra models in the subsequent Lyra stages.

Although the refinementStageIIhas the form similar to that of the machineStageI
(seeFig.2.6), the invariant of the refinementStageIIadditionally expresses not only
the intra- but also the inter-consistency rules. The inter-consistency rules are expressed
as the linking invariant of the refinementStageII. To verify the inter-consistency rules,
we should prove correctness of defined abstract machines corresponding to the models
of the subsequent stage and the refinement of this stage.

The proposed methodology is developed using the Classical Band verified with its
automatic tool support – AtelierB [2.2]. The newly developed Event B does not sup-
poort the machine inclusion mechanism extensively used in our approach. However,
the proposed development is based on the superposition refinement (i.e., adding new
data structures and operations), which can be easily modelled in the Event B.

MACHINE StageIEXTENDS Model1 StageIINVARIANT= � intra � onsisteny rules � == � Model1 � =(Model1 StageI Status = Finished) :::)= � Model2 � =(Model2 StageI Status = Finished) :::)OPERATIONSCreate Model1 StageI =SELECTModel1 StageI Status = EmptyTHENStart Model1 StageEND;Create Model2 StageI =SELECTModel1 StageI Status = Finished ^Model2 StageI Status = EmptyTHENStart Model2 StageEND:::END

REFINEMENT StageIIREFINES StageIEXTENDSModel2 StageIIINVARIANT= � intra � onsisteny rules � =:::= � inter � onsisteny rules � == � Model1 � =(Model1 StageII Status = Finished) :::)= � Model2 � =(Model2 StageII Status = Finished) :::):::OPERATIONSCreate Model1 StageI = :::Create Model2 StageI = :::Create Model1 StageII = :::Create Model2 StageII = ::::::END
Fig.2.6: General form of a B Fig.2.7: General form of a B refinement

machine for a specific Lyra stage for the subsequent Lyra stage

2.2.3 Model Based Testing for Lyra Models

The case study sets the requirements for the development of the model-based testing
plug-in on the basis of experience gained at the Nokia research center. The require-
ments for this plug-in are described in D11 [2.9]. In this section we present preliminary
methodology for model-based testing of Lyra B models.

Model Based Testing. Software models are usually built to reduce the complexityof
the development process and to ensure software quality. A model is usually a specifica-
tion of the system which is developed from the requirements early in the development
cycle.

A software system built out of a formal model can be viewed as arefinement of the
model. For correctness, any observed system behaviour mustbe a valid behaviour
of the model. There are two ways of showing the correctness ofimplementation be-
haviour. One is to build a system through a succession of formal refinements and to
demonstrate the consistency and refinement relationship ateach step using the tech-

nique oftheorem proving.

The other possibility is testing. Model based testing is different from code based
testing: the former uses specification structure, while thelatter uses the code struc-
ture [2.8]. A formal model can be subjected to symbolic execution to create a finite
coverage graph; usually the coverage graph represents a state of the model and the
edges denote operation invocations. One then can select a set of finite behaviours from
this coverage graph based on a testing criterion. Each such behaviour can be seen as
a test case; this approach is often termed as model based testing [2.3]. Testing is an
incomplete activity; however, the test cases could be made effective in the sense that
they capture the interesting aspects of the system and hencethe success of their testing
would give us confidence about the correctness of the system.

Model Based Testing from B models. B is a model-oriented specification language.
By model-oriented we mean the system is modeled as an explicit state which can be
modified by a set of operations. The behaviour of a B machine can be described in
terms of a sequence of operations, and the first operation of the sequence originates
from the initial state of the machine.

Model based test cases can be generated from a B machine in thefollowing steps.� Step 1: Customization of the B machine:The non-deterministic operations in
a B machine will be customized by making them more observable; the System
Under Testing (SUT) lets the test environment know of the choice it made in
relation to a nondeterministic choice in the model. This helps in relating the
implementation behaviour with the corresponding behaviour in the model.� Step 2: Creation of probe operations:For each operation, we create a set of
probe operations. These operations are either designed by the specifier or the
tester. The results of these operations are used as oracle information. The use
of the probe operations bridges the semantic gap between theabstract and the
concrete name spaces.� Step 3: Creation of a signature file:It is expected that the SUT has the same
interface as that of the model. This means that all the B operations are present
in the SUT and that each such operation has similar signature. The relationship
between the operation parameters of the model with those in the implementation
is defined using a mapping.� Step 4: Creation of operation instances:The input space of a B operation will
be partitioned into equivalence classes. Essentially, each partition corresponds
to a distinct control path in the operation.

ARA

(Flat B Model) (Top Level Machine)

I

(Main
Component)

Sub−components

. . .Machine
Included Included

Machine

(a) (b)
(c)

Fig. 2.8: (a) Single B machine (B) Refinement of the same machine (c) Implemen-
tation� Step 5: Creation of a Coverage Graph:A coverage graph is created by per-

forming symbolic execution over the B machine. A node in the coverage graph
represents a state of the model and each edge is labelled withan operation in-
stance invocation. A Testing criterion decides to what extent the coverage graph
is created.� Step 6: Test case Generation:The created Coverage graph will be traversed to
generate sets of test cases. Each test case is a path in the graph starting from the
initial state. The test cases are obtained in relation to thetesting criterion.

Test case generation from Lyra-to-B models. During the first year of RODIN we
have developed a set of formal specification and refinement patterns that can be used
to systematically transform a Lyra model into the corresponding B model. In particular,
we have introduced the notion ofAbstract Communicating Component(ACC), which
is a pattern for specifying a Lyra service component in B.

The instantiation of an ACC gives rise to a single B machine. In the subsequent phases
of the Lyra in B method, this B machine is further refined to a hierarchy of B machines.

Since we have a strategy to generate test cases from a B machine, we can use the same
method to obtain test cases for the B model obtained from the Lyra model. However, at
this stage the test case generation strategy for B only handles flat B machines. There-
fore, we will only generate test cases for the top level machine only. This could be
seen fromFig.2.8. In the figure, (a) shows a flat machine called A; (b) is a refinement
of the same machine in which the top module AR has the same interface as that of
the machine A. In such a case, the test cases generated for machine A will also be test

cases of AR, the top module in the refinement. Let us assume therefinement in (b) is
used to generate the implementation in (c) in which I is the top component which can
call routines in the subcomponents. If the interface of I is the same as that of AR, then
the test cases for AR could also be test cases for I. Thus the test cases of A are also test
cases for I.

2.3 Demonstrators

The demonstrators for this case study will include:

1. the collection of formal B models (specifications) describing specification and
development patterns for telecommunication systems,

2. a prototype of the tool supporting automatic translationof the Lyra UML2-based
development process into specification and refinement process in the B Method,

3. a prototype of the model-based testing plug-in.

In this section we present formal B specifications describing specification and develop-
ment patterns for Lyra models. The progress on 2) and 3) was presented in the sections
2.2.2 and 2.2.3 correspondingly.

2.3.1 Modelling a Service Component in B

We can define a Lyra service component as a coherent piece of functionality that pro-
vides its services to a service consumer via so calledProvided Service Access Points
(PSAPs). We use this term to refer to external service providers introduced at the
Service Decomposition phase. However, the notion of a service component can be
generalized to represent service providers at the different levels of abstraction.

A service component has two essential parts: functional andcommunicational. The
functionalpart is a ”mission” of a service component, i.e., the service(s) that it is ca-
pable of providing. Thecommunicationalpart is an interface via which the service
component receives requests to execute the service(s) and sends the results of service
execution. Usually execution of a service involves certaincomputations. We call the
B representation of this part of a service componentAbstract CAlculating Machine
(ACAM). The communicational part is correspondingly calledAbstract Communicat-
ing Machine (ACM), while the entire B model of a service component is calledAb-
stract Communicating Component (ACC). The abstract machineACC below presents
the proposed pattern for specifying a service component in B.

While specifying a service component, we adopt asystemicapproach, i.e., model the
service component together with the relevant part of its environment, the service con-
sumer. Namely, when modelling the communicational(ACM) part of ACC, we also
specify how the service consumer places requests to executea service in the opera-
tion input and reads the results of service execution in the operationoutput. The input
parametersparamand time of the operationinput model the parameters of a request
and the maximal time allowed for executing the service. The parameters of the request
are stored in the internal data bufferin data so they can be used byACAM while
performing the required computations.

In our initial specification we abstract away from the details of computations required
to execute a service, i.e.,ACAM is modelled as a statement non-determinis- tically
generating results of service execution. These results arestored in the internal output
buffer out data. The service consumer obtains the results of service provision as the
output parameterres of the operationoutput. Upon executing the operationoutput,
the input and output buffers are emptied and the service component becomes ready to
accept a new service request. Here we reserve the abstract constantNIL to model the
absence of data.

MACHINE ACC
VARIABLES in data, out data

INVARIANT
in data2 DATA^ out data2 DATA

INITIALISATION
in data, out data:= NIL, NIL

EVENTS

input(param,time) =
PRE param2 DATA^ time2 NAT1 ^ : (param=NIL) ^ in data=NIL
THEN

in data:= param
END;

calculate=
SELECT : (in data=NIL) ^ out data= NIL
THEN

out data:2 DATA- fNILg
END;

res output=
PRE : (out data= NIL)
THEN

res := out datak
in data,out data:= NIL, NIL

END

END

In Lyra, a service component is usually represented as an active class with the PSAP(s)
attached to it via the port(s). The state diagram depicts thesignalling scenario on PSAP
including the signals from and to the external class modelling the service consumer.
Essentially these diagrams suffice to specify a service component according to the
ACC pattern. Namely, the UML2 description of PSAP is translatedinto the commu-
nicational(ACM) part of the machineACC. The functional(ACAM) part ofACC
should be instantiated by the data types specific to the modelled service component.
This translation formalizes theService Specificationphase of Lyra.

We argue that the machineACCcan be seen as a specification pattern, which can be in-
stantiated by supplying the details specific to a service component under construction.
For instance, theACM part ofACCmodels data transfer to and from the service com-
ponent very abstractly. While developing a realistic service component, this part can be
instantiated with real data structures and the corresponding protocols for transferring
them.

Next we discuss how to extend Lyra with the explicit representation of the fault toler-
ance mechanisms and then show the use of theACCpattern in the entire Lyra develop-
ment process.

2.3.2 Formalizing Service Decomposition and Incorporating Fault Tolerance
Mechanisms

In the first stage of our formalized development we used UML2 models produced
at Service Specificationphase to specify a service component according to theACC
pattern. The next step focuses on modelling service execution flow with incorporated
fault tolerance mechanisms. Namely, we introduce a representation ofService Director
into the abstract specification of a service component. Thisis done by refining the
machineACC. The result of this refinement – the machineACC DEC – is given
below.

REFINEMENT ACC DEC
REFINES ACC
SEESData

CONSTANTS Service, Eval, Next

PROPERTIES ...

VARIABLES
in data, out data, time left, old time left,
curr task, resp, finished, results, curr data

INVARIANT
...
(finished= FALSE) time left>0)^
time left� old time left^
(finished= TRUE) (resp=ABORT) _ (curr task= size(Service)+1))

VARIANT time left + old time left

INITIALISATION
in data, out data:= NIL, NIL k
time left, old time left := max time, max timek
curr task, resp:= 1, OKk
finished, results:= FALSE, ; k
curr data:= NIL

EVENTS

input(param,time) =
PRE param2 DATA^ time2 NAT1 ^ : (param=NIL) ^ in data=NIL
THEN

in data:= param ; time left, old time left := time, time
END;

handle=
SELECT : (in data=NIL) ^ finished= FALSE ^ (time left< old time left)
THEN

old time left := time left; curr data:2 DATA-fNILg;
resp:= Eval(Service(curr task),curr data);

CASE respOF
EITHER OK THEN

results(curr task) := curr data;
curr task:= Next(curr task);
IF curr task= max sv+1 THEN finished:= TRUE END

OR ROLLBACKTHEN
curr task:= Next�1 (curr task);
results:= fcurr taskg << j results

OR REPEATTHEN skip
OR ABORTTHEN finished:= TRUE
END

END
END;

timer =
SELECT : (in data=NIL) ^ finished= FALSE ^ (time left = old time left)
THEN

CHOICE
time left :2 fxx j xx2 NAT1 ^ xx<time leftg

OR
time left, resp:= 0,ABORT ;
finished:= TRUE

END
END;

calculate=
SELECT : (in data=NIL) ^ out data= NIL ^ finished= TRUE
THEN

IF resp= ABORTTHEN out data:= Abort data
ELSE

out data:= results(Next�1 (curr task))
END

END;

res output=
PRE : (out data= NIL)
THEN

res := out data ; in data,out data:= NIL, NIL
END

END

The machineACC DEC captures the design decisions made atService Decompo-
sition andService Distributionphases. Namely, to derive the specification ofService
Director, we use UML2 diagrams modelling both the functional and the platform-
distributed architectures.

In the machineACC DEC we model the decomposed service as a sequence over
the abstract setTASKS. Each element ofTASKSrepresents the individual subservice.
Moreover, we introduce the abstract functionNextwhich models the execution flow. In
case of the centralizedService Director, the subservices are executed one after another,
i.e., the abstract representation ofNextwill be instantiated as follows:Next(Si) = Si+1
In the second case, the functionNextdescribes the execution flow from the point of
view of the main service director, i.e., it treats the groupsof services managed by other
service directors as atomic steps in the execution flow. For example, assume that the
servicesS1 andS2 are managed byService Director1, while S3 andS4 are managed
by theServieDiretor2. In this case the functionNexttreats the execution ofS3 andS4 as one execution step whose performance is delegated toService Director2. Hence,
in this exampleNextwill be instantiated as follows:Next(Si) = Si+1 for i = 1; 2; and Next(S3) = S5
The currently executed subservice is modelled by the variable urr task. The results
of the current subservice are stored in the variableurr data. The results of all subser-
vices already executed from the sequence are accumulated inthe variableresults. The
variablefinishedindicates the end of service execution. The variable is set to TRUE
when the whole sequence of subservices has been executed or some unrecoverable
error has occurred.

To model progress of time, we introduce the variabletime left. When a service re-
quest is received,time left is set toMax SRT. The operationtimer decreases the value
of time left, disables itself and enables the operationhandle, which specifies the be-
haviour ofService Director. The variableold time left is used to force interleaving
between progress of execution flow and the passage of time.

In the operationhandle, we model not only requesting a certain subservice and obtain-
ing its response, but also handling notifications about errors. We introduce the abstract
functionEval, which evaluates the obtained response from a requested subservice. The
result of evaluation is assigned to the variableresp.

If the subservice was successfully executed then the variable respgets the valueOK.
In this case the next element from the sequence of subservices is chosen for execution

according to the functionNext. If a benign failure has occurred and error recovery
merely requires to retry the execution of the failed subservice then the variableresp
is assigned the valueREPEAT. However, if a more critical error has occurred, i.e., the
variablerespgets the valueROLLBACK, the execution of several subservices preceding
the failed service should be repeated as well. The inverse ofthe functionNextdefines
which subservices should be re-executed, i.e., where in thesequence of subservices the
execution flow should rollback to. In this case, we also delete the results of executing
these subservices fromresults. Finally, if an unrecoverable error has occurred, i.e., the
value ofrespbecomesABORT, then the execution of the service is terminated (i.e., the
variablefinishedis assignedTRUE).

In the refined machineACC DEC the guard of the eventcalculateis strengthened
to ensure that the final result of the service is computed onlyafter the execution of all
subservices is finished (or aborted), i.e., whenfinished = TRUE.

The performed refinement has affected theACAMpart of theACCpattern. The newly
introduced events allowed us to define the details of execution of the decomposed
service. In theVARIANT clause ofACC DEC we not only ensured that the newly
introduced events do not take control forever but also that execution of the service
terminates.

Let us observe that our approach to introducing fault tolerance can be seen as an
abstract implementation of a rollback error recovery frequently used in distributed
systems [2.4]. Indeed, the operationhandledefines the rollback procedure by co-
ordinating the error recovery according to the check-points defined by the function
Next. The stable data storage is modelled by the variableresults. The operationhandle
ensures consistency of the system state by the appropriate updates ofresults.

2.4 Future Development of the Case Study

Future work on the case study will proceed along the following direections:� Modelling parallelism in the formalised Lyra development,� Modelling dynamic reconfiguration in the Lyra service execution flow,� Further development of the methodology for reasoning aboutfault tolerance in
the presence of parallelism and reconfiguration,� Automatic translation of Lyra UML2 models into B,� Enhancing the model-based testing methodology for Lyra together with the work
on the model-based testing plug-in.

We are planning to further develop the specification and refinement patterns to model
parallel execution of communicating service components. The fault tolerance mecha-
nisms already incorporated into the specification pattern for a service director will be
enhanced accordingly. Also, formal modelling of dynamic reconfiguration in the Lyra
service execution flow could become an especially challenging problem.

We are also going to continue our work on developing a formally verified profile for
Lyra UML models. The developed profile will be used by a prototype tool supporting
automatic translation of Lyra UML models into the corresponding B specifications.

The developed B models of communicating systems will be usedto test and develop the
methodology for model-based testing of Lyra B models. As a result, this methodology
will be implemented into the model-based testing plug-in which takes automatically
generated Lyra B models as sources for test generation.

References

2.1 R. Back and K. Sere. Superposition refinement of reactivesystems. 1996.

2.2 Clearsy. AtelierB: User and Reference Manuals. Available at
http://www.atelierb.societe.com/indexuk.html.

2.3 I. El-Far and J. Whittaker. Model Based Software Testing. 2001.

2.4 E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A Survey of Rollback-
Recovery Protocols in Message Passing Systems. ACM Computing Surveys,
Vol.34, No.3, September 2002.

2.5 L. Laibinis, E. Troubitsyna, S. Leppänen, J. Lilius, and Q. Malik. For-
mal Service-Oriented Development of Fault Tolerant Communicating Systems.
TUCS Technical Report 764. Turku Centre for Computer Science, April 2006.

2.6 L. Laibinis, E. Troubitsyna, S. Leppänen, J. Lilius, and Q. Malik. Formal Model-
Driven Development of Communicating Systems. Proceedingsof 7th Interna-
tional Conference on Formal Engineering Methods (ICFEM’05), LNCS 3785,
Springer, November 2005.

2.7 S. Leppänen, D. Ilic, Q. Malik, T. Systä, and E. Troubitsyna. Specifying
UML Profile for Distributed Communicating Systems and Communication Pro-
tocols. Proceedings of Workshop on Consistency in Model Driven Engineering
(C@MODE’05), November 2005.

2.8 J. Offutt, S. Liu, A. Abdurazik, and P. Ammann. Generating Test Data from State
Based Specifications. 2003.

2.9 Rigorous Open Development Environment for Complex Systems(RODIN), De-
liverable D11, Definition of Plug-in Tools. online at http://rodin.cs.ncl.ac.uk/.

2.10 Rigorous Open Development Environment for Complex Systems(RODIN),
Deliverable D8, Initial Report on Case Study Development. online at
http://rodin.cs.ncl.ac.uk/.

2.11 Rigorous Open Development Environment for Complex Systems(RODIN), De-
scription of Work. IST FP6 STREP project, online at http://rodin.cs.ncl.ac.uk/.

SECTION 3. CASE STUDY 2: ENGINE FAILURE
MANAGEMENT SYSTEM

3.1. Introduction

This section of the D18 report summarises the developments in year 2 of AT Engine
Controls (ATEC) case study “Engine Failure Management System” as part of the
RODIN project.

The work on the case study supports the work of the following task from the
Description of Work [3.10].

T1.2.4 Validate and verify formal specification to evaluate usefulness of formal
methods

The work since the last interim report has been presented to the RODIN project in a
series of internal workshops and presentations outlined below.

Presentation on work (Zurich Plenary,Sept 2005) and meeting
 A summary of year 1 dissemination. Some collaborative work with Aabo.

Identifying areas of work.

Presentation To EU (Brussels Oct 2005)
 A brief outline of case.

Presentation on work (Aix workshop, April 2006)

 A summary of the case study development was presented

The case study has provided contributions to the following Rodin deliverables in year
two.

 D18 (D1.4) Interim report (this report)
 D22 (D7.3) Metrics report
 D19 (D2.2) Methodology

3.1.1. Background

Rodin methods and technology such as UML-B have shown promise in tackling
failure management domain concerns for ATEC such as closing the semantic gap
(i.e., closer mapping of the problem domain to the design) and providing a reliable
reusable process to meet the demands of a safety critical environment.
The first year provided the case material for interested Rodin partners to develop their
technological approach and contribution to Rodin methods and tools. ATEC began
learning of the methods and technology. The University of Southampton in
cooperation with ATEC developed a generic model of the failure management system
(FMS) based on a UML_B profile. A summary of Year 1 work including some early
evaluation is described in the deliverables [3.13 and 3.14].

3.1.2. Overview of year 2 work

The second year work on the case material consists of contributions by ATEC,
University of Southampton (Soton) and Aabo Akademi (Aabo). Their contributions
are summarised as;

1. Pilot evaluation study (ATEC)
2. Generic feature-oriented specifications in FMS (Soton)
3. The requirements manager tool (Soton)
4. Classic refinement development of FMS (Aabo)

In year 2 ATEC intended to focus on the development of FMS behaviour in the
generic model with University of Southampton but has now redirected its focus
towards independent evaluation of technology using a pilot study. This has come
about due to feedback from the EU reviewer’s comments encouraging more industrial
evaluation of Rodin technology and the need by ATEC to gain more experience in
order to contribute effectively to model behaviour. The Pilot model is described
briefly in section 3.3 and references to its contribution to methods and tools are made
in section 3.2. The pilot study is a small subset of the original failure management
case. ATEC was guided to the view that separate investigation of “UML” and “B”
would be an effective way to evaluate, justify and contribute towards UML_B
development and has explored the modelling process with these technologies using
the RODIN methods and tools where available. It was envisaged that lessons learned
from modelling would provide a contribution to the behaviour of the generic model
later. The aim of the Pilot study was primarily to provide a more manageable vehicle
to learn and evaluate the technology.

The University of Southampton has continued developing methodology supporting
the generic model. Work at Southampton has proposed a prototype process for the
V&V of a generic specification of this type, demonstrating stage (1): validate
structural model using test data – and stage (2): verify system instance data against
structural instance model. This was done using the existing UML-B tool and ProB
model checker. The specification has been decomposed into features as the first step
in an investigation of feature-based description, refinement and composition of
generic specifications. This investigation will establish how to structure such feature-
based transformations using the relevant mechanisms of the Event-B language:
refinement, decomposition and generic instantiation.

A student project group at the University of Southampton has developed a plugin for
UML-B, the Requirements Manager. This tool is a PostgreSQL-based repository of
FMS instance data, with functions to input and verify instance data against the generic
model, and to upload the data to UML-B for generation of a system instance UML-B
specification. As a user-acceptance test of the tool, the V&V exercise of the previous
paragraph has been performed with a full system instance dataset.

Aabo Akademi has been working on a classical refinement development of the FMS
[3.15].The main result of developing the FMS by stepwise refinement in B is a set of
formal templates for specifying and refining the FMS. The developed FMS is able to
cope with transient faults occurring in a system of multiple homogeneous analogue
sensors. The formal templates specify sensor recovery after the occurrence of
transient faults and ensure the non-propagation of errors further into the system.

3.2. Major Directions on RODIN in Case Study Development

This section describes the contribution of the case study to methodology and platform
and Plug in development in this second year. Contributions have been made by
ATEC, University of Southampton, and Aabo Akademi. ATEC provides an additional
evaluation in the D22 (D7.3) Assessment report deliverable.

3.2.1. Methodology perspective from Pilot Study (ATEC)

The methodological approach adopted by the case study is modelling in UML-B
[3.11]. The exploration of the technologies of UML and B offered by the Pilot study
allowed ATEC to evaluate each technology from their own perspective which is
intended to contribute towards assessing the UML_B methodology and its tools. The
two technologies are different and offer different benefits to UML_B. UML is
essentially an object orientated modelling perspective and has evolved from
modelling in various domains for different types of user whereas “B” modelling is
not object orientated but is often used where the domain requires rigorous
development. Rigorous development is often viewed as difficult to adopt by
developers inexperienced in formal methods. Conversely development in UML is said
to lack the formality required for precise specification. The study provides some
evidence to test these assertions in addition to assessing technological contributions
that might be useful towards developing UML_B methodology.

Evaluation of methodology by developing a “B” specification

The Pilot model is outlined in section 3.3. The approach taken to modelling in “B”
was to consider the pilot subsystem from an event viewpoint. It was felt that this
would provide an insight into using the emerging “Event B” methodology which is
also part of the Rodin methodology [3.10]. The current tool set does not support Event
refinement but evaluating the existing tools is still useful as the new versions will be
based on them.
The Tools used in the study were ;

ProB
Which is a model checker [3.2] which has been used to provide verification and
validation of models developed during the case study. It provides the facility to check
execution of the state space of the model by checking for invariant violations and
deadlocks and provides some refinement checking. It also provides an animation
facility which allows dynamic execution of the model which is useful for validation
purposes

B4free/Click ‘N’ Prove
This Prover checks the internal logic of the model for inconsistencies. It provides the
facility to discharge automatic and interactive proofs.

In the “B” model the pilot subsystem was initially viewed as a black box whereby the
output events and input events were identified. The first model illustrated the
relationship between input and outputs events and the allowable sequencing of the
output events. ATEC found that identifying the events and consequent output states
was easy, given the small subset in the Pilot. All of the output state variables were set
by one of a collection of alternative events. The different valid combinations of
settings produced only a few events. However if a larger number of outputs were to be
considered then this approach may be problematic, as identifying the events
reflecting valid combination settings of all state variables would be extensive.
Conversely allowing each output setting to have its own event could misrepresent the
sequencing of output event combinations.

The events in the Pilot were illustrated dynamically by the execution of the model via
the ProB animation facility. This facility was found to be particularly useful for
validation of the model and was easy to use. Validation by this method gave
assurance that the specification was what was intended. The inclusion of invariants in
“B” modelling helped the verification tools to automatically check that the
specification was consistent with their invariants however there is still a need to
confirm that the invariant is correct particularly for a novice. Furthermore the creation
of an invariant for all functional behaviour was not always achieved. It was felt that
further development of the animator facility would be particularly useful to support
validation of the formal methodology, e.g., allowing for automated execution scripts,
highlighting states that have changed etc. One envisaged use of such a development
would be to generate a validation suite of automated scripts which could be exercised
and extended as the model was refined.

In order to avoid the difficulties of obtaining good abstract specifications where, in
reality, requirements may be uncertain, a process of idealisation - de-idealisation was
developed. The process is described in the next section and may contribute towards a
potential methodology for development by novice users.

In general, refinement was introduced to each abstract model by considering what
events the output events were dependant on. An event decomposition approach to
refinement was undertaken, where events were decomposed into sub-events. However
it was found that choosing what and how to decompose events is to some extent
arbitrary and that a novice may benefit from some form of methodological process

guidance. The work being developed by Aabo on fault templates and by Soton on
features approaches (see following sections) should contribute to this guidance.
For example in the first refinement, a ‘validation’ event was introduced which non
deterministically changed the state of a test outcome, the output events selected were
dependant on this outcome. The decomposition may alternatively have shown an
output dependency on states from a range of validation events each with different
levels of determinisms. This could have produced a more difficult architecture to
refine. In general the view taken was to introduce determinism into the model
gradually but this is a discipline.

The verification tools used in developing the model were found to be beneficial to the
process and were used in different ways. The ProB tool was easy to use and useful to
model check aswell as animate the model. The tool was also useful for identifying
deadlocks in the model which is not possible using the Prover tool. Refinement
checking using the Prover requires the modeller to provide a gluing invariant relating
the abstract model and its refinement. ProB, on the other hand, does not require a
gluing invariant as it effectively discovers the relationship between the abstract and
concrete models through a mechanised search. When it works, this fully automatic
refinement checking of ProB is very useful. However, methodologically it was found
that having to construct a gluing invariant for the Prover provides the modeller with
valuable insight into the design. The Prover tool was found to be less intuitive to use
and in general proving was found difficult by the novice due mainly to inexperience
with proving. Despite this, ATEC found the tool useful to indicate where a difficulty
was in the specification and used this to change the specification (see 3.2.2 below)
and so achieve automatic proof obligations rather than interactive ones. The ease of
proof was helped largely through the extensive use of superposition in the refinement
chain.

In general, it was demonstrated that formal modelling and verification was possible
by a novice with little formal training in using the current RODIN tools and methods.
The implication being that the rigor of the UML_B technology which utilises “B” and
uses the same verification tools will not necessarily be a barrier to a novice to formal
methods. The model of the pilot was however simplistic and did not require many “B”
constructs. For the wider case study the model would need to be developed to cater
for a larger number of elements. This may involve changing the event operations to
work on collections of inputs which requires more complexity and understanding of
B. The generic model development will address larger number of elements.

3.2.2. Refinement processing - Idealisation – De-idealisation (ATEC)

The Pilot study developed a two stage approach to its “B” model development which
may contribute towards a process methodology.

The idealisation stage involved introducing functionality to the model incrementally
but without formal refinement. Each functional increment was added to the previous
B machine to form a new machine. These abstract machines are regarded as
idealisations as the increments were not proven refinements. The intention behind the
process was to explore the basic functionality of the model fairly quickly without the
overhead and inherent difficulty of establishing good abstract specifications and proof
of refinements. The standpoint being to establish the intended basic behaviour of the

model before defining its operation more consistently and formally. This was felt a
useful and natural approach where requirements may be uncertain or evolving and
modelling requires some early assurance and flexibility. It is analogous to prototype
development. Each machine did include some simple invariants and each was checked
using the ProB model checker and animator.

The second stage was to revise the machines by translating them into formal
refinements, what has been termed de-idealisation. In some cases not all the machines
needed to be used in the formal refinement as some of the machine behaviour could
be combined to simplify the refinement path and still capture the validated
requirement. Furthermore the machines in the idealisation could now be reviewed in
order to strengthen the model invariants, and architecture and so ensure consistency in
the refinement chain. The ProB model checker and prover tool Click’N’Prove/B4 free
tool were used to verify the model.

A special case of idealisation was also developed in order to assist in proving the
refinement chain. Here sufficient abstract detail was added to the idealised
specification to satisfy the proof obligations that were generated. In Event B when a
new event added in a refinement this needs also to be recorded in its abstract as a skip
operation. In this approach when new events were added, the abstract versions in
previous levels were not skip, but a non-deterministic alteration to the variables at that
level. The re-validation of the behaviour was only established for the current
refinement level and not for the previous abstract levels.

With hindsight it became apparent that the previous level, now altered, may no longer
describe the desired behaviour at that level and leads one to question the validity of
this methodological approach. For example the “difftest” event, introduced in the
abstract levels, could now unlatch some failures (which was not previously the case).
This is because its action is a non-deterministic change to the result rather than simply
a skip which would have no behavioural effect. In this case the abstract levels were
still consistent with their invariants and model checked though would probably have
failed a validation check on their animated behaviour. Since the proof of the
refinement using this approach may simply be proving a refinement of invalid
behaviour, this may be a pointless exercise, and could potentially introduce errors in
further development of the abstract specification.

In order to address this issue, a slightly more constrained abstract version was
considered by retaining any conjuncts from guards or conditions that were based on
variables in the previous level. This restricts the effect of the event in a way that
corresponds with the refinement. Hence it stands a better chance of being an
acceptable specification for the refinement. Its consistency and validity can then be
examined using the ProB model checker and animator. In our case, this method
produced abstract specifications that were consistent with the existing invariants and
valid but there is still uncertainty that that this will always be the case.

3.2.3. Feature Composition approach to requirements specification (Soton)

Having developed a generic entity-relationship model of the requirements [3.13] the
next step was to specify the behaviour required by these entities. This was found to be
difficult because there was too much detail to cope with in one go. The generic model
was at a fairly low level of abstraction. This was manageable when considering only
the structural relationships between functional entities. When adding behaviour it
became more important to concentrate on one functional area at a time, i.e. to separate
concerns as far as possible.

It was decided to consider the abstract behaviour of one feature at a time and then link
the features to obtain complete model with behaviour. We define a feature as a part of
the system requirement that can be described as a single goal where a goal is a
succinct natural language abstract statement of requirement(s). A feature should be
functionally coherent and loosely coupled with other features. For example, the
abstract model presented in [3.1] describes the feature, confirmation/recovery of
failure. Its goal is to endow the system with a resilience to isolated perturbations
(tolerate perturbations).

3.2.3.1 Feature decomposition in Event-B

The primary decompositional refinement method we will use is that of Event-B
[3.16]. Event-B simplifies the classical B language in two ways: (i) the unit of
behaviour is the guarded event, where the guard is expressed as a predicate G(e) on
the state e, and the event as a before-after predicate R(e,e'),and (ii) there is no syntax
of modular structuring or inclusion.

In considering the decomposition of a an Event-B machine M into N and P say, we
distinguish external from internal variables - from the viewpoints of N and P - where
only the former may be changed by both component machines. An external event acts
only on external variables. Further, the two external events in N,P acting on external
variable e must have distinct names. In the refinements of N and P, external variables
are restricted to a common functional refinement relation only, i.e. h(f)=e where e in
N,P is refined to f in NR,PR. External event E = G(e) R(e,e') in N is thus refined
automatically to ER = G(h(f)) R(h(f),h(f')) in NR.

In this scheme the decompositional refinement method is given by the commuting
diagram Figure. 3.1. Start with machine M. Construct component machines N,P as
abstractions over M. N,P are refined by NR,PR respectively, and each of the latter is
refined by the final composition MR. MR, by construction, refines M.

N P

PR

M

MR

NR

refines

refines

Figure 3.1 Decomposition of refinement in Event-B

In this scheme, a component (feature) machine N can only act on an external variable
v in a prescribed manner: internal event E may act on v internally, and corresponding
external event Fe models the effect of feature machine P’s internal event F on v. The
refinements of these events must be done subject to a common, functional refinement
relation on v and its concrete counterpart w.

In order to embed a compositional feature-based approach in Event-B, we are
investigating the extension of this form of decomposed refinement in at least the
following ways:

• Two ``viewpoints'' of some event E, i.e. two versions in two component
machines, are combined in the recomposition of the refined components. A
conjunctive combination, such as Butler's fusion operator [3.17], will be
investigated.

• In recomposition, two component variables of distinct names and types, are
identified through an equivalence relation. This would need to be expressed in
a valid refinement.

Considering the strong constraint the refinement proof obligations represent, and the
likelihood of inconsistencies arising in feature descriptions, or stakeholder views of
these features, it is entirely possible that required refinement steps may not exist. The
more liberal approach of retrenchment [3.18] has been proposed where refinement
could not easily be applied in a feature interaction setting [3.19]; these ideas may be
applicable.

3.2.3.2 Feature composition for the case study

The following functional areas (Figure 3.2.) were identified in the generic model.

1. detection of input failures
2. confirmation/recovery of failure
3. actions taken depending on status
4. interdependency conditions

INP

VALUE

0..*

+values

0..*

CONF ACT

0..* 0..*0..*

+tAct
0..*

0..*

1..*

0..*

+pAct
1..*

0..*

0..*

0..*

+hAct

0..*

DET

1
+testval
1

1..*

1

1..*

+conf

1

COND

0..*

1

0..*

+aCond
1

0..* 10..*

+dcond

1

Detection

Confirmation

Condition

Action
Figure 3.2. Functional areas identified in the generic requirements model

The feature corresponding to the functional area, confirmation, has already been
identified in previous work. Features corresponding to the remaining functional areas
are envisaged as illustrated in Figure 3.3.

INP

reading()

VALUE
value : NAT = ::NAT
current : BOOL = FALSE

evaluate()

0..*+values 0..*

CONF
history : seq(BOOL) = <>
<<constant>> confpats : POW(seq(BOOL))
<<constant>> healthypats : POW(seq(BOOL))
histchanged : BOOL = FALSE

confirm()
healthy()
confirming()
<<subroutine>> add2hist()

ACT
enableAct

act()
0..* 0..*0..*

+tAct

0..*

0..*

1..*

0..*
+pAct

1..*

0..*

0..*

0..*

+hAct

0..*

DET
<<constant>> limit : NAT
<<constant>> dir : {UP,DOWN}
enable : BOOL = FALSE
state : {PASS, FAIL} = PASS

fail()
pass()

1

+testval

1

1..*

1

1..*

+conf 1

COND
cond : BOOL

eval_cond()

0..*

1

0..*

+aCond1

0..* 10..*

+dcond

1

COMPOSITION

DET
<<constant>> limit : NAT
<<constant>> dir : {UP,DOWN}
enable : BOOL = FALSE
state : {PASS, FAIL} = PASS

fail()
pass()

INP

reading()

VALUE
value : NAT = ::NAT
current : BOOL = FALSE

evaluate()

0..*

1

0..*

+testval

1

0..*

0..*

0..*

+values

0..*

CONF

history : seq(BOOL) = <>
<<constant>> confpats : POW(seq(BOOL))
<<constant>> healthypats : POW(seq(BOOL))
histchanged : BOOL = FALSE

<<subroutine>> add2hist(bb)
healthy()
confirming()
confirm()

DET

fail()
pass()

1

1..*

+conf
1

1..*

CONF

history : seq(BOOL) = <>
<<constant>> confpats : POW(seq(BOOL))
<<constant>> healthypats : POW(seq(BOOL))
histchanged : BOOL = FALSE

<<subroutine>> add2hist(bb)
healthy()
confirming()
confirm()

DET

fail()
pass()

1

1..*

+conf
1

1..*

DET
<<constant>> limit : NAT
<<constant>> dir : {UP,DOWN}
enable : BOOL = FALSE
state : {PASS, FAIL} = PASS

fail()
pass()

INP

reading()

VALUE
value : NAT = ::NAT
current : BOOL = FALSE

evaluate()

0..*

1

0..*

+testval

1

0..*

0..*

0..*

+values

0..*

CONF
history : seq(BOOL) = <>
<<constant>> confpats : POW(seq(BOOL))
<<constant>> healthypats : POW(seq(BOOL))
histchanged : BOOL = FALSE

<<subroutine>> add2hist(bb)
healthy()
confirming()
confirm()

DET

fail()
pass()

1

1..*

+conf
1

1..*

CONF
history : seq(BOOL) = <>
<<constant>> confpats : POW(seq(BOOL))
<<constant>> healthypats : POW(seq(BOOL))
histchanged : BOOL = FALSE

<<subrout ine>> add2hist(bb)
healthy()
conf irming()
conf irm()

DET

fail()
pass()

1

1..*

+conf
1

1..*

fault
recognition

tolerate
perturbations

act
appropriately

failure
interactions

detection
condition

actionconfirmation

goal

feature1 feature4

abstract
model

refined
model

composed
model

refinement via composition relations
(or retrenchment?)

OUT

CONDDET

10..*

+dcond

10..*

ACT

1

1..*

+aOut
1

1..*

1

0..*

+aCond 1

0..*

INP

CONF

1

1..*

1

+dets 1..*

1..*0..* +tAct 1..*0..*

0..*0..*

+pAct

0..*0..*

0..*0..*
+hAct

0..*0..*

1

1

+input
1

1

CONF

history : seq(BOOL) = <>
<<constant>> confpats : POW(seq(BOOL))
<<constant>> healthypats : POW(seq(BOOL))
histchanged : BOOL = FALSE

<<subroutine>> add2hist(bb)
healthy()
confirming()
confirm()

DET

fail()
pass()

1

1..*

+conf
1

1..*

CONF
history : seq(BOOL) = <>
<<constant>> confpats : POW(seq(BOOL))
<<constant>> healthypats : POW(seq(BOOL))
histchanged : BOOL = FALSE

<<subroutine>> add2hist(bb)
healthy()
confirming()
confirm()

DET

fail()
pass()

1

1..*

+conf
1

1..*

initial
generic
model

Figure 3.3. Refinement of abstract features to generate generic req’ments model

We envisage an approach consisting of the following steps.
1. Identify independent goals from the requirements specification.
2. Construct (and validate) via domain engineering [3.2] a structural class

diagram of features and their relationships (generic model).
3. For each goal in the requirements spec:

a. Construct a feature model of that goal by adding behaviour to the
relevant part of the generic model

b. Refine to add detail
4. Compose several features together to obtain original generic model with

behaviour.
5. Show composition refines each feature model
6. Use composition relations (identified during feature modelling) to remove

redundant abstract variables

Step 2 is necessary at an early stage so that independently developed features are
based on the same underlying class structure. This assists when composing the
features at step 4. Composition therefore consists of superimposing the properties of a
class in one feature with those from the same class in another feature as shown in
Figure 3.4. For composing the events of the class, it is first necessary to identify
events that are essentially common, albeit differently named, to both versions. For
these, events the guards and actions from both versions must be composed as shown
in Figure 3.4 to make a single event.

A

x
y

e()
f()

(from Feature 1)
A

x
z

e()
g()

(from Feature 2)
A

x
y
z

e()
f()
g()

e =
ANY x',y',z'
WHERE P & Q
THEN x,y,z=x',y',z'
END

e =
ANY x',y'
WHERE P
THEN x,y:=x',y'
END

e =
ANY x',z'
WHERE Q
THEN x,z:=x',z'
END

+ =

Figure 3.4. Composing the properties of the same class from two features

The superposition of properties from different features will lead to redundant data. In
general, the redundant data will be an abstraction by one feature to avoid the detail
contained in another. When the two features have been composed the correspondence
of the two versions of the data can be established by adding and proving a
composition relation as shown in Figure 3.5. The abstract version of the data can then
be removed, and any references to it in guards or substitutions can be modified to use
the more detailed representation as expressed in the composition relation.

fail=
state:=FALSE
||

fail =
history:= FALSE ^ history ||
histchanged:=TRUE

Figure 3.5. Identifying redundant data via a composition relation

he benefits of this feature composition approach to the construction of data

straction is difficult and, in
 this

2. e with
ems

3. equirements and makes compromise explicit. Refinement

.
4. alid

T
intensive, configurable requirements models are,

1. Middle out (feature oriented) approach. Ab
practice, many people start in the middle before going upwards. Hence,
approach may provide an easier process to support refinement
Composition may be easier than decomposition. Our experienc
industrial partners is that engineers automatically start composing syst
from a set of components. This appears to be quite a natural approach to
modelling for them.
Allows inconsistent r
doesn’t handle compromise very well and requires rework to ensure
consistency. Although our approach is similarly based on refinement
consistency, the isolation of functional areas into separate models may
alleviate the problem by containing compromise rework within features
Retains refinement route from requirements. The composed system is a v
refinement of each of several abstract feature refinements. Hence the full
rigour of the refinement process is retained.

CONF
history : seq(BOOL) = <>
<<constant>> confpats : POW(seq(BOOL))
<<constant>> healthypats : POW(seq(BOOL))
histchanged : BOOL = FALSE

<<subroutine>> add2hist(bb)
healthy()
confirming()
confirm()

DET

fail()
pass()

1

1..*

+conf
1

1..*

DET
<<constant>> limit : NAT
<<constant>> dir : {UP,DOWN}
enable : BOOL = FALSE
state : {PASS, FAIL} = PASS

fail()
pass()

0..*

VALUE
value : NAT = ::NAT
current : BOOL = FALSE

evaluate()

1

0..*

+testval

1

state=head(conf.history)

0..*

+values

0..*

3.2.4. Product-line structuring and tooling (Soton)

Parnas's prescient early work [3.20] characterized three types of approach to the
development of software product lines, or “program families” - (i) syntactic
modification, (ii) modular specification, and (iii) refinement. At that time, type (i)
involved the development of a complete program, followed by the production of
variants by modifying the original program. Since then this type of approach has been
elaborated through process phases e.g. requirements, architecture, and through the
structuring of artefacts of those phases. All types of approach involve a domain
engineering activity that captures the requirements that all family instances must share
– the commonalities - and the requirements that vary between instances – the
variabilities [3.22] - into a generic, reusable software resource. This is followed by an
application engineering activity that uses this resource to generate the specific
instance systems as necessary. Most product line work assumes an early domain
analysis activity, e.g. [3.21], for gathering and structuring all relevant information
from the application domain to support the development of such a generic, reusable
software resource.

It is noteworthy that the Parnas's approach type (i) remains dominant today. In this
type of approach, application engineering deploys an instance derivation process
against generic models/architectures and specific components/interfaces and variation
points, to generate an instance system: an elaborate process of syntactic modification.
Some logic-based and formal methods techniques have also been proposed for
software product lines. In particular, formal refinement-based approaches (Parnas's
third type of approach above) largely remain to be applied to software product lines.

In this case study to date we have illustrated a product-line approach to the rigorous
engineering, validation and verification of structural generic requirements for critical
systems such as failure management and detection for engine control. The approach
should be applicable to any system composed of multiple instances of similar units -
specified using parameterised reuse - where the extent of variability and dependency
between units makes such reuse non-trivial to achieve. The major part of the work
remains – to extend the product line model to incorporate variant sets of behaviours.

Our approach in this work is of Parnas's type (i). Initially, a class diagram of the
generic product line model is created. On input of data for a system instance, the RM
database checks that the data satisfies the dependencies of the class diagram, and
facilitates user “debugging” of erroneous data. The system instance is specified by
“populating” the UML-B stereotype with this verified instance data, and U2B then
combines the generic and instance information into an instance B specification, for
further formal verification with ProB and theorem Provers. What distinguishes our
methodological and tooling work for product lines is its integration with a leading
language and method for formal specification, refinement and verification, Event-B.

3.2.5. Methodology of developing the FMS using formal specification templates
(Aabo)

An acute issue in developing the FMS is design of the mechanism for tolerating and
recovering from transient faults of the system components. In [3.15] we presented an
approach to developing the FMS with the mechanism for tolerating transient faults by
classical refinement in the B Method.

The formal development of the FMS starts with an abstract specification defining the
behaviour of the FMS during one FMS cycle. The stages of such a cycle are:

- obtaining inputs from the environment,
- performing tests on inputs and detecting erroneous inputs,
- deciding upon the input status,
- setting the appropriate remedial actions,
- sending output to the controller either by simple forwarding the obtained input

or by calculating the output based on the last good values of inputs,
- freezing the system.

At the end of the operating cycle the system finally reaches either the terminating
(freezing) state or produces a fault-free output. In the latter case, the operating cycle
starts again.

In our abstract specification we model the readings of N multiple homogeneous
analogue sensors as inputs to the FMS. After obtaining the sensor readings, the FMS
starts the error detection. At this level of abstraction we model only the result of error
detection, which can be either TRUE if an error is detected on the sensor reading on a
particular input, or FALSE otherwise.

Based on the results obtained at the detection stage, the FMS non-deterministically
decides upon the status of an input (i.e., a particular sensor), which may be classified
as fault-free, suspected or confirmed as failed. Suspected inputs are those faulty inputs
which still may recover. The remaining faulty inputs are designated as confirmed as
failed. Upon completing analysis, the FMS applies one of the corresponding remedial
actions: it either forwards a fault-free input to the system controller, calculates the
output based on the information about the last good input value, or enters the freezing
state.

The refinement process of the FMS starts by elaborating on the input analysis
procedure. As a result, the input analysis is performed gradually by considering inputs
one by one until all the inputs are analyzed. It is based on the results of error detection
and the values of the input status obtained at the previous cycle of the FMS. Namely,
if an analysed input was previously fault-free, it becomes suspected after an error is
detected. If the input was already suspected and an error is detected again, it can
either stay suspected or become confirmed as failed.

The procedure for determining the input status can be further refined by introducing a
customisable counting mechanism which re-evaluates the status of a particular input
at each cycle and also allows the system to distinguish between recoverable and
unrecoverable transient faults.

Further development of the FMS continues by refining the error detection procedure.
The mechanism of error detection relies on a specific architecture of error detection
actions called evaluating tests, which may vary depending on the application domain.
The basic category of the evaluating tests is called simple tests. A simple test is
executed based solely on the input reading from a sensor. After all simple tests
associated with a certain input are executed, so called complex tests can be performed.
The results of complex tests depend on the results of the associated simple tests.

Since the FMS works with homogeneous multiple sensors, for each of N sensor
readings the same series of tests is applied. The tests are executed considering one
input at a time, until all the inputs are tested. For each input, we select the tests to be
executed according to certain requirements. Namely, each test can be executed at
most once on a certain input. If the test is complex, then all the associated simple tests
have to be executed before it. If an error on an input is detected then no more tests on
that input should be performed. The result of the execution of each enabled test is
modelled non-deterministically. If the result shows that the test on the input failed, the
input is found in error.

Every test is executed with a certain frequency. The test frequency together with the
additional condition on the internal system state determines the enableness of a test
for execution. To model the execution of tests according to the given frequencies, we
introduce time scheduling. The real time is modelled by introducing the event which
gradually increments the current time value. The progress of time is only allowed
when one FMS operation cycle finishes and before the next one starts, or when there
are no tests enabled for execution under given conditions. In the latter case, we allow
time to progress and possibly the internal system to be changed state until some tests
become enabled. After executing all required tests on a particular input, the FMS
classifies the input as found in error or error-free.

The detailed description of the FMS behaviour while performing error detection and
input analysis is given in the form of the B specification templates (see the section on
demonstrators). These templates can be instantiated to develop a domain-specific
FMS.

3.3. Progress on the Demonstrators

The initial intention was to develop a verified and validated visual model of the
failure management system for demonstration and then develop and demonstrate a
generic system from which variants can be derived. These activities are being
developed in parallel.

Development of non generic model behaviour specific to failure management is being
addressed by Aabo with their work on fault templates. Soton have been addressing
generic systems issues with their work on features, product line and requirement tool
development.

 Although ATEC’s work in the Pilot study has largely been concerned with learning
and evaluation of technology, the pilot model is outlined here and demonstrates a

simple example of FMD behaviour and how its modelling has been addressed by a
novice user.

3.3.1. Overview of Pilot model (ATEC)

The definition of the engine failure management system as a subsystem has been
described in the deliverable of D2 [3.6] and in the initial presentation of the project. A
dual sensor input (Esa and Esb) for engine speed (Es) was chosen from case study 2
requirements document to model as part of the Pilot study. It was chosen as it
included common behaviour representative of other control inputs and also included
some interaction between its dual inputs.

The Es output is normally derived from the Esa input but if this is not healthy (ie. the
failure management system detects a failure) then a healthy Esb input will be used if
available. If both inputs are not healthy the Es signal is not updated and a freeze flag
set. A context diagram for the Pilot is shown in Figure 3.6 below.

I
N
P

CONTROL

O
U
T
P
U
T

Esa &
Esb
sensor

Engine dema d n
Fault display

Es

Esa fault flag
Esb fault flag

I
N
P
U
T

Freeze flag

ES

FAILURE
MAN

Figure 3.6 Es Context

The main functionality to be modelled included

1. an magnitude in range test
2. a difference test between two inputs
3. a confirmation mechanism

3.3.2. B Model development Engineering

The approach taken to modelling the pilot has been overviewed in sections 3.2.1 and
3.2.2. Further description of the model development is provided in the REFT book
[3.3].

Five refinements were undertaken and are informally described below;

Table 3.1 Informal Refinement description

Abstraction Description
R0 The pilot subsystem was viewed as a black box whereby the

output states would be latched when failed. The
combinations of fault flag and control value ES were output
from the box in response to a change in Esa or Esb inputs.

R1 This refinement introduced a dependency of the output on

the results of a validation event i.e. if the output state is not
latched its outcome will depend upon the state of the
validation. The validation is still non deterministic.

R2 This refinement introduced sequencing to the events by
strengthening the event guards to further constrain and
refine the order that events may occur.

R3 This refinement introduced an event comparing the
difference between the dual input values

R4 This refinement introduced determinism into the events i.e.
the magnitude inrange testing and confirmation mechanism.
This also resulted in an increase in output events

In the intial abstraction (R0) the output of the system was viewed as only having 4
states where the combination of esalatch and esblatch variables can be set to either
“FAILED” or “HEALTHY” represented in the abstraction as event operations
hh,hf,fh,ff. A sanitized excerpt of the abstract specification is shown in Figure 3.7
below.

MACHINE Engine speed 0

... INVARIANT ... & (newVal = TRUE or
 (esalatch = UNSET & output = esavalue) or
 (esblatch = UNSET & output = esbvalue) or
 output = previous)

OPERATIONS /*EVENTS*/
esaChange=
BEGIN
 esavalue :: NATURAL || newVal := TRUE
END;

hh =
SELECT
 esalatch = UNSET & esblatch = UNSET & newval = TRUE
THEN
 output , previous := esavalue, esavalue ||
 newVal := FALSE
END;
 ... ff =
BEGIN

 output := previous ||
 esalatch, esblatch ,freeze:= SET, SET,SET ||
 newVal := FALSE
END

Figure 3.7 - R0 Base Machine

The abstract specification shows how the invariant maintains the output states.
Changes to the input are illustrated by an event sequencing control flag “newval”
indicating that an input has been read.

The specification under specifies several requirements e.g. input and output range and
granularity, timing relationship of changes of input and output events, it also relies on
certain assumptions such as the input being able to be processed quick enough in
order to determine output states.

The next refinement R1 looked in more detail to the events that contributed towards
the output states in keeping with the Rodin event refinement approach. This
refinement introduced a dependency of the output on the results of a validation event
i.e. if the output state is not latched its outcome will depend upon the state of the
validation. The validation is still non deterministic. A sanitized excerpt is illustrated
in Figure 3.8 below.

REFINEMENT Engine speed 1
REFINES Engine speed 0 ... ;

esavalidate =
BEGIN
esaresult :: PASS FAIL
 END;

hh =
SELECT
 esaresult = PASS & esbresult = PASS &
 esalatch = UNSET & esblatch = UNSET
THEN
 output, previous := esavalue, esavalue ||
 newVal := FALSE
END;

Figure 3.8 – R1 refinement

The final refinement R4 greatly reduces non determinism. A sanitized excerpt is
illustrated in Figure 3.9 below.

Gluing invariant
invariant=

….
((esaresult_R4 = PASSED)=>(esaresult = PASS))
& ((esaresult_R4 = FAILED)=>(esaresult = FAIL))

/*single input evaluation*/
esavalidate=
SELECT esavalidated=FALSE THEN
 IF esalatch=PASS THEN
 IF ((esavalue<esallmt)or (esavalue>esamlmt)) THEN
 IF esarange_ct>actmlmt THEN esaresult_R4:=FAILED
 ELSE esarange_ct:=esarange_ct+actinc
 ||esaresult_R4:=CONFIRMING
 END
 ELSE IF esarange_ct>0 THEN
 esarange_ct:=esarange_ct-actdec
 || esaresult_R4:=PASSED
 ELSE esaresult_R4:=PASSED
 END
 ELSE esaresult_R4:=FAILED
 END
 || esavalidated=TRUE
 END
/* dual input evaluation*/
esdiff=
SELECT esdiffvalidated=FALSE THEN
 IF esaresult_R4 =PASSED and esaresult_R4=PASSED THEN
 IF (esavalue>esbvalue+diflmt) THEN
 IF esdiff_ct>3 THEN esbresult_R4:=FAILED
 ELSE esdiff_ct:=esadiff_ct+difinc
 ||esbresult_R4:=CONFIRMING
 END
 ELSE IF esdiff_ct>0 THEN
 esdiff_ct:=esdiff_ct-difdec
 || esbresult_R4:=PASSED
 ELSE esbresult_R4:=PASSED
 END
 END
 || esdiffvalidated=TRUE
 END

 Example of New event
cF =
 SELECT
 esalatch=UNSET & (esblatch=UNSET or esbresult_R=FAILED)
 & newval=TRUE
 & esavalidated=TRUE & esbvalidated=TRUE & esdiffvalidated=TRUE
 & esaresult_R4=CONFIRMING
THEN
 o_ES:=pre_o_ES || esblatch=SET

 Newval:=FALSE||esavalidated=FALSE||esbvalidated=FALSE
 ||esdiffvalidated=TRUE
END

Figure 3.9 – R4 refinement

The refinement has introduced determinism to the validation event. The adopted
confirmation mechanism introduced a new validation state “CONFIRMING” which
resulted in the creation of several new output events. Of course the new events
resulting from this new state could have been considered in the abstract machine R0 at
the beginning but it was felt that introducing the change as a later refinement would
show how the model and process can handle change and be useful for evaluation
purposes. It was felt more realistic, as requirements may change as the model
develops.

The model raises several issues for consideration in the demonstrator model.

1. The model has been decomposed in a particular way. It has relied on certain
environmental assumptions and under specifies some behaviour.

2. Confirmation and detection behaviour has been combined, this may be more
maintainable in a generic model if decoupled

3. There is a high degree of flag setting to control sequencing of events
4. There is some redundancy in the model as the testing of latch setting is already

performed in the validation events and does not need to be addressed in the
outputs

5. There is some dependency on events eg difference testing dependant on
validation of single inputs. Aabo’s work on test dependency addresses this
issue.

6. How easily can the model be scaled up for to include other control inputs? Eg.
would simply introducing events associated with each given output accurately
depict the total subsystem behaviour? Would it lead to inefficient architecture?

3.3.3. Configuring the generic model for the Failure Management Requirements

using a tool for instance data management (Soton)

To address the problems found with using ProB to verify instantiation data (see Initial
report on case study [3.13]), we developed a tool that interfaces with the UML
drawing tool to automate management and verification of instance configuration data.
The tool was developed as an IBM Eclipse plug-in by a student group. The tool
provides an extension to the Rational Software Architect UML modelling tool (also
based on Eclipse). Menu extensions are provided to operate the tool from the class
diagram so that a database repository can be generated based on the classes and their
associations. Class instance and association link data can then be ‘bulk uploaded’
directly from the Excel configuration files containing the specific requirements data.
This avoids the tedious and error prone process of manually populating the class
diagram with this information. A small sample of the requirements data is shown in

Figure 3.10.

Figure 3.10. Requirements data

Some types of verification errors (such as mismatches between the class diagram and
tables and referential integrity errors) may prevent the data from being uploaded.
Figure 3.11 shows the error view provided by the tool. Several such failures are
shown in the lower half of the error view.

Figure 3.11. Tool screenshot with error view

If the configuration data has none of these errors it is loaded into the database schema
and further verification is performed by checking class diagram constraints, such as
multiplicity constraints on associations. These multiplicity errors are shown in the

upper half of the error view in Figure 3.11. The error messages identify the particular
data instances that violate the multiplicity constraint giving sufficient information to
pinpoint the problem. The error can then be corrected either by editing and re-loading
the configuration data, or by editing the database from the class diagram. For the
latter, an extension to the class pop-up menu is provided, giving direct access to the
relevant database table as shown in Figure 3.12 where a multiplicity error is being
corrected. Although the tool identifies the nature of the error more precisely than ProB
(by giving all counter examples whereas ProB only identified which constraint was
violated), it may still be difficult to find the correct solution. In the example in Figure
3.11, it is clear that ESa rate detection is missing an associated input but it may not be
obvious which link in the table needs replacing. Knowledge of association links
throughout the class diagram are needed to find a correction. In future work we intend
to provide tools to visualise the transitive association links for a given set of class
instances by automatically generating object diagrams from the database.

Figure 3.12. Tool screenshot with data editing window

The ability to modify data via the class diagram enables individual class instances and
association links to be added to an existing (or developing) configuration. The
requirements engineer can invoke the Requirements Manager(RM) tool at chosen
stages (when the data is expected to be in a consistent state) to check the configuration
satisfies the generic constraints of such systems.

A limitation of the database approach to managing configuration data is that many to
many association relations can not be represented in database schema. In order to
represent many to many associations intermediate linking classes are added to the
class diagram (see INP R inserted between INP and DET and HACT, PACT and
TACT between CONF and ACT). In future versions of the tool we intend to hide this
representation mismatch from the user.

The RM tool has been developed as an Eclipse plug-in to integrate with the RODIN
project toolset including the UML-B drawing tool, U2B translator, ProB, B Prover
and B database. In parallel with the development of RM, the U2B tool has been re-
developed in Eclipse to accept input models based on the UML2 metamodel (upon
which RSA models are based). A UML2 profile has been developed to extend the
UML notation and provide relevant property fields to accept information such as the
configuration data. Once the configuration data has been successfully verified RM can
be used to populate the UML-B stereotype properties. This utilises the instances
property attached to classes and the value property attached to associations. These
values are utilised by U2B when it produces a B version of the model. Figure 3.13
shows the stereotype property value for an association after population by RM.

Figure 3.13 Tool screenshot showing value property after populating with RM
tool

3.3.4. Development of the FMS with specification and refinement templates in

UML (Aabo)

The formal development of the FMS can be enhanced by the use of the widespread
graphical modelling language – UML. The approach taken is motivated not only by
wide acceptance of UML in the industry but also by the existence of a tool (U2B [3.5]
which translate informal UML models to their formal B counterparts.

The development of the FMS is performed in phases. Each development phase is
characterized by the set of UML models (class and statechart diagrams) depicting the
main structural and behavioural aspects of the FMS at a certain level of abstraction.

The 1st development phase models a very abstract FMS cycle:

1. the FMS reads input values from the sensors, then
2. it performs some abstract (i.e., unknown at this phase) action, and then
3. it either calculates the output or fails.

If the output is successfully calculated, the FMS cycle starts again.

FMS
Indx : POW(NAT)
InputN : Indx --> NAT
Output : NAT
Acceptable_Inputs : POW(Indx)
Good_Inputs : POW(Acceptable_Inputs)
Las t_Good_InputN : Indx --> NAT

Environm ent()
Action()
Return()
Fail()
<<definition>> Set_InputN()
<<definition>> Update()
<<definition>> Set_Ouput()

env

Figure 3.14. FMS Class and fms_state Statechart diagram for

the 1st FMS development phase

The UML template for this first development phase is given in Figure 3.14. The class
‘FMS’ outlines the structure of the system, where the class attribute ‘Indx’ is a set of
sensor indexes, InputN is an array of input values, and Output is a system output. In
addition, Acceptable_Inputs is a subset of sensor indexes for inputs which have not yet
failed (i.e., are either error-free or suspected), Good_Inputs is a subset of sensor
indexes for error-free inputs, and Last_Good_InputN is an array of the last good input
values. The statechart diagram fms_state attached to the class FMS describes the FMS
behaviour via a set of the FMS states and transitions between them.

In B, the class FMS corresponds to a B machine, the variables of which are obtained
from the attributes of the class FMS. The B operations model the class methods
corresponding to the transitions of the statechart diagram.

Using the U2B tool, the B specification can be automatically generated from the
above UML diagrams. For instance, the FMS cycle starts with executing the
Environment() method. The action triggered (Set_InputN) models reading of the input
values. As a result, it arbitrarily sets the values of the attribute InputN. The B
operation corresponding to the method Environment() is as follows:

Environment = SELECT fms_state=env
 THEN fms_state:=act ||

 Set_InputN
 END;

where Set_InputN is defined as:

Set_InputN == InputN :: Indx NAT

More generally, each method of the class FMS has the following form:

Method = SELECT fms_state=outcoming_state
 THEN fms_state:= incoming_state ||
 triggered_Action
 END;

where triggered_Action is a method of the
FMS class with the stereotype
<<definition>>.

Each subsequent FMS development phase refines the structure and the behaviour of
the original system. For instance, in the 2nd FMS development phase we introduce
the input analysis performed after obtaining the sensor readings.

actout

s top

Fail

Action / Update

Action

Return / Set_Output Environm ent / Set_InputN

Figure 3.15. FMSR1 Class and fms_state Statechart diagram for

the 2nd FMS development phase

The initial UML template is refined as shown in Figure 3.15. Namely, the FMS is
now represented as the class FMSR1 that refines the class FMS from the 1st
development phase. In our semantics it means that FMSR1 realizes FMS. As a
convention, in the realization class, only new attributes and methods are shown, as
well as those methods which are changed. Refining the FMS behaviour requires
introducing a new state in the fms_state statechart - anl. In B, this corresponds to data
refinement of the variable fms_state by extending its underlying type with the new
element anl. The new transition from this state defines the method for the refined
FMS functionality – Analysis(), which classifies the inputs obtained from the sensors
into three categories: ok, suspected or confirmed_failed. Correspondingly, the result
of the analysis is modelled as the additional attribute Input_StatusN.

In the 3rd FMS development phase we introduce an abstract representation of error
detection that the FMS performs after obtaining the sensor readings. The FMS is now
represented as the class FMSR2 (given in Figure 3.16) which refines the class FMSR1
from the 2nd development phase. The newly introduced attribute Input_In_ErrorN
models the results of error detection. The behaviour of the FMS is refined by
introducing the new FMS state det and the method Detection(), which performs error
detection on inputs and, as a result, classifies them either as erroneous or error-free.

The 4th FMS development phase specifies in more detail the input analysis in the
FMS. At this phase, we focus on analyzing inputs one by one based on the results of
error detection. The UML template for this development phase is shown in Figure
3.16. The FMS is represented as the class FMSR3 which refines the class FMSR2 from
the 3rd development phase. To model gradual input analysis, we introduce the looping
state anllopp into the existing statechart. While in this state, the FMS analyzes the
inputs one by one and saves the intermediate analysis results. To ensure that the
analysis loop terminates, we introduce the additional attribute Processed that keeps the
information about the already processed inputs. Once all the inputs have been
analyzed (processed), the FMS cycle can proceed and the appropriate actions can be
applied.

env

out

Return / Set_Output || Reinitialize

act

Action[not(ran(Input_StatusN)={confirmed_failed} OR Stop_Cond)] / Update

s top

Fail

Action[ran(Input_StatusN)={confirm ed_failed} OR Stop_Cond]

anl

Environment / Set_InputN

Analys is / Set_Input_StatusN

FMS
Indx : POW(NAT)
InputN : Indx --> NAT
Output : NAT
Acceptable_Inputs : POW(Indx)
Good_Inputs : POW(Acceptable_Inputs)
Last_Good_InputN : Indx --> NAT

Environm ent()
Action()
Return()
Fail()
<<definition>> Set_InputN()
<<definition>> Update()
<<definition>> Set_Ouput()

FMSR1
Input_StatusN : Indx-->I_STATUS
<<constant>> Stop_Cond : Indx --> BOOL

Analys is ()
Action()
<<definition>> Set_Input_StatusN()
<<definition>> Update()
<<definition>> Set_Output()
<<definition>> Reinitialize()

FMS
Indx : POW(NAT)
InputN : Indx --> NAT
Output : NAT
Acceptable_Inputs : POW(Indx)
Good_Inputs : POW(Acceptable_Inputs)
Last_Good_InputN : Indx --> NAT

Environm ent()
Action()
Return()
Fail()
<<definition>> Set_InputN()
<<definition>> Update()
<<definition>> Set_Ouput() env

Figure 3.16. FMSR3 Class and fms_state Statechart diagram for

the 4th FMS development phase

The 5th FMS development phase specifies in more detail the FMS error detection by
introducing input tests. At this phase, we focus on detecting errors (applying tests) on
inputs. Again, the inputs are processed one by one and the intermediate results of
error detection are saved. After performing error detection, the FMS cycle can
proceed by starting input analysis. The template for adding a looping state for gradual
error detection is similar to the one presented in the previous phase.

3.4. Future work

In year 2, work has continued into the Failure Management Domain by building on
first year work and developing further domain engineering methods. Some evaluation
of the emerging technology has been undertaken which has given some credence to
the usability of the methodology by an industrialist who was a novice to B and to
formal methods. The study identified the need for more guidance and flexibility in the
model development processes together with greater emphasis on methods to help with
validation of requirements in developing models. The work by the academic partners
is contributing to this.

The University of Southampton has successfully developed the requirement manager
tool in response to Year 1 which identified the need to provide assistance with
configuring the generic model. Further work on feature development and Product line

det

Environm ent / Set_InputN

anl

act

Analys is / Set_Input_StatusN

stop

Action[ran(Input_StatusN)={confirm ed_failed} OR Stop_Cond]

Fail

out

Action[not(ran(Input_StatusN)={confirmed_failed} OR Stop_Cond)] / Update

Return / Set_Output || Reinitialize

anlloop

Detection / Set_Input_In_ErrorN

Analys isLoop[ran(Processed)={TRUE}]

Analys isLoop[ran(Processed)/={TRUE}] / Set_Input_StatusN1

FMSR1
Input_StatusN : Indx-->I_STATUS
<<constant>> Stop_Cond : Indx --> BOOL

Analys is ()
Action()
<<definition>> Set_Input_StatusN()
<<definition>> Update()
<<definition>> Set_Output()

FMSR2
Input_In_ErrorN : Indx-->BOOL

Detection()
Return()
<<definition>> Set_Input_In_ErrorN()
<<definition>> Set_Input_StatusN()
<<definition>> Update()
<<definition>> Reinitialize()

FMSR3
Input_StatusN1 : Indx-->I_STATUS
Processed : Indx-->BOOL

Analys isLoop()
<<definition>> Set_Input_StatusN1()
<<definition>> Set_Input_StatusN()
<<definition>> Update()
<<definition>> Reinitialize()

engineering is providing a process framework for developing generic models in the
future. The emphasis here, on composition rather than decomposition, may contribute
towards future guidance for reusability. Future work using UML-B inheritance and
refinement to elaborate system behaviour will relate the approach to Parnas' type (iii)
- refinement. For example, the abstract model now specifies generic detection
behaviour in terms of checking an input-derived value against a limit. A refinement
specializes this behaviour for magnitude, rate, multiple etc. detection types. Thus we
anticipate that the instance data population stage will become more elaborate,
populating a graph of refinements, rather than a single model as at present. The Event-
B method under development by the RODIN project will provide mechanisms for
composition and decomposition with refinement, to support scalable development.
The generic instantiation mechanism of Event-B, whereby a model can be made
generic with respect to one or more configurable contexts, will afford a component-
like form of reuse.

To progress this agenda, current Soton project work is examining:

traint specification

- xploration facilities for RM

- e Eclipse EMF/GMF metamodelling/

- n technology for

- possible extensions to UML-B both from UML notations not yet incorporated, and

- possible extensions to UML-B to enhance the specification of complex event

abo have been addressing modelling behaviour in the FMS domain by developing

he next FMS development phases for Aabo are:
ation of error recovery,

error detection procedure.

he overall methodology results in both UML templates and automatically generated

TEC work in the final year will be divided between evaluation of the technology
which will now include newly Rodin developed platform and tools eg Event b, and

- the extensibility of the RM tool to more expressive data cons
(i.e. invariants) over instance data. Currently RM models type-correctness, and
association constraints via referential integrity. This scheme should be extensible
in the manner of tools such as DECIMAL [3.23].
the possibility of providing data visualisation/ e
instance data for data debugging purposes.
cost/benefit analysis of moving RM to th
graphic tool framework, which at this early stage appears to offer capabilities of
fast model construction and expressive constraint specification.
potential for exploitation of existing feature modelling plugi
Eclipse.

other Requirements Engineering frameworks such as van Lamsweerde’s KAOS
[3.24].

sequencing in required behaviours. Existing work integrating B and UML
statecharts with CSP will be considered here.

A
model templates. Some already provide solutions to observations raised from the pilot
model ie patterns to handle test dependency and scheduling. Further development will
contribute towards demonstrators of modelling in the domain and provide templates
that could guide development.

T

- introducing special counters to ensure termin
- introducing time scheduling into error detection,
- modelling different types of tests executed in the

T
B machines, correctness of which can be verified using the B Prover.

A

UML_b and collaboration with the academic partners. The evaluation work will
continue along the lines of the pilot study by evaluating UML_B using the new
Rodin toolset. Collaboration work will consist of some independent working with
both partners. This will include development of guidelines to model development
which is also expected to be influenced by ATEC evaluation work on RTCA
certification guidelines for aviation software. ATEC hope to start adding behaviour to
the generic model by using the experience of the pilot study.

A Summary of work being considered for the final year includes:

 UML_B development with generic pattern (Soton,ATEC).
lates for FMS (Aabo,Soton).

(Soton).
 UML_B models (Aabo,Soton,ATEC).

3. To c
r Airbourne

nvolve comparing formal development

 4. For further consideration

ments in modelling and refinement (Aabo).

3. References

Butler, A. Edmunds, and I. Johnson. Rigorous development of
ain-specific components, for complex applications. In J. Jurgens

[3.2 hnson. The engineering of generic

requirements for failure management

Q'05, Oporto, 2005.

[3.3 odology for rigorous

development of generic requirements

05.

[3.4 UML-B profile for formal systems
modelling in UML. In J. Mermet, editor, UML-B Specification for Proven

1. To contribute to Demonstrators

UML _B development temp
2. To contribute to methodology

Elaboration of generic modelling & product line methods
Guidelines for developing
ontribute to evaluation
Considerations of compatability with DO-178/ED-12 standard fo
software (ATEC). This work will i
in UML_B against meeting the requirements of certification standards for
airbourne software.
Evaluation of new Rodin methodology and tools (ATEC).

Prototype Implementation of FMS (ATEC).
Traceability of require

5.

[3.1] C. Snook, M.
reusable, dom
and R. France, editors, Proc. 3rd Intl. Workshop on Critical Systems Development
with UML, pages 115–129, Lisbon, 2004.

] C. Snook, M. Poppleton, and I. Jo

Accepted for Eleventh International Workshop on Requirements Engineering:
Foundation for Software Quality, REFS

] C. Snook, M. Poppleton, and I. Johnson. Towards a meth

 To appear in Proceedings of Workshop on Rigorous Engineering of Fault
Tolerant Systems, REFT, Newcastle, 20

] C. Snook, I. Oliver, and M. Butler.The

Embedded Systems, chapter 5. Springer, 2004.

[3.5] C. Snook and M. Butler. U2B - A tool for translating UML-B models into B. In
J. Mermet, editor, UML-B Specification for Proven Embedded Systems Design,

[3.6] RODIN deliverable D2 : Definitions of Case Studies and Evaluation Criteria

Project IST-5111599, November 2004.

[3.7 equirements Document for Case Studies
Project IST-5111599, February 2005.

[3.8 ry Report on Methodology IST-5111599,
September 2005.

[3.9 ble D14 : Assessment report 1 IST-5111599, September 2005.

:Description of Work IST-5111599, April 2004.

[3.1 elling and design aided by
 UML”, To appear in ACM Transactions on Software Engineering and

[3.12 nical Press: Requirement Document, November 2004.

 IST- 5111599, September 2005.

 Assesment report IST-5111599, September
2005.

[3.15] a Ilic, Elena Troubitsyna, Linas Laibinis and Colin Snook. Formal
Development of Mechanisms for Tolerating Transient Faults. TUCS Technical

[3.16] Metayer, C. and Abrial, J.-R. and Voisin, L. RODIN deliverable D7 : D3.2

ent-B Language, IST-5111599, May 2006.

 and simultaneous execution in the
finement calculus, Acta Informatica, 35:11, pp921-949. 1998.

neering Variation on
efinement, In Proceedings of Bert, D (ed.) 2nd International B Conference: Recent

h, R. and Poppleton, M. Retrenching Partial Requirements into System
efinitions: A Simple Feature Interaction Case Study, Requirements Engineering

chapter 5. Springer, 2004.

] RODIN deliverable D4 : Traceable R

] RODIN deliverable D9 : Prelimina

] RODIN delivera

[3.10] Rigourous Open Development Environment for Complex Systems -RODIN

1] C. Snook and M. Butler, “UML-B: Formal mod

Methodology, 2006.

] J.-R. Abrial. Mecha

[3.13] RODIN deliverable D8 : . Initial report on case study developments

[3.14] RODIN deliverable D14 : D7.2

Dubravk

Report, No.763, April 2006.

Ev

[3.17] Back, R.J.R. and Butler, M. Fusion
re

[3.18] Banach, R. and Poppleton, M. Retrenchment: An Engi
R
Advances in the Development and Use of the B-Method, LNCS Vol.1393, pp.129-147,
April 1998.

[3.19] Banac
D
Journal, 8:4, pp266-288, 2003.

[3.20] Parnas, D. L., On the Design and Development of Program Families, IEEE

.21] Prieto-Diaz, R., Domain Analysis: An Introduction, ACM SIGSOFT Software

.22] Coplien, J. and Hoffman, D. and Weiss, D., Commonality and Variability in

.23] Padmanabhan, P. and Lutz, R. Tool-supported verification of product line

3.24]A.vanLamsweerde
ements Engineering: A Guided Tour

Transactions on Software Engineering, SE-2, March 1976.

[3
Engineering Notes 15:2 pp.47-54 1990.

[3
Software Engineering IEEE Software, November/December 1998, pp.37-45.

[3
requirements, Automated Software Engineering 12:4 pp. 447-465, Kluwer Academic,
October 2005.

 [
Goal-Oriented Requir
Invited Paper for RE'01 - 5th IEEE International Symposium on Requirements
Engineering, Toronto, August, 2001, pp. 249-263.

SECTION 4. FORMAL TECHNIQUES IN MODEL DRIVEN ENGINEERING CONTEXT

4.1 Introduction

We summaries here the developments of Case Study 3 - “Formal Techniques in MDA Con-
text” during the second year of the Rodin project. The primary goal of this is to investigate
how the techniques and tools developed within Rodin can be applied in a heterogeneous,
model based environment and work flow.

To evaluate this we are applying the Rodin tools and techniques to the development of a (pri-
marily) hardware based mobile phone platform known as NoTA which provides a Corba/
Web Service environment to “services”.

This work has been presented internally within Rodin at the Zurich and Aix-en-Provence
workshops in September 2005 and April 2006 respectively.

Results of this work published and/or presented externally include:

• Abo Akademi Technical Report 759 on the use of fault tolerance patterns for state
machines [4.2]

• Dagstuhl Workshop on Rigorous Methods for Software Construction and Analysis, May
2006 [4.8]

• A paper on the semantics of UML’s notion of composite structure at Systems Analysis and
Methods conference, May 2006 [4.7]

• Synthesising Hardware using B and Bluespec, to be published at Forum on Design Lan-
guages’06 in September [4.5]

• Keynote speech on the “Use of Formal Methods with UML in Industry” at Nordic Work-
shop on UML’06, Grimstad, Norway.

In addition, work from Rodin has also appeared in the following papers

• A Method for Mobile Terminal Platform Architecture Development, to be published at
Forum on Design Languages’06 in September [4.6]

• A UML Profile for Asynchronous Hardware Design at the SAMOS IV workshop and also
accompanying LNCS volume. [4.1]

Furthermore, use of Rodin technology has appeared in 3 patent applications during the past
six months. Pending submission also for the B conference in 2007 in both the academic and
industrial tracks.

Section 4.2.3 is written by Vesa Luukkala and parts of section 4.2.2 by Pontus Bostrom, with
contributions from Mads Neovits, Marina Walden and Ian Oliver.

4.1.1 Tasks

In the Rodin Description of Work Document a number of tasks are described for this case
study. We summarise these here and describe briefly the current status.

T1.3.1 Define Case Study

As will nearly all industrial projects, the scope of the project changes over time as the project
matures. The Mobile Internet Technical Architecture is a proposed framework for mobile
device and ecosystem structure. Within this context the NoTA project is one of the first
major ideas and implementations to arise from and to be based upon this work. In this
respect we can consider NoTA to be fulfilling all the requirements of the MITA plan.

The major evaluation criteria are based primarily around the suitability of the Rodin tools
and technologies to be used in our current and future development processes. At this stage
we are confident that this is the case. The tools within Rodin at this time are less mature than
some of the technologies and this will be pursued to a greater degree in the final year of
Rodin.

T1.3.2

As described later in this document the use of the Rodin technologies was directly employed
in parts of the NoTA requirements definition process with the result of the NoTA High Inter-
connect Specification. Work is currently underway in the implementation of this specifica-
tion in both software and hardware forms. This work should be completed by the end of
2006 and a detailed comparison of the defects in the formally developed versions versus the
earlier NoTA prototype versions be made.

T1.3.3

Much of this work was made in earlier projects with the U2B tool in particular. We have
extended some of this to other parts of the UML such as composite structure.

T1.3.4

NoTA has been a continually changing project and the specification has reflected this over
time. The version described in this document is effectively the third major incarnation of the
description of the NoTA system. If there is a major result to be announced now (we are actu-
ally waiting until after the HIN release, T.1.3.2) then it is that the formal specification has
reduced the amount of requirements change over the course of the project.

T1.3.5

This has not been approached at this time but it is hoped that collaboration can be made with
at least Ambient Campus

T1.3.6

See T1.3.2 and T1.3.4

T1.3.7

This is scheduled for the final year of the project.

4.2 Major Directions in Case Study Development

This case study is directly related with Nokia’s Network on Terminal Architecture work. This
project is an ongoing piece of work to develop the “next generation” of mobile terminal plat-
forms based upon the ideas of service orientation

In figure 1 we show the interplay between the case study and its current foci. In particular we
have been concentrating more on the development of parts of the NoTA system and from
this we have then had a structure on which other aspects of the case study can be investi-
gated.

In the following sections we describe the work that has been made in each of these areas and
finally how this relates back to the real project at Nokia. These can be classified as in figure 1
as follows:

• Semantics of UML Structures (Modelling)

• Fault Tolerance Patterns for State Machines (Patterns)

• Model Checking and Animation (Development)

• Model Based Testing in NoTA (Testing)

• Hardware Description Language Generation (Patterns, Development)

• NoTA High Interconnect v2 Specification (Development)

• Modelling Framework (Modelling)

Regarding the task of petri-net based modelling, this has not be covered in any detail during
the past year and it is likely that this area has no real application to the work here due to
changes in our focus over the period of the project. Some related work in this area however
has been made but outside the strict scope of Rodin [4.1].

FIGURE 1. Overview of Casestudy Foci

In the following section we describe the above as follows: Firstly we present a discussion of
the composite structure notion in UML and the results found analysing its usage there with a
short discussion on how this is to be incorporated in the existing UML to B mappings. An
overview of the fault tolerance pattern with state machines is then made. This is followed by
a section describing the animation, CSP testing and its relationship to the theorem proving of
the NoTA High Interconnect layer (H_IN). A section on model based testing and how that
area is being constructed is then made followed by a section on how B and a hardware
description language are being integrated. Finally the H_IN v2 specification section
describes the design of the H_IN layer from the domain modelling, through architecting and
then the choice of the B language to continue the specification of this later.

At this point in time we do not wish to present the modelling framework as we do not feel
that it is of a mature enough state to discus in a formal manner.

4.2.1 Semantics of UML Structures

This work has arisen from the need within this case study to expand the usage of UML from
the traditional class diagram structures to the more esoteric and less used diagrams such as
the composite structure diagram. There appear to be a number of ways of working with the
composite structure and also a lack of concrete semantics either regarding the meaning of
the diagram (or artifact) itself and also its relationship with other UML elements. We under-
took an analysis of this and described the use of this diagram or artifact type in terms of the
UML class diagram - which can obviously be processed by the U2B tool from Southampton;
this has the advantage that to use the composite structure diagram we do not have to update
the mechanics of the U2B tool but can rely on the existing translations.

There have been two distinct areas of work here, one related with the UML semantics itself
and one on transforming one model into another through the application of patterns. In this
section we concentrate on the semantics of UML and how this might be utilised by the U2B
tool.

The composite structure diagram’s and related structures’ uses and semantics are well
described in while the notions of composition are adequately described in. Its function is to
extend the modelling capabilities of the UML beyond that of classes and their relationships
and is primarily aimed to assist the modelling of the internal structures of classes with a
more well de ned notion of decomposition. Similar notions exist in methods such as ROOM
(capsules) and languages such as SDL and SysML for example. An example of the composite
structure diagram is given in figure 2.

It is important to recognise and understand how constructs such as the composite structure
are being used in reality and how close (or far) these usages are from or to the inventors’
aims. If these facts are understood then the development of languages such as the UML
becomes more relevant to the current practise. We have collected this body of results over a
number of years of working with internal consulting projects utilising the UML and its vari-
ous profiles within Nokia. The range of projects has been from enterprise database systems
to embedded, real-time components.

In our work we have identified a number of common ways of utilising the composite struc-
ture diagrams in conjunction with the class diagram for describing various systems. While
the UML2.0 Superstructure document describes the syntax and provides some informal
semantics we have found it necessary to either enhance these descriptions and in some cases
extend the meaning in order so that this particular UML artifact is used consistently and
effectively. In this section we describe the uses of composite structure diagrams and their
interpretations:

• Architecture Specification

• Scenario Descriptions

• Modes

• Operation Effects

Of these we only consider Architecture Specification and Scenario Descriptions here.

By far the most common usage of the composite structure is for architecture specification. In
a number of tools, for example, Borland’s Together Architect, the composite structure is used
to describe the configuration of a class and associated parts. For example, figure 2 shows a
composite structure diagram viewing a model. This model contains two classes A and B,
where class A has three parts (named Part1, Part2 and Part3). The composite structure dia-
gram shows class A’s parts in completeness.

This is per the UML2.0 semantics and each composite structure diagram acts as a view [20]
onto the internal structure - the parts - of a given class; this view may omit entities that are
inside the given class. The issue here is that the composite structure diagrams do not stand
alone as being artifacts of the model and that the diagram does not necessarily show a com-
plete view of the internal structure - this is something that is often misunderstood and not
just with these particular diagrams but also with the class diagram.

FIGURE 2. Composite Structure Diagram in Borland’s Eclipse Based Modelling Tool

For the practitioner, a common interpretation of a composite structure diagram, as currently
implemented in the UML2.0, is that it describes the system as a whole or the ‘architecture of
the system.’ A note must be made about the definition of ‘architecture’: while definitions do
exist, it is often unclear to the practitioner (and sometimes even to the persons developing
the methods) what architecture really is. Suffice, we often find that the term is misapplied to
mean a top-down, functional decomposition of objects which omits the architectural defini-
tion or development step that requires human imagination and inventiveness to adhere to
design requirements in favour of a mechanical process of simple decompositions.

This usage is often in conjunction with the concept of a ‘system’ class much in the same was
as a top-capsule is used in ROOM or as the block interaction diagram is used in SDL. Almost
invariably in these cases the class diagram (if ever expressed) appears as a top-down decom-
position structure with an entry or start point in that system class.

A further usage of the composite structure is where the diagram or diagrams are used to
describe the various configurations of the system. In a process which then is similar to
describing scenarios with object diagrams as a way of requirements elicitations and then
reconstructing the class diagram. Various composite structures are combined and genera-
lised to produce the class diagram which admits all the given composite structures as shown
in figure 3.

The interaction between class and composites structure has a subtle effect for the modeller: it
is recommended that multiplicity constraints, the type (aggregation, relation, composition)
and directionality are always denoted on associations between classes. However this some-
times is difficult to envisage when working from a class perspective and it requires scenarios
to be modelled using object diagrams and such multiplicity constraints and other properties
to be inferred from these scenarios.

This particular way of working can be difficult if not foreign, especially as the drawing object
diagrams are not supported by many tools (we have used USE for this) and that most OO
practitioners are not trained to utilise object diagrams. This style of using composite struc-
tures is not covered by the UML2.0 but can be ‘admitted’ by some tools1.

But the collaboration, at least to the modeller, does not appear as a diagram in its own right
but as an artifact that requires a diagram - this might explain why modellers are reluctant to
use it.

The collaboration artifact or element is not read in the same way as a composite structure
diagram, the usage is more akin to that described in. By ‘read’ here we mean in the semiotic
sense such that persons used to engineering the structure of systems interprets and writes the
descriptions of those systems with the tools (in our case the composite structure diagram)
that they are used to thinking with. Anecdotal evidence suggests that engineers think of
modes as the system comprising of objects in a certain structure and not as a collaboration of
objects, where as the collaboration is used to describe particular scenarios and not modes of
operation. One can also argue that an additional or yet another UML construct to learn is
also complicating matters.

Now this all relates to the U2B tool and mapping work in that we can show a mapping
between the composite structure and the class diagram in a formal manner that is not
present in the UML syntax and semantics. Figure 3 below shows a partial relationship
between the two diagrams.

As U2B primarily works on mapping the class structure to B, a demonstration of the rela-
tionship of the various other diagram types (in particular the composite structure) to the
class diagram makes these admissible for translation using the current schemes. This obvi-
ously saves on the mapping work required by the developers of U2B and secondly provides a
much stronger internal semantics for the UML.

There does remain an issue about the precise semantics of the composition relationship (that
is the black diamond symbol above) but current experiments show a further simple mapping
which will be described in a later report.

4.2.2 Fault Tolerance Patterns for State Machines

A platform independent model (PIM) in a Model Driven Architecture (MDA) context con-
siders only features in the problem domain. In order to implement the platform independent
model, the model is transformed into a platform specific model (PSM) that takes into
account implementation issues for the platform where the system will run. The PSM is not
necessarily a refinement of the PIM, since it can introduce features that are not considered
there at all. For example, fault tolerance and other platform specific features should not be
included in the PIM, since every possible platform where the system could run would have
to be taken into account. All potential platforms might not even be known at the time the
PIM is created.

In order to anticipate all the different restrictions that will be encountered on a specific plat-
form, the fault handling mechanisms and other platform specific features in the PIM would
have to be very general. Hence, they would not provide any useful information and could
restrict future transformations to other platforms. We introduce an automatic transforma-
tion of the PIM to allow a very abstract definition of fault tolerance and other platform spe-
cific features. These platform specific features can then be refined to concrete features in the
platform specific model.

A

s:B
p..q

t:C
h..i

j..k

A B
m..n

s

C D

e..fc..d h..it uvu v:D

=>

FIGURE 3. Relating Composite Structure and Class Diagrams

We use UML to describe the platform independent and platform specific models. Here we
concentrate on state-machines; we do not consider the object oriented features of UML. To
have a formal semantics and good tool support for analysis, the state-machines are translated
to Event B. Event B is a formalism based on Action Systems and the B Method for reasoning
about distributed and reactive systems. It supports stepwise refinement of specifications and
it is also compatible with UML state-machines.

Even if the PSM is not necessarily a refinement of the PIM, we would still like to preserve as
many refinement properties as possible in the transformation from PIM to PSM. The follow-
ing properties of the PIM are required to be preserved in the PSM:

1. The sequence of valid calls to public operations is maintained in the PSM or the state-
machine has reached state exit.

2. New public operations (UML events) are not introduced. Hence, an object does not
require new interactions from its environment.

3. New behaviour violating the refinement relation between the PIM and the PSM cannot
take control forever.

4. There should be a trace in the PIM that is also a possible trace in the PSM. Hence, it
should be possible to execute the PSM using only the transitions in the PIM.

The rules above can also be expressed as restrictions on the state-machine in the PSM. In the
view of the environment, a UML state-machine accepts a language over an alphabet consist-
ing of the events. Assume that state-machine in the platform independent model accepts the
language L. The alphabet of the language is the public operations of the object. Consider two
strings L1 and L2 in L such that L=L1L2. In order to introduce fault tolerance, we can add
new error handling mechanisms. Assume the error handling mechanism is represented by
the string of events f and the error can occur between L1 and L2. The state-machine of the
platform specific model can then accept the following language L1L2+L1fL2+L1f. This
means that the state-machine operates either normally, recovers and continues with its nor-
mal operation or it terminates.

To enable transformation of the PIM to a PSM we use anticipating events in Event B. We
transform the PIM to a model having all the possible anticipating transitions modelling very
abstract fault tolerance features.

In figure 4 we illustrate how a platform independent model M is transformed into a platform
specific model M’’. First M is automatically translated to a model T(M) including all the pos-
sible anticipating events. The model T(M) is hidden from the developer of the PIM. He/She
will only have to consider the models M, M’ and M’’. To obtain a model M’ with platform spe-
cific features, a pattern p1 is applied to the PIM M by the developer. This procedure can be
repeated until all platform specific features have been introduced. The result obtained is a
model that has similar functionality as M, but can have several platform specific features, e.g.
fault tolerance. The obtained model M’ is a refinement of T(M), but not necessarily of the
platform independent model M.

Validation of the PSM is performed within the Event B framework, where we can show that
the PSM M’ is a refinement of the transformed platform independent model T(M). To ensure
that the requirements (1)-(4) given above are satisfied we introduce a number of additional
proof obligations in Event B. These proof obligations concerns deadlock freeness of the state-
machines and enabledness of the transitions in the PSM that are refined from transitions in
the PIM.

The transformation method is described in more detail in a technical report [BNOW06]. As
future work, we aim at to applying the method on a case study to investigate its practicality
and to develop reusable patterns. The method is not limited to only the small subset of UML
state-machines given in the paper, but it can be extended to consider more features from the
UML standard. UML is well known in industry and therefore this type of transformation
rules can be beneficial in many application areas.

4.2.3 Model Checking and Animation

The use of the ProB tool has been extensive in the NoTA project. There have been two uses
in particular:

• Testing through animation

• Demonstrations

In the first case ProB has been used primarily as an animator and thus a way of “executing”
the B specifications. The method employed generally has been to write a piece of specifica-
tion, ensure its correctness in terms of typing and consistency using the AtelierB theorem
prover and then giving that verified specification to ProB.

There are three ways of working with ProB that we have used:

• Random animation

• Model checking

FIGURE 4. Transforming a Platform Independent Models M into a
Platform Specific Model M’’

• Directed animation

In the random animation case we have either used ProB’s random mode and allowed it to
randomly apply (usually about a 1000 or so) operations or manually selected operations to
check a particular piece of specification.

The main results here have been that we can be sure that the specification we have written
does what we think it will do. It is the case with verification that incorrect specifications in
terms of “customer correctness” are often passed. One area that has been of great benefit is
checking whether the correct function type has been applied: total vs. partial, function vs.
injection vs. surjection vs. bijection.

The model checking mode has been used to extensively check the specification in much the
same way as the random mode. Here the results have been that particular cases which usu-
ally correspond to unproven obligations in the specification have been definitively identified.

Directed animation has been made from the test cases/use cases that were suggested or given
during the domain modelling or requirements stages. These we have encoded in CSP and
used ProB to run these cases. Initial cases were of course simple, for example the CSP specifi-
cation of the interconnect node start up and shutdown was simply:

MAIN = initialise -> notify_resource_manager_location ->
shutdown;;

Over time more cases were encoded like this, either from a specific use case or from a man-
ual animation run. If more than a few similar runs were made then we would often explicitly
write the run as a CSP expression.

Finally after amassing a collection of CSP expressions it was possible to write a single expres-
sion that corresponds to the expected behaviour of the system:

MAIN = initialise -> notify_resource_manager_location ->
 (SERVICELIFE ||| SOCKETMANAGEMENT);;

SERVICELIFE =
 register_with_ResourceManager?NN -> register_with_ICNode?SS ->
 ((SERVICE(SS) ||| SEARCH(NN)) ; FINISH_SERVICE(SS,NN));;

SEARCH(NN) = search!NN -> SEARCH(NN);;
SEARCH(NN) = skip;;

SERVICE(SS) = activate!SS -> (CONNECTIONS ; (deactivate!SS ->
SERVICE(SS)));;
SERVICE(SS) = skip;;

FINISH_SERVICE(SS,NN) = deregister_with_ICNode!SS ->
 deregister_with_ResourceManager!NN -> SERVICELIFE;;

CONNECTIONS = connect -> CONNECT_RUN;;

CONNECT_RUN = send -> CONNECT_RUN;;
CONNECT_RUN = get -> CONNECT_RUN;;
CONNECT_RUN = local_disconnect -> skip;;
CONNECT_RUN = remote_disconnect -> skip;;
CONNECT_RUN = local_close -> skip;;

SOCKETMANAGEMENT =
automatic_close -> SOCKETMANAGEMENT []
socket_send_process -> SOCKETMANAGEMENT []

socket_receive_process -> SOCKETMANAGEMENT;;

These CSP traces could either be run manually with ProB explicitly restricting the choices of
operations to be run next or automatically as a model checker over the trace admitted by the
given CSP expression.

This form of model based testing was done manually as there is no automatic way - yet - of
sending various sets of traces to ProB.

The second usage of ProB was as a demonstration engine. Presenting the work here using the
theorem prover and demonstrating correctness through proof is almost impossible for any-
one to understand. However, hands-on demonstrations given to developers and manage-
ment proved successful especially when they themselves could drive the animation.

This we found has one great advantage over a prototype in that the customer does not get
confused or sidetracked by a user-interface mock-up and concentrates on what the system is
supposed to be doing and thus it focusses the customer on what they have precisely asked for.

4.2.4 Model-based Testing in NoTA

We describe here the testing framework for the NoTA interconnect. We describe two testing
approaches and explain the chosen test configuration. The aim of this document is explain
the construction of the tester model and tester system at technical level without showing the
actual code. The target for testing described in this document is the H_IN part of the NoTA
system, but the approach is general. In particular the same approach can be applied for test-
ing services that use NoTA primitives.

s described earlier the crux of Model Based Testing is to model the behavior of the System
Under Test (or Behavior Model) and then let a tool perform testing by analyzing this tester
model and sending messages over to the SUT. The analysis is redone based on the responses
from the SUT, thus the testing is on-the-fly. It can be thought that the tester tries to execute
the tester model concurrently in sync with the SUT. A response from the SUT that is not
valid in the tester model is considered to be an error and is reported as such.

A point worth emphasizing is that the tester model (or behavior model) is not constructed
from the external tester point of view, but from the system point of view. The tester point of
view is the one that is usually taken when writing test cases, for instance: press button labeled
â1â (send â1â to SUT) and observe that character â1â gets written on the display (receive â1â
from SUT display). The system point of view describes what the system does â the previous
example would then look like: wait for a key press, when key is pressed (receive from outside)
and the key is â1â then emit character â1â on the display (send to outside via display). So we
are modeling the behavior of the system, not the behavior of the test case.

A way of visualizing this is that the tester tool tries to ‘invert’ the tester model: if the tester
model has a ‘receive’ then the tester tool must send a corresponding message to the SUT and
if the tester model has a ‘send’ then the tester must expect a message from the SUT. As the

tester model describes the H_IN network the tester tool emulates the possible messages that
the H_IN nodes send.

Another way of thinking is that the tester model is a reference implementation for the SUT.
Thus the tester model that is being created is a design level artifact.

There are essentially three kinds of models: the tester model, the observer models and the
abstract model.

The most important model is the already mentioned tester model. It describes the behavior
of the tested system at an accuracy that allows it to be connected to the tested system. More
accurately, the model connects to the tested system via some interfaces that allow communi-
cating with the tested black box. Note that these interfaces may be wrappers on top of some
more detailed interface.

When testing is performed based on the tester model the whole behavior described in the
tester model is tested against the SUT and all parts of the tester model behavior as good as
any other part. From the tester model point of view it makes no sense to say that a certain
feature (a sub-behavior of the model) is being tested at some point. When some criteria, like
testing time or structural criteria over the model for instance, are met and no errors have
been found it can be said that the behavior described in the model has been tested. It is pos-
sible to look at the traces produced by the testing and then deduce that what was happening
at given time â but from model point of view this is still irrelevant, there are no distinguished
features.

However, the complete behavior of the model is very large so that it is not feasible to enumer-
ate them all and in the model there still are behaviors that are very relevant. In case of H_IN
its purpose is to transport data, so it makes sense to require that the testing exercises that
part of the model in a way that a proof can be offered for completing that part of testing.

There are four ways of doing this: one is to observe the tested traces after the testing, second
is to construct the behavior of the model so that relevant functionality is exercised, third is to
tag the model so that it can be observed when certain tagged feature is tested and fourthly
construct another model of the desired features.

These are related to the notion of coverage and they are explained in more detail in section
2.3.

If the fourth of the above possibilities is chosen, then it means that there is another model
artifact: the observer model or observer automaton. These observers can be used in two roles
over the test model: to guide the testing but also to observe the traces produced by testing
afterwards.

There is also a third role for observers in ensuring a relation between two models, explained
below.

A third kind of model exists, it is an abstract model of the system that is being tested. In this
case this model is expressed in a language that concentrates on modeling the concepts of the
system and allows then checking the consistency of the abstract model. Also it is possible to
define features in a format that allows exhaustive checking of them against the abstract
model. These features are similar to observer automatons. Due to complexity and size, the
same analysis are not available for the tester model.

In order to use the results from the abstract model side on the tester model side, there are
two approaches, which are closely related: use the features checked on the abstract model
side as observers on the test model side and alternatively use the observer automatons to
observe the traces produced by the abstract model as well to observe the traces from the
tester model.

Note however that the power of the model-driven testing relies on letting the tool generate
various permutations, so relying too excessively on guiding the testing, power of the
approach can be diminished.

As the tester model itself is a reference implementation, there must be a way of ensuring the
correctness of it. There exists a more abstract model of H_IN which has been written in
description language B. Abstract models written in B can be automatically checked for con-
sistency by means of a theorem prover and validated by means of a model checker. These
methods increase the trust on the abstract model being correct. Unfortunately, the same
analysis mechanisms cannot be used directly on the tester model; this is because there is not
defined a mapping between the Lisp tester the B abstract model in such a way that the prop-
erty of refinement can be proven, this is described below in more detail.

There are basically two ways of connecting the abstract model and the more concrete tester
model. First one is to generate the concrete tester model from the abstract model which
means adding (architectural) information to the abstract model. Currently this approach is
not chosen, even some preliminary work had been done. Main reason for not pursuing this is
that creating a compiler that is able to allow intelligently injecting details is too time consum-
ing and hard.

The second approach is comparing the results of the model analyses. Here the analysis of the
tester model (in presence of a black-box implementation) produces a trace of events. The
analysis of the abstract model produces complete or partial state space that can be thought of
a graph that contains all possible traces within that state space. For this reason we pick com-
parison of traces as the mechanism for linking the two models together. The assumption here
is that the abstract model nevertheless has enough common elements with the tester model
so that they can reasonably be compared â in this case it is the events or message primitives
that are exchanged between the H_IN and its users.

To compare traces we use observer automatons, which are state machines which have mes-
sage primitives on the transitions. These automatons operate on a trace and if the events of a
trace lead to an accepting state, then the observer has witnessed the property for which it was
designed for.

Figure 2 shows an example observer automaton that
encodes the following property: a connection that has
been established will be ended by the connection initi-
ator (Hclose) or the peer (Hdisconnect_ind). The
automaton has the following features: the events are
messages that may have parameters, the parameter val-
ues may either be ignored (signaled by _) or remem-
bered under a variable name, sockid in this case. The
value stored under variable name may be matched
later on. There is also a default or empty transition that
is taken if no other transition can fire, that is when the
event of a trace cannot be matched by any of the tran-
sitions in the state. The final or accepting state is
denoted by a doublecircle.

Note that the actual message representations may be
different on the abstract model and on the tester
model level, but the statemachine skeleton is still valid for both.

The B model checker can also use CSP descriptions to limit the validation run and a statema-
chine can be translated to CSP and vice versa. It may be that if the state space of the B model
is very large the best course of action is to use the model checker in conjunction with the CSP
properties to validate the property on the B side and then a corresponding observer automa-
ton to validate the same behavior on the tester model side.

Note, that use cases that have been formalized using sequence diagrams can be transformed
to CSP. This allows using the use cases to be used as properties to be checked by the B model
checker. The H_IN implementation is generated by hand based on the B abstract model.

When the Lisp tester model tests the H_IN implementation and the automatons that are
based on the CSP properties have been fulfilled we have demonstrated a refinement between
the B model and the implementation.

With observer automatons the coverage issue on the tester model side is diminished, if the
observer accepts, then a certain property has been observed. However, it may be that there is
a need to include coverage like information for the automatons, for instance, how many
times a certain property has been observed.

4.2.5 Hardware Description Language Generation

We have focussed our attention to the generation of hardware rather than the traditional
focus of software. One problem that seems to repeatedly occur in software generation is tar-
geting the Symbian platform with reasonable C++ code; this has lead to the adoption of strict
manual processes in many cases as the construction of a code generator is too expensive in
terms of time.

FIGURE 5. An Observer
Automation

Hardware however provides a more beneficial target in that the gains through abstraction
and correctness outweigh similar gains in the software arena due to the very explicit costs
and difficulties incurred in hardware development.

Work has already been made regarding translating B to traditional hardware specification
languages such as VHDL and SystemC. However the semantic gap between B and these lan-
guages is very large and the style of their usages very different. This makes code generation
either impossible or at best convoluted with the result of inefficient and unworkable designs.
The Bluespec language is based on an action system semantics more akin to that seen in
EventB (and B). The relationship between the semantics of the languages is much closer to
the point that the mappings are surprisingly easy. One must however take into consideration
the hardware scheduling when making the mapping, but this can be taken care of through B’s
refinement mechanisms - we hypothesise automatically (but not describe here). As we can
generate efficient hardware from Bluespec, this makes is more or less the ideal choice as a
target for code generation.

Bluespec is a rule based declarative hardware specification language based on term rewriting.
It is supported by a compiler capable of producing synthesisable SystemVerilog and a large
set of libraries for common hardware IP blocks such as FIFOs, various register and memory
structures etc.

The structure of a Bluespec description is in the form of an interface declaration and module
declaration which implements an interface. All Bluespec methods must be declared in the
interface and implemented in the module. Many modules may implement the same inter-
face. We take the approach that a method is derived from an operation that is used to com-
municate with the environment and a rule for any operation which modifies the internal
state.

One can see the similarities in the syntax of the languages in the two short code fragments
shown below:

moveDown =
PRE
activity = DOWN &
currentPosition > requestedPosition &
currentPosition > 0
THEN
currentPosition := currentPosition - 1
END ;

request(ff) =
 PRE
ff : INTEGER &
 ff >= 0 & ff <= topFloor &
 not(ff = currentPosition) &
 availability = AVAILABLE
 THEN
 requestedPosition := ff ||
 availability := NOTAVAILABLE
 END

 av <-- is_available =
 BEGIN
 av := availability
END;

and in Bluespec:

rule moveDown(activity == Down &&
currentPosition > requestedPosition &&
currentPosition > 0);
currentPosition <= currentPosition - 1;
 endrule
 method Action request(Int#(8) ff)
 if (availability == Available);
 if ((ff >= 0) && (ff<=topFloor) &&
 (ff!=currentPosition) &&
 (availability == Available))
 begin
 requestedPosition <= ff;
 availability <= NotAvailable ;
 end
 endmethod

 method LiftStatus is_available;
 return availability;
endmethod

Both B and Bluespec are based upon action system semantics which are an extension of Dijk-
stra’s guarded commands [6]. B uses atomic, interleaving actions; Bluespec is similar but with
clock-scheduling and rule priority. Bluespec’s term rewriting aspect is similar to that of B and
is adequate for many functional correctness properties.

Clock scheduling of rule introduces timing properties and picks a deterministic route
through the transitions described by the term rewriting. This guarantees that the system
always reaches the states predicted by the term rewriting rules but may never visit some
states allowed by this.

These can be summarised such that in B, one picks any enabled action and executes its body
(this guarantees atomicity), while in Bluespec one executes any enabled rules atomically. This
is further re ned under scheduling: wait for a given clock event such as a rising clock edge
and then execute the enabled set of rules. In practise a program in Bluespec will only ‘visit’ a
subset of the states that a B specification can due to Bluespec’s scheduler picking certain rules
to re rather than potentially any at random. Of course there are pragmatic conditions which
again limit this such as the amount of hardware logic that can be reasonably fitted into a
clock period, resource limitations such as the readability of registers and energy consump-
tion.

Any given speci specification in B can hypothetically be mapped to Bluespec but the schedul-
ing policy and variable conflict rules will require additional guarding of the rules and meth-
ods in the Bluespec. There are three possibilities for re ning the B specification to construct a
correctly functioning Bluespec program:

• Change of rule priorities

• Splitting of rules

• Constraining rules

Of these, the first is a modification to the architecting process that generates the Bluespec,
the others can be made inside the B specification itself.

Often just changing the rule priorities inside the Bluespec has an effect. Bluespec calculates
the rule priorities from the syntactical ordering of the rules in Bluespec program. If these
rules can be reordered then sometimes the conflicts are removed.

Splitting the rules in the specification is made to leverage more parallelism in the Bluespec.
The sometimes has the effect of making the scheduling easier such that one rule may be split
such that the preconditions are much simpler and are more focussed to the actual actions
inside the rule - that is there is less potential conflict between the precondition and the
mechanics of the actions themselves. When using this ‘pattern’ it often becomes clearer
which parts of a rule are causing conflicts and thus isolating scheduling problems is much
easier.

Further constraining the rules by adding additional precondition statements basically
restricts the firing of the rules such that the scheduling is more deterministic and fixed. This
may also be accomplished by the addition of additional variables which effectively encode
the behaviour of the scheduler.

When these changes are made to the B specification we can under some circumstances use
the refinement mechanism in B directly to ensure that the modified B specification still
adheres to the desired behaviour encoded in the most ‘abstract’ B machine. However, percu-
liarities in B and the semantics of refinement, especially in the latter cases of splitting of rules
and encoding the scheduler through additional variables may cause problems with abstract
forms of the additional rules and variables being required to be declared in the most abstract
versions of the specification. Typically one might have to introduce operations of the form:

op = BEGIN skip END

to the abstract specifications and variables declared but without use inside the specification.
These have no real effect other than to clutter the specification somewhat. The EventB lan-
guage reduces these kinds of restrictions we seen in B; this will be investigates more later as at
this point we have concentrated on the B language rather than EventB.

Given a Bluespec program generated from a B specification we can use existing synthesis
tools to produce RTL and netlists for synthesis. Because we are working from a verified
description this greatly reduces the development and testing times such that any increase in
chip/area size and power consumption is annulled by the reduction in development, testing
and debugging times. In the latter cases we are currently seeing approximately between -5%
and +10% differences in power consumption and floor area compared to traditional VHDL
based development for our current test designs. In the example the B and Bluespec are 100
lines each, the System Verilog RTL was 287 and this generated for a Xilinx Spartan FPGA: 48
FMAPS (24%), 5 HMAPS (5%), totalling 24 CLBs (24%) or for an Altera Cyclone FPGA: 23
I/O ATOMs, 54 LUTs (1%), 62 ATOMs (2%) for logic resources, 234 inputs on ATOMs and
10769 nets.

4.2.6 H_IN v2 Specification

The NoTA (Network on Terminal Architecture) Platform is begin designed to allow services
in the service-oriented sense to run on a mobile device instead of the current component or
modular based architectures. NoTA has been architected into four logical parts (see figure 7),
one of which is the session/connection layer (ISO parlance) that provides the communica-
tion medium between the services. This layer is called the High Interconnect or HIN for
short. We have concentrated on this particular layer and the interplay between UML and B
for specification. The reason for the use of B was that the tools when we started this project
were B based (AtelierB, ProB, U2B). Now that the EventB toolset is now available we are cur-
rently porting the specifications to EventB.

In this chapter we describe the development flow and the use of B in the specification of the
HIN layer. In particular in the context of this document we concentrate on the following:

• The NoTA Domain Model

• The NoTA Architecture

• The HIN Layer

• The Interface partitioning

The domain model is effectively the structure of the concepts of a given system. In the case of
NoTA we have gathered all the known concepts and constructed a domain model which
describes the relationships between those concepts. The domain model is used to refine the
definitions such that each concept becomes clean and consistent throughout the system as a
whole.

At this stage of modelling we chose a very pragmatic formal way of modelling and only really
concentrated on the invariants which were immediately obviously. This gave us a much
quicker start and more time concentrating on developing the specification rather than con-
centrating on very small parts precisely. This style was much more applicable and amenable
to those developers which were either accustomed to more implementation oriented styles or
so called agile methods.

Figure 6 shows the current domain model of NoTA written in a subset of the UML modelling
language. It is important to note that the domain model is independent of any implementa-
tion platform and language. We also use the domain model in the object oriented sense
which extends the entity-relationship’s structural ideas to encompass behaviour as well.

Note that the domain model contains both graphical and textual representations; we argu-
ment the graphical model with constraints written in OCL. This is used because a graphical
model can not express certain constraints.

We start with the traditional focus of a NoTA system which is the Interconnect Node; this
encompasses the behaviour and necessary structures to enable the NoTA system to function.
In particular it manages the communication structures inherent in the NoTA system and
also manages the communications with the resource management of the NoTA system. This

latter choice is partly and architectural decision but reflects the understanding that the
resource manager is not a service-like element but an integral part of the NoTA framework.

Each interconnect node has an address obtained from a lower level addressing mechanism -
in NoTA this is generally known as the LIN layer. Each interconnect node has a unique
address:

context InterconnectNode
 self.allInstances->forAll(i1,i2 |
 i1.linaddress=i2.linaddress implies i1=i2)

The resource manager itself is an element that manages the information about services as
reflected in the structure of the resource manager table entries (RMTableEntry) that it con-
tains. This particular concept is constructed out of a service ID (SID) and information about
to which interconnect node that service ID is connected.

Given the two above concepts we can write the constraints relating these together. The first
invariant states the available interconnect nodes are always a subset of the interconnect
nodes addressed in the resource manager tables. This ensures that the resource manager can
never have a reference to an interconnect node that does not exist.

context ResourceManager
 entries.nodeaddress->includes (InterconnectNode)}

The resource manager tables use the SID value as the key and thus this must be unique:

context RMTableEntry

FIGURE 6. NoTA Domain Model

 oclallInstances->forAll(r1,r2 |
 (r1.sid = r2.sid) implies(r1 = r2))}

The service concept is also one of the most central to NoTA. This embodies the actual entity
that for the user appears to perform all the work. As far as NoTA is concerned all services are
identical and just pass data between themselves using the available communication struc-
tures. Each service may have a service ID (SID) - if none is present then the service has not
registered with the system as is thus unknown to other services. However all services must
connect to an interconnect node.

The known services to the resource manager must be the same as known to all the intercon-
nect nodes in the system:

context InterconnnectNode
 services.sid = resourceManager.entries.sid

And similarly to interconnect node addresses, service SID’s must be unique to each regis-
tered service:

contex Service
 allInstances->forAll(s1,s2 |
 (s1.sid = s2.sid)\oclimplies (s1 = s2))}

Note that when the above invariant is combined with the sid uniqueness invariant in the
resource manager table then these guarantee that the SID is unique across the system as a
whole.

The next concept is that of the communication structure which can be further specialised
into sockets and channels. Each basically behave in a similar manner as captured by the gen-
eralisation/specialisation relationship. The communication structures are managed by an
interconnect node but are effectively owned by a given service. For security reasons only ser-
vices that are connected to a given interconnect node can use sockets issued by that intercon-
nect node:

context InterconnectNode
 services.connections = cstructures

The communication structures utilise a connection between themselves. This connection
depends upon a lower layer concept known as LIN. A communication structure can not con-
nect to itself:

context Connection
 to != from

and sockets and channels can not be connected together

context Connection
 to.OclType = from.OclTyp}

The Handle concept is not fully defined in this domain model at this time - this reflects the
current usage and option about this structure inside NoTA.

The LIN and Network concepts are provided for completeness and not further developed at
this point. As we shall see these become more architectural in nature rather than conceptual.

The NoTA Architecture is based around four layers and can be
seen in figure 7. One can roughly align these with the OSI seven
layer model with the Service layer providing application and
presentation functionalities, the HIN providing session and
transport while the LIN and Network layers are concerned with
the OSI network, data and physical functionalities.

These four layers are used to partition the NoTA domain model
such that we can make a clear separation about what is specifi-
cally related to each layer. From this we can also identify and
partition the interfaces between those layers.

The domain model given in figure 6 was mapped such that the
Service, LIN and Network concepts were mapped to their
related parts in the architecture model almost directly. This is as
we had expected given the information about the system anyway
- initial models of NoTA concentrated more on the so called
“High Interconnect” layer anyway.

The result is that we had a system that is based around two concepts in this layer: the inter-
connect node itself and the resource manager. There were two data types present: SID and
Handle - the latter not being well defined at this time.

We also made the architectural choice that the communication structure would be some
kind of data structure within an interconnect node as the composition relationship in the
domain model suggested. Further architecting or design of the resource manager was made
elsewhere.

Once the domain modelling had been made the interconnect node’s specification was to con-
tinue using the B modelling language rather than “UML”. The B specification was arranged
around the Interconnect node with addition B machines used to “simulate” the resource
manager, the common data types present in the system and the behaviour of the handle
objects. A previous experiment has been made applying U2B to the domain model but the B
produced was too complex and there were issues regarding the locality of some of the opera-
tions. By choosing to work from after the system had been architected and then just on the
design of a single interconnect node simplified the specification.

The OCL constraints seen in the domain model were mapped by hand into equivalent B
expressions in the invariant. Socket and channel structures were mapped to function expres-
sions in the state variables.

Most of the work regarding the behaviour of the interconnect node and its related structures
was made at this level rather than at the domain level using OCL. B has tool support which is
not present in a mature enough form with OCL.

Much of the design work later focussed on the behaviour of the sockets and channels and the
peculiar issues related with the teat-down scenario where a socket is closed by one of its users

FIGURE 7. NoTA
Architecture

(the initiator or initiatee services) when there is still data either waiting to be sent or gotten
from the input buffer of the socket. NoTA tries not to lose data so a socket shutdown might
only be partial until both parties agree to close the socket. The design of the buffered socket
is presented below in B and also pictured using a state machine in figure 8.

The socket structure invariant:

 issued_sockets <: SOCKET &
 local_sockets : issued_sockets --> dom(local_services) &
 socket_send_buffer : dom(local_sockets) --> INTEGER &
 socket_receive_buffer : dom(local_sockets) --> INTEGER &
 dom(socket_send_buffer) = dom (local_sockets) &
 dom(socket_receive_buffer) = dom (local_sockets) &
 socket_state : dom(local_sockets) --> SOCKET_STATE &
 dom(socket_state) = dom(local_sockets) &
 issued_sockets = dom(local_sockets) &
 !ss . (ss : dom(socket_send_buffer) =>

socket_send_buffer(ss) <= send_buffer_maxsize) &
 !ss . (ss : dom(socket_receive_buffer) =>
 socket_receive_buffer(ss) <=
receive_buffer_maxsize) &
 !ss . (ss : dom(socket_send_buffer) =>
 socket_send_buffer(ss) >= 0) &
 !ss . (ss : dom(socket_receive_buffer) =>
 socket_receive_buffer(ss) >= 0) &
 send_buffer_maxsize > 0 &
 receive_buffer_maxsize > 0 &

The socket tear-down operations:

err <-- socket_local_disconnect(sid,soc) =
 PRE
 icnode_state = RUNNING &
 sid : dom(local_services) &
 soc : issued_sockets &
 local_sockets(soc) = sid &
 socket_state(soc) = OPERATING
 THEN
 CHOICE
 err := SOCKET_DISCONNECT_ERROR
 OR
 err := SOCKET_DISCONNECT_OK ||

FIGURE 8. Socket State Machine

 socket_state(soc) := LOCALLY_DISCONNECTED
 END
 END ;

socket_remote_disconnect(soc) =
 PRE
 icnode_state = RUNNING &
 soc : issued_sockets &
 socket_state(soc) = OPERATING
 THEN
 socket_state(soc) := REMOTELY_DISCONNECTED
 END ;

The service-socket operations for the sending and obtaining of data from the socket buffers:

socket_send(sid,soc,data) =
 /* data parameter here for completeness */
 PRE
 icnode_state = RUNNING &
 sid : dom(local_services) &
 soc : dom(local_sockets) &
 local_sockets(soc) = sid &
 socket_state(soc) = OPERATING &
 socket_send_buffer(soc) < send_buffer_maxsize &
 data : DATA
 THEN
 socket_send_buffer(soc) := socket_send_buffer(soc) + 1
 END;

 dd <-- socket_get(sid,soc) =
 /* data parameter here for completeness */
 PRE
 icnode_state = RUNNING &
 sid : dom(local_services) &
 soc : issued_sockets &
 local_sockets(soc) = sid &
 ((socket_state(soc) = OPERATING) or
(socket_state(soc)=REMOTELY_DISCONNECTED))&
 socket_receive_buffer(soc) > 0
 THEN
 socket_receive_buffer(soc) := socket_receive_buffer(soc) - 1
||
 dd :: DATA
 END ;

Channels work in an analogous way with some minor differences actually occurring inthe
way data is send and received; also channels are uni-directional.

The fault tolerance pattern work by Bostrom et al is being applied to the above specification
of sockets to assist in dealing with certain kinds of synchronisation problems.

From the specification at present, work has been progressing on mapping this into C and
C++ for implementation on the Linux and Symbian platforms. Once this work is complete, it
will be then be tested as described earlier. We will also be able to compare the code gener-
ated/developed via the formal specification with “agile developed” code from the previous
version of this software.

4.3 Demonstrators

• The demonstrators for this case study will include the following:

• The domain model and architecture descriptions

• The outline of the development flow from UML to B/EventB and its place within the
“model-based” development paradigm

• The B/EventB specification

• A demonstration of test cases in natural language, CSP and Comformiq Lisp

• A prototype of applying fault tolerance patterns to the B/EventB specification

• A prototype of the B to Bluespec code generator

In the previous sections we have outlined the development that has taken place in order to
demonstrate the above.

4.4 Future Work

Up until now the work in this case study has focussed on the development of the specifica-
tion within a live project and ensuring that the use of formal methods and the associated
tools fits in with existing methods of working and are also accepted by practitioners who are
not used to these methods and languages.

We have results from this work that show that the impact of using formal methods and the
tools within the Rodin project do not affect the development structures already in place to
any great degree. There does admittedly have to be some training and the use of coaching
here has proven to be of great value. The major result however has been the speed at which a
specification has been and can be developed and the confidence by the practitioners that the
work is correct in both the verification and validation aspects. We can show approximately a
25%-35% increase in productivity over a one year period - the precise figures are not avail-
able at this time due to confidentiality reasons but will be published in due course.

With regards to the Rodin toolset we have taken the approach to be very hands-off in order
for the tool set to develop to a point where it can be successfully employed by the practitio-
ners who will then suggest improvements and so on. This mirrors often how tools are
employed in that vendors normally release a tool for a generic market and customise as nec-
essary later.

One addition reason for being hands-off is that formal methods are treated with some suspi-
cion in industry and providing a tool which immediately requires a lot of training and cust-
omisation would only serve to reinforce that ideas. However it can be taken as a compliment
to the developers of the various Rodin tools - the platform, U2B, ProB - that their acceptance
within our development group is rather high even with the early version we see here; of
course with in the Rodin project there is quite a degree of interaction anyway regarding the
development of the tools.

During the 3rd year of the Rodin project we will concentrate more on integrating all the
pieces we have presented here together to produce a more consistent whole.

Also during the 3rd year the NoTA project will effectively end and be replaced with three
continuation projects in Nokia which further develop the ideas inside NoTA in both the aca-
demic/research area and also as a product.

4.5 References

[4.1]Kim Sandstrom, Ian Oliver (2006). A UML Profile for Asynchronous Hardware Design.
In Proceedings: SAMOS IV Workshop, Greece.

[4.2]P. Bostrom, M. Neovius, I. Oliver and M. WaldÃ©n. Formal Transformation of Platform
Independent Models Into Platform Specific Models in MDA. TUCS Technical report, 759,
Turku, Finland, 2006

[4.3]I. Oliver. Model Based Testing and Refinement in MDA Based Development. In: Pierre
Boulet (ed.) Advances in Design and Specification Languages for SoCs. The ChDL Series,
Springer, 0-387-26149-4, 2005

[4.4]C. Snook and M. Walden. Refinement of Statemachines Using Hierarchical States,
Choice Points and Joins. Presented at: REFINENET’05 - Refinement Workshop, University
of Manchester, UK, October 2005,

[4.5]I Oliver. A Demonstration of Specifying and Synthesising Hardware using B and
Bluespec. In: Proceedings of Forum on Design Languages FDL’06. Darmstadt, Germany

[4.6]K. Kronlof, S.Kontinen, I.Oliver, T.Eriksson. A Method for Mobile Terminal Platform
Architecture Development. In: Proceedings of Forum on Design Languages FDL’06. Darms-
tadt, Germany

[4.7]I Oliver and V.Luukkala. On UML’s Composite Structure Diagram. SAM06, May 31-
June 2, Kaiserslautern, Germany

[4.8]I Oliver. UML and B in Industrial Development (Abstract). Dagstuhl Workshop on Rig-
orous Methods for Software Construction and Analysis 06191. May7-12 2006. Dagstuhl
Schloss, Germany.

SECTION 5. CASE STUDY 4:
CDIS AIR TRAFFIC CONTROL DISPLAY SYSTEM

5.1 Introduction

This section summarises progress during Year 2 on the CDIS case study. Contempo-
rary tool support has been used to develop a formal specification of CDIS. CDIS is a
computerised system that provides important airport and flight data for the duties of
air traffic controllers based at the London Terminal Control Centre. Each user posi-
tion is a workstation that includes a page selection device (to select CDIS pages) and
an electronic display device (to display the selected pages). The original system was
developed by Praxis1 in 1992 and has been operational ever since. This system is an ex-
ample of an industrial scale system that has been developed using formal methods. In
particular, the functional requirements of the system were specified using VVSL [5.6]
— a variant of VDM [5.5]. The formal development resulted in about 1200 pages of
specification documents and about 3000 pages of design documents. The reliability of
the delivered system is encouraging for formal methods in large scale system develop-
ment because the defect rate was a considerable improvement on other similarly sized
projects [5.7].

During the first year of the project a useful subset of the CDIS specification was
defined, reviewed and distributed. Examples of problem areas in the original CDIS
development were identified:

1. The lack of any formal proof in the original development.

2. The difficulty in comprehending the original specification and the difficulty of
modularising the specification.

3. The difficult of dealing with distribution and atomicity refinement.

In Year 2 we focused on addressing items 1 and 2 above, though we also made some
progress towards dealing with item 3. Two different attempts at reworking subset
specification commenced: a “translation” approach a “specify equivalent system from
scratch” approach. It was quickly found that the translation approach was not sensible
and we focused in Year 2 on the second approach of specifying the system over again.

Redeveloping an existing system also allows us to reflect on the lessons learned
from the original development. Our aim in this section is to demonstrate how we have
attempted to overcome the lack of comprehensibility and formal proof of the original
CDIS development by adopting a methodology that makes use of available tool support

1Praxis High Integrity Systems Ltd., U.K.

in an effective way. The major outcome in Year2 for CDIS was the elaboration of an
approach for large scale formal development.

The work on CDIS in Year 2 was presented at a number of internal RODIN meet-
ings:

• Zurich plenary meeting (September 2005)

• Newcastle CDIS meeting (February 2006)

• Aix-en-Provence plenary meeting (April 2006)

The CDIS work heavily influenced work on adding records to Event-B which is de-
scribed in a paper presented at FM06 in Canada [5.2]. In addition, the approach for
large scale formal development elaborated for CDIS in Year 2 is presented in a paper
submitted to ISoLA 2006 [5.3].

5.2 Major directions in case study development

In order to keep the case study manageable in the context of the RODIN project, a
subset of the original CDIS has been carefully chosen for redevelopment [5.8]. How-
ever, rather than focusing on individual aspects of CDIS, a ‘vertical slice’ has been
taken so that all of the interesting features of the system are covered (albeit in a lesser
form). At the heart of the CDIS subset is the ‘core specification’ that gives the func-
tional properties of the system, and shall be the focus of this section. In addition to
the core specification, there is a concurrency specification and a description of the user
interface.

The Original Specification

The core specification is only one part of the overall CDIS documentation. It gives an
idealised view of the entire functional behaviour of the system. (The design document
states how this is actually realised.) In order to avoid ambiguity, in this section we will
often refer to the core specification as ‘the original VDM specification’.

The core specification consists of a number of VVSL modules, each of which
contains type, constant and state definitions. (The bulk of the specification is made
up of Boolean functions that are used in the pre/post conditions of other definitions.)
A module can import other modules so that the imported definitions are available in
the importing module. This gives a VVSL specification its structure. This approach
encourages a bottom-up development in which the overall specification emerges from
the way in which its modules are combined.

The core specification of CDIS comprises 15 modules. However, we can identify
three main parts (or contexts):

• Airport-related data. This concerns airport-specific values such as weather or
runway information. TheMeta data module identifies the airport attributes
and their value types. Functions are defined to update the values of the attributes.
TheAirport records module declares a state variable that holds all of the actual
values of the attributes.

• Page-related data. This gives a device-independent and data-independent record
of the pages that can be displayed by CDIS. Types are declared to model the
layouts of pages. Actual pages are held in the state variables declared in the
Pages module.

• Display-related data. This concerns the physical devices that are used to retrieve
and display information.

Other subsidiary modules such as the date/time module are concerned with other
important features of CDIS. By far the largest module in the core specification is
EDD displays that contains the operations of the system. All of the modules listed
above are imported byEDD displays to enable the definition of the operations.

Conclusions Drawn

It is worth emphasising that the CDIS specification is necessarily complicated. Even
though the core specification has been criticised for its complexity, it is unrealistic
to expect any significant improvements in the size of a specification that captures all
aspects of CDIS, regardless of the notation used. However, the bottom-up construction
in VVSL forces a level of specification that is too detailed to get an appreciation of the
overall system behaviour.

Too much complexity also precludes formal analysis. In order to reason about a
specification formally, it is necessary to keep the level of detail as simple as possible.
Otherwise mathematical proof becomes infeasible. Analysing monolithic specifica-
tions such as the CDIS core specification would be beyond the capabilities of contem-
porary formal methods tools without intense human intervention. This was not an issue
during the original CDIS development because tool support was largely unavailable,
and large-scale formal analysis was out of the question.

5.3 Progress in developing the demonstrators

In this section we describe our formal development of CDIS in Event B. In order to
get a better overview of the entire system, we follow a top-down approach. At the top
level, we ignore all of the airport-specific features to produce a specification describing
a generic display system. Through an iterated refinement process, we introduce more

features into the specification until all of the CDIS functionality is specified. This
procedure is supported by the tool B4Free. At each step the tool generates a number
of proof obligations which must be discharged in order to show that the models are
consistent with their invariants. Since each refinement introduces only a small part
of the overall functionality, the number of proof obligations at each step is relatively
small (approximately less than 20).

5.3.1 Abstract Specification

The purpose of CDIS is to enable the storage, maintenance and display of data at user
positions. If we ignore specific details about what is stored and displayed then CDIS
becomes a ‘generic’ display system. We begin by constructing a specification for a
generic system (which will be, of course, somewhat influenced by the original VDM
specification) and, through subsequent refinements, introduce more and more airport-
specific details so that we produce a specification of the necessary complexity, and
reason about it along the way. By providing a top-down sequence of refinements it is
possible to select an appropriate level of abstraction to view the system: an abstract
overview can be obtained from higher level specifications whilst specific details can
be obtained from lower levels.

Meta Data Context.

Rather than specifying individual airport attributes (such as wind speed) as state vari-
ables of a particular value type, two abstract types are introduced that correspond to
the collection of attribute identifiers and attribute values. This allows us to represent
the storage of data more abstractly as a mapping from attribute identifiers to attribute
values.

CONTEXT META DATA
SETSAttr id ; Attr value
END

Pages Context.

The pages of CDIS are device-independent representations of what can be displayed
on a screen. Each page is associated with a page number, and each page consists of its
contents.

CONTEXT PAGE CONTEXT
SETSPage number; Page contents
END

Displays Context.

At this abstract level, we model the physical devices with which the users interact with
the system. However, we only need to acknowledge that each position is uniquely
identified (by itsEDD id), each user position has a type, and each user position has
a physical display. Some user positions are ‘editors’ which have the capability of ma-
nipulating data and pages.

CONTEXT DISPLAY CONTEXT
SETSEDD id ; EDD type; EDD display
CONSTANTS EDDs, EDIT , EDITORS
PROPERTIES

EDIT ∈ EDD type∧
EDDs∈ EDD id → EDD type∧
EDITORS⊆ EDD id ∧
EDITORS= EDDs−1 [{ EDIT }]

END

Merge Context.

By merging the previous three contexts (via aSEESclause), we can declare a function
that can determine the actual display, given the appropriate information. In declaring
this function, we use an unfamiliar syntax. In [5.2], we have proposed the introduc-
tion of a record-like structure to Event-B. This proposal does not require any changes
to the semantics of Event-B, but it gives us a succinct way to define structured data.
The declaration ofDisp interface in theSETSclause of the following context is an
example of our proposed syntax

CONTEXT MERGE CONTEXT
SEESMETA DATA, DISPLAY CONTEXT, PAGE CONTEXT
SETSDisp interface:: data: Attr id → Attr value,

contents: Page contents
CONSTANTS disp values
PROPERTIES disp values∈ Disp interface→ EDD display

The typeDisp interface is a record comprising two fieldsdata (of typeAttr id →
Attr value) andcontents (of typePage contents). This record type defines the in-
terface to the functiondisp values. The intention is that, given a database of values
and the device-independent representation of a display,disp values calculates what
is actually displayed (i.e. it returns a value of typeEDD display). The benefit of
using a record type is that it can be refined by adding extra fields (see [5.2] for more
details). This is necessary because the actual display is dependent on parameters that
are introduced during the refinement stages. The extension of record types through
refinement allows us to modify the interface accordingly (an example of this is given
in Section 5.3.3).

As in the original CDIS specification, the fact that we representdisp values so
abstractly does not undermine the value of the specification. The dynamic part of the
specification (shown below) focuses on updating attributes and pages, and defines the
pages selected at user positions.

5.3.2 The Abstract Model: A Generic Display

The variabledatabase represents the stored data, andpage selections records the page
number currently selected at a user position. Note that this is a partial function which
means that user positions are not obliged to display a page. The variablepages is a
partial function mapping page numbers and page contents. The variableprivate pages
holds the page contents of a page prior to release. This is intended to model an editor’s
ability to construct new pages before they are made public. Finally,trq models the
‘timed release queue’ that enables a new version of a page to be stored until a given
time is reached, whereupon it is made public.

MACHINE ABS DISPLAY
SEES

META DATA, DISPLAY CONTEXT, PAGE CONTEXT, MERGE CONTEXT
VARIABLES database, pages, page selections, private pages, trq
DEFINITIONS

inv =̂
database: Attr id → Attr value∧
pages: Page number 7→ Page contents∧
page selections: EDD id 7→ Page number∧
private pages: Page number 7→ Page contents∧
trq : Page number 7→ Page contents∧
ran(page selections) ⊆ dom(pages)

INVARIANT inv
INITIALISATION database, pages, page selections, private pages, trq : (inv)

Note that, in addition to type information, the invariant insists that pages can be
selected only if they have contents. We keep the model simple by initialising the
system to be any state in which the invariant holds.

Almost all of the operations given below correspond to operations defined in the
original VDM specification. One exception is theVIEW PAGE operation that uses
the disp values function to output an actual display. This is a departure from the
original VDM specification but, since outputs must be preserved during refinement, it
forces us to ensure that the appearance of actual displays is preserved.

UPDATE DATABASE models the automatic update of data via the stream of
data coming from the airports (see [5.8]), andSET DATA VALUE models the man-
ual update of values (by editors).DISPLAY PAGE enables any user to select a
new page to be displayed, andDISMISS PAGE removes a page selection.RE-
LEASE PAGE makes a private page public, andDELETE PAGE enables an ed-
itor to delete the contents of a page. In addition to the manual release of pages
(via RELEASE PAGE), pages can be released automatically at specific times.RE-
LEASE PAGES FROM TRQ models the timed release of pages. However, at this
stage no notion of time exists in the specification. Therefore, this operation selects an
arbitrary subset of the pages fromtrq to be released. This is refined when we introduce
a notion of time (as shown in Section 5.3.3). The operations use common B operators
such as function overriding<+ , domain subtraction−¢, and range subtraction−¤.

UPDATE DATABASE (ups) =̂
PRE

ups∈ Attr id 7→ Attr value
THEN

database:= database<+ ups
END ;

SET DATA VALUE (ei , ai , av) =̂
PRE

ei∈ EDD id ∧
ai ∈ Attr id ∧ av∈ Attr value

THEN
WHEN ei∈ EDITORSTHEN

database(ai) := av
END

END ;

DISPLAY PAGE (ei , no) =̂
PRE

ei∈ EDD id ∧ no∈ Page number
THEN

WHEN no∈ dom (pages) THEN
page selections(ei) := no

END
END ;

DISMISS PAGE (ei) =̂
PRE ei∈ EDD id THEN

WHEN
ei∈ dom (page selections)

THEN
page selections:=
{ ei } −¢ page selections

END
END ;

ed←− VIEW PAGE (ei) =̂
PRE ei∈ EDD id THEN

ANY di WHERE
ei∈ dom (page selections) ∧
di ∈ Disp interface∧
data(di) = database∧
contents(di) =

pages(page selections(ei))
THEN

ed := disp values(di)
END

END
RELEASE PAGE (no) =̂

PRE no∈ Page numberTHEN
WHEN

no∈ dom (private pages)
THEN

pages(no) :=
private pages(no) ‖

private pages:=
{ no} −¢ private pages

END
END ;

RELEASE PAGES FROM TRQ =̂
ANY SSWHERE

SS∈
Page number 7→ Page contents∧

SS⊆ trq
THEN

pages:= pages<+ SS ‖
trq := trq − SS

END ;

DELETE PAGE (ei , no) =̂
PRE

ei∈ EDD id ∧
no∈ Page number

THEN
WHEN ei∈ EDITORSTHEN

pages:= { no} −¢ pages‖
private pages:= { no} −¢ private pages‖
trq := { no} −¢ trq ‖
page selections:= page selections−¤ { no}

END
END ;

5.3.3 Refinement

The abstract specification described in the previous section omitted many of the fea-
tures that characterise CDIS. However, this made it possible to give a broad overview
of the system, including its state variables and operations, within a few pages. Now we
use this specification as a basis for refinement in which the omitted details are intro-
duced. We introduce a notion of time so that we can add age information to attributes,
and add creation and release times to pages.

Adding Time

In terms of the CDIS subset, there are two main reasons for adding time: each piece of
airport data has an age which affects how it is displayed, and the version of each page
that is displayed is also time-dependent. In this refinement we shall once again use our
proposed syntax for record types [5.2].

Time Context.

We begin by introducing a new context to the development. The setDate time repre-
sents all of the different points in time. We also include a total ordering relation (leq)
between these points.

CONTEXT TIME
SETSDate time
CONSTANTS leq
PROPERTIES

leq∈ Date time↔ Date time∧
∀ (a).(a : Date time⇒ (a, a) : leq) ∧
∀ (a, b).(a : Date time∧ b : Date time⇒

((a, b) : leq∧ (b, a) : leq⇒ a = b) ∧
((a, b) : leq∨ (b, a) : leq)) ∧

∀ (a, b, c).(a : Date time∧ b : Date time∧ c : Date time⇒
((a, b) : leq∧ (b, c) : leq⇒ (a, c) : leq))

END

Meta Data Context.

In order to record the age of a piece of data as well as its value, we refine theMETA DATA
context by defining a record typeAttrs with two fieldsvalue andlast update.

CONTEXT META DATA1
SEESMETA DATA, TIME
SETSAttrs :: value: Attr value,

last update: Date time
END

Note that the range ofvalue is of our original value typeAttr value. The gluing
invariant of the refined model will ensure that the values of the entries in the refined
database will match the corresponding entries in the original. The fieldlast update (of
typeDate time) records the time at which the value of the attribute was last updated.

This technique of ‘wrapping’ an abstract type in a refined type is a pattern that
occurs frequently in our approach. In general, iff ∈ I → A is an abstract collection
formed from abstract typeA and in a refinement we wrapA in a recordB :: a : A, · · ·,
then abstract variablef is replaced byg ∈ I → B with gluing invariantf = g ;a.

Pages Context.

We proceed by refining the pages context in a similar manner. We declare a record type
Page with two fields:page contents holds the structure of a page, andcreation date
holds the time at which a page was created. Note that this has nothing to do with
the time at which the page is released. In order to model the timed release queue
faithfully, we must associate a release date with every page on the queue. By using our

proposed syntax for record refinement [5.2], this is achieved by defining a subtype of
Page (calledRel page) whose elements have an additional field calledrelease date.

CONTEXT PAGE CONTEXT1
SEESTIME , PAGE CONTEXT
SETS

Page:: page contents: Page contents,
creation date: Date time;

Rel pageSUBTYPESPageWITH release date: Date time
END

Only pages of typeRel page occur on the timed release queue. We shall see how the
refinement of the operationRELEASE PAGES FROM TRQ uses this additional
information.

Merge Context.

Now that we have introduced a notion of time, the display functiondisp values can
be augmented so that the ages of the data in the database is taken into account when
they are displayed. We change the interface of the function by adding a new field to
Disp interface calledtime. The operator ‘EXTEND’ is similar to the ‘SUBTYPES’
operator, but it adds fields toall elements of the record type.

CONTEXT MERGE CONTEXT1
SEES

META DATA , DISPLAY CONTEXT, PAGE CONTEXT,
TIME , META DATA1, PAGE CONTEXT1, MERGE CONTEXT

SETSEXTEND Disp interfaceWITH time: Date time
END

Whenever the functiondisp values is called, the current time can be passed as a pa-
rameter so that the ages of the relevant data can be determined. In CDIS, the colour
of a value when displayed indicates its age (although this detail is not included at this
level of abstraction).

The Refined Model: A Timed Display.

The state variables and the operations ofABS DISPLAY are refined to incorporate
the timed context. Four of the variables in the refinement replace those of the ab-
stract model. The invariant gives the relationship between these concrete variables and

their abstract counterparts. For example, the abstract variabledatabase is refined by
timed database, and they are related because the attribute values held indatabase can
be retrieved from thevalue fields intimed database.

REFINEMENT ABS DISPLAY1
REFINES

ABS DISPLAY
SEES

META DATA, DISPLAY CONTEXT, PAGE CONTEXT, MERGE CONTEXT,
TIME , META DATA1, PAGE CONTEXT1, MERGE CONTEXT1

VARIABLES
timed database,
page selections,
timed pages,
private timed pages,
dated trq ,
time now

DEFINITIONS
inv1 =̂

timed database∈ Attr id → Attrs∧
timed pages∈ Page number 7→ Page∧
private timed pages∈ Page number 7→ Page∧
dated trq ∈ Page number 7→ Rel Page∧
time now∈ Date time∧
database= (timed database; value) ∧
ran (page selections) ⊆ dom (timed pages) ∧
pages= (timed pages; page contents) ∧
private pages= (private timed pages; page contents) ∧
trq = (dated trq ; page contents) ∧
∀ n . (n∈ dom (timed pages) ⇒

(creation date(timed pages(n)), time now) ∈ leq) ∧
∀ n . (n∈ dom (private timed pages) ⇒

(creation date(private timed pages(n)), time now) ∈ leq) ∧
∀ n . (n∈ dom (dated trq) ⇒

(creation date(dated trq (n)), time now) ∈ leq)
INVARIANT inv1

Some of the operations affected by the refinement are shown below.

UPDATE DATABASE (ups) =̂
PRE ups∈ Attr id 7→ Attr valueTHEN

ANY ff WHERE
ff ∈ Attr id 7→ Attrs∧
dom (ff) = dom (ups) ∧
(ff ; value) = ups∧
(ff ; last update) = dom (ff) × { time now}

THEN
timed database:= timed database<+ ff

END
END

The parameter to theUPDATE DATABASE operation maintains its type, but the
ANY clause is used to construct a new mapping fromAttr id to Attrs all of whose
last update components are assigned to the current time (to reflect the time of the up-
date). This mapping is used to overwrite the appropriate entities in the timed database.
An interesting refinement occurs in the operationRELEASE PAGES FROM TRQ.
Rather than selecting an arbitrary subset oftrq to release,time now is used to select
those elements whose release date is earlier than the current time. The released pages
(held intimed pages) are updated accordingly.

RELEASE PAGES FROM TRQ =̂
LET SSBE SS=

dated trq ¤ { rp | rp ∈ Rel Page∧ (release date(rp) , time now) ∈ leq}
IN

timed pages:= timed pages<+ SS ‖
dated trq := dated trq − SS

END

Next, we introduce a new operation, calledCLOCK that increases the current time
by some unspecified amount. This operation models the passing of time.

CLOCK =̂
ANY time nextWHERE

time next∈ Date time∧
(time now , time next) ∈ leq∧
time next 6= time now

THEN
time now := time next

END

5.3.4 Another Refinement: Highlighting Manual Interaction

Several other aspects can affect the way values are displayed. One requirement of
CDIS is that any manually updated values should be highlighted when they are dis-
played. Hence, with each attribute value, we need to record whether it was updated
manually. Once again, we use our notion of record refinement to achieve this. The
Boolean value associated with the new fieldmanually updatedindicates whether the
attribute’s latest recorded value (accessed via thevaluefield) has been input manually.
In this case, we extend the record typeAttrs as follows:

EXTEND Attrs WITH manually updated : BOOL

If left unaltered, the existing B operationsUPDATE DATABASE and
SET DATA VALUE would update this field nondeterministically, but we can refine
them to assign meaningful values. In this case, the appropriate refinements are:

UPDATE DATABASE (ups) =̂
PRE ups∈ Attr id 7→ Attr valueTHEN

ANY ff WHERE
ff ∈ Attr id 7→ Attrs∧
dom (ff) = dom (ups) ∧
(ff ; value) = ups∧
(ff ; last update) = dom (ff) × { time now} ∧
(ff ; manually updated) = dom (ff) × { FALSE}

THEN
timed database:= timed database<+ ff

END
END

SET DATA VALUE (ei , ai , av) =̂
PRE ei∈ EDD id ∧ ai ∈ Attr id ∧ av∈ Attr valueTHEN

WHEN ei∈ EDITORSTHEN
ANY aaWHERE

aa∈ Attrs∧
value(aa) = av∧
last update(aa) = time now∧
manually updated(aa) = TRUE

THEN
timed database(ai) := aa

END
END

END

Since the operationUPDATE DATABASE models the automatic update of values,
all manually updatedfields are set toFALSE; SET DATA VALUE , which models a
manual update, sets themanually updatedfield to TRUE. Proving consistency of this
form of superposition refinement is completely automatic.

5.3.5 Introducing Concrete Values

The ultimate aim of the refinement process is to construct a specification in which
constants and variables are associated with concrete values and operations are defined
to maintain the state accordingly. As part of this process, we have to separate an
abstract type into subtypes. In the case of CDIS, this technique is used to introduce
concrete attribute identifiers and value types into the specification. For example, the
original VDM specification definesAttr value as a union type made up of value types
such asWind direction andWind speed . Although union types do not exist in B, we
employ the separation technique to achieve the same goal. We define a new context in
whichWind direction andWind speed are defined subtypes ofAttr value2.

2Even thoughAttr value is not a record type, deferred sets such as this can be viewed as ‘fieldless
records’. By subtyping deferred sets, we can incorporate structure.

CONTEXT META DATAn
SEESMETA DATA, META DATA1, · · ·
SETS

Wind speedSUBTYPESAttr valueWITH speed: 0..99;
Wind directionSUBTYPESAttr valueWITH dir : 0..359;
...

END

Note that in this example we have refinedAttr value in two different ways. This is a
reasonable thing to do (as discussed in [5.2]). The subtypeWind speed has a single
field speed which ranges from values 0 to 99. Similarly,Wind direction has a single
field dir which ranges from 0 to 359.

This is just one of the many refinements needed to introduce concrete types. A
further refinement introducesAV WIND SPEED, MIN WIND SPEEDand MAX
WIND SPEEDas concrete attribute identifiers (since they appear in the core speci-
fication). From these refinements, it is necessary to specialise the update operations
to ensure that only values of the correct type update the database. Abstract operations
can be refined into one or more concrete operations. Previously,SET DATA VALUE
updated any attribute identifier with any attribute value. Now it must be refined to a
collection of operations, each referring to specific attribute identifiers and attribute
values.

5.3.6 Error Handling

With every operation that assigns a meaningful value to a concrete attribute identi-
fier (such asSET WIND SPEED VALUE above), we must also say what happens
when an attempt is made to assign an out-of-range value. This situation gives us the
opportunity to handle potential errors in the update of CDIS explicitly. We define ad-
ditional operations to handle updates with such out-of-range values. This approach
in Event-B corresponds to the built-in error handling capabilities of VVSL. As an ex-
ample, consider the following operation fragment (which is another refinement of the
SET DATA VALUE operation) that attempts to assign an out-of-range wind speed.

SET WIND SPEED ERROR (ei , ai , av) =̂
PRE ei∈ EDD id ∧ ai ∈ Attr id ∧ av∈ Attr valueTHEN

WHERE
ei∈ EDITORS∧
ai ∈ { AV WIND SPEED, MIN WIND SPEED, MAX WIND SPEED} ∧
av 6∈Wind speed

THEN
...

This operation only considers values outside the subtypeWind speed . The body
of the operation should handle this anomaly in an appropriate way (such as by ignoring
the update and issuing an error message).

5.4 Overview and Future Work

This section represents a methodological contribution to the construction of large for-
mal specifications. Our experience shows that incremental construction through itera-
tive refinement makes it feasible to apply tool-based formal analysis to large specifica-
tions. This increases our confidence in the specification greatly and provides the basis
for tool-based formal development of a design and implementation. We also believe
that this approach makes a large formal specification more accessible and comprehen-
sible both to those constructing the specification and to others.

A key factor in our success was the construction of good initial abstractions cap-
turing the essentials of the system concerned. Such a skill is not easily transferable
of course, but by providing good examples, such as the one here, we can help others
understand how to construct good abstractions. Beside this, we have provided a num-
ber of concrete techniques which are transferable to the construction of other large
formal specifications. In particular we made strong use of the developmental pattern
of extending records to add additional information to information structures and to
extend function signatures in in refinement steps. We identified and made use of a
related pattern of wrapping abstract types within record structures in a refinement step,
providing a standard pattern for a gluing invariant. We also made use of record subtyp-
ing and record extension to differentiate structures in refinements and to add attributes
to abstract deferred sets. These techniques allow us to avoid unnecessary clutter at
the more abstract levels. The techniques are easily supported by existing B provers
and our experience is that the associated proof obligations are mostly automatically
discharged.

A drawback of the original development is the lack of continuity from the spec-
ification to the design. In theidealisedview of the core specification, updates are
performed instantaneously at all user positions, whilst there is an inevitable delay in
the actual system because the information must be distributed to the user positions.
Hence, there is no natural refinement of the original specification (in the usual sense
of the word) to the design. We are investigating more novel notions of refinement in
order to find a suitable link between the two viewpoints. The approach involves the use

of a richer abstract model that reflects the delay between updating the central database
and those updates appearing at the individual displays. The idea is then to promote the
existing idealised development in the context of the richer abstraction. In year 3 we
will elaborate this approach and apply it to the idealised development.

In Year 2 we mostly made use of the B4free prover and the Click’n’Prove prover
interface. In Year 3 we plan to apply the RODIN platform to the case study as a means
of validating the platform.

References

[5.1] J. -R. Abrial: The B Book: Assigning Programs to Meanings, Cambridge Uni-
versity Press (1996).

[5.2] N. Evans and M. Butler:Proposal for Records in B, accepted for publication,
FM06.http://eprints.ecs.soton.ac.uk/12024/

[5.3] N. Evans and M. Butler:Incremental Construction of Large Specifications: Case
Study and Techniques, submitted to ISoLA 2006.http://eprints.ecs.
soton.ac.uk/12734/

[5.4] A. Hall:Using Formal Methods to Develop an ATC Information System, Soft-
ware, Vol. 13, No. 2, IEEE, March 1996.

[5.5] C. Jones:Systematic Software Development using VDM, Prentice Hall, 1990.

[5.6] C. A. Middleburg:VVSL: A Language for Structured VDM Specifications, For-
mal Aspects of Computing, Vol. 1, No. 1, Springer, 1989.

[5.7] S. Pfleeger and L Hatton:Investigating the Influence of Formal Methods, Com-
puter, Vol. 30, No. 2, IEEE, February 1997.

[5.8] RODIN Deliverable D4:Tracable Requirements Document for Case Studies,
http://rodin.cs.ncl.ac.uk/deliverables/D4.pdf, 2005.

SECTION 6. CASE STUDY 5:
AMBIENT CAMPUS – THE LECTURE SCENARIO

6.1. Introduction

The main characteristics distinguishing the Ambient Campus case study from other Rodin case
studies is the openness of the Ambient Intelligence (AmI) systems, the inherent autonomy of
their components (agents), the asynchrony and anonymity of the agent communication, and the
specific types of faults they need to be resilient to. To address these issues, we are specifically
working on (i) ensuring interoperability of the independently developed agents, supporting this
by original top-down stepwise system development methods, (ii) formally defining exception
handling and structuring mechanisms suitable for this domain, (iii) proposing new modelling
techniques capturing mobility and openness of the AmI systems, and (iv) identifying and prov-
ing the system properties that express the specific fault tolerance and mobility-related charac-
teristics of these systems.

The overall project work on the Ambient Campus case study is focused on:

• elucidation of the specific fault tolerance and modelling techniques appropriate for AmI
application domain,

• validation of the methodology developed in WP2 and the model checking plug-in for
verification based on partial-order reductions, and

• documentation of the experience in the forms of guidelines and fault tolerance templates.

More specifically, in this case study we are investigating how to use formal methods combined
with advanced fault tolerance techniques in developing highly dependable AmI applications. In
particular, we are developing modelling and design templates for fault tolerant, adaptable and
reconfigurable software. The case study covers the development of several working ambient
applications (referred to as scenarios) supporting various educational and research activities.

During the second year, our work has been focused on the following major subtask (see Project
Description of Work [6.25]):

T1.5.4. Investigate the use of a refinement-based approach to develop a chosen part
of the system. Investigate problems specific to model checking based verification
of ambient applications.

We have been mainly working on the first scenario – the Ambient Lecture scenario. The fol-
lowing strands of work have been carried out:

• development of the decomposition patterns to be used for stepwise rigorous design of
complex fault tolerant AmI systems using the B method (T2.1, T2.3, T2.4)

• stepwise rigorous development of the fault tolerance distributed AmI middleware (T2.1,
T2.3)

• development of a method for modelling and model-checking AmI systems and application
of the standalone tools for model checking fault tolerance properties (T2.4, T4.2)

• design and implementation of the lecture scenario demonstrator including the CAMA mid-
dleware (see sections 6.2.1.1 and 6.2.5) and a lecture scenario application.

6.2. Major Directions of Our Work

6.2.1. Methodology

The Ambient Campus case study directly contributes to RODIN Work Package 2. As a mat-
ter of fact, these two strands of work are inseparable: a number of the methods are initially
conceived in our work on the case study as this work allows us to grasp the main specific char-
acteristics of the ambient systems and to understand better what methodological advances are
needed.

During year 2, we focused our work on defining a set of abstractions to be used in developing
and modelling the Ambient Lecture scenarios. We developed a framework called CAMA (see
section 6.2.1.1), which consists of a set of fundamental abstractions being used in formal devel-
opment of ambient systems, in verification of properties of their models and in implementation
of these systems.

We formally developed a distributed middleware supporting these abstractions – this was an
important development as we firstly demonstrated the applicability of the RODIN methods to
developing such types of distributed environments, secondly showed how such systems can be
developed starting with a well defined set of abstractions and thirdly ensured in some degree
the correctness of our middleware.

Another aim of our work during year 2 was to define a set of formal decomposition patterns
for assisting in the stepwise development of the Ambient Campus scenarios. We are applying
these patterns now in developing the first scenario – the Ambient Lecture.

6.2.1.1. CAMA Abstractions

CAMA (Context-Aware Mobile Agents) is a middleware supporting rapid development of mo-
bile agent software. It offers a number of high-level operations and a set of abstractions which
help programmers to develop multi-agent applications in a disciplined and structured way [6.2].

Agents cooperation in CAMA is based on the concept of coordination space. A special entity
called location provides coordination services to agents. One of the major contributions of
CAMA is a novel mechanism to structure coordination space so that groups of communicating
agents can work in isolated sub-spaces, called scopes. Isolation of a communication space
is only one of several roles of the scope construct; for example, it also provides a dynamic
type-checking facility for multi-agent applications.

The main structuring units of CAMA applications are agents which are pieces of software con-
forming to some formal specification. To distinguish between various functionalities of indi-
vidual agents, and to match compatible agents, CAMA uses agent roles as units of functionality
structuring.

Agents are executed on platforms, and several agents may reside on a single platform. Each
platform provides an execution environment for the agents residing on it, and an interface to
the location middleware.

The CAMA middleware architecture was formally modelled using the B Method [6.10]. This
allowed us to verify the properties of the scoping mechanism and the ability of agents to tolerate
disconnections. The result of the modelling activity was used to implement various parts of the
middleware, most notably the scope-related operations.

Exception Handling
Exception handling has proved to be the most general fault tolerance technique as it allows
effective application-specific recovery [6.4]. If exception handling is to make programmer’s
work more productive and less error-prone, the programming and execution environments need
to provide adequate support to it. To support exception handling, CAMA introduces inter-agent
exception propagation. The mechanism of propagation is complementary to the application-
level exception handling. Recovery actions are implemented by application-specific handlers
attached to code regions using an exception handling support of the programming language.
The task of the propagation mechanism is to transfer exceptions between agents in a reliable
and secure way. The enormous freedom of agent behaviour does not allow any guarantees of
reliable exception delivery in a general case. We attempt to identify situations where exceptions
may be lost or not delivered within a predictable time period.

There are three basic operations that agents can use to send and receive inter-agent exceptions.
The first operation, raise, propagates an exception to an agent or a scope. The important
requirement is that the sending agent – prior to raising an exception – must receive a message
from the destination agent (this enables a directed yet anonymous communication between the
two agents) and they both must be in the same scope. This operation has two variants:

• raise(m, e) - raises exception e as a reaction to message m. The message is used to trace
the producer and to deliver the exception to it. The operation fails if the destination agent
has already left the scope in which the message was produced.

• raise(s, e) - raises exception e to all the participants of the scope s.

The crucial requirement to the propagation mechanism is to preserve all the essential properties
of agent systems such as agent anonymity, dynamicity and openness. The exception propaga-
tion mechanism does not violate the agent anonymity since we prevent the disclosure of agent
name at any stage of the propagation process. Note that the raise operation does not deal with
agent name. Moreover, we guarantee that our propagation method cannot be used to learn the
names of other agents.

The other two operations, check and wait, are used to explicitly poll and wait for inter-agent
exceptions:

• check - polls for pending exceptions and throws the oldest one (if there are several pend-
ing exceptions, only one – the oldest – will be thrown). The check operation will not do
anything if there is no exception pending for the agent.

• wait - waits until any inter-agent exception appears for the agent and raises it in the same
way as the check operation.

More details on the exception handling provided by CAMA can be found in [6.11].

6.2.1.2. Development patterns and decomposition

The CAMA middleware supports execution of large-scale open agent systems. To facilitate the
construction of such systems, we have developed a methodology based on the application of
formal methods. The proposed approach addresses a number of challenges, such as interoper-
ability, decentralised development and code reusability.

Agent development commences with a formal specification of the agent’s role. All information
about the requirements of a role’s functionality is contained within a role specification. As
long as an agent developer adheres to this specification, it is guaranteed – by the development
method – that the role is compatible with all other roles of an application. Many aspects of
interaction, such as message ordering and message semantics, which are usually left out in a
component interface description are included into a formal role specification. There is no need
to analyse the specifications of other roles or to have some additional description of a role in
order to build an agent. A role specification is therefore the only information that an agent
developer needs for creating an agent.

Our methodology is based on four design patterns:
• The specification pattern presents a number of requirements to a specification representing

a scope activity;
• The decoupling pattern eliminates global scope variables;
• The refinement pattern introduces a communication mechanisms; and
• The decomposition pattern decomposes a specification of a scope activity into separate

role specifications that can be used for implementing collaborating agents.

The specification pattern prescribes the formal design of a CAMA scope specification. A scope
specification defines the scope state (program variables) and the scope events (operations) that
can affect the scope. The pattern dictates the partitioning of the scope state by distributing
program variables among the roles involved so that for each variable, there is exactly one role
responsible for updating it. Similarly, operations of a scope are specified in such a way that
each operation updates variables of only one role. A scope operation is permitted to read the
variables of another role so that two roles can coordinate their activities. As a result, scope
operations can be partitioned into the scope roles.

The purpose of the decoupling pattern is to remove any references to external role variables in
role reactions. At this stage, we have to ensure that no operations or variables belong to two
different roles. The result of the decoupling process is a set of operations that update only the
variables of the associated roles. The operations can have a read access to the variables of other
roles. The refinement pattern eliminates this last bond between roles.

The refinement pattern replaces the read access to external variables (variables of a different
role) with a communication mechanism. The communication mechanism is modelled by the
sending and receiving of packets containing a request identification and a number of arguments.
The model gives a fair representation of asynchronous communication through the use of mes-
sage queues. Each role has its own buffer for incoming requests. A role sends a request to
another role by storing the request in the incoming buffer of the other role. For simplicity, it is
assumed that an implicitly present middleware is responsible for delivering these requests. The
model can be easily extended (and thus made more realistic) by introducing separate buffers for
incoming and outgoing requests. In the extended model, the middleware would be explicitly
modelled as an additional entity that constantly monitors situation and transfers requests from
the output buffer of one role into the input buffer of another role.

As a result of introducing communication between role instances, the operations belonging
to different roles become completely decoupled. The only way that one role instance can
affect another is via the communication mechanism. This permits us to decompose the scope
specification as well as to separate the program variables and operations of different roles and
put them into different role specifications. The refinement pattern used at this step is based on
the idea of the B decomposition refinement [6.19].

6.2.2. Plugins

An integral part of our work on the Ambient Campus case study is an investigation into the
problem of verifying the correctness of mobility designs, including fault-tolerant mechanisms,
expressed in notations such as CAMA. It is widely recognised that this is a complex problem,
and one way of addressing it is by using model-checking [6.3] which is completely automatic,
relatively fast compared to other alternatives, and produces counterexamples which can be used
for debugging. It is therefore particularly attractive in an industrial context [6.24].

Model-checking carries out the verification of a system using a finite representation of its state
space, and exhibits a trade-off between the compactness of this representation and time effi-
ciency. For example, deadlock detection is PSPACE-complete for a compact (bounded) Petri
net or equivalent process algebra representation, but polynomial for state graph representa-
tion. However, the latter is often exponentially larger, causing the state space explosion prob-
lem [6.26].

Mobile systems are highly concurrent causing a state space explosion when applying model-
checking techniques. One should therefore use an approach which alleviates this problem. In
our case, we focus on an approach based on partial order semantics of concurrency and the cor-
responding Petri net unfoldings [6.18]. A finite and complete unfolding prefix of a Petri net is a
finite acyclic net which implicitly represents all the reachable states of the original net. Efficient
algorithms exist for building such prefixes [6.12], and complete prefixes are often exponentially
smaller than the corresponding state graphs, especially for highly concurrent systems, because
they represent concurrency directly rather than by multidimensional “diamonds” as is done in
state graphs. Referring to the mobility model of CAMA, our approach is particularly suitable
for verification of reachability-like (or state) properties, such as:

• The system never deadlocks, though it may terminate in a pre-defined set of successful
termination states.

• Security properties, i.e., all sub-scope participants are participants of the containing scope.
• Proper using of the scoping mechanism, for example: a scope owner does not attempt to

leave without removing the scope; agents do not leave or delete a scope when other agents
expect some input from the scope; and the owner of a scope does not delete it while there
are still active agents in the scope.

• Proper use of cooperative recovery: all scope exceptions must be handled when a scope
completes; all scope participants eventually complete exception handling; and no excep-
tions are raised in a scope after an agent leaves it.

• Application-specific invariants. (Note that the negation of an invariant is a state property,
i.e., the invariant holds iff there is no reachable state of the system where it is violated.)

To our knowledge, this is the first attempt to develop unfolding based model checking technique
for mobile systems, and consequently it was clear right from the start that we would need to
make several decisions of both theoretical and implementation nature.

6.2.2.1. Our approach

The first problem we had to address was the choice of formal model for capturing the proper-
ties and behaviour of mobile systems. Since the development of mobility plugins proceeded
concurrently with other work on the Ambient Campus case study, a decision was made to focus
on existing formalisms for mobility with the view that the expected model checkers would then
be easily adaptable to the context of this case study. We decided to investigate two process
algebras for mobility, viz. π-calculus [6.20, 6.23] and KLAIM [6.21, 6.22]. They represent
both synchronous and asynchronous models of distributed systems computation, and so we ex-
pected that they would cover a full range of issues relating to the Ambient Campus case study.
π-calculus allows, in particular, to express dynamic change in the process ability to communi-
cate with the external environment, by passing new channels through interactions on previously
known channels. It also provides means to express and reason about a variety of security re-
lated aspects. The choice of the second model was influenced by our work in other parts of
the Ambient Campus case study. KLAIM, in particular, supports explicit localities which are
first-class data that can be manipulated by active processes, and coordination primitives for
controlled interactions among processes located at network’s localities.

We set out to develop semantics-preserving translations (in the sense of provably generating
strongly equivalent labelled transition systems) of both the π-calculus and KLAIM into suitable
classes of high-level Petri nets. Our choice for the latter was a modular model of high-level
Petri nets, resulting in compositional translation of process expression terms. The work on
translating π-calculus has been carried out throughout the duration of RODIN, and resulted
in two translations: one for finite π-calculus terms [6.8], and recently for general recursive
expressions [6.6]. The translation of KLAIM was based on some key ideas of our work on the
π-calculus, and was first reported in [6.5] and then in [6.7].

There are several variations of the unfolding-based model-checking technique, and the Petri
nets produced by our translations suggests that one should employ a variant which is capable to

deal efficiently with coloured tokens and high-level arc annotations. In particular, one should
avoid the expansion of the high-level Petri net to its low-level representation and unfolding the
latter, since such an approach may yield a huge intermediate low-level net, rendering the whole
attempt practically useless (see [6.14] for a discussion of this issue). We therefore decided to
use the PUNF model-checker (complemented by the MPSAT property verifier based), which
directly applies unfolding to high-level nets without expanding them to low-level nets [6.14].

We developed two prototype tools which required a significant effort. The first problem was
that Petri nets resulting from the translations do not conform to the input format required by
the unfolder (two particular issues here are the read arcs and non-safe places of the high-level
nets). Another problem concerned the infinite branching in the operational semantics of process
expressions. The tool presented in [6.16, 6.17] is suitable for the task of model-checking of
finite π-calculus terms, implementing the translation of [6.8]. To lift it to a suitable subset the
recursive (or iterative) case described in [6.6] is a subject of ongoing investigations. The tool
presented in [6.15] is suitable for the task of model-checking of KLAIM terms generating finite
state space, implementing the translation of [6.5].

6.2.2.2. Examples and experimental results

In our experiments described in [6.16, 6.5], we used simple ‘classroom’ scenarios inspired by
the Ambient Campus case study. A typical π-calculus-like example has the following form:

NESS(n)
df
= (νh)(νh1) . . . (νhn) (T |S1| . . . |Sn)

where T represents a ‘teacher’ process, and each Si a ‘student’ process. Their respective defi-
nitions are as follows (note that input prefixes are denoted as a?b and the output ones as a!b):

T
df
= a?ness . (h1!ness . h1?x1 . 0 | · · · | hn!ness .hn?xn . 0)

Si
df
= hi?addri . (h!hi . hi!done . 0 + h?anotheri . addri!hi . addri!anotheri . hi!done . 0)

The idea is that the teacher first receives from the school electronic submission system1 a chan-
nel ness using which the students are supposed to submit their work for assessment. The
teacher passes this channel to all the students (using n parallel sub-processes), and (also in par-
allel) then waits for the confirmation that the students have finished working on the assignment
before terminating. A student’s behaviour is somewhat more complicated. After receiving
the ness channel, students are supposed to organise themselves to work on the assignment in
pairs and, after finishing, exactly one of them sends to the support system (using the previously
acquired ness channel) two channels which give access to their completed joint work. The
students finally notify the teacher about the completion of their work. The property to verify
is that all the processes involved in the computation successfully terminate by reaching the end
of their individual code. For instance, the following move is possible for the initial expression:

(νh)(νh1) . . . (νhn) (T |S1| . . . |Sn)
ab
−→ (νh)(νh1) . . . (νhn) (T ′|S1| . . . |Sn)

where b is the channel on which links to the completed pieces of coursework are to be submitted,
and T ′

df
= h1!b .h1?x1 . 0 | · · · | hn!b . hn?xn . 0.

1Called NESS in Newcastle.

Examples like that described above allowed us to have easily scalable specifications, which
satisfy a correctness property only for some values of n. (Note that for the above example only
even n leads to a successful termination). Also, the examples were interesting by exhibiting
different sources of state space explosion, e.g., coming from parallel composition and choice
constructs. The former kind of state space explosion is typically avoided by the unfolding based
model-checking techniques, whereas techniques based on interleaving suffer from it. To treat
the latter kind of state space explosion we have initiated work on a highly promising novel
unfolding-based technique [6.13].

The work on Ambient Campus scenarios resulted in the discovery of further possible improve-
ments to the way in which process algebra expressions are translated into Petri nets. Crucially,
the experiments conducted so far — though still limited in their number and scope — are highly
encouraging and seem to confirm our initial hypothesis that unfolding based model checking is
a promising verification technique for the verification mobile computing systems.

6.2.3. Year 2 demonstration

To present the project work on CS5 we are working on a demonstration which overviews the
main strands of work in this area and follows the script below.

The demonstration aims to show a system implemented using the CAMA approach to support
lecture activities. In the following part of the demonstration, we will discuss some of the
RODIN methods and tools which are being developed by the project team to support rigorous
design of the ambient systems (see sections 6.2.1 and 6.2.2).

The system runs on the CAMA middleware distributed over several students’ devices – such as
PDAs, smartphones, or laptops – and a lecturer’s desktop computer. The lecturer will be able
to register students when the lecture starts, create groups and assign students to these groups,
monitor the group work and assist groups when necessary. We focus on a specific lecture
activity where students are organised into groups and they learn together the B method through
a supporting B tool. The full description of this activity can be found in section 6.2.4.

During this demonstration, the main functionality of the system will be shown, including dis-
tributed editing of the assigned B model by group members, distributed chat/discussion among
the group members, sending of developed models to the prover, interacting with the prover to
input manual proofs, as well as teacher’s monitoring-of and assisting-to the group work.

At the next step of the demonstration, we will show the formal development of the Ambient
Lecture scenario using decomposition refinement patterns, ensuring fault tolerance and inter-
operability of the system components (called agents in our work) developed by different inde-
pendent programmers. This formal stepwise development process supports the construction of
systems using a set of abstractions, such as roles, agents, locations, scopes and platforms (see
section 6.2.1.1). We will demonstrate formal stepwise development of the distributed CAMA
middleware on which the lecture scenario runs. This development has guided our implementa-
tion of the middleware. This work has been conducted to ensure the correctness of the platform
and to demonstrate the applicability of the RODIN method in this new challenging area.

The last step of the demonstration will show the application of a standalone prototype of the
RODIN mobility plugin for developing the lecture scenario. In particular, we will show how
several fault tolerance related properties of the application have been model-checked. This
work has allowed us to give feedback to the development of the plugin, to gain some initial
experience in combining stepwise refinement with model checking, and to better understand
the modelling language suitable for both state-based and process-based reasoning about the
ambient systems.

6.2.4. Description of the lecture scenario

To distinguish between the ”traditional lecture setting” (defined in D2, D4 and D8) and the the
”software-assisted lecture setting” (outlined in this section), we refer to the latter as Ambient
Lecture.

The Ambient Lecture system is being designed to meet the requirements set out in [6.1]. In this
design, each classroom is a location with a wireless support, in which a lecture is conducted.
An agent can take one of the two roles: teacher or student. The teacher agent runs on a desktop
computer available in the classroom, while student agents are executed on PDAs (each student
is given a PDA).

We use the scoping mechanism described in section 6.2.1 to structure the system. The teacher
agent creates the outer scope representing the global scope into which student agents join. An
Ambient Lecture starts when there is one teacher agent and a predefined number of student
agents joining this scope.

To support better system structuring, data and behaviour encapsulation, as well as fault toler-
ance, all major activities during the Ambient Lecture are conducted within subscopes (nested
scopes). The group work is one of the activities performed within a nested scope. Teacher –
through his/her agent – arranges students into groups, so that only students belonging to the
same group can communicate with each other through their agent. Each group is then given a
task to solve – in this case, a B specification. Students within the same group work together
on the solution and present their answer at the end of the group work stage. Teacher agent
monitors the communication in all groups so that if necessary, the teacher can give guidance to
assist the students to complete their task.

At the beginning of any Ambient Lecture, all agents (teacher and students alike) are placed in
the global scope. The teacher agent keeps a list of all students joining the Ambient Lecture, and
through the application’s graphical user interface (GUI), the teacher can select which students
to be placed within each group. Each group is given a unique name and the groups are mutu-
ally exclusive, i.e. a student cannot belong to more than one group. The teacher agent creates a
subscope for each group and issues a StartGroup instruction to the student agents involved so
that they automatically join the subscope they are assigned to. This is achieved by executing
the CAMA JoinScope operation that uses the group name as a parameter. This structuring
guarantees that while within a group, a student can only send messages to other students be-
longing to the same group, but he/she will also receive any message sent in the global lecture
scope.

The following subsesctions illustrate the operations that can be carried out by both teacher and
student agents during the Ambient Lecture.

6.2.4.1. Initialisation of an Ambient Lecture

This is automatically performed (by the teacher agent) when the teacher invokes the teacher
agent software. Actions performed include the creation of the global Ambient Lecture scope
based on the scope restrictions (which dictate the type and the number of agents allowed to
join).

6.2.4.2. Joining and registration into an Ambient Lecture

An agent must join an Ambient Lecture before they can participate fully in it. Teacher agent
will automatically join the Ambient Lecture straight after creating it. Student agent will need
to explicitly join the Ambient Lecture available in the location. This will also trigger the regis-
tration process that can be observed through the teacher agent.

Teacher
• Registers each student and starts the lecture

Teacher agent keeps a record of student agents currently joining the Ambient
Lecture. This allows the teacher, for example, to assign the students into
groups later during the lecture.

Student
• Joins an Ambient Lecture and waits until the lecture starts

Two modes of operation could be employed here. One is where no interaction
is allowed until the scope restrictions are fulfilled (e.g. concerning the number
of student agents that must already be present). Another is when student
agents can start interacting straight away with whoever is already in the scope.

6.2.4.3. During Ambient Lecture

Students can join the Ambient Lecture anytime during the lecture, as long as there is still a
space available to them. As soon as there are enough student agents in the Ambient Lecture
scope, the Ambient Lecture can start; more students may join later. Students can only join with
the same agent once at the same time.

Teacher
• Sends messages to students

Teacher may broadcast messages to all students. At a later implementation,
we may add a feature to allow teacher to send a direct (private) message di-
rectly to a particular student during the Ambient Lecture.

• Organises students into groups
The Ambient Lecture software allows teacher to put students into groups. The
agents of students belonging to the same group will reside in the same sub-
scope, hence enabling group communication and collaborative group work.

• Sends message to groups
Teacher may send messages to students in a particular group during group
work. This will be a broadcast to the group subscope.

• Receives questions from students
Students may ask questions during the lecture. These questions may be raised
verbally or through the Ambient Lecture chat software.

Student
• Chats with other students

Communication among students (and teacher) is conducted through a chat
window where messages are typed, broadcast and received in real time. When
in a group scope (see below), students can choose whether to send the mes-
sages just within the group or to the global Ambient Lecture scope.

• Asks teacher questions and sees replies from him
There are two modes for this interaction. The first one is where student broad-
casts the question to everyone in their current scope (could be in the group
scope) and teacher’s reply comes as a broadcast as well. The second mode
allows student to send the question privately to the teacher and the teacher can
choose whether to respond privately as well or to broadcast the answer to a
group or the whole class. At the moment, only the first mode is implemented.

• Joins a group
Student agents – upon request from the teacher agent – join a subscope of the
Ambient Lecture scope in order to carry out group work. Each student agent
can only be in one subscope at any time.

• Leaves Ambient Lecture
Students can leave the Ambient Lecture anytime. They should be able to
rejoin later, as long as the Ambient Lecture setting is still running and there
is a space available. If a student leaves the Ambient Lecture while in a group
work, its agent will also leave the group subscope. This agent will not go
back to the same group subscope if it rejoins the Ambient Lecture.

6.2.4.4. During group work

By default, student agents joining an Ambient Lecture will be in the global lecture scope. From
time to time, teacher will organise students into group, which means that the corresponding
student agents will join a subscope allocated for this group. Each student agent can only be in
one subscope (on top of being in the global lecture scope) at any one time.

Teacher
Teacher prepares the group work by organising students into groups, assigning a
B-project for each group to work on, and monitoring each group.

• Assigns a B-project to a group
Each group will be given a B-project to work on, which contains at least one
B-machine specification that the students need to edit and run B-commands
on.

• Watches activity of each student
This monitoring activity is useful to measure each student’s participation dur-
ing the group work. A passive student might require further help or different
group arrangements might be needed.

• Inspects edited files
Teacher can check the progress of the group work by inspecting the changes
that the students made on the files and by checking the status of the B-
commands already issued.

• Assists by editing files
Teacher may modify the B-machine specification files in order to make it
clearer for the students how to solve the problem, or to ”reset” the file if the
students made too many mistakes.

• Takes part in discussion
Teacher may help students to understand the problem they are trying to solve
by asking probing questions as well as giving hints and advice.

• Forces unlocking of resources
If a student appears to hold a file for too long (this could happen, say if the
student agent crashes), the teacher can manually unlock the file to allow other
students to edit it.

Student
Students’ actions during group work mostly concern with editing B-machine speci-
fication and carrying out the B-commands such as proving and type checking. They
can also communicate with other student agents within their group, the teacher as
well other student agents in the global lecture scope. We are thinking about dis-
abling the communication with other student agents in the global scope.

• Chooses file to work on within a project
Each project will have a list of associated files, and the student can choose
which file to work on. This file represents a B-machine specification and
each student is allowed to work with only one file at a time.

• Edits a file
There is a shared editor window that provides concurrency control (multiple
readers, one writer) for editing a file. A student agent needs to obtain a lock
before it can edit a file. Only one agent can edit each file at any one time,
although other agents can read the content of this file and see the update in
real time. The lock must be released by the writing agent upon the completion
of the editing process.

• Proves/model checks/type checks/does interactive proving
The Ambient Lecture software allows students to carry out these commands
on the B-machine specification they are working with. With the current im-
plementation, the student agents are not required to obtain the editing lock
first before carrying out these commands. We agree that this is not a desirable
feature, and we will fix this in the later implementation.

• Takes part in discussion
During the discussion, students may ask questions, and other students in the

group may provide the answer. If the questions remain unanswered, the group
may ask teacher for assistance.

• Asks teacher assistance
Teacher monitors group work, and from time to time, students may ask teacher
for clarification on the task they are working at.

• Sends message to other students
Students can send messages to other students in the same group.

Students cannot explicitly leave a group; only teacher can decide whether a student
must leave a group, for example at the end of the group work. Students can leave
the Ambient Lecture setting altogether though, and when this happens, they will
automatically leave the group subscope as well.

We have implemented and tested the Ambient Lecture application supporting all of the op-
erations mentioned above. At this stage, our testing only involves a small number of agents
running on a desktop computer, laptops and PDAs. We plan to carry out a more thorough
testing with greater number of agents and we will investigate the feasibility of adding more
operations. There are still areas where our application can be improved; these are outlined in
section 6.3.

6.2.5. CAMA middleware architecture and ongoing implementation

In the current version of the CAMA system [6.2], the location middleware is implemented in C
(we call it cCAMA). This allows us to achieve the best possible performance of the coordination
space and to effectively implement numerous extension, such as the scoping mechanism. The
location middleware implementation is quite compact - it consists of approximately 6000 lines
of C code and should run on most Unix platforms. We have so far tested it on Linux FC2 and
Solaris 10.

In order to use the location middleware, we have also developed a CAMA adaptation layer in
Java2 called jCAMA. This adaptation layer defines several classes for representing – among
others – the abstract notions of Location, Scope and Linda coordination primitives. jCAMA
provides an interface through which mobile agents or applications can be developed easily.

The full implementation of the location middleware and the adaptation layer are available at
SourceForge [6.9].

A diagrammatic representation of the CAMA-based system architecture can be seen in Figure
6.1. Each platform carries a copy of jCAMA. Agents residing on a platform uses the features
provided by jCAMA to connect over the wireless network to the cCAMA location middleware.

It is possible to construct adaptation layers for other platforms and languages. For now, the
jCAMA Java adaptation layer outlined above permits agent development for PocketPC-based
PDAs. It has a very small footprint (˜60Kb) and can be used with both standard Java and

2We use Java for developing the applications for PDAs.

cCAMA

CAMA Middleware

Platform
Agent
Adaptation Layer (jCAMA)

Keys:

N e t w o r k

Figure 6.1. CAMA architecture

J2ME. In the future, we plan to develop adaptation layers for other languages such as Python
and Visual Basic, as well as versions compatible for smartphone devices.

6.3. Summary and Future Work

6.3.1. Ambient Campus Group Project

This project is to be undertaken by postgraduate students on an advanced MSc course (SDIA
– System Design for Internet Applications) at the School of Computing Science of Newcastle
University. From the point of view of the Ambient Campus case study, its main aims are (i) to
provide a testing environment for the fault tolerant mechanisms and software developed within
the Ambient Campus case study; and (ii) to experiment with the methodologies for developing
fault-tolerant mobility code investigated within the Ambient Campus case study.

The class of approximately 24 students will be split into four groups: A, B, C and D. Groups
A and B will be issued with PDAs, while groups C and D will work without the PDAs. Groups
A and C will use the methodologies for developing fault-tolerant mobility code investigated
within the Ambient Campus case study, while groups B and D will not use these.

Each group is asked to develop a software application involving mobility and context aware-
ness, and it needs to handle potential faults. One example of such an application is a system
for guiding a newly arrived student through the registration process during an induction week.
This application would allow one to include both individual physical mobility aspects (such as

finding a way to the University Registration Desk or the office of Graduate School), as well as
interaction with staff and other students.

The idea is to provide support for the different phases of the group project, and the different
roles the participating students will play over that period; starting from conducting research and
finishing it with the preparations for the final presentations. A number of standard small appli-
cations will be provided, such as those for organising/conducting a meeting and for electing a
group leader. PDAs (and software running on them) will provide a basic support for organising
meetings, exchanging ideas and quick comments, informing about ongoing research, etc. The
software running on the desktop computers will provide support for carrying out programming
task, such as in exchanging and integrating code, as well as for system testing.

6.3.2. Switching to Event-B and the new platform

Until recently, we have been using AtelierB toolkit and the classical B in the development
of this case study. However we tried to limit ourselves to the specification style supported
by Event-B [6.19]. For the middleware development and the work on methodology, we used
the B to Event-B translator. This simplifies the transition to Event-B and the new RODIN
platform. The formal agent development methodology described above is therefore based on
Event-B. A number of features specific to Event-B, such as atomicity refinement, variants and
decomposition, are extensively used in the middleware and during an agent design.

The approach used in the modelling of the Ambient Campus scenario is based on the reactions
architecture, which fits perfectly to the style of Event-B specifications. Atomically executed
Event-B events are close to the asynchronously executed reactions. This is crucial for building
agent implementations from formal role specifications.

We plan to conduct some initial experiments with the new RODIN platform in late September-
October when the new version of the platform supporting refinement is released. In particular,
we plan to formally model the case study using the new platform applying the formal design
methodology.

6.3.3. Future work on Case Study demonstrators

Our main work in the coming year will focus on finalising the CAMA modelling notations, con-
ducting Ambient Campus Group Project experiments, developing the second Ambient Campus
scenario (most likely, supporting distributed student group work), gaining extensive experience
in using the RODIN platform and the mobility plug-in, capturing this experience in developing
Ambient Campus scenarios and extracting it in the forms of reusable development patterns and
on developing the final RODIN demonstration.

6.4. References

6.1 B. Arief, J. Coleman, A. Hall, A. Hilton, A. Iliasov, I. Johnson, C. Jones, L. Laibinis,
S. Leppanen, I. Oliver, A. Romanovsky, C. Snook, E. Troubitsyna, and J. Ziegler.
Rodin Deliverable D4: Traceable Requirements Document for Case Studies. Techni-

cal report, Project IST-511599, School of Computing Science, University of Newcas-
tle, 2005.

6.2 B. Arief, A. Iliasov, and A. Romanovsky. On Using the CAMA Framework for De-
veloping Open Mobile Fault Tolerant Agent Systems. In Proceedings of the 5th In-
ternational Workshop on Software Engineering for Large-scale Multi-Agent Systems
(SELMAS) at ICSE 2006, pages 29–36, 22-23 May 2006.

6.3 E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
6.4 F. Cristian. Exception Handling and Fault Tolerance of Software Faults. In M. Lyu,

editor, Software Fault Tolerance, pages 81–107. Wiley, NY, 1995.
6.5 R. Devillers, H. Klaudel, and M. Koutny. A Petri Net Semantics of a Simple Process

Algebra for Mobility. Technical report, CS-TR: 912, School of Computing Science,
University of Newcastle, 2005.

6.6 R. Devillers, H. Klaudel, and M. Koutny. A Petri net translation of pi-calculus terms.
Technical report, CS-TR: 887, School of Computing Science, University of Newcas-
tle, 2005.

6.7 R. Devillers, H. Klaudel, and M. Koutny. Formal modeling and quantitive analysis of
KLAIM-based mobile systems. In EXPRESS 2005, 2005.

6.8 R. Devillers, H. Klaudel, and M. Koutny. Petri Net Semantics of the Finite pi-calculus
Terms. Fundamenta Informaticae, 70:203–226, 2006.

6.9 A. Iliasov. Implementation of Cama Middleware.
http://sourceforge.net/projects/cama [Last accessed: 1 Feb 2006].

6.10 A. Iliasov, L. Laibinis, A. Romanovsky, and E. Troubitsyna. Rigorous Development
of Fault Tolerant Agent Systems. Technical report, Number 762, Turku Centre for
Computer Science, 2006.

6.11 A. Iliasov and A. Romanovsky. CAMA: Structured Coordination Space and Excep-
tion Propagation Mechanism for Mobile Agents. Presented at ECOOP 2005 Work-
shop on Exception Handling in Object Oriented Systems: Developing Systems that
Handle Exceptions, 25 July 2005, Glasgow, UK, 2005.

6.12 V. Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
thesis, School of Computing Science, University of Newcastle upon Tyne, 2003.

6.13 V. Khomenko, A. Kondratyev, M. Koutny, and V. Vogler. Merged Processes — a New
Condensed Representation of Petri Net Behaviour. In CONCUR 2005, volume 3653
of Lecture Notes in Computer Science, pages 338–352, 2005.

6.14 V. Khomenko and M. Koutny. Branching Processes of High-Level Petri Nets. In
TACAS 2003, volume 2619 of Lecture Notes in Computer Science, pages 458–472,
2003.

6.15 V. Khomenko, A. Niaouris, and M. Koutny. Applying Petri Net Unfoldings for Veri-
fication of Klaim Expressions. Technical report, School of Computing Science, Uni-
versity of Newcastle, 2006.

6.16 V. Khomenko, A. Niaouris, and M. Koutny. Applying Petri Net Unfoldings for Ver-
ification of Mobile Systems. Technical report, CS-TR: 953, School of Computing
Science, University of Newcastle, 2006.

6.17 V. Khomenko, A. Niaouris, and M. Koutny. Applying Petri Net Unfoldings for Veri-
fication of Mobile Systems. In MOCA 2006, 2006.

6.18 K. McMillan. Using Unfoldings to Avoid State Explosion Problem in the Verification
of Asynchronous Circuits. In CAV 1992, volume 663 of Lecture Notes in Computer

Science, pages 164–174, 1992.
6.19 C. Metayer, J.-R. Abrial, and L. Voisin. Rodin Deliverable 3.2: Event-B Language.

Technical report, Project IST-511599, School of Computing Science, University of
Newcastle, 31 May 2005.

6.20 R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes. Information
and Control, 100:1–77, 1992.

6.21 R. D. Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for Agents
Interaction and Mobility. IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

6.22 R. D. Nicola, D. Latella, and M. Massink. Formal modeling and quantitive analysis
of KLAIM-based mobile systems. In Applied Computing, pages 428–435, 2005.

6.23 J. Parrow. An Introduction to the π-calculus. In Bergstra, Ponse, and Smolka, editors,
Handbook of Process Algebra, pages 479–543. Elsevier, 2001.

6.24 C. Pixley. Formal Verification in 2004. In DATE 2004, EDA Tools Forum, 2004.
6.25 Rigorous Open Development Environment for Complex Systems (RODIN), Descrip-

tion of Work. IST 6th Framework Programme, Proposal No. 511599, April 2004.
6.26 A. Valmari. The State Explosion Problem. In W. Reisig and G. Rozenberg, editors,

Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Computer
Science, pages 429–528. Springer-Verlag, 1998.

	D18Intro_section.pdf
	RODIN Deliverable D18
	
	Intermediate Report on Case Study Development
	Budi Arief (University of Newcastle upon Tyne, UK),
	Alex Iliasov (University of Newcastle upon Tyne, UK),
	Ian Johnson (AT Engine Controls Ltd, UK),
	Maciej Koutny(University of Newcastle upon Tyne, UK)
	Linas Laibinis (Aabo Akademi University, Finland),
	Sari Leppänen (Nokia, Finland),
	Ian Oliver (Nokia, Finland),
	Alexander Romanovsky (University of Newcastle upon Tyne, UK),
	Colin Snook (University of Southampton, UK),
	Elena Troubitsyna (Aabo Akademi University, Finland),

	CS1_progress.pdf
	D18_ATEC4.pdf
	3.1. Introduction
	3.1.1. Background
	3.1.2. Overview of year 2 work
	3.2. Major Directions on RODIN in Case Study Development
	3.2.1. Methodology perspective from Pilot Study (ATEC)
	3.2.2. Refinement processing - Idealisation – De-idealisation (ATEC)
	3.2.3. Feature Composition approach to requirements specification (Soton)
	3.2.4. Product-line structuring and tooling (Soton)
	3.2.5. Methodology of developing the FMS using formal specification templates (Aabo)

	3.3. Progress on the Demonstrators
	3.3.1. Overview of Pilot model (ATEC)
	3.3.2. B Model development Engineering
	3.3.3. Configuring the generic model for the Failure Management Requirements using a tool for instance data management (Soton)
	3.3.4. Development of the FMS with specification and refinement templates in UML (Aabo)

	3.4. Future work
	3.5. References

	section3_D18.pdf
	Section 4. Formal Techniques in Model Driven Engineering Context
	4.1 Introduction
	4.1.1 Tasks

	4.2 Major Directions in Case Study Development
	4.2.1 Semantics of UML Structures
	4.2.2 Fault Tolerance Patterns for State Machines
	4.2.3 Model Checking and Animation
	4.2.4 Model-based Testing in NoTA
	4.2.5 Hardware Description Language Generation
	4.2.6 H_IN v2 Specification

	4.3 Demonstrators
	4.4 Future Work
	4.5 References

	D18_cdis_new.pdf
	CS5-D18-16Aug06.pdf

