
Project IST-511599

RODIN

“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable D23

Description of the Internal Version of the Rodin

Platform

Editor: Laurent Voisin (ETH Zurich)

Public Document

February 28, 2007

http://rodin.cs.ncl.ac.uk

http://rodin.cs.ncl.ac.uk

Contributors

Jean-Raymond Abrial ETH Zurich
Stefan Hallerstede ETH Zurich
Thai Son Hoang ETH Zurich
Farhad Mehta ETH Zurich
Christophe Métayer ClearSy
Thierry Lecomte ClearSy
Alexander Romanovsky U. Newcastle
François Terrier ETH Zurich
Laurent Voisin ETH Zurich

1

Contents

1 Introduction 3

2 Main Achievements 3
2.1 Rodin Core . 3
2.2 Event-B Static Checker . 4
2.3 Event-B Proof Obligation Generator 4
2.4 Event-B Prover . 4
2.5 Event-B User Interface . 5

3 Coverage 5

4 Development 6
4.1 Coding Guidelines . 6
4.2 Some Figures . 6

2

1 Introduction

This document describes the contents of Rodin Deliverable D23 Internal version
of basic tools and platform.

The Rodin platform is an extensible application for developing event-B mod-
els and proving them correct. The version presented in this document improves
on the Rodin prototype [D15], providing a more mature platform which is used
in the Rodin case studies. It is not yet the final platform, which will be delivered
at the end of the project.

The implementation of this internal version of the platform corresponds to
the advancement of tasks 3.2 to 3.7 of work package 3 at the internal version
level (these tasks are carried out in parallel).

After presenting the main achievements of the internal version of the plat-
form, we describe its coverage of the event-B notations. Finally, we give some
figures about the size of the platform.

2 Main Achievements

In this section, we present the main differences between the (current) internal
and the (previous) prototype version of the Rodin platform (that was delivered
as [D15], one year ago). We group the achievements according to the different
components of the platform:

• Rodin core,

• event-B static checker,

• event-B proof obligation generator,

• event-B prover,

• event-B user interface.

2.1 Rodin Core

The Rodin Core is made of the Rodin Database (where models, proof obliga-
tions and proofs are stored) and the Rodin builder (which incrementally builds
projects).

The Rodin database has been improved, since its prototype version, to pro-
vide new features that were needed by other kernel tools or plug-in developers.
Most notably, attributes on database elements and file element snapshots have
been implemented.

The Rodin builder has also been improved to provide even more incremental-
ity and reactiveness to tool developers. Also, its API has been streamlined after
comments from plug-in developers, who found it cumbersome and difficult to
understand. The new interface is much easier to extend and asks for minimum
effort from plug-in developers.

3

2.2 Event-B Static Checker

The Static Checker that was developed for the prototype was a mock-up de-
veloped in order to demonstrate the feasibility of our approach, and to inquire
about some implementation difficulties to be encountered. Not surprisingly, it
proved to be too complicated, not modular enough, and thus difficult to reuse
or extend in current version. Also, its internal architecture made it too slow
and memory consuming on large models. Consequently, it has been fully reim-
plemented from scratch. However, the lessons learned from the prototype were
not lost, and the new implementation fixes all issues of the prototype.

The current Static Checker covers all of the core event-B notation (see 3
on the following page). It is decomposed in modules and is extensible: plug-in
developers can easily modify the behaviour of the static checker by adding new
modules. Consequently, new checks can be added.

Also, the Static Checker computes automatically the tree structure and the
order in which modules have to be executed, based on the specification of module
dependencies given to its extension point. This allows to extend it without prior
extensive knowledge of its internals.

Finally, the Static Checker is configurable: plugin developers can contribute
configurations, that is lists of modules that are to be executed in one run of the
Static Checker. The provided mechanism ensures that configurations remain
stable also when the Static Checker is extended.

2.3 Event-B Proof Obligation Generator

Like the Static Checker, the Proof Obligation Generator has been fully reimple-
mented, as the prototype version was not satisfactory.

The current Proof Obligation Generator covers all of the core event-B nota-
tion (see 3 on the next page) and is configurable: plug-in developers can easily
add new proof obligations or remove some. Its architecture is very similar to
that of the Static Checker (plug-in developers contribute modules which form a
tree structure, and can be activated or disabled).

The overall coherence of static checking and proof obligation generation is
ensured by means of their configurations: if a static checker configuration bears
the same name as a proof obligation one, then they are deemed compatible.

2.4 Event-B Prover

Most of the work around the event-B Prover concerned interactive proof. The
initial implementation of the prototype was good for automated proofs, but
lacked a lot of necessary features for manual proofs. Also, its persistence frame-
work was too coarse and required unexpectedly high disk space.

The most notable improvements of the prover are the following:

• We have added many new proof commands in interactive mode, that al-
low to rewrite and simplify predicates and expressions, or capture very
common ways of interacting with a prover (modus ponens for instance).
The number and level of proof commands is now comparable to the most
efficient classical B tools (e.g., Click’n’Prove).

4

• We have also added an automated tactic to the interactive prover that is
run after every user interaction and does many simplifications and cleanup
(e.g., removing redundant hypotheses), most of the time by applying clas-
sical forward inferences. Thanks to this automated tactic, the user doesn’t
have to do much clerical work, and can thus focus more easily on the
essence of his interactive proof.

• The persistence framework has been drastically improved, so that proofs
saved to disk take reasonable space. The improvement is more than ten-
fold.

• Finally, a plug-in has been developed to connect existing provers to our
framework. In the current version, this already allows to connect all
provers that take input in the TPTP format. This plug-in indeed demon-
strate that the event-B prover is truly extensible.

2.5 Event-B User Interface

The prototype User Interface has been improved to make it more user friendly.
As it is the first thing that users see when they try the Rodin platform, a lot
of comments were made on the interface. Most of them have been taken into
account, so that using the Rodin platform is now much more smooth than with
the prototype.

Also, a number of features have been added to the user interface. Firstly,
as the prototype was covering only a small subset of the event-B notation,
the interface has been extended to provide full coverage (adding most notably
refinement).

Secondly, a new view has been developed, that displays an event-B model
pretty-printed in textual form, as if it was a source file. This corresponds to
a strong requirement of some users, that sometimes got lost with the database
oriented interface.

Finally, alongside the prover improvements, the interface has been extended
to allow easy use of the new commands. Now, the formulas displayed during
a proof session are more than mere pieces of text, they also provide means for
manipulating them easily using the mouse, so that most of a proof can now be
entered without using the keyboard.

3 Coverage

This internal version of the platform covers all of the core event-B notation:

• All the mathematical language, as defined in [D7] is fully supported.

• Contexts are fully supported (carrier sets, constants, axioms and theo-
rems). Also, one can extend a context by another context.

• Machines are fully supported (variables, invariants, variant and events)
and all event elements are supported (local variables, guards, actions and
witnesses). Also, a machine can see several contexts and refine another
machine. The only feature of [D7] that was not implemented is the concept
of event arrays. The reason for this is that this concept was quite new

5

when added to [D7], and after review of the language, it was found not
useful: it was just a variation on the concept of local variable that is
already covered by the core language.

• All context and machine proof obligations are generated, including refine-
ment, as well as event convergence, proof obligations.

4 Development

We first present the coding conventions and guidelines used when developing
the Rodin platform, then we give some interesting figures about the code size
of the Rodin platform.

4.1 Coding Guidelines

The development of the platform has been performed according to the regular
Eclipse conventions and guidelines that follows:

• Eclipse’s Naming Conventions (http://wiki.eclipse.org/index.php/
Naming Conventions),

• Sun’s Code Conventions for the Java Programming Language (http://
java.sun.com/docs/codeconv/index.html),

• Sun’s Requirements for Writing Java API Specifications (http://java.
sun.com/products/jdk/javadoc/writingapispecs/index.html),

• Sun’s How to Write Doc Comments for Javadoc (http://java.sun.com/
products/jdk/javadoc/writingdoccomments/index.html),

• Eclipse’s User Interface Guidelines (http://wiki.eclipse.org/index.
php/User Interface Guidelines),

4.2 Some Figures

The internal version of the platform is made of 90 000 lines of source code
(160 000 lines with comments and white lines).

The validation test suite is made of 35 000 lines of source code (50 000 lines
with comments and white lines).

References

[D5] C. Métayer et al. Final Decisions. Rodin Deliverable D3.1 (D5). Febru-
ary 28, 2005.

[D7] C. Métayer et al. Event-B Language. Rodin Deliverable D3.2 (D7).
May 31, 2005.

[D10] L. Voisin (Ed) Specification of Basic Tools and Platform. Rodin Deliv-
erable D3.3 (D10). August 31, 2005.

[D15] L. Voisin (Ed) Description of the Rodin Prototype. Rodin Deliverable
D3.4 (D15). February 28, 2006.

6

http://wiki.eclipse.org/index.php/Naming_Conventions
http://wiki.eclipse.org/index.php/Naming_Conventions
http://java.sun.com/docs/codeconv/index.html
http://java.sun.com/docs/codeconv/index.html
http://java.sun.com/products/jdk/javadoc/writingapispecs/index.html
http://java.sun.com/products/jdk/javadoc/writingapispecs/index.html
http://java.sun.com/products/jdk/javadoc/writingdoccomments/index.html
http://java.sun.com/products/jdk/javadoc/writingdoccomments/index.html
http://wiki.eclipse.org/index.php/User_Interface_Guidelines
http://wiki.eclipse.org/index.php/User_Interface_Guidelines

	Introduction
	Main Achievements
	Rodin Core
	Event-B Static Checker
	Event-B Proof Obligation Generator
	Event-B Prover
	Event-B User Interface

	Coverage
	Development
	Coding Guidelines
	Some Figures

