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SECTION 1. INTRODUCTION 
 
 

This document reports on the final year of the development of case studies in RODIN and 
overviews the results achieved in the duration of the overall project. The case studies 
drive the development of the RODIN methodology and supporting platform, validate it 
and evaluate its cost-effectiveness. In this deliverable we describe the results achieved in 
the project and especially over the last year. 
 
In general, the development of the case studies has proceeded according to the original 
plan. Each of the case studies has contributed to the development of both the 
methodology and the supporting platform. The methodological issues identified earlier 
have been addressed and expected results achieved. In the third year, the special 
emphasis was put on validating the tool platform and integration of plug-ins according to 
the integration plan produced after second review.  
 
In Section 2 we describe the advances made in the development of case study 1 – Formal 
Approaches to Protocol Engineering. The case study investigates the use of formal 
methods in model-driven development of communicating systems and communication 
protocols. Over the last year this work was proceeding in two major directions – 
enhancement of formalized development method Lyra and increasing the degree of 
automation in Lyra development flow. We describe the work on augmenting Lyra with  
reasoning about parallelism in service-provision. Moreover, we present the integration 
plan which was created to increase the level of automation in Lyra and describe the 
advances made in integrating model-based testing in the development flow. Finally, we 
give a brief account of overall results of the case study development. 
 
Section 3 presents the progress achieved in case study 2 – Engine Failure Management 
System. The aim of the case study is to study how the methods and tools developed in 
RODIN could improve design, maintenance and re-use of the failure management 
systems developed by ATEC. Over the last year the work on development, instantiation 
and reuse of the generic model has continued. It has put forward development of the 
plug-in “Context Manader” and integration with the classical development of Failure 
Management System done by refinement in B. Moreover, another trial system was 
developed by an application of RODIN methods and tools. 
During year three the main focus of this case study has been on validation of the RODIN 
platform, tools and methods in the context of the MDA framework. 
 
In Section 4 we describe the developments in case study 3 – Formal Techniques within 
MDA Context. In the third year we have further investigated how the RODIN 
techniques and tools can be applied in a model based environment and work flow by 
using them to develop of a hardware based mobile phone platform NoTA.  The 
significant efforts were put on validation of the RODIN platform and finalizing the 
results of the case study. 
. 
In Section 5 we give an overview of work on case study 4 – CDIS Air Traffic Control 
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Display System. The major problem spotted in the CDIS development a decade ago was a 
poor comprehensiveness of the formal specification and lack of continuity from the 
specification to design. In the final year of the project the formal specification developed 
during the first two years was ported into RODIN platform. Furthermore, additional 
refinement steps were performed to obtain a realistic distributed specification of the 
system.  
Finally, in section 6 we reflect on the experience gained during the final year of work on 
case study 5 – Ambient Campus. The aim of this case study is to investigate the use of 
formal methods combined with advanced fault tolerance techniques in developing highly 
dependable ambient intelligence applications. During year three we have developed a set 
of abstract specification and refinement patterns that provide general guidance during a 
formal development and considerably reduce development costs. Refinement patterns are 
in fact formally described reusable model transformation rules. Moreover, the case study 
has been the major driver for the development of Mobility Checker plug-in. 
 
In general, we believe that the work on the case studies has provided the project partners 
with strong basis for developing RODIN methods and tools. The case studies have 
successfully fulfilled their mission – to serve as research drivers.  
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SECTION 2. CASE STUDY 1:
FORMAL APPROACHES IN PROTOCOL ENGINEERING

2.1 Introduction

This section summarises the developments of Case study 1 – “Formal Approaches in
Protocol Engineering” – during the third year of the RODIN project. In addition, we
present an overview of the achievements of of the case study during the whole project.

The goal of CS1 is to investigate the application of formal methods for development
of telecommunication systems and communicating protocols[2.11]. In particular, the
work on the case study focuses on formalisation and verification of the service-oriented
design method Lyra developed in the Nokia research center. Within RODIN, we aim
at providing support (in the form of formal techniques and tools) for various stages of
this approach.

During the first year of the RODIN project we have developed formal specification and
refinement patterns reflecting essential Lyra models and transformations. This allowed
us to conduct verification of the Lyra development using stepwise refinement in the B
Method. This work has been reported in [2.5,2.10].

During the second year of the RODIN project we have extended our developed speci-
fication and refinement patterns by incorporating fault tolerance mechanisms into the
formalized Lyra development flow [2.4]. At the same time, we have developed an ap-
proach to verifying the structural consistency of the provided Lyra UML models [2.6].
Also, a preliminary methodology for model-based testing ofLyra B models [2.12] has
been created.

In the final year of the RODIN project, we have worked on the following directions:

1. Enhancing formalised Lyra development flow by modelling parallel execution of
services [2.2];

2. Using external tools to provide automatic translation ofLyra UML models into
B models of the RODIN platform;

3. Extending our approach to verifying the structural consistency of the provided
Lyra UML models by creating the Lyra profile;

4. Further developing the theoretical basis for model-based testing of Lyra B
models [2.8].
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The work on CS1 in year 3 has been presented in a series of internal RODIN workshops
and presentations listed below.

• Presentation at Turku plenary meeting (September 2006);

• Presentation to EU commission (October 2006);

• Presentation at Winchester plenary meeting (April 2007);

• Two presentations at Oxford RODIN workshop on Methodology and Tools for
Fault Tolerance (MemoT’07), associated with the Integrated Formal Methods
(IFM’07) conference (July 2007).

The latter presentations are published as paper in the workshop proceedings [2.2,2.8].

2.2 Methodological Issues and Advances of the Case Study

2.2.1 Integration Plan

Next we describe the contribution of the case study to methodology and plug-in devel-
opment achieved in the third year of the RODIN project. During this year our work
has focused on the taskT1.1.5 formulated in the Description of Work:

T1.1.5Investigate how formal and semiformal design techniques can be combined and
used to support integration with the targeted platform. Usethe developed plug-ins to
tackle various problems of the development.

During the first two years of RODIN our worked has progressed in a few separate
directions, yet staying within the main goal – to provide support (in the form of formal
techniques and tools) for the Lyra approach. Namely, the main achieved results are:

1. Lyra UML profile, allowing to check adherence of Lyra UML models to prede-
fined architectural rules;

2. Formalisation and verification of additional conditionsneeded to guarantee struc-
tural consistency within and between different Lyra phases;

3. Specification and refinement patterns allowing to verify Lyra decomposition and
distribution phases as refinement steps in B;

4. Templates for introducing fault tolerance mechanisms into Lyra B models;

5. The scenario-based approach of model-based testing of Lyra models.
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Fig. 2.1: Automated system design flow: tool-chain for Lyra-B integration

In the final year we have aimed to integrate those separate results into a tool chain that
creates an automated system design flow for Lyra. As a result,the following integration
plan was developed (seeFig.2.1).

According to the plan, the Lyra UML models are used as input for the created tool
chain. These models are translated (using the external ATL tool) into Event-B models
of the Rodin platform. The developed Lyra profile together with additional consistency
conditions are used to direct the translation process. Currently, the ATL tool is not fully
integrated with the RODIN platform. However, its produced outputs (Event-B models)
can be directly used as inputs for the platform and plug-ins.

The Event-B models are then further enhanced by the fault tolerance mechanisms,
the information of which is provided by the developers. Thisinformation is used to
instantiate the predefined templates for fault tolerance. The B refinement process is
used to verify the correctness of the service decompositionand distribution phases as
well as the incorporated fault tolerance mechanisms. The predefined specification and
refinement patterns are employed here to automate the process.

Alternatively, the derived Event-B models could possibly serve as specifications needed
for model-based testing. The test cases can be generated from these models from dif-
ferent abstraction levels and used then to test and verify the corresponding implemen-
tations.
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We now present the results achieved during the third year of RODIN in more detail.
At the same time, we relate them with the methodological tasks for the case study
formulated in the Description of Work [2.11]. Some of these results were directly
influenced by the integration plan. Others are enhancementsof the results presented
earlier.

2.2.2 Ensuring Consistency of Lyra UML models

To automate the Lyra design flow, we need to know the precise form and structure of
Lyra UML models that are used as inputs for our tool chain. Theapproach presented
in this section not only defines a Lyra UML profile supporting the entire Lyra develop-
ment but also smoothly integrates formal verification for ensuring model consistency.

Lyra Profile During the RODIN project we (together with Nokia developers) have
worked on finalising the Lyra profile – a UML2 profile that defines the architectural
rules for the Lyra design method. The Lyra profile has been derived as a result of a
number of large industrial developments conducted according to the Lyra methodology
within Nokia Research Center.

The profile defines the Lyra-specific modelling concepts and dependencies between
them, thus outlining the required stages of the system development. The profile is
considered to be a reference model using which we could validate created Lyra models.
Validation ensures that these models use only concepts defined by the architectural
rules.

To introduce the Lyra profile, we use UML2 as our description language. This al-
lows us to avoid unnecessary redefinitions since most elements of Lyra models reuse
existing UML2 notions.

The aim of the Lyra profile is to tailor the existing UML2 metamodel to the Lyra de-
sign method. We customize the UML2 metamodel by introducingspecific stereotypes.
They allow us to use the Lyra concepts in modelling and add corresponding seman-
tics to the metamodel. Namely, each Lyra stereotype allows us to use a specific Lyra
element while modelling either system structure or behaviour.

While presenting the profile, we show Lyra stereotypes as extensions of the corre-
sponding UML2 meta-classes. For clarity, we show only the associations between
stereotypes and omit the corresponding meta-associationsbetween the extended meta-
classes.

A summary of the Lyra profile is presented on the next page.
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Defining consistency in Lyra The Lyra design method adopts the top-down devel-
opment paradigm. Development starts from a high level of abstraction. The models
at each subsequent stage represent the system at lower levels of abstraction, i.e., they
specify the required functionality in more detail. This raises a problem of ensuring
model consistency, throughout the system development. In other words, we have to
guarantee that each properly defined model is not contradictory with already created
models. We call a model properly defined if it satisfies the model presentation rules,
i.e., the structural requirements imposed on the modellingelements.

Ensuring consistency is a two-fold task. On the one hand, a model should be con-
sistent with the models at the same development stage. On theother hand, it should
be also consistent with the models from the previous development stages. The con-
sistency between the concepts specifying different aspects of the system structure and
behaviour on the same development stage is known as intra-consistency; whereas the
inter-consistency is defined as the consistency among modelling concepts from differ-
ent development stages.

The Lyra profile presented in the previous section allows us only to ensure that created
Lyra models are properly defined, i.e., that their structureconforms to the one defined
in the profile. Defining consistency in the Lyra profile is, however, a difficult task.
Although one could express intra-consistency rules as OCL constraints on the profile
elements, it would still require referencing those UML2 meta-classes extended by the
profile stereotypes. This would complicate the process of creating OCL constraints.
Furthermore, Lyra is based on stage-specific development, which requires to maintain
consistency between Lyra model elements from different stages.

To summarize, the overall Lyra design flow is guided by the requirements imposed on
its modelling elements:

1. each model is created according to certain structural requirements;

2. models within one stage are created according to the defined intra-consistency
rules;

3. models at each subsequent development stage preserve theinter-consistency
rules.

We start formal verification of consistency by deriving the list of informal require-
ments for Lyra UML models. In particular, for each Lyra stagewe derive the list of
requirements corresponding to a particular Lyra model. Foreach model we group re-
quirements around concrete model elements. Once the complete list of requirements is
obtained, we can distinguish between model-presentation,intra-, and inter-consistency
rules for each particular Lyra model.
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The informal requirements form the basis for formalizing Lyra models and consistency
rules in B. For each Lyra model we introduce the corresponding B machine specifying
the way the model is constructed. The B machines are created in the order defined
by the Lyra development flow. The intra-consistency rules are defined as invariant
properties of the corresponding machines. The models at each subsequent stage are
represented in the same way. Moreover, inter-consistency is ensured by refinement
between the corresponding specifications, i.e., he gluing refinement relation contains
inter-consistency conditions between the corresponding stages.

This work allowed us to establish consistency between the Lyra UML2 models while
undertaking the Lyra development, which otherwise we couldnot achieve within the
profile solely. While verifying the Lyra development flow, wesimulated Lyra develop-
ment and formalized both the Lyra models and the intra- and inter-consistency rules in
B. The details of the suggested structure of B models and the refinement process were
already reported in D18 [2.9].

This work has contributed toT2.1 [2.11].

2.2.3 Translation of Lyra UML models into Event-B

The Lyra profile and consistency conditions of Lyra models are used to direct auto-
matic translation Lyra UML models into the corresponding Event-B specifications.
The translation is accomplished by employing an external tool ATL based on Atlas
Transformation Language.

Lyra UML models are created by conforming them to the provided Lyra profile. In
order to formalise these models by transforming them into Event-B, we employ Atlas
Transformation Language (ATL) tool support. In general, ATL introduces a set of
transformation concepts that make it possible to describe model transformations.

The ATL language is a model transformation language with a means to specify the
way to produce a number of target models from a set of source models. The ATL
language is a hybrid of declarative and imperative programming. An ATL transforma-
tion program is composed of rules that define how source modelelements are matched
and navigated to create and initialize the elements of the target models. Besides basic
model transformations, ATL defines an additional model querying facility that enables
to specify requests onto models. ATL also allows code factorization through the def-
inition of ATL libraries. The ATL Integrated Development Environment ((IDE) is
developed over the Eclipse platform, thus making it possible to integrate with RODIN
platform which is also based on Eclipse.

The models constitute the basic pieces of the model-driven architecture. Indeed, in
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the field of model-driven engineering (MDE), a model is defined according to the se-
mantics of a model of models, also called a metamodel. A modelthat respects the
semantics defined by a metamodel is said to conform to this metamodel. A metamodel
is in itself a model. This implies for it to conform to its own metamodel. To this end,
the model-driven architecture defines a third modelling level which corresponds to the
metametamodel, as illustrated in Fig.2.2.

Fig. 2.2: The model-driven architecture

A metametamodel aims to introduce the semantics that are required to specify meta-
models. As a model with its metamodel, a metamodel conforms to the metameta-
model. A metametamodel is usually self-defined, which meansthat it can be specified
by means of its own semantics. In such a case, a metametamodelconforms to itself.

Several metametamodel technologies are available. The ATLtransformation engine
currently provides support for two of these existing technologies: the Meta Object Fa-
cilities (MOF 1.4) defined by the OMG and the Ecore metametamodel defined by the
Eclipse Modelling Framework (EMF). This means that ATL is able to handle meta-
models that have been specified according to either the MOF orthe Ecore semantics.

In the scope of model-driven engineering, model transformation aims to provide a
mean to specify the way to produce target models from a numberof source models.
For this purpose, it should enable developers to define the way source model elements
must be matched and navigated in order to initialize the target model elements.

Formally, a simple model transformation has to define the wayfor generating a model
Mb, conforming to a metamodelMMb, from a modelMa conforming to a metamodel
MMa. A major feature in model engineering is to consider, as far as possible, all
handled items as models. The model transformation itself therefore has to be defined as
a model. This transformation model has to conform to a transformation metamodel that
defines the model transformation semantics. As other metamodels, the transformation
metamodel has, in turn, to conform to the considered metametamodel.
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The Fig.2.3 summarizes the full model transformation process. A modelMa, con-
forming to a metamodelMMa, is here transformed into a modelMb that conforms
to a metamodelMMb. The transformation is defined by the model transformation
modelMt which itself conforms to a model transformation metamodelMMt. This
last metamodel, along with theMMa and MMb metamodels, has to conform to a
metametamodelMMM (such as MOF or Ecore).

Fig. 2.3: An overview of model transformation

The Fig.2.4 provides an overview of the ATL transformation (Lyra2Event-B) that en-
ables to generate an Event-B model, which is in fact an Event-B machine, conforming
to the Event-B metamodel, from a Lyra model that conforms to the Lyra metamodel,
which is in fact a Lyra Profile. The designed transformation,which is expressed by
means of the ATL language, conforms to the ATL metamodel. Thethree metamodels
(LyraProfile, Event-B metamodel and ATL) are expressed using the semantics of the
Ecore metametamodel.

Ecore

ATL

Lyra2Event-B

LyraProfile

LyraModel

Event-B metamodel

Event-B model

conforms To

conforms To conforms To

conforms To

conforms To

conforms To

Transformation

Fig. 2.4: An overview of Lyra to Event-B tranformation using ATL

The Fig.2.5 shows part of the Lyra profile in graphical format used for Lyra model
transformations. Lyra models, conforming to Lyra profile, are transformed into corre-
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sponding Event-B machines which conforms to Event-B metamodel shown in Fig.2.6.
These transformations are directed by using special rules written in the ATL language.
The rules define the exact way Lyra UML elements should be translated into the cor-
responding elements of Event-B.

Fig. 2.5: Part of Lyra Profile used for trannsformation

This work has contributed toT2.1 [2.11].

2.2.4 Introducing Parallelism into the Lyra Development Flow

In our previous work [2.3, 2.5] we proposed a set of formal specification and refine-
ment patterns reflecting the essential models and transformations of Lyra. Moreover, to
achieve system fault tolerance, we extended Lyra to integrate modelling of fault toler-
ance mechanisms into the entire development flow. We demonstrated how to formally
specify error recovery by rollbacks as well as reason about error recovery termination.

During the third year of RODIN we have extended our Lyra formalisation to model
parallel execution of services. In particular, such an extension affected the fault tol-
erance mechanisms incorporated into our formal models. Theextension makes our
formal models more complicated. However, it also gives us more flexibility in choos-
ing possible recovery actions.

Introducing Fault Tolerance in the Lyra Development Flow The Lyra service ex-
ecution flow is tightly connected with the introduced fault tolerance mechanisms. Be-
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Fig. 2.6: Event-B metamodel used for tranformation

fore extending our model with parallel execution of services, let us briefly remind how
fault tolerance mechanisms are modelled in the formalised Lyra development.

In the LyraService Decompositionphase, the top service is decomposed into a number
of stages (subservices). The service component can executecertain subservices itself
as well as request other service components to do it. According to Lyra, the flow of the
service execution is managed by a special service componentcalledService Director.
Service Directorco-ordinates the execution flow by enquiring the required subservices
from the external service components.

In general, execution of any stage of a service can fail. In its turn, this might lead to
failure of the entire service provision. Therefore, while specifying Service Director,
we should ensure that it does not only orchestrates the fault-free execution flow but
also handles erroneous situations. Indeed, as a result of requesting a particular subser-
vice,Service Directorcan obtain a normal response containing the requested data or a
notification about an error. As a reaction to the occurred error, Service Directormight

• retry the execution of the failed subservice,

• repeat the execution of several previous subservices (i.e., roll back in the service
execution flow) and then retry the failed subservice,

• abort the execution of the entire service.

The reaction ofService Directordepends on the criticality of an occurred error: the
more critical is the error, the larger part of the execution flow has to be involved in the
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(a) Fault free execution flow

SS1 SS2 SS3 SSN-1 SSN

S

Retry

(b) Error recovery by retrying execution of a
failed subservice

SS1 SS2 SS3 SSN-1 SSN

S

Rollback

(c) Error recovery by rollbacks

SS1 SS2 SS3 SSN-1 SSN

S

Unrecoverable error

Success

Service
 failure

(d) Aborting service execution

SS1 SS2 SS3 SSN-1 SSN

S

Success

Service
 failure

Execution_time > Max_SRT
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Fig. 2.7: Service decomposition: faults in the execution flow

error recovery. Moreover, the most critical (i.e., unrecoverable) errors lead to aborting
the entire service. InFig.2.7(a)we illustrate a fault free execution of the serviceS
composed of subservicesS1, . . . , SN . Different error recovery mechanisms used in
the presence of errors are shown inFig.2.7(b) - 2.7(d).

Let us observe that each service should be provided within a certain finite period of
time – themaximal service response time MaxSRT. In our model this time is passed
as a parameter of the service request. Since each attempt of subservice execution
takes some time, the service execution might be aborted evenif only recoverable errors
have occurred but the overall service execution time has already exceededMax SRT.
Therefore, by introducingMax SRTin our model, we also guarantee termination of
error recovery, i.e., disallow infinite retries and rollbacks, as shown inFig.2.7(e). More
details on error recovery mechanisms can be found in [2.3].

Modelling Parallel Execution Flow Our formal model briefly described in the pre-
vious section assumes sequential execution of subservices. However, in practice, some
of subservices can be executed in parallel. Such simultaneous service execution di-
rectly affects the fault tolerance mechanisms incorporated into our B models. As a re-
sult, they become more complicated. However, at the same time it provides additional,
more flexible options for error recovery that can be attempted byService Director. The
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approach briefly presented below was published in [2.2].

The information about all subservices and their required execution order becomes
available at the Service Decomposition phase. This knowledge can be formalised as a
data structure

Task : seq(P(SERV ICE))

HereSERV ICE is a set of all possible subservices. Hence,Task is defined as a
sequence of subsets of subservices. It basically describesthe control flow for the top
service in terms of required subservices. At the same time, it also indicates which
subservices can be executed in parallel.

For example,
Task = < {S1, S2}, {S3, S4, S5}, {S6} >

defines the top service as a task that should start by executing the servicesS1 and
S2 (possibly in parallel), then continuing by executing the servicesS3, S4, andS5
(simultaneously, if possible), and, finally, finishing the task by executing the service
S6.

Essentially, the sequenceTask defines the data dependencies between subservices.
Also, Task can be considered as the most liberal (from point of view of parallel ex-
ecution) model of service execution. In the Service Distribution phase the knowledge
about the given network architecture becomes available. This can reduce the paral-
lelism of service control flow by making certain services that can be executed in par-
allel to be executed in a particular order enforced by the provided architecture.

Therefore,Task is basically the desired model of service execution that will serve as
the reference point for our formal development. The actual service execution flow is
modelled in by the sequenceNext which is of the same type asTask:

Next : seq(P(SERV ICE))

Since at the Service Decomposition phase we do not know anything about future ser-
vice distribution,Next is modelled as an abstract function (sequence), i.e., without
giving its exact definition. However, it should be compatible with Task. More pre-
cisely, ifTask requires that certain servicesSi andSj should be executed in a particular
order, this order should be preserved in the sequenceNext. However,Next can split
parallel execution of given services (allowed byTask) by sequentially executing them
in any order.

So the sequenceNext abstractly models the actual control flow of the top service.It
is fully defined (instantiated) only in the refinement step corresponding to the Service
Distribution phase. For example, the following instantiation of Next would be correct
with respect toTask defined above:

Next = < {S2}, {S1}, {S4}, {S3, S5}, {S6} >

18



Also, we have to take into account thatService Directoritself can become distributed,
i.e., different parts of service execution could be orchestrated by distinct service di-
rectors residing on different network elements. In that case, for every service director,
there is a separateNext sequence modelling the corresponding part of the service ex-
ecution flow. All these control flows should complement each other and also be com-
patible withTask. To ensure this compatibility, additional properties are required,
connecting theTask andNext sequences.

Modelling Recovery Actions As we described before, aService Directoris the ser-
vice component responsible for orchestrating service execution. It monitors execution
of the activated subservices and attempts different possible recovery actions when these
services fail. Obviously, introducing parallel executionof subservices (described in the
previous subsection) directly affects the behaviour ofService Director.

Now, at each execution step in the service execution flow, several subservices can be
activated and run simultaneously.Service Directorshould monitor their execution and
react asynchronously whenever any of these services sends its response. This response
can indicate either success or a failure of the corresponding subservice.

The sequential formal model for fault tolerance (seeFig.2.7) is still valid. However,
taking into account parallel execution of services presents Service Directorwith new
options for its recovery actions. For example, getting response from one of active
subservices may mean that some or all of the remaining activesubservices should
be stopped (i.e., interrupted). Also, some of the old recovery action (like retrying of
service execution) are now parameterised with a set of subservices. The parameter
indicates which subservices should be affected by the corresponding recovery actions.

Below we present the current full list of actions thatService Directormay take after
it receives and analyses the response from any of active subservices. Consequently,
Service Directormight

• Continue to the next service execution step. In case of successful termination of
all involved subservices (complete success).

• Wait for response from the remaining active subservices. In caseof successful
termination of one of few active subservices (partial success).

• Abort the entire service and send the corresponding message to theuser or re-
questing component. In case of an unrecoverable error or theservice timeout.

• Cancel(a set of subservices) by sending the corresponding requests to interrupt
their execution (partial abort). In case of a failure which requires to retry or
rollback in the service execution flow.
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• Retry (a set of subservices) by sending the corresponding requests to re-execute
the corresponding subservices. In case of a recoverable failure.

• Rollback to a certain point of the service execution flow. In case of a recoverable
failure.

Service Directormakes its decision using special abstract functions neededfor evalu-
ating responses from service components. These functions should be supplied (instan-
tiated) by the system developers at a certain point of systemdevelopment.

Here is a small excerpt from the B specification ofService Directorspecifying the part
where it evaluates a response and decides on the next step:

handle =

...

resp := Eval(curr task, curr state);

CASE resp OF EITHER

CONTINUE THEN

IF curr task = size(Next) THEN finished := TRUE

ELSE active serv, curr task := Next(curr task + 1), curr task + 1 END

WAIT THEN skip

RETRY THEN active serv := active serv ∪ Retry(curr task, curr state)

CANCEL THEN active serv := active serv ∪ Cancel(curr task, curr state)

ROLLBACK THEN curr task := Rollback(...); active serv := Next(curr task)

ABORT THEN finished := TRUE

END

...

where the abstract functionsNext, Retry, Cancel, andRollback are defined (typed)
as follows:

Next : seq(P(SERVICE))

Eval : 1..size(Next) ∗ STATE → {SUCCESS,WAIT,RETRY,CANCEL,ROLLBACK,ABORT}

Retry : 1..size(Next) ∗ STATE 7→ P(SERVICE)

Cancel : 1..size(Next) ∗ STATE 7→ P(SERVICE)

Rollback : 2..size(Next) ∗ STATE 7→ 1..size(Next) − 1
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Translating to Event-B The formal development described above has been origi-
nally carried out in Classical B, using Atelier-B as the toolsupport. During the third
year we moved this development into Event-B and the RODIN platform. Of course,
it has required certain changes in the B models. For example,sequences has to be
modelled as special kind of total functions.

The main changes were influenced by the fact that Event-B doesnot support sequential
composition or any kind of conditional branching inside of the operation bodies. This
has resulted in splitting more such more complicated operations into several smaller
ones responsible for particular branch or step in the execution flow. Thehandle oper-
ation shown above has to be splitted into 7 smaller events. The examples of three of
them (forRETRY, WAIT , andABORT branches) are shown below.

EVENT handle RETRY
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE ∧ changed = TRUE

grd2 : Eval(curr task 7→ curr state) = RETRY

grd3 : time left < old time left

THEN
act1 : active serv := active serv ∪ Repeat(curr task 7→ curr state)
act3 : old time left := time left

act2 : resp := RETRY

END

EVENT handle WAIT
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE ∧ changed = TRUE

grd2 : Eval(curr task 7→ curr state) = WAIT ...

THEN
act3 : old time left := time left

act4 : resp := WAIT

END

EVENT handle ABORT
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE ∧ changed = TRUE

grd2 : Eval(curr task 7→ curr state) = ABORT ...

THEN
act1 : finished := TRUE

act3 : old time left := time left

act2 : resp := ABORT

END
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This work has contributed toT2.1, T2.3, andT2.4 [2.11].

2.2.5 Model-based Testing Using Scenarios and Event-B Refinements

The B specifications of the formalised Lyra development can also be used as models
from which we can generate test-cases for the correspondingimplementations. This
is often referred to asmodel-based testing. In this section, we present our work on a
model-based testing approach based on user-provided testing scenarios. The presented
approach was published in [2.8].

Generally, implementation code for a system-under-test (SUT) can be generated from
a sufficiently detailed specification. But often, due to the remaining abstraction gap
between a model and the implementation, it is not always feasible to generate im-
plementation code. As a result, the implementation is not shown to be correct by
construction but instead it is hand-coded by programmer(s). Identifying and writing
testing scenarios for such an implementation is a very time consuming and error-prone
process. In our approach, test scenarios are identified at anabstract specification level
and are automatically refined (together with a specification) at each refinement step.
These scenarios can also include tests of the incorporated fault tolerance mechanisms.
The test scenarios are represented as Communicating Sequential Process (CSP) expres-
sions. In the final step, executable test cases are generatedfrom these CSP expressions
to be tested on SUT.

Refinement of Event-Based SystemsWe are interested how refinement affects the
external behavior of a system under construction. Such external behavior can be rep-
resented as a trace of observable events, which then can be used to produce test cases.
From this point of view, we can distinguish two different types of refinement called
atomicityrefinement andsuperpositionrefinement.
In Atomicity refinement, one event operation is replaced by several operations, de-
scribing the system reactions in different circumstances the event occurs. Intuitively, it
corresponds to a branching in the control flow of the system asshown inFig.2.8(a).

In Superposition refinement, new implementation details are introduced intothe sys-
tem in the the form of new events that were invisible in the previous specification.
These new events can not affect the variables of the abstractspecification and only
define computations on newly introduced variables. For our purposes, it is convenient
to further distinguish two basic kinds of superposition refinement, where

• a non-looping event is introduced,
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• a looping but terminating event is introduced.

These two types of refinements are graphically shown inFig.2.8(b) and (c).

Let us note that the presented set of refined types is by no means complete. However,
it is sufficient for our approach based on user defined scenarios.

E
E1

E2

EE1
E

EE

(a)

(b)

(c)

E1

Fig. 2.8: Basic refinement transformations

Scenario-based approach for testing We use the termscenarioto represent atest
scenariofor our system under test (SUT). A test scenario is one of possible valid
execution paths that the system can follow. In other words, it is one of expected func-
tionalities of the system. For example, in a hotel reservation system, booking a room
is one functionality, while canceling a pre-booked room is another one. In this article,
we use both terms functionality and scenario interchangeably.

Each scenario usually includes more than one system-level procedure/event, which
are executed in some particular sequence. In a non-trivial system, identifying such a
sequence may not be an easy task. Our testing approach is based on stepwise system
development, where an abstract model is first constructed and then further refined to
include more details (e.g., functionalities) of the system. On the abstract level, an initial
scenario is provided by the user. Afterwards, for each refinement step, scenarios are
refined automatically. InFig.2.9, an abstract modelMi is refined byMi+1 (denoted
by Mi ⊑ Mi+1). ScenarioSi is an abstract scenario, formally satisfiable(|=) by
specification modelMi, provided by the user. In the next refinement step, scenarioSi+1

is constructed automatically fromMi, Mi+1 andSi in such a way thatSi+1 formally
satisfies modelMi+1.

Each scenario can be represented as a Communicating Sequential Process (CSP) [?]
expression. Since we develop our system in a controlled way,i.e. using basic re-
finement transformations described in Section 2.2.5, we canassociate these Event-
B refinements with syntactic transformations of the corresponding CSP expressions.
Therefore, knowing the way modelMi was refined byMi+1, we can automatically

23



SUT Test cases

S i

S
i+1

S
i+n

T

T

M i

M
i+1

M
i+n

     Test 
implementation

    System 
implementation

Test application

Fig. 2.9: Overview of our Model-based testing approach

refine scenarioSi into Si+1. To check whether a scenarioSi is a valid scenario of its
modelMi, i.e., modelMi satisfies(|=) scenarioSi, we use Pro-B model checker [2.7].
Pro-B supports execution (animation) of Event-B specifications, guided by CSP ex-
pressions. The satisfiability check is performed at each refinement level as shown in
theFig.2.9. The refinement of scenarioSi is the CSP trace-refinement denoted by⊑T .

After the final refinement, the system is implemented from themodelMi+n. This
implementation is calledsystem under test (SUT). The scenarioSi+n, expressed as
a CSP expression, is unfolded into the executable test casesthat are then applied to
SUT. The unfolding of scenarios into test cases is a process that is very similar to
system simulation. During this process, an Event-B model isinitialised and executed,
which being guided by the provided scenarios. For our approach, we use Pro-B model
checker,which has the functionality to animate B specifications guided by the provided
CSP expression. After the execution of each event, present in the scenario, information
about the changed system state is stored.

In other words, the execution trace is represented by a sequence of pairs< e, s >,
wheree is an event ands is a post-state (the state after execution of evente). From
now on we will refer to a single pair< e, s > as anESPair.

For a finite number of eventse1, e2.....en, present both in the modelM and the System
Under Test (SUT), a test caset of length n consists of an initial stateINIT and a
sequence ofESPairs

t = INIT, {< e1, s1 >, < e2, s2 >, ....... < en, sn >}

Similarly, a scenario is formally defined as finite set of related test cases, i.e., scenario
S = {t1, t2, .., tn}. As mentioned earlier,ESPair relates an event with its post-state.
This information is stored during test-case generation. For SUT these stored post-
states become expected outputs of the system and act as averdict for the testing. After
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execution of each event, the expected output is compared with the output of the SUT.
This comparison is done with the help of probing functions. The probing functions are
such functions of SUT that at a given point of their invocation, return state of the SUT.
For a test-case to pass the test, each output should match theexpected output of the
respective event. Otherwise, we conclude that a test case has failed. In the same way,
test cases from any refinement step can be used to test implementation as long as both
the implementation and the respective test cases share the same events and signatures.

Integration with the RODIN platform This work is being implemented as a plug-
in for the RODIN open-source platform. The Model-based testing(MBT) plug-in is
designed in such a way that it uses the Pro-B model checker [2.7] plug-in in the back-
ground (seeFig.2.10). The Pro-B plug-in is capable of generating execution traces
of the models. It is also used to verify the satisfiability relations between scenarios
and their respective models as described above. In order to generate test-cases by the
MBT plug-in, the user is first required to prove correctness of the model(s) using the
RODIN platform. Additionally, the user has to provide testing scenario(s) for the most
abstract specification model. The MBT plug-in uses the user-provided scenario(s) and
the provided B models to generate test cases. The process canbe then repeated for
each refinement step.

RODIN platform

ProB Plug-inMBT Plug-in

Event-B specifications

Execution traces

Event-B specifications, testing scenarios

Test cases

Fig. 2.10: MBT plug-in design diagram

This work has contributed toT2.1 andT2.3 [2.11].
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2.3 Impact of the Case Study on the Platform and Plug-in
Development

One of the major requirements for our case study was to achieve a high degree of au-
tomation of the development process, so that the formal verification process would be
carried out in a ’background’ mode. To achieve automation assoon as possible, we
started automated modelling and verification even before the platform has arrived. We
have conducted the development in the classical B using Atelier B as a tool support
instead. However, when the platform has arrived, our development was exported to the
RODIN platform. We carried out the experiments comparing performance of Atelier
B and the platform, i.e., we compared the portion of automated and user-guided proofs
required to verify our development. As a result of the experiments, we have established
that the platform achieves even better performance in termsof the automatically proved
proof obligations. However, carrying out user-assisted proofs is currently weaker com-
paring to the Atelier B. The types of proof obligations that are less successfully dealt
by the platform were identified and reported to the platform developers. Hence we
provided the first-hand experience feedback to the developers.

The goals set for the case study has motivated our work on developing the model-based
testing plug-in. The theory for model-based testing plug-in is based on user-provided
testing scenarios. It employs the Event-B method as a formalframework supporting
stepwise system development by refinement. Formal specifications of case study 1
are also developed and refined in a stepwise manner. Moreover, testing of the fault-
tolerance mechanisms is one of the main issues in case study 1. Some of the case study
models, e.g., specifications of service director components, were tested while devel-
oping the theoretical basis of model-based testing plug-in. Using the model-based
testing approach, test scenarios were identified at the abstract specification level and
then refined (together with the corresponding specifications) at each refinement step as
shown inFig.2.9. These scenarios also included tests of the incorporated fault toler-
ance mechanisms. As a result, the model-based testing technique adapted to stepwise
development of the case study.

2.4 Overview of the Achievements of the Case Study

In three years of our work on the case study, we have achieved the following results:

• Collection of formalised Lyra specification and development patterns reflecting
essential Lyra models and development stages;

• Separate verification of syntactic and semantic consistency of Lyra UML models
and development stages;
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• Incorporation of fault tolerance mechanisms into the Lyra development flow;

• Theoretical basis for model-based testing of Lyra models;

• Automatic translation of Lyra UML models into the Rodin platform.

Now we will show how our achievements compare with the expected results of the
case study given in the Description of Work [2.11].

Feasibility of incorporating refinement to verify model decomposition The Lyra
development flow is based on model decomposition. We have managed to validate
Lyra development flow by translating it into the corresponding B refinement process,
where the essential Lyra service decomposition and distribution transformations are
formally verified by proving them as B refinement steps between the corresponding B
models. At the same time, the fault tolerance mechanisms areincorporated into Lyra B
models. All together, this shows feasibility of incorporating refinement to verify model
decomposition.

Guidance of combining model-checking with the refinement approach Origi-
nally the formal verification in Lyra was based on model-checking approach. However,
telecommunication systems and telecommunicating protocols are usually complex and
data intensive. This approach was prone to the state explosion problem. Originally
we planned to integrate model-checking and refinement approaches to avoid state ex-
plosion problem while verifying correctness of decomposition. We intended to use
model-checking to verify conformance of system componentsto certain system-level
properties. In the duration of work this idea was transformed into the idea of conduct-
ing refinement-based model development and decomposition and using the resulting
formal model as an input for model-based testing of code implementing these models.

Enhancements of UML to B tools to support formal and semiformal methods
Initially we planned to customize the U2B tool to integrate Lyra-specific modelling
into it. However, this turned out to be a redundant step in thetool chain transforming
UML2-based models into Event B. Instead, we discovered the ATL tool which well
fitted to this purpose. Namely, it allowed us directly express translation rules between
Lyra and Event B. Besides, the use of U2B would require redefinition of the developed
formal patterns for Lyra development, while ATL preserved them. Moreover, ATL
smoothly integrated our work on Lyra UML profile and inter andintra-consistency
conditions of Lyra UML models into the translation process.

27



Validation of developed open platform and plug-ins Even though the original for-
mal development has been conducted using classical B, before the end of the project
all the developed formal models were translated into Event-B and integrated into the
Rodin platform. Moreover, the ProB plug-in has been used as the back-end for the
model-based plug-in that is being developed within the casestudy.
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SECTION 3.  CASE STUDY 2: ENGINE FAILURE 
MANAGEMENT SYSTEM 

 

 

3.1. Introduction 
 
This section of the D26 report summarises the developments leading up to and 
including the final year of the AT Engine Controls (ATEC) case study “Engine 
Failure Management System” as part of the RODIN project. In addition to the Engine 
Failure Management system  case  a second case production acceptance test “PAT” 
was undertaken in the final year is described later.*  
 
The work undertaken since the last interim report D18 [3.7] has been presented to the 
RODIN project in a series of internal workshops and presentations outlined below. 
  
  

Presentation on work (Turku Plenary, Sept 2006) 
 A summary of the case study development was presented  

 
Presentation To EU (Brussels Oct 2006)  

 An industrial evaluation of RODIN case study 2 was presented 
 

Presentation on work internal workshop  (Winchester April 2007) 
 A new ATEC case was presented.The FMS case progress was reported. 

 
Presentation on work (Oxford July 2008) 

Academic presentation from Aabo on formalising  UML based 
development in fault tolerant systems derived from the FMS case study. 

 
 
The case study has provided contributions to the following Rodin deliverables in the 
final year . 
  
 D26  Final report (this report) 
            D27  Case study demonstrator  
            D28  Assessment of tools and methods. 
            D34  Case study Evaluation. 
 
*Note: The ordering of each subsection is structured to present the FMS case material 
first then the PAT case. The final year work is consequently ordered by University of 
Southampton, Aabo Academi, and ATEC to reflect this. 
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3.1.1. The FMS case study Domain and motivations 
 
The definition of the engine failure management system has been described in the 
definition deliverable D2 [3.3] and in the initial  presentation of the project. 
 The context of the subsystem is shown in the diagram below. It illustrates that all the 
inputs to the control subsystem are handled by the failure management subsystem. 
The control subsystem computes the engine demand from these validated inputs to 
drive the engine. The engine and environmental response is then fed back to the 
control system to form  a closed loop cycle.  
 

 
Figure 3.1 – Environment of Failure Management Subsystem 
 
The FMS system is required to provide a dependable system by tolerating 
environmental faults with  the following  failure attributes derived from a 
dependability classification [3.4.1].  

-Natural physical deteriation of hardware during operation 
-Permanent or transient failures 
- non malicious failures, deliberate or accidental 
- 75% failures external to engine control unit, 100% external to software 

 
 
The case study domain aims are to achieve improvement in Failure managements  
subsystems maintenance and re-useability. The use of the Rodin technology is 
expected to contribute to improvement  by; 

1. Being able to accurately model the domain in order to reduce the semantic gap 
that exists between  application requirement and system design. This is a 
problem for the domain developer that hinders FMS maintenance. 

2.  Promote re useability by being able to develop configurable generic  model 
where various other  engines requiring FMS  systems could be catered for.  
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The application domain is safety critical which makes Rodins rigourous methods a 
particularly attractive solution to apply. 

ATEC s research aim from the study is to evaluate the feasibility of adopting the 
technology for a company with little experience in formal methods.  
The academic partners research is expected to develop techniques to support reuse in 
the domain and  enhance development of UML-B. 
 
 FMS  Background Description from University of Southampton perspective 
 
We briefly recall the ATEC specification of the FMS as in D4 [3.4]. The failure 
management subsystem (FMS) of the aircraft engine control system monitors 
environmental sensor data input, makes judgments about the health of these inputs 
(using experience of sensor hardware performance and multiple redundancy for 
improved reliability) and passes “sanitized” input data to the engine controller. The 
ATEC implementation of FMS encodes the engineers’ knowledge as heuristics, or 
confirmations, to detect any failing sensor signatures. Fig.3.2 gives a schematic high-
level design. 
The FMS comprises detection (DET) tests applied to sensor inputs (INP) subject to 
confirmations (CONF) and predicate conditions (COND) on the system state, 
resulting in actions (ACT) being taken. An action is the output of a “sanitized” sensor 
reading to the engine controller. Since a detection can act over multiple inputs, e.g. in 
the case of multiple redundant sensors, VALUE abstracts over the inputs for a 
detection, supplying just one value for testing by a DET. Thus the assembly DET-
VALUE-INP represents a coherent requirements feature of failure detection.  

A confirmation CONF is a heuristic 
monitor of a group of related 
detections, watching them over a 
window of sensor input cycles to 
reduce failure detection sensitivity to 
noise. This represents a confirmation 
feature, which interacts with detection 
via class DET and association 
detConf. There are two other features 
in this model (omitted from the figure 
for readability). DET and COND 
represent the condition feature, 
whereby detections only occur under 
appropriate system states. CONF and 
ACT represent the action feature,  

DET

VALUE

INP

CONF

COND

ACT

detVal

inpVal

hAct

tAct
pAct

detConf

detection

confirmation

Figure 2: FMS Abstract Model 

Figure 3.2 – FMS Abstract Model 
 
whereby the FMS takes appropriate action each cycle for each required system output. 

 
 

 
3.1.2. Developments in FMS case study prior to final year 
 
The first year established case evaluation metrics (derived from ATEC and University 
of Southampton viewpoint) [3.3]. Case materials were developed using a Rodin 
approach (eg Traceable Requirements Document D4]. 
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The approach taken was to address the domain aims through development of a generic 
model. 
The University of Southampton in cooperation with ATEC developed a first cut 
generic model of the failure management system (FMS) based on a UML_B profile. 
A summary of Year one work which included some early evaluation is described in 
the deliverables D8 and D14 [3.6]. 
 
In the second year, development continued on the case study with further 
development of domain models and further evaluation. Contributions by ATEC, 
University of Southampton (Soton) and  Aabo Akademi (Aabo) are summarised 
below ; 

1. Pilot  evaluation study (ATEC) 
2. Generic feature-oriented specifications in FMS (Soton) 
3. The requirements manager tool (Soton) 
4. Classic refinement development of FMS (Aabo) 

A more detailed overview is described below and in D18 [3.7]. 
 
In year 2 ATEC  redirected its focus from direct involvement in generic model 
behaviour development towards an independent evaluation of The Rodin technology 
by undertaking a pilot study. This was undertaken to address the EU reviewer’s 
comments encouraging more industrial evaluation of Rodin technology and the need 
by ATEC to gain independent modelling experience. The Pilot model is described in 
year 2 deliverable D18 section 3.3 and references to its contribution to methods and 
tools are made in section 3.2. The pilot study was a small subset of the original failure 
management case. The intention was to explore and evaluate model development 
using event style B and contribute towards the behavioural development of the other 
FMS models. Assessment additional to the Pilot study was also undertaken by 
investigating areas to improve UML-B through an examination of B, and UML, by 
assessing quality Certification issues. The contribution of year 2 work was used to  
update the case study metric assessment.   
 
 
In year 2 Aabo Akademi has worked on a classical refinement development of the 
FMS [3.2].The main result of developing the FMS by stepwise refinement in B is a 
set of formal templates for specifying and refining the FMS. The developed FMS is 
able to cope with transient faults occurring in a system of multiple homogeneous 
analogue sensors. The formal templates specify sensor recovery after the occurrence 
of transient faults and ensure the non-propagation of errors further into the system. 
 
University of  Southampton – précis of the first two years’ work 
We overview our prototype method for the engineering, validation and verification of 
generic requirements for product-line purposes [3.13]. The first stage is domain 
analysis which is based on prior experience of developing products for the application 
domain of failure detection and management in engine control. This domain analysis 
is guided by the experience of [3.16] who also worked in the engine control domain. 
Its purpose is twofold: (i) to ``identify reusable artefacts in the domain'', and (ii) to 
define a taxonomy of generic requirements and produce a generic requirements 
specification document (RSD) [3.4] subject to that taxonomy. A first-cut generic 
model in object-association terms, naming and relating these generic requirements, is 
constructed as part of the RSD. 
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The identification of a useful generic model is a difficult process and therefore further 
validation and development of the model is required. This is done in the domain 
engineering stage where a more rigorous examination of the first-cut model is 
undertaken, using the B-method and the Southampton tools. This stage also serves to 
structure ``the reusable artefacts in such a way (sic) that facilitated reuse during the 
development of new applications [3.16]. The model is animated by creating typical 
instances of its generic requirement entities, to test when it is and is not consistent. 
This stage is model validation by animation, using the ProB and U2B tools, to show 
that it is capable of holding the kind of information that is found in the application 
domain. During this stage the relationships between the entities are likely to be 
adjusted as a better understanding of the domain is developed. This stage results in a 
validated generic model of requirements that can be instantiated for each new 
application (see Fig. 3.3). 

domain analysis domain 
engineering

first-cut generic 
model

validated generic 
model

previous product 
experience

 
Figure 3.3  Process for obtaining the generic model 
 
For each new application instance, the requirements are expressed as instances of the 
relevant generic requirement objects and their associations, in an instance model - see 
Fig.3.4. The ProB model checker is then used to verify that the application is 
consistent with the relationship constraints embodied in the generic model. This 
instance, or application engineering stage, producing a verified consistent instance 
model, shows that the requirements are a consistent set of requirements for the 
domain. It does not, however, show that they are the right (desired) set of 
requirements, in terms of system behaviour that will result. 
The final stage, therefore, is to add dynamic features to the instantiated model in the 
form of variables and operations that model the behaviour of the entities in the 
domain and to animate this behaviour so that the instantiated requirements can be 
validated. This final stage of the process - ``validate instantiation'' in Fig. 3.4 – has 
been undertaken during year 3. 
 

instantiate 
generic model

verify 
instantiation

validated generic  
model 

application instance 
requirements

instance 
model

consistent instance 
model

validate 
instantiation 

validated instance 
model

 
Figure 3.4 Process for using the generic model in a specific application 
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To address the problems found with using ProB to verify instantiation data, we 
developed a “Requirements Manager” tool that interfaces with the UML drawing tool 
to automate management and verification of instance configuration data [3.7]. The 
tool was developed as an IBM Eclipse plug-in by a student group, supporting the then 
prototype UML-B. The tool provides an extension to the Rational Software Architect 
UML modelling tool (also based on Eclipse). Menu extensions are provided to 
operate the tool from the class diagram so that a database repository can be generated 
based on the classes and their associations. Class instance and association link data 
can then be ‘bulk uploaded’ directly from the Excel configuration files containing the 
specific requirements data. This avoids the tedious and error prone process of 
manually populating the class diagram with this information.  
 
Further work was performed during year 3 to progress this work as a support plug-in 
for UML-B, to be called “Context Manager”. A substantial amount of tested code 
now exists for the import of instance system context data from Excel into a context 
database, its verification w.r.t. a context metamodel, and its formatting into a RODIN 
context file. However, this code is not yet functional and this work is ongoing.  
 
 
 
3.1.3. Final year development of FMS and the  PAT case 
 
3.1.3.1 University of Southampton 
 
During the third year, work has advanced from a static model to a dynamic failure 
management system. The current model is a generic failure management system, 
which is re-usable and extensible. Re-usability is demonstrated by the integration of 
more specific contributions by Aabo Akademi.  
 
Further contributions that were made by Aabo Akademi (Aabo) and the University of 
Southampton can be summarised as: 

1. Transfer of pilot study failure management system into Rodin Platform 
(Southampton) 

2. Generic failure management system (Southampton) 
3. Dynamic features of failure management system (Southampton, Aabo) 
4. Development of failure management system using refinement (Southampton, 

Aabo) 
5. Translation of parts of Aabo’s classical B models into UML-B (Southampton) 
6. Integration of Aabo and Southampton ideas (Southampton, Aabo)  

In year 3, the focus of the development of FMS was on producing the dynamic part of 
the existing static model. The model was kept generic and abstract, such that it can 
later be refined into different more specific applications of FMS – thus enabling re-
use. The tools helped to produce this generic model, which, when fully validated and 
verified, can serve as the basis of various detailed designs for various FMS 
manufacturers. As indicated in the introduction, the generic model can be seen as the 
composition of a number of functional features – detection, confirmation, condition 
and action – which can be adapted in further refinements. 
 
Furthermore, the year 2 FMS model was converted into the new UML-B, which was 
an effective way to develop the FMS model. UML-B is an extremely suitable tool for 
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the FMS model, due to the architectural concept of FMS. The model is mainly built 
on components with associations and object constraints, using an object-oriented 
development approach. During the process of model specification and refinement, a 
methodical approach emerged for developing models in the FMS domain with Rodin 
technology. These steps were  

(1) development of configuration data model  - the context model,  
(2) development of behavioural model,  
(3) if current model is a refinement of an abstract model, find gluing invariant,  
(4) validation of model (using the ProB animator plug-in),  
(5) validation classical B machine of model using ProB model checker 
(6) verification of model using the automatic and interactive prover.  

 
These stages make up a Validation and Verification (V&V) methodology, which is 
explained in detail in the next section. This methodology is applied after every 
completed refinement stage, ensuring the correctness of the model. 
 
3.1.3.2 Aabo Akademi (Aabo)  
In the final year of the FMS development we integrate the formal refinement 
approach to developing the FMS (previously proposed in [3.15] with a UML-based 
FMS development. We show how to develop the FMS generic models in UML-B, 
through a number of development phases supported by refinement-based model 
transformations. Development starts from an abstract FMS model expressed in UML-
B. In general, we implement fault tolerance as an intrinsic part of the system by 
specifying its main steps: error detection and error recovery. The system structure and 
behaviour are specified using different types of UML-B diagrams, resulting in well-
structured system specification. Each new development phase incorporates more 
details of the fault tolerance mechanisms into previous development phases, in a 
structured manner, while preserving already specified system properties and 
behaviour. 
Overview of the development. The development starts from an abstract FMS 
description, modelling the basic system functionality. This 1st development phase 
outlines the stages of the FMS operating cycle, starting with obtaining the sensor 
readings, processing them, and either failing or calculating the output of the FMS. In 
the latter case the FMS operating cycle starts again. In addition, the system safety 
properties are specified as safety invariants. They are preserved in the 2nd 
development phase, which introduces processing of inputs performed after obtaining 
the sensor readings. Namely, it introduces the error detection procedure within the 
FMS. The error detection classifies the inputs as faulty or fault-free, continuing the 
operating cycle as previously specified. In the 3rd FMS development phase, we 
abstractly introduce the input analysis performed by the FMS after the error detection. 
The result of the input analysis is the input statuses. They determine possible FMS 
recovery actions. At this phase, we also introduce a certain predefined stopping 
(freezing) condition, and express additional system safety properties. The 4th FMS 
development phase refines the input analysis. We define the input analysis as 
performed independently on each monitored sensor. In addition, we specify in detail 
the procedure of determining the input status based on using a specific counting 
mechanism. The 5th development phase refines already specified error detection 
mechanism by introducing the evaluation tests. They are applied on the obtained 
inputs, as defined by the given test architecture. The 6th FMS development phase 
further specifies the mechanism of the error detection. Namely, it introduces time 
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scheduling to enable test execution according to the given frequencies and the internal 
state of the system. Finally, the 7th development phase focuses on the details of the 
error detection mechanism by modelling different types of evaluation tests, while still 
preserving specified safety properties. 
 The overall development results in UML-B diagrams representing general models, 
i.e., development templates, for developing similar systems. These templates can be 
instantiated for particular systems by populating the abstract data in templates by 
concrete data. For instance, we can consider different number of sensors, define 
concrete stopping conditions and internal system states, replace the abstract system 
configuration parameters (e.g., x, y, z etc.) with concrete values and so on. 
 
3.1.3.3 ATEC  The PAT Case 
In the final year ATEC has  been required to be involved in work outside of the FMS 
case  but has used this opportunity to try to adopt some   RODIN related technology 
and still address the case study evaluation aims. The new case is outlined in the next 
section, and was presented at the Winchester workshop. The new case requires 
reusability, genericity and rigour appropriate to Rodin methods and could also provide 
an example of a generic application. In addition, the case had to utilise existing 
development which allows potential assessment of the technology to addressing 
legacy issues. This case contributes to the same metrics that were developed for the 
FMS case  [3.3]. 
 
 
 
 

3.2. Major Directions on RODIN in Case Study Development 
 
This section describes the contribution of the case study in the final year. Evaluation 
is provided in D28 and D34 deliverables [3.10,3.8]. This  section is organised as 
follows 
3.2.1 FMS Case development University of Southampton 
3.2.2 FMS Case development, Aabo Akademi 
3.2.3 FMS Case development, ATEC 
3.2.4 Impact on Methodological advances  
3.2.5 Impact on platform and plugins 
 
3.2.1. Development of the University of Southampton Generic FMS model 
 
3.2.1.1 Abstract model: Feature class definition and semantic event sequencing 
 
The abstract model defines the object classes required to define the features of 
detection, confirmation, condition and action. The sequencing of key events remains 
nondeterministic, constrained only by the semantic requirements of the abstract 
model, i.e.  

• all inputs for a given value updated before evaluation of the value,  
• all values for a detection updated before the detection is enabled 
• all detections for a confirmation performed before confirmation is enabled 
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The context of the abstract model was created first. The data and associations of the 
context model is described below. The data and context setup were taken in 
accordance to the original FMS specification [3.4].  
 
  

 
Figure 3.5 – Context Diagram – Abstract Model  
 
The figure shows the context diagram of the abstract model. There are six class types, 
which have a set of instances.   

• INP: The type of possible input signals that can be read by the FMS 
• VAL: The type of a value that an input is associated with. An input can have 

one or more values, as recorded in association inpVal. 
• DET: Set of detections. Every value can have one or more detections, as 

recorded in association detVal. 
• COND: Set of conditions on system state under which a detection is enabled. 

If a condition is true for a certain detection, this detection is applied to check 
whether a value is erroneous or not. A condition is associated with one or 
more detections, as represented by detCond. 

• CONF: This is the set of possible confirmations. A confirmation is mapped to 
one or more detections, as recored by the relation detConf.  

• ACT: Set of possible actions. In this set we distinguish between healthy, 
confirming and confirmed actions. Every confirmation has one of each of 
those actions, recorded by ConfAct_H, ConfAct_C, ConfAct_P.  

 
The class types and their relations (associations) constitute the static context setup. 
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This instantiation of the model (Fig. 3.5 - one example highlighted by red circle) was 
performed for validation purposes – which allow animating the model using the ProB 
animator plug-in. It is important to note that the distinction between abstract (generic) 
and concrete (specific instance configuration data definition) context specification is 
not made in RODIN at present. The distinction will be made and supported in future, 
in pursuit of full product-line working, by the Context Manager work discussed in the 
FMS précis in section 1 above. 
 
The behavioural model of the abstract stage is depicted below. It describes only 
semantic event sequencing between model objects, which is achieved by constraining 
the events using the relations between the classes. Otherwise there is no functionality 
at this level of abstraction; everything else in the model is abstract and non-
deterministic. For example, pass or fail judgment of the detection feature is modelled 
as the indecisive pass_fail event here. 
 
Corresponding to the class types of the context model, there are six fixed classes; their 
instances are defined as the type expressions of the context. In this abstract model the 
relations between the classes are subsets of the corresponding context associations. 
The maplets in these relations represent the enabling of one object by another. For 
example, event evaluate for some VALUEx is only enabled once all maplets {INPy 
|-> VALUEx} for corresponding INPs { INPy} in context association inpVal, appear 
in variable association inpEnablesVal.  Thus inpEnablesVal is a dynamic subset of 
static inpVal. As another example, dynamic detEnablesConf is a subset of static 
detConf. Enablement of a confirmation event for some CONFx requires all valid 
maplets {DETy |-> CONFx}  to be retrieved from detConf and added to 
detEnablesConf. After that event is actioned, all these maplets are removed from 
detEnablesConf in order that the next detection/ confirmation cycle can run through 
for CONFx. 
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Figure 3.6  class diagram – abstract model 
 
3.2.1.2 Refinement 1 Detection 
In refinement 1, we reduce some of the non-determinism of the detection feature; 
event pass_fail is split into two events, fail and pass that perform the detection test. 
The context is extended with two more class types, STATUS and DIR, in order to 
note whether a detection has passed or failed, and in order to perform tests 
respectively. Another constant, limit, is introduced, which assigns a natural to each 
detection. The constants dir and limit (defined as attributes on class DET) give a 
direction and a limit to each detection, which is the data used in the behavioural 
model in order to detect failures. Every det is simply a bound test; the limit is tested 
against the det’s value (defined by the relevant maplet in detVal), which is assigned 
in event evaluate at refinement 1.  
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Figure 3.7 context diagram – abstract model 
 
The behavioural model is refined to add more detail to the detection mechanism. In 
the abstract model, val was completely abstract and did not have a value. A value, as 
a natural-valued attribute on class VAL, is assigned here in order to perform the tests. 
This is still an abstract description; the computation of a val from its associated inps 
is a matter for lower-level refinement. The addition of those bound tests, i.e. test the 
value of a det against the limit and the direction against the direction set up in the 
context, reduces the non-determinism of pass_fail. Thus, the event pass_fail is 
refined into two separate events. 
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Figure 3.8 class diagram – refinement 1 
 
The additions made to refinement 1 are highlighted in the figure above. The value 
attribute is added to class val, which is a function from val to a NAT, in order to give 
a number to each value. The event pass_fail has been refined into two separate 
events, which have all the detection mechanism added to their guards. The detState is 
set to either PASS or FAIL depending on the detection event that was enabled.  
 
Another very important issue of refinement is the verification of the refinement. This 
is done by introducing gluing invariants to the refinement. The gluing invariant used 
for this refinement states that as soon as a value is in the domain of valEnablesDet, 
that value is also in the domain of value, i.e. has a natural number assigned to it.  
 
3.2.1.3 Refinement 2: Abstract confirmation via detection patterns 
 
The second refinement adds detail to the confirmation feature of the model. The class 
type CONF_STATE is introduced, whose instances are used to denote the state of 
confirmation. A confirmation is defined as a judgment at a point of time, at which the 
healthiness of a set of inputs is determined. The confirmation mechanism requires sets 
of patterns that are set up in the context. These patterns help determine, whether an 
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input is healthy, confirming or confirmed. In order to keep the model abstract and 
maintain the ability to refine it into different confirmation mechanisms/algorithms, the 
patterns are defined to be unique to each confirmation, i.e. each confirmation can have 
different patterns. There is a set of healthy patterns (healthy_pattern), and a set of 
confirmed patterns (conf_pattern). At this level of abstraction, this confirmation 
mechanism is already quite concrete, because it already defines a set of patterns of a 
certain length to help judge the healthiness of a set of inputs. 
 

Figure 3.9: context diagram – refinement 2 
 
The behavioural model is refined by adding a confirmation history (confHistory) 
recording mechanism, which records a sequence of BOOLs to denote passes and 
failures of each confirmation.  The events healthy, confirming and confirm are also 
refined by adding guards to distinguish between healthy, confirming or confirmed 
patterns. 
 

 
Figure 3.10: class diagram – refinement 2 
 
New CONF attribute historyChanged denotes a change of history, i.e. TRUE is 
written to historyChanged when a new BOOL element is added to the sequence. The 
writeHist event is refined into two events in this refinement, to either write TRUE or 
FALSE to history. The guards of these two events distinguish which of the two events 
is enabled. Depending on the sequence of BOOLs, i.e. whether the sequence is a 
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subset of healthy patterns or confirmed patterns, either healthy or confirm is enabled 
respectively. Confirming is enabled in the case the sequence does not match either a 
healthy or a confirmed pattern. This confirmation mechanism is an abstract 
confirmation heuristic, which can be elaborated in further refinements. The 
confirmation heuristic is that if all dets of a conf have passed, TRUE is written to 
confHistory, whereas, if at least one det fails, FALSE is written to confHistory.  
 
The gluing invariant in this refinement shows the relation between confHistory and 
detState. It denotes that if the last element of a confHistory is FALSE, then at least 
one of the dets for this conf must have detState = FAIL. Similarly, if the last element 
of confHistory is TRUE, the detStates for all associated dets must be PASS. 
 
3.2.1.4 Refinement 3: Aabo integration – process cycle statemachine 
 
In this refinement, integration of part of the Aabo model into the Southampton model 
is shown. The Aabo model consists of a system statemachine, constraining the 
sequence of events in a linear manner typical of the target processor cycle.  This 
sequence allows all inputs to be read first, which then has to be followed by the 
evaluation, then the detection, the confirmation loop and then an action. In order to 
incorporate this into the model, a statemachine is introduced, which defines this 
sequence of events.  
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Figure 3.11: statemachine and class diagram – refinement 3 
 
Figure 3.11 shows the statemachine that was added to the model. The statemachine 
has five states. These states are added to all the events in the class diagram (not shown 
in figure) to restrict the events, i.e. guard added to reading event – fmsState = 
fms_env, which only enables the event reading when the system is in state fms_env. 
When all inputs have been read, the event allRead is enabled, which will set the 
system state to fms_val, which enables the evaluate event. Thus event guard 
strengthening reduces the non-determinism in event sequencing. In this way, Aabo’s 
FMS state idea was successfully integrated into the Southampton model. 
 
3.2.1.5 Refinement 4: Aabo integration: concrete confirmation via counting 
algorithm 
 
In refinement 4, Aabo’s counting algorithm (precisely that of the original CS2 
specification [3.4] is integrated into the model. The context diagram had to be 
extended to include the different constants required by Aabo’s counting algorithm. In 
the current model these constants are global, i.e. not unique to each conf. 
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These are 
• ZZ : counter limit 
• LIMIT: maximum number of cycles allowed before a confirmation fails 
• XX: added to the counter if there is a fail  
• YY: subtracted from the counter if there is a pass. 
 
In summary, the counting algorithm keeps a counter for each confirmation. This 
counter is set to two, and whenever there is a failed detection, XX is added to the 
counter. Should the detection pass, YY is subtracted from the counter. Once the 
counter reaches zero, the input is considered healthy, and if a set counter limit ZZ is 
reached, the input is considered failed. There is a restriction on the maximum number 
of cycles allowed (LIMIT); for each cycle, another counter, which is unique to each 
confirmation, is incremented by one. If LIMIT is reached, the input is also considered 
failed. 
 

 
Figure 3.12: context diagram – refinement 4 
 
Due to some UML-B restrictions (see feature request 1777268) the existing events 
healthy, confirming, confirmed, had to be fully moved into the statemachine in 
order to be able to use a statemachine for refinement. The additional data that was 
added to the guards required some of the events to be refined into two events. 
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Figure 3.13: class diagram – refinement 4 
 
The statemachine in figure 3.14 shows the refinement of the events.  
 

 
Figure 14 statediagram – refinement 4 
 
In this way, the refined guards further restrict the event enablement. An overview of 
the counting mechanism/algorithm guards can be viewed in Figure 3.15. 
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Figure 3.15: Integration of counting algorithm 
 
This chart shows the original event names, which, for modelling reasons had to be 
renamed in the Rodin platform. Blue denotes the history mechanism of the 
Southampton model, whereas red denotes the guards of Aabo’s counting algorithm. 
 
3.2.2. FMS Case  Development (Aabo) 
 
The UML-B development of the FMS is performed in phases. Each development 
phase is described by a set of UML-B models depicting the main structural and 
behavioural aspects of the FMS at a corresponding level of abstraction. 

Phase 1: Abstract specification of the FMS 

In the 1st development phase we model the FMS cycle very abstractly: the FMS reads 
input values from the sensors, and it either calculates the output or fails. If the output 
is successfully calculated, the FMS cycle starts again. In case of a failure, the system 
enters the ‘freezing’ state. 
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Figure 3.16. The class diagram and the statechart fms_state for the 1st FMS 
development phase 
 
Structure. The abstract FMS is modelled as the stereotyped package <<machine>> FMS0. 
The corresponding class diagram outlines the general system structure. The class FMS 
models the generic part of the system, i.e., properties of the whole system. For 
instance, the calculated system output is modelled as the attribute Output of the class 
FMS. The concrete sensor readings, i.e., input values to the FMS are modelled as the 
attribute InputN of the class INDEX that models the monitored sensors. To model the 
procedure of calculating the FMS output, we introduce the attribute Last_Good_InputN to 
the class INDEX. Moreover, INDEX becomes a superclass of the subclass 
ACCEPTABLE_INPUTS, which models the inputs from sensors that did not fail. Similarly, 
the subclass GOOD_INPUTS further partitions the space of ACCEPTABLE_INPUTS by 
modelling the fault-free inputs only. 
 
Behaviour. The class FMS encapsulates the overall system behaviour within the 
attached fms_state statechart. The names of the states within this statechart correspond 
to the phases of the FMS operating cycle. They have the following meaning:  
env – the state in which the FMS obtains inputs from the monitored sensors, 
act – the state in which the FMS analyses the inputs and performs recovery actions, if 
needed, 
out – the state in which the FMS calculates and sends the output to the controller, 
freeze – the state in which the FMS freezes (i.e., shuts down the system).  
The transitions between states are directly related with the methods defined in the 
class FMS. After the FMS is initialized, the FMS operating cycle starts by executing 
the method Environment. It triggers the action def_Set_InputN, specified on the 
corresponding transition in the statechart fms_state. The action simulates the inputs 
readings by arbitrarily setting the values of the attribute InputN for all instances of the 
INDEX class. After that, the FMS executes the method Action, i.e., it either fails or 
continues by calculating the output. In case the FMS has successfully calculated the 
output, the action def_Update updates the set of the monitored sensors, considering in 
further FMS cycles only those which did not fail. The acceptable inputs are arbitrarily 
chosen from the set of inputs of all operational (non-failed) sensors. If the FMS has 
not failed at the current cycle, it produces the system output by executing the method 
Return, which corresponds to the statechart transition with the same name. The output 
is calculated based on the last good input values, which are systematically updated by 
the values of the fault-free inputs at each FMS cycle. If the FMS fails, it does not 
resume its cyclic behaviour and stays in the failed (i.e., frozen) state. To ensure 

49



system safety, we define an invariant attached to the FMS class. This safety invariant 
specifies that the FMS can operate relying only on the sensors that have not failed. 

Phase 2: Introducing error detection by refinement 

The 2nd FMS development phase introduces an abstract representation of error 
detection, performed by the FMS after obtaining the sensor readings. Hence, we 
enhance the specification of the FMS cycle to include the error detection mechanism. 
Namely, after reading the input values from the monitored sensors, the FMS performs 
the predefined error detection procedure on them. As a result, it classifies the inputs as 
faulty or fault-free. Then, it continues its operation as specified in the previous 
development phase.  
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Action()
Return()
Fail()
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INDEX
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Action / def_Update
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Figure 3.17. The class diagram and the statechart fms_state for the 2nd FMS 
development phase 

 
Structure. The class diagram of the package FMSR1 preserves the structure defined at 
the previous development phase. However, to model the results of the error detection, 
we introduce the new attribute Input_In_ErrorN into the class INDEX. It is a boolean 
attribute, which is set to TRUE if the error is detected on the monitored input, and to 
FALSE otherwise. Initially, we consider that the inputs are fault-free. 
 
Behaviour. To incorporate an abstract model of error detection, we refine the 
statechart by adding the new substates det and act1 within the existing state act, and the 
corresponding new transition Detection between them. However, we preserve the flat 
statechart representation. The action def_Set_Input_In_ErrorN defined in the method 
Detection nondeterministically assigns values to the variable Input_In_ErrorN. Since at each 
FMS cycle all the inputs are initially considered fault-free, the attribute Input_In_ErrorN 
has to be reinitialized. Therefore, we introduce the method def_Reinitialize into the class 
INDEX. The method sets the values of Input_In_ErrorN to FALSE, meaning that none of the 
monitored inputs is considered faulty before actual detection is performed. 

Phase 3: Introducing input analysis by refinement 

In the 3rd FMS development phase we introduce an abstract representation of input 
analysis performed by the FMS after the error detection. Once the FMS detects a 
faulty input, it uses the input analysis to decide whether it can be recovered or not. 
Then it saves the results of the analysis as the current input status and continues its 
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operation either by calculating the output or failing when a certain predefined 
stopping condition is satisfied. 
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Figure 3.18. The class diagram and the statechart fms_state for the 3rd FMS 

development phase 
 
Structure. To introduce the details of the input analysis, we first modify the structure 
of our model by altering the class diagram of the package FMSR2. To model the 
obtained result of the input analysis, we add the attribute Input_StatusN to the class 
INDEX. Possible values of this attribute are either ok (represents a fault-free input), 
suspected (represents a faulty yet recoverable input), or confirmed_failed (represents a 
faulty but non-recoverable input). We also introduce an abstract representation of the 
stopping condition as a boolean attribute StopCond in the class FMS. If StopCond is 
evaluated to TRUE, the system should be stopped (i.e., shut down). 
 
Behaviour. To specify the input analysis in the FMS operating cycle, we refine the 
state act1 in the statechart fms_state. We add the new substates anl and act2 to the state 
act1 and the transition Analysis between them. Its action part, explicitly describing the 
input analysis calculations, is defined as the method def_Set_Input_StatusN of the class 
INDEX. The method produces a result of the input analysis on the basis of the error 
detection results from the previous step. Namely, the inputs detected as faulty become 
either suspected or confirmed_failed, whereas the inputs detected as fault-free are given 
the status of either ok or suspected. The abstract subclasses ACCEPTABLE_INPUTS and 
GOOD_INPUTS are refined using the information about the input status. We define the 
acceptable inputs as the inputs whose status is ok or suspected. Similarly, the good 
inputs are the inputs whose status is ok.  
  
Phase 4: Refining the input analysis 

The 4th FMS development phase further refines the input analysis. In the previous 
phase, we defined the input analysis as an atomic action, which assigns the statuses of 
all monitored sensors at once, where in reality the sensor inputs are analyzed 
independently, i.e., one by one, until all the inputs are analyzed (processed). In this 
phase, we also specify in detail the procedure of determining the input status. It is 
based on using a specific counting mechanism, which re-evaluates the status of the 
analyzed inputs at each FMS cycle, allowing us to introduce input recovery. As a 
result, some of the suspected inputs can be recovered and used in the next FMS cycle. 
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<<static>> def_Set_Input_In_ErrorN()
<<static>> def_Set_Input_StatusN()
def_Set_Input_StatusN1()

ACCEPTABLE_INPUTS

GOOD_INPUTS

Figure 3.19 The class diagram and the statechart fms_state for the 4th FMS 
development phase 

 
Structure. To model realistic input analysis and a counting mechanism (i.e., 
recovery) required for the input analysis, we extend the class diagram with additional 
attributes. First, we focus on the data structures needed to model the step-by-step 
input analysis. Since the analysis is performed on each input (i.e., each instance of the 
class INDEX), we need to keep the record of those inputs that are already analysed 
within the current operating cycle. Hence, in the class INDEX we introduce the boolean 
attribute Processed. It is set to TRUE, if the input has been processed, and to FALSE 
otherwise. The attributes introduced to support the counting mechanism should enable 
controlled input recovery. To ensure error recovery termination, we need a counter 
that keeps track of input behaviour. Hence, we introduce the attribute cc into the class 
INDEX. It accumulates the values determining how trustworthy a particular input is. If 
the input is determined as faulty, its trustworthiness is “measured” by a certain 
predefined value x, generic for the system and hence introduced as a constant attribute 
in the class FMS. On the other hand, if the input is determined as fault-free, its 
trustworthiness is evaluated by another predefined value y, introduced similarly as the 
attribute x. To ensure finite error recovery, we should keep cc below the predefined 
upper limit z, which is introduced as an additional configuration parameter. Moreover, 
we introduce an additional counter num, which counts the number of the consequent 
recovery cycles for each recovering input. In addition, we specify the maximum 
number of the allowed recovery cycles for all inputs as the constant attribute Limit of 
the class FMS. Both num and Limit are specific for the whole system and hence are 
defined as attributes of the class FMS. 
 
Behaviour. To model the input analysis, we need to extend the FMS state space by 
adding a new hierarchical state to the existing statechart fms_state. Specifically, we 
refine the state anl by unfolding its substates anlloop and fin_anl. A new transition 
between these substates specifies an additional FMS method – AnalysisLoop. In general, 
after performing the error detection, the FMS starts analyzing the inputs one by one, 
until all the inputs are processed. Hence, the guard ran(Processed)={TRUE} of the 
transition AnalysisLoop defines the terminating condition for the analysis. The FMS 
implements the gradual input analysis as specified by a newly introduced statechart 
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attached to the class INDEX – Input_StatusN1. It describes a deterministic procedure of 
determining the status of a single input. 

ok

suspected

confirmed_failed

def_Set_Input_StatusN1[ Input_In_ErrorN=FALSE & G3 ] / A3

def_Set_Input_StatusN1[ Input_In_ErrorN=FALSE & G3 ] / A3

def_Set_Input_StatusN1[ Input_In_ErrorN=FALSE & G3 ] / A3

def_Set_Input_StatusN1[ Input_In_ErrorN=TRUE & G1 ] / A2

def_Set_Input_StatusN1[ Input_In_ErrorN=TRUE & G1 ] / A2

def_Set_Input_StatusN1[ Input_In_ErrorN=FALSE & G2 ] / A1

def_Set_Input_StatusN1[ Input_In_ErrorN=FALSE & G5 ]

 
where: 

G1=(num+1 ≥ Limit OR cc+x ≥ z) 
G2=(num+1<Limit ∧ cc-y=0) 
G3=(num+1<Limit ∧ cc-y>0) 
G4=(num+1<Limit ∧ cc+x<z) 
G5=(num=0 ∧ cc=0) 

A1=(num:=0 ∥ cc:=cc-y) 
A2=(num:=num+1 ∥ cc:=cc+x) 
A3=(num:=num+1 ∥ cc:=cc-y) 

 
Figure 3.20. The statechart Input_StatusN1 specifying the behaviour of the class 

INDEX 
 
The input status changes depending on the values of the configuration parameters x, y, 
z, cc, Limit, and num. For clarity, in the statechart we use the abbreviations to express 
the guards and the corresponding actions specifying the transition 
def_Set_Input_StatusN1. It corresponds to the method of the class INDEX and operates on 
the instances of this class (i.e., on single inputs), rather then on the whole class. 
 In our previous development phases, we defined the attribute Input_StatusN 
modelling the results of the input analysis performed within the method 
def_Set_Input_StatusN. Now, the statechart Input_StatusN1 describes the change of the 
input status for a single input. To establish the refinement relationship between the old 
attribute Input_StatusN and the newly introduced statechart Input_StatusN1, we refine the 
method Analysis from the previous development phase. Namely, after all inputs are 
analyzed (i.e., AnalysisLoop is completed), the intermediate results of the analysis are 
assigned to the attribute Input_StatusN. 
Since each new FMS operating cycle should start with unprocessed inputs, the 
attribute Processed should be reinitialized. The action def_Reinitialize is refined to 
implement this requirement. 

Phase 5: Refining the error detection – introducing the evaluation tests 

In the 2nd development phase, we already abstractly specified the error detection part 
of the FMS. In this development phase, we further refine it by introducing the 
evaluation tests that are consecutively applied on the obtained inputs. They determine 
the result of the detection for each input separately, rather than for all of them at once, 
as modelled in the previous phases. After executing all predefined tests on the 
obtained inputs, the FMS proceeds with the input analysis based on the results of the 
applied tests, as described earlier. 
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Structure. To model evaluation tests, we introduce an additional class into our 
previous class diagram – the class TEST. The tests applied to the inputs obtained by 
the FMS form a specific architecture expressing the dependencies between them. 
These dependencies are modelled as the association 

T

ComplexTest. This allows us to 
distinguish between tests that are independent and those that depend on the results of 
other tests. The additional constraint attached to the association ComplexTest requires 
that a test can not depend on itself.  
 

<<refinement>> FMSR4
FMS

Output : NAT
<<cons tant>> StopCond : BOOL
<<cons tant>> x : NAT
<<cons tant>> y : NAT
<<cons tant>> z : NAT
<<cons tant>> Limit : NAT

Environm ent()
DetectionLoop()
Detection()
Analys isLoop()
Analys is ()
Action()
Return()
Fail()
<<static>> def_Set_Output()

ACCEPTABLE_INPUTS

GOOD_INPUTS

IT
TestExecuted : BOOL
TestPassed : BOOL
<<static>> Counter : NAT

<<static>> def_Set_Counter()
def_RunTestOnInput()

INDEX
InputN : NAT
Las t_Good_InputN : NAT
Input_In_ErrorN : BOOL
Input_StatusN : INPUT_STATUSN
Processed : BOOL
cc : NAT
num : NAT
Input_In_ErrorN1 : BOOL

<<s tatic>> def_Set_InputN()
<<s tatic>> def_Update()
<<s tatic>> def_Reinitialize()
<<s tatic>> def_Set_Input_In_ErrorN()
<<s tatic>> def_Set_Input_StatusN()
def_Set_Input_StatusN1()
def_Set_Input_In_ErrorN1()

TEST

1..n
0..n

1..n

ComplexTest

<<cons tant>>

{!aa.(aa:dom(ComplexTest)=>aa/:ComplexTest(aa))}

0..n

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

env

anlloop

Analys isLoop[ ran(Processed)/={TRUE} ] / def_Set_Input_StatusN1

fin_anl

Analys isLoop[ ran(Processed)={TRUE} ]

act2

Analys is  / def_Set_Input_StatusN

freeze

Action[ StopCond

Figure 3.21. The class diagram and the statechart fms_state for the 5th FMS 
development phase 

We need to keep track of all tested inputs and their test results. Hence, we introduce 
the association class IT, modelling the set of all (test, index) pairs in the following 
way. If it is an instance of IT, then it.test refers to its first element, and it.index to the 
second element. For each such instance, we first define whether the particular input 
has been tested by its corresponding test. We model this by introducing the boolean 
attribute TestExecuted into the class IT. For each instance the attribute either has the 
value TRUE, if it.index has been tested by it.test, or FALSE otherwise. Similarly, the 
boolean attribute TestPassed models the results of test execution for instances of IT. 
The attribute has the value TRUE, if the test has been successfully passed by the 
corresponding input, and FALSE otherwise. 

 ]

out

Action[ not(StopCond) ] / def_Update

Return / def_Set_Output || def_Reinitialize

det

detloop

fin_det

detloop

Environm ent / def_Set_InputN || def_Set_Counter

DetectionLoop[ Counter>0 ] / def_RunTestOnInput ; def_Set_Counter

fin_det

DetectionLoop[ Counter=0 ]

Detection / def_Set_Input_In_ErrorN
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 Since the decision whether some particular input is faulty may be based on 
more than single test execution, in the class INDEX we introduce the attribute 
Input_In_ErrorN1, which represents the final result of the error detection based on all 
tests executed on that input. In addition, to model the terminating condition for the 
error detection, we introduce the static attribute Counter in the class IT. This attribute 
defines the number of the remaining tests still to be executed on the inputs from the 
monitored sensors. 
 
Behaviour. Refinement of the error detection introduces the substates detloop and 
fin_det within the state det. The transition DetectionLoop between these substates is 
specified as an additional FMS method. In general, after obtaining the inputs from the 
monitored sensors, the FMS proceeds with error detection on single inputs, until all 
the inputs are determined faulty or fault-free, i.e., until all the tests required to be 
executed on each input are applied. Hence, the guard Counter=0 of the transition 
DetectionLoop defines when the detection process is completed. The value of the Counter 
is set prior to the error detection by the action def_ Set_Counter within the method 
Environment. In addition, Counter is re-evaluated after each detection loop by the same 
action. This action sets Counter to the number of IT instances that have not been tested 
yet. After determining the initial number of DetectionLoop iterations, the FMS 
implements step-by-step error detection, as specified by a newly introduced statechart 
attached to the class IT – TestOnInput. Initially, none of the tests is executed. The 
method def_RunTestOnInput of the class IT specifies the detection in detail. It is 
associated with the transitions of the statechart TestOnInput. The method results in 
distinguishing between faulty and fault-free inputs. Namely, when an input has 
successfully passed a certain test (TestPassed=TRUE), the value of Input_In_ErrorN1 stays 
unchanged, i.e., it remains FALSE as specified initially. However, if the test has failed 
(TestPassed=FALSE), the value of Input_In_ErrorN1 for the tested input is set to TRUE by 
the corresponding action def_Set_Input_In_ErrorN1.  

not_executed

executed_undefined

def_RunTestOnInput / Tes tPassed::BOOL || TestExecuted:=TRUE

executed_passed executed_not_passed

def_RunTestOnInput[ Tes tPassed=TRUE ] def_RunTestOnInput[ TestPassed=FALSE ] / def_Set_Input_In_ErrorN1(self.index)

 
Figure 3.22. The statechart diagram TestOnInput 

 
 This refinement step focuses on refining the method Detection. In the previous 
models, its action def_Set_Input_In_ErrorN nondeterministically set the error detection 
results at once, on all obtained inputs. Now, however, these results are determined 
consecutively, for each single input and then after accumulated in Input_In_ErrorN1 
assigned to Input_In_ErrorN. 
 The safety invariant of this development phase guarantees that, if any of the 
tests applied on a certain input has failed, the input is considered in error. Moreover, 
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we require that, for some input to be fault-free, it should successfully pass all the 
executed tests. 

Phase 6: Refining the error detection – introducing the time scheduling 

The 6th FMS development phase further specifies the mechanism of the error 
detection. The applicability of the evaluation tests, introduced in the previous 
development phase, depends on the test frequencies and the internal state of the 
system. At this development phase, we introduce this information into the error 
detection procedure. Namely, to enable tests executions according to the given 
frequencies, we introduce time scheduling. We model a global clock, which is used to 
guarantee that the tests with the same frequencies are executed at the same time 
instances. 
 
Structure. The main structural change in the 6th development phase is the 
introduction of two additional classes into the system. The first one – the class STATES 
– allows us to model the set of internal states of the system. The second one – the 
class CONDITION – is an association class. It has only one boolean attribute Cond, 
modelling the enableness of a certain test with respect to the internal system state. If 
Cond is TRUE then the corresponding test is enabled for execution at the given internal 
system state. Otherwise, it is disabled. 
 By introducing the attributes Time and State into the class FMS, we actually 
implement the concepts of the current time and the current internal system state. Since 
the enableness of an evaluation test depends not only on the internal system state but 
also on the given test frequency, we add the attribute Freq to the class TEST. It models 
the predefined execution frequency for each test. Furthermore, we explicitly define 
how and when the time progresses in our system. Hence, we introduce the attribute 
Clock_Flag into the class FMS, modelling the state of the time scheduler. It can be either 
enabled or disabled. Initially, we assume it to be disabled. 
 

<<refinement>> FMSR5

ACCEPTABLE_INPUTS

GOOD_INPUTS

IT
TestExecuted : BOOL
TestPassed : BOOL
<<static>> Counter : NAT

<<static>> def_Set_Counter()
def_RunTestOnInput()

CONDITION
<<cons tant>> Cond : BOOL

FMS
Output : NAT
<<cons tant>> StopCond : BOOL
<<cons tant>> x : NAT
<<cons tant>> y : NAT
<<cons tant>> z : NAT
<<cons tant>> Lim it : NAT
Tim e : NATURAL
State : STATES
Clock_Flag : CLOCK_STATES

Environm ent()
DetectionLoop()
Detection()
Analys isLoop()
Analys is ()
Action()
Return()
Fail()
<<s tatic>> def_Set_Output()
TickTime()

INDEX
InputN : NAT
Last_Good_InputN : NAT
Input_In_ErrorN : BOOL
Input_StatusN : INPUT_STATUSN
Processed : BOOL
cc : NAT
num : NAT
Input_In_ErrorN1 : BOOL

<<static>> def_Set_InputN()
<<static>> def_Update()
<<static>> def_Reinitialize()
<<static>> def_Set_Input_In_ErrorN()
<<static>> def_Set_Input_StatusN()
def_Set_Input_StatusN1()
def_Set_Input_In_ErrorN1()

STATES

TEST
<<cons tant>> Freq : NAT

1..n

0..n

1..n

ComplexTest

<<constant>>

{!aa.(aa:dom(ComplexTest)=>aa/:ComplexTest(aa))}

0..n

 
Figure 3.23. The class diagram for the 6th FMS development phase 

Behaviour. To model time scheduling of tests depending on their frequencies and the 
internal system state, we need to specify how the time in the system changes and how 
it affects the evaluation tests. This is defined by the method TickTime in the class FMS. 
The method increments the value of the current time, whenever Clock_Flag is enabled 
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and there exist the tests enabled for execution at the current time instance. In addition, 
it models a possible change of the internal system state by nondeterministically 
updating the attribute State. When there are no more tests enabled for execution, 
Clock_Flag is disabled and the FMS cycle proceeds as specified earlier. 
 A new FMS cycle can start only after the previous one finishes, i.e., the time 
should not progress before the cycle is finished. Hence, we add the guard 
Clock_Flag=disabled on the transition Environment in the diagram fms_state. 
 The main focus of this refinement step is on refining the method 
def_RunTestOnInput by introducing additional guards to the corresponding transitions in 
the statechart TestOnInput. These guards specify that: the tests are executed with certain 
given frequencies; for some complex test to be executed, its frequency has to be 
divisible by the frequencies of all the simple tests required for its execution; execution 
of each test depends on the current internal state of the system. 

Phase 7: Refining the error detection – introducing types of evaluation tests 

The 7th development phase continues to elaborate on the error detection mechanism 
by modelling different types of evaluation tests. We replace the nondeterministic 
detection procedure by a deterministic one, which introduces concrete steps of test 
application. 
 
Structure. To introduce specific types of the evaluation tests, we define the 
subclasses of the class TEST. The subclasses are: MAG – the magnitude tests, PRED – 
the predicted value tests, RATE – the rate tests, MULT – the dual sensor difference tests. 
Each of the subclasses also introduces test specific properties, by defining them as 
subclass attributes. For instance, the subclass MAG has two constant attributes upLimit 
(the upper limit of an input) and loLimit (the lower limit of an input) needed for the 
execution of the magnitude test. 
 

<<refinement>> FMSR6

FMS
Output : NAT
<<cons tant>> StopCond : BOOL
<<cons tant>> x : NAT
<<cons tant>> y : NAT
<<cons tant>> z : NAT
<<cons tant>> Lim it : NAT
Tim e : NATURAL
State : STATES
Clock_Flag : CLOCK_STATES

Environm ent()
DetectionLoop()
Detection()
Analys isLoop()
Analys is()
Action()
Return()
Fail()
<<s tatic>> def_Set_Output()
TickTime()

ACCEPTABLE_INPUTS

GOOD_INPUTS

IT
TestExecuted : BOOL
TestPassed : BOOL
<<static>> Counter : NAT

<<static>> def_Set_Counter()
def_RunTestOnInput()
<<s tatic>> def_Testing()

CONDITION
<<cons tant>> Cond : BOOL

STATES
INDEX

InputN : NAT
Last_Good_InputN : NAT
Input_In_ErrorN : BOOL
Input_StatusN : INPUT_STATUSN
Processed : BOOL
cc : NAT
num : NAT
Input_In_ErrorN1 : BOOL
Previous_InputN : NAT

<<static>> def_Set_InputN()
<<s tatic>> def_Update()
<<s tatic>> def_Reinitialize()
<<s tatic>> def_Set_Input_In_ErrorN()
<<s tatic>> def_Set_Input_StatusN()
def_Set_Input_StatusN1()
def_Set_Input_In_ErrorN1()

TEST
<<cons tant>> Freq : NAT

1..n

0..n

1..n ComplexTest

<<cons tant>>

{!aa.(aa:dom(ComplexTest)=>aa/:ComplexTest(aa))}

0..n

MAG
<<constant>> upLimit : NATURAL
<<cons tant>> loLim it : NATURAL

PRED
<<cons tant>> Tolerance : NATURAL
<<cons tant>> Predicted_Value : NATURAL-->NATURAL

RATE
<<cons tant>> rateLimit : NATURAL

MULT
<<constant>> diffLim it : NATURAL

 
Figure 3.24. The class diagram for the 7th FMS development phase 
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executed_undefined

not_executed

def_RunTes tOnInput / def_Tes ting

executed_passed executed_not_passed

def_RunTes tOnInput[ Tes tPassed=TRUE ] def_RunTestOnInput[ Tes tPassed=FALSE ] / def_Set_Input_In_ErrorN1(self.index)

 
Figure 3.25. The refined statechart TestOnInput 

 
Behaviour. We refine the main method DetectionLoop to model the tests executed with 
given frequencies and their dependency on the current internal state of the system. 
The guard of the action def_RunTestOnInput within the method DetectionLoop controls the 
enableness of tests for execution. However, def_RunTestOnInput does not specify in 
detail how the actual testing of the input value is performed. Instead, this is modelled 
as a nondeterministic assignment to the variable TestPassed. At this development 
phase, we refine this nondeterminism by introducing the method def_Testing in the 
association class IT. It is defined as action on the transition def_RunTestOnInput in the 
statechart TestOnInput and fully specifies the FMS error detection mechanism. 
 
3.2.3. PAT Case  Development (ATEC) 

 
3.2.3.1 The PAT Case 
 
The case consists of production of a tests specification for a  Production Acceptance 
Test system (PAT) which tests the hardware platform and insitu software (which 
includes an FMS system) for manufactured engine control production units. The 
application is required to be configurable for different types of engine controllers, 
making it a well suited application to investigate generalisation and re use techniques 
appropriate to RODIN and in this sense supports the aims of the FMS case study. Its 
context is given below. 
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Figure 3.26 – PAT Context Diagram 
 
Basic Functionality 

• The test specification builder provides a series of tests (test instances)to be 
applied to a production unit on a test rig. Variants of the test specification are 
required for different types of production units. 

 
• Some tests inform a test operator to set the test environment to particular 

settings and make some observations. Some tests are transparent to the 
operator.  

 
• On completion  a test certificate is produced for a given production unit which 

provides evidence to the customer of the acceptance test status  
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3.2.3.2 Development  
 
The functional requirements for the PAT system were derived principally from a 
customers new manual test requirement  but to work in conjunction with an existing 
semi automatic test facility. It was desirable that the design would have to be flexible  
to change as future changes in the test requirement would likely occur. Initial 
development began with investigation into the modification/reuse of an existing  test 
system. However it soon became apparent that the existing design was very 
specialised to individual test instances making modification for reuse difficult, this  
together with the need for flexiblity in the design encouraged a more generic 
approach. This need for a more generic solution served several purposes 

1. Catered for instantiation of  new test instances for other variants  of units 
2  Ease development of new test behaviour 
3 Reduced the Validation time of the test system as fewer system components 
requiring verification 

 
The development would need to meet commercial timescales and would have to 
integrate with  existing test facilities. 
 
Adopting Rodin technology 
 
The generic requirement  of the PAT system is suited to the Rodin task aims of 
genericity.  However, achieving complete behavioural modelling of a system in order 
to  produce a direct implementation was not seen viable for several reasons 

1. ATEC has limited modelling experience and no real experience in producing 
implementation code from such a model. The dual code model of year two 
illustrated only simple translation. 

2. The commercial timescale meant there was too much risk in attempting this 
development and failing. 

3. The use of some legacy code was desirable where specification did not exist 
and integration into existing test facilities was desired. 

4. The use of a legacy compiler (Borland c) was required in order to integrate 
with existing code.  

 
The approach taken was to consider a development which would encapsulate some  
Rodin methods to assist generic design and provide some rigour to development. 
The architectural design was  split into a generic configuration part which has been 
subject to Rodin related technology and a target implementation which has been 
developed along more traditional lines but influenced by the generic system.(The 
intention being to perform behavioural modelling of the target behaviour later using 
the Rodin tools.) 
The generic configuration could be developed from a structural domain model 
appropriate to the methods already developed in the FMS case study. Operationally it  
provides an editor where the test requirement can be constructed by selecting test 
items specified in the domain model to form a test specification. This specification is 
then built into a file of commands which the target system interprets into executable 
test actions. The architecture is illustrated in the fig 3.27 below. It illustrates the PAT 
structural model generating a customised PAT editor by using EMF technology 
running on the Eclipse platform. The editor is used to enter the test instance 
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requirement in a structured way.  This is then converted to a formatted text file by a 
developed builder. The formatted text file is a serialisation of the test instances for a 
given specification which the interpreter software executes to perform the testing and 
recording of results. 
 
 

 
 

BUILDER

TEST 
OPERATOR 

MyPat 
(text file) 

PAT 
 Interpreter 

TEST RIG TEST 
CERTIFICATE 

Eclipse

PAT 
Editor 

MyPat 
(instance of 
PAT model)

Borland C 
PAT 

Metamodel 
EMF 

 
Figure 3.27 – PAT Architecture 
 
 
3.2.3.2.1 Development of the editor 
A domain analysis approach initially used in the development of the generic model of 
the FMS system [3.5 ] was undertaken to identify the core test items required to form 
the generic structural configuration of the editor (figs 3.28 and 3.29). In practise, the 
extent of the new test instances has meant that the scope of the full requirement could 
not easily be determined initially resulting in a model architecture that had to evolve 
as more of the  test instance requirement became understood. This evolving model 
also impacted on the development of the target system which was being undertaken in 
parallel significantly as test data was not entered until the model mature. A method to  
minimise the potential impact of model change and delayed data entry on the target 
development in the short term was later introduced. This was achieved by allowing 
the model to have the facility to populate newly identified items and parameters 
without the need to immediately re work the domain model before this data was 
entered. (ref special item in fig 3.29).  
  
The model constructed in UML is illustrated in the figs 3.28 and 3.29 below.  
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Figure 3.28 – Structural model of PAT  Domain part 1 
 
 

 
 
 
Figure 3.29 – Structural model of PAT Domain part 2 
 
 
The  approach taken  was to  use the structural model to  drive the automatic creation 
of a generic editor by utilising EMF technologies. A structure approach had been 
adopted in the development of the UML-B syntax underlying the UML-B method for 
Rodin.  
 
The structural domain model was developed in UML which was later attempted to be 
converted into a UML-B context model in order to assist its formal verification using 
the Rodin platform (ref methodology section below). The intent was to utilise the 
Context manager tool developed under the Rodin FMS case to verify the instance data 
against the domain model. 
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3.2.3.2.2  The PAT Interpreter 
The interpreter executes the test instances that have been compiled by the test builder 
into a serialized list of commands. Each test command is derived from an item in the 
generic system structure model. eg  an instance of MemTest item (in fig 3.29 above ) 
will result in a memtest command (event)  being invoked by the interpreter.  
Additional functionality required by the interpreter includes the scheduling of the 
tests, and the generation of the test certificate.  Lower level functionality to drive the 
hardware and user interfaces is also required.  
During the development the reuse of  the legacy system components was attempted. 
This was achieved by providing some middleware components to provide an interface 
with the new interpreted test commands and some existing legacy functionality. 
However the non generic nature of the legacy code, in practice, meant that this 
middleware needed continual adapting. Only relatively lower level legacy 
components of existing test systems were able to be used as reuse components. 
 
 
Interpreter behaviour modelling 
 Some consideration was given to adopting the FMS developed templates in 
order to model behaviour. A mapping of the FMS template could be applied to this 
domain. In fig 3.30  below the classes getcmd validation action and do_cmd  could  
map to the Aabo FMS template for classes env,det,action and output respectivley. 
However the FMS model primarily concerns itself with refining the validation 
element in the diagram which is not the core functionality (represented by the do_cmd 
element) of this domain so it was not pursued. 

.  

env

actout

freeze

Environm ent / def_Set_InputN

Action / def_Update

Action

Return / def_Set_Output

Fail

Figure 3.30a) – Class Model of interpreter        Figure 3.30b) – Aabo Class Model  
 
The view was then taken to adopt a modeling approach to assist in reasoning about  
the behaviour of  parts of the specification. This was particular useful in dealing with 
legacy issues. Here legacy behaviour could be modeled alongside intended new 
behaviour so that the impact of the legacy behaviour could be catered for in the 
model. 
    
Partial Specification Approach 
One example of this partial modeling was undertaken by modeling the  behaviour of a 
MemTest item (refered in the interpretive partial model as memcmd). 
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From the structural domain model the memtest item is a particular type of test 
involving the comparison of  the unit under test memory values  with an expected 
value  or range of values. The example is interesting in that it illustrates the execution 
functionality of the interpreter and how it interacts with the command and its legacy 
functionality. 
The memcmd requires the unit under test memory to be read, and utilizes legacy code 
to do this. This achieved a significant saving of development time as a large amount 
of  communication functionality was reused however the implementation  did contain 
some additional legacy behaviour which is incorporated in the new specification, and 
is described below. 
 
Modeling using UML_B 
The UML-B method was used to perform the modeling and was found to be 
particularly useful to provide a visual represention of the  application  objects in the 
domain. The context and class behavoural models are shown in figs 3.31 and 3.32 
below.  
 
 

 
 
 
Figure 3.31 – PAT context model depicting primitive context 
 
 

 
 
Figure 3.32 – PAT partial class model 
 
In Fig 3.32 memcmd is represented as a class (its static superclass is MTY given in 
the UML-B context diagram). Instances of the class are scheduled by the Machine 
Event  sched. The system is only available having been invoked from the Machine 
Event MENU. 
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The model derives a pass or fail result for the command non deterministically ( to be 
determined in a later refinement of the validate event) . The actioncmd event sets the 
test operators response to the test result which can be either to abort, retry, or continue 
operation. (The effect of the action can be addressed at a later refinement.) 
 
Legacy behaviour is represented by  the L_READ event and the constant L_size.  
The legacy implementation consists of reading the memory value using the 
communication protocols required by the hardware and insitu target software of the 
production unit. This has been simplified as a non deterministic read of value 
(memval) as the communication mechanism is relatively self contained. However it is 
the case that the legacy implementation can in some circumstances (eg a comms 
timeout) abort all processing in the legacy test facility i.e. allowing only the menu 
Machine Event to reset the system. This behaviour is represented in the model by L 
READ event non deterministically setting a Global ABORT  flag and then by 
applying guards to the non legacy items to the developed  new events (validate and 
actioncmd) to prevent them occurring on the setting of this flag. The L-READ and 
validate events are shown in more detail in the figs below. 
 

 
 
Figure 3.33 – L_READ event 
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Figure 3.34 – Validate event 
 
It should be noted that the legacy code in reality performs a (software interrupt) rather 
than setting a global flag but the behaviour is representative.    
The L_size constant indicates the maximum physical range that a memory value can 
be read on the legacy system. (Legacy structural  items could be held in a separate 
legacy context to partition legacy static items to aide future maintenance). 
 
Alternative model 
The previous model explicitly controls the event ordering through manipulation of the 
event order variable. However an alternative approach was to make use of the state 
machine representation in UML-B to provide implicit ordering of the events and 
simplification of the model. The class model can also be simplified to that in Fig 3.35. 
The associated Machine Statemachine and the Class statemachine are shown in figs 
3.36 and 3.37.  
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Figure 3.36 – PAT alternative partial class model 

 
 
Figure 3.37 – PAT machine Statemachine 
 

 
 
Figure 3.38 – PAT class Statemachine 
 
The machine statemachine illustrates how the interpreter can be in two states abort 
(waiting)  or scheduling. Intitially the system will move to the scheduled state from a 
menu event and can only return when all test instances have completed ie a finish 
event or their has been a L-READ_abort event.   
Note the legacy L_READ event previously set a non deterministic outcome of control 
action i.e. to either validate or aborting to the menu. This dual action has been made 
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visually more explicit here through giving each outcome a separate identity ie 
L_READ and L_READ_abort.  
 The class statemachine diagram provides the implicit ordering between the 
L_READ , validate, actioncmd and schedule events. The L_READ_abort event 
prevents any further class instances being processed in the model by setting all the 
class states to 4 and moving to the abort state.  
 The model is referenced from the demonstrator deliverable D27 [3.9] where its 
construction and execution can be obtained. 
The statemachine approach highlights the  legacy control behaviour more explicitly. It 
also encourages behaviour to be established at a statelevel before adding new 
behaviour. The new userstates “abort”, “retry” or “continue” representing new test 
control behaviour in the previous model could now be refined into this model in a 
similair manner. 
Further legacy behaviour can be incorporated into either partial model as 
requirements and determinism evolve and dependant  legacy behaviour is identified. 
One such refinement would be to introduce the format from the legacy read of the 
memory value into the model (this depends on the communication protocol being 
used) as this would be useful when determinism is required in order to perform 
comparisons of values with the expected results. 
 
3.2.3.3 Verification and validation of PAT 
 The intention to develop the interpreter behaviour model sufficiently to use the 
context manger tool to verify instance context values was not undertaken due to time 
constraints in developing a comprehensive model. The correctness of the generic 
editors structural model  instantiation was verified through review and testing. 
The Partial specification was verified using the new Rodin toolset. The toolset 
provided several levels of error checking in its translation. The memcmd specification 
was  verified initially  through the UML-B error checking , then the eventB static 
checker and finally the prover. All proofs were discharged automatically. 
PRoB  was also used to animate the model and provide a facility to validate the 
functionality. 
   
3.2.4. Impact on Methodological issues and methodological advances (FMS) 
Development of the case study was influenced methodologically by the use of UML-
B, which was very suitable for this application domain. The use of components 
(packages, or diagrams in UML-B), classes and associations provides an object-
oriented structure which is natural in FMS and is required by UML-B.  
 
The case study work revealed a methodology for the development of a formal model, 
with V&V activities that both contribute to creative model design, as well as its 
validation & verification. While we expect the other case studies to make similar 
methodological observations, reflection on our FMS work has enabled us to present a 
simple, coherent development methodology with RODIN and its plugins, as a 
template for other model builders. This methodology will moreover be illustrated in 
the Southampton demonstrator [3.9]. The methodology can be split in to several 
validation and verification steps, which are highlighted in Table 3.1. 
 
The development methodology is split up into four stages, where stage two consists of 
two parts. Changes to the model may be made at any stage of the development 
methodology in order to correct any errors. 
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The animation stage (stage 1) requires the user to animate the model. This symbolic 
execution of the model will reveal possible errors in its interpretation of the 
requirements. Animation of the model requires full instantiation of all context data; 
this transforms the model from generic to fully specific. Ideally, this would be done 
by building an instance context distinct from the generic context, whereas currently, 
all context data is included in one context. This form of support for animation will be 
provided by the ongoing Context Manager work discussed in  FMS précis in section 1 
above.  
 
Once the user is satisfied with the animation of the model, they can proceed to stage 
two –model checking. The aim of this stage is to make sure that the model is in itself 
consistent and that there are no invariant violations, deadlocks or other 
inconsistencies. As the ProB plug-in does not yet contain model checking capabilities, 
this stage has to be performed using classical B and the standalone ProB tool. The 
user will have to export the model to a .mch file using the ProB plug-in. 
  

Development stage Description 
1.  Animation (ProB plug-in) - 
validation 

The model should be animated using the ProB plug-
in to ensure model is correct and valid. 

2.1 Model Checking (classical B, 
ProB) – validation 

Any model checking (e.g. invariant violations), 
should be performed using ProB1. 

2.2 Model Checking (disprover, 
verify POs) - verification 

The disprover can be used in order to find 
counterexamples, which might help to discharge the 
PO. 

3. Animation (ProB plug-in) – 
    verification 

At this stage, the model is animated with regard to 
the behaviour corresponding to failed POs. 

4. Interactive Proof – verification The interactive prover provided by the Rodin 
platform can be used to manually discharge proof 
obligations and further verify the model. 

Table 3.1: Rodin development methodology 
 

The second step of stage two is to satisfy oneself that the model proves. This can be 
done using Rodin’s automatic prover. A lot of the proof obligations (POs) will have 
been proved automatically – others will require further investigations. The ProB 
disprover can be used to produce a counter example to a PO, which may help 
discharging the PO.  
 
The Animation of the model at stage three should be used in order to investigate 
failed POs. The model should be animated in such a way that it will help reveal 
possible reasons for a failed PO.  
 
The final verification stage is involved in using the interactive prover. At this stage, 
hypotheses that help discharge a PO, can be added  using the interactive prover 
interface. The interactive prover can also be used to find a gluing invariant, which is 
needed to prove a refinement. 
 
Having followed this methodology, the model will be fully validated and verified. 
The timeline given below ( fig 3.39) indicates at which stage of the year 3 
development of FMS this methodology was applied. The V&V process is indicated as 
a red dot. 

                                                 
1 The current version of the ProB plug-in does not support model checking. For this stage, the model 
should be exported as a B machine and then model checked using the standalone ProB tool. 
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Figure 3.39: Development Timeline 

Initial model 

Refinement 1 

April May 

Refinement 2 

Refinement 3 

Refinement4 

July June 

 
It can be seen that the V&V methods have been used after each refinement (indicated 
by red dot). Once a refinement was developed, we applied the methods mentioned 
above in order to ensure that all functional requirements have been met and that the 
model is validated and verified. One stage of this development process will be 
demonstrated in D27 [3.9] 
 
Next we briefly consider certain methodological issues assigned to CS2 in the RODIN 
DoW [3.17] : 
 
T2.1 formal representations of architectural desing,decomposition and mapping 
principles. 
T2.2 reusability,genericity,refinement 
 
The guiding architectural principle of this work has been that of generic specification 
through feature-oriented structuring. The requirement for genericity was strongly 
stated in the original FMS URS [3.4]: airframe-specific configuration data (e.g. sensor 
fit, per-sensor-assembly detection/confirmation/action parameters) drive a product 
line [3.18] of target FMS software systems. The specification [3.4] is generic w.r.t. 
such data structures, and we have above (sec. 2.1) discussed our ongoing work 
towards the methodological separation of generic vs. instance context models in 
RODIN via “Requirements Manager” and “Context Manager” tool functionality. Such 
tools will exploit this data genericity of the formal development to enable the avionics 
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engineer to perform near-automatic product line software construction through the 
input and verification of airframe instance configuration datasets. 
 
Behavioural architecture is that of the features of detection, confirmation, condition, 
and action. Each feature is introduced or further developed during a refinement step, 
e.g. detection (refinement 1), abstract confirmation (refinement 2), concrete 
confirmation (refinement 4). This is a compositional approach: Event-B refinement in 
RODIN provides a rigorous mechanism for composing and elaborating the 
requirements, the latter structured as features.  
 
While the need for behavioural genericity has not emerged in the ATEC FMS case 
study, across the whole FMS domain it would emerge naturally. Different 
manufacturers, and different airframes – will in general deploy different detection, 
confirmation etc. behaviours. For example, the Space Shuttle [3.14] also deploys 
engine parameter range checking. At start-up, the first readings of 24 engine 
parameters are checked to be within 3 standard deviations of expected values from 
past hot-fire test data. Each valid parameter range is then changed to centre around the 
first valid reading of each parameter. For subsequent readings, 5-wide moving 
averages (rather than raw inputs) are range checked. Based on our generic detection 
feature, this could be realized by elaborating our detection model and adding further 
refinement layers to model such requirements.  
 
Reusability is implicitly addressed by behavioural genericity: if it is easy to elaborate 
existing model layers and add refinement layers in not too disruptive a manner to the 
rest of the development, we have a reusable approach. 
 
This reusability is illustrated by our two refinement steps which implement an 
integration of the Aabo model with the Southampton model. The refinements 
generally address one of the features of the FMS, thus extending the functionality and 
detail of the model. These features make the model re-usable, as different features of 
the model can simply be replaced by different functionality through refinement. The 
generic model allows for extension and further refinement. 
 
For the integration of the Aabo model, we simply took two development steps 
(refinements) from the Aabo model and integrated them into our Southampton model: 
processing cycle statemachine and concrete confirmation. It was not possible to 
directly refine the Southampton model into the Aabo model. The integration approach 
is shown below. 
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Figure 3.40: Approach to Integration of Refinements2

Aabo1 fms_mch0 

Southampton Aabo Model 

fms_mch1 

fms_mch2 

fms_mch3 

fms_mch4 

Aabo2 

Aabo3 

FMS statemachine 

<<refinement>> FMSR4 

 
The figure clearly shows how the integration of elements from the Aabo model was 
performed. Interpretations (represented by the dots), rather than literal texts, of two 
refinements of the Aabo model were taken and changed to fit the Southampton model. 
The Aabo model based its system state on a completely different statemachine to the 
Southampton model. The Aabo model does not allow any other events to be enabled 
before a certain stage was finished. Thus, this model is divided into several steps that 
will be explained below. This statemachine (denoted as a red dot) was then adapted in 
order to fit the structure of the Southampton model. The other idea that was integrated 
into the Southampton model was the concrete confirmation algorithm of the Aabo 
Model. Aabo’s confirmation algorithm is very specific, and thus works very well to 
show how the Southampton model can be amended through refinement in order to 
implement many different confirmation features. Again, the idea was taken from 
Aabo, and then amended in order to fit the Southampton model.  
 
 
3.2.4.1 Impact on Methodological issues and methodological advances (Domain 
Meta modelling) 
A major concern in Case study 2 was reducing the semantic gap between specification 
elements and the problem domain. That is, if the constructs in the notation map easily 
onto concepts in the problem domain, it is easier to construct and understand 
descriptions. Object oriented notations are good at achieving this when the problem 
domain involves large collections of similar objects with minor variations and 

                                                 
2 The Aabo refinements shown in the figure do not correspond to the original Aabo model. 
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plentiful interrelationships. In the FMS case study we used UML-B to specify the 
generic problem domain in an entity relationship style that could be instantiated with 
specification objects to ‘configure’ the specification for a particular application.  The 
OMG’s MOF [3.19] provides an object oriented notation targeted at modelling other 
notations (meta-modelling). For example, the abstract syntax of UML-B was defined 
in a subset of UML (equivalent to MOF) and imported into the Eclipse Modelling 
Framework (EMF) [3.20] to generate a repository and editor for UML-B models. 
However, the analogy between domain modelling and meta-modelling is strong and in 
many cases (provided variation can be dealt with by sub-typing) problem domains can 

be interpreted by a program that runs the 
utomated production acceptance tests. 

oblem domain specification to 

idated and verified for 
onsistency with the domain model before implementation. 

ML-B so that UML-B models can be used to 
define EMF repositories and editors. 

be treated as languages and modelled by notations such as MOF.  
For the second case considered in CS2, the PAT specification editor, we used the 
same method as used in the specification of UML-B to generate a repository and 
editor for PAT specifications.  We then used an eclipse builder to translate these PAT 
specifications into a form that could 
a
 
UML-B context diagrams (used for the FMS) provide a notation very similar to MOF 
and we can envisage using UML-B in its place. Soton analysed the MOF features 
used in the UML-B syntax definition and the PAT pr
evaluate which features are also available in UML-B.  
The following features are currently not supported in UML-B. Abstract meta-classes 
can only have instances via their subtype meta-classes. Also, subtypes are normally 
considered to be non-overlapping. Hence the subtypes form a partition of an abstract 
meta-class. Meta-Properties could easily be added to UML-B meta-classes to generate 
these additional constraints. Multiple inheritances are used to define properties 
common to subtypes of other abstract meta-classes. Multiple inheritance could be 
allowed in UML-B as long as all parent meta-classes subtype a common base meta-
class so that they have compatible types. Containment associations indicate ownership 
of collections of instances of another meta-class (rather than a reference association). 
This is mainly an implementation consideration but affects behaviour at a modelling 
level since contained instances should be destroyed with their parent container. Soton 
is considering adding these features to UML-B so that it can be used for meta-
modelling. An advantage of using UML-B for meta-modelling is its Event-B based 
constraint language which could then be used to define additional textual constraints 
on the domain. Instantiations could be modelled, val
c
 
As part of the FMS case study, Soton investigated translating UML-B contexts into 
EMF’s ecore format. (Ecore is used for the code generation discussed above where 
the UML models are imported into Ecore format). A model transformation tool was 
developed using the Atlas Transformation Language (ATL) [3.21]. This tool could be 
developed as an EMF importer for U
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3.2.5. Impact on Platform & Plug-in development 
 

The main impact of the FMS case study to plug-in development largely 
occurred prior to year 3 and was fed into the plug-in development. [3.7]. However 
some feedback has now been generated from both cases on use of the new developed 
RODIN plug-ins during the final year. The impact of the new plug-ins on case 
development has only impacted on the development of the final year models.   
The assessment of the new Rodin tools and methods from the case study are given in 
the D28 and  D34 deliverables. 
 
The final year models all used the Event B prover (part of RODIN platform) for their 
development. The Event B user interface of the Rodin platform was not exercised 
directly as all the models principally used the  UML-B plugin for entering the models. 

 
 
 ATEC SOTON AABO 
UML-B X X X 
PROB X X  
CONTEXT 
MANAGER 

 X  

B2RODIN* X   
 Table 3.2: Case study plug-ins used 

 
 
3.2.5.1 FMS Case 
During the development phases of FMS, the UML-B, U2B and ProB plug-ins were 
used. As described above, a development methodology emerged from the use of 
these. The case study impacted on the plug-in developments mainly by reporting 
errors and feature requests. Bugs were reported in the Sourceforge Tracker and will be 
listed below including their tracking number and short description.  
ERROR REPORTS 
UML-B 

• 17521102 – UMLB translation error 
• 1771502 – UMLB – enumerated sets 
• 1771504 – UMLB – Axiom labels duplicated 
• 1771507 – UMLB – initialisation problem 
• 1771511 – UMLB – implicit context refinement 
• 1771514 – UMLB – statemachine problem  

PROB 
• 1725612 – Prob error when setting up constants 
• 1771518 – prob – does not accept cross product 
• 1771523 – prob – wrong  translation of action 
• 1771526 – prob – lambda translation error 

Feature Requests 

The case study impacted on both the plug-in development and the platform 
development by suggesting features that would improve the modelling experience. 

74



• 1777260 - Propagation of changes  
• 1777262 - Statemachine transition naming  
• 1777263 - Comment out eventB statements / UMLB 
• 1777265 - comment on specific variable (etc) in UMLB 
• 1777267 – model checking 
• 1777268 - refinement by statemachine 

3.2.5.2 PAT Case 
The PAT case study utilised the development of the Rodin UML-B plugin to define 
its context model for the development of the generic editor. Further application of the 
plug-in was used to define a simple partial specification of legacy behaviour. The 
Rodin Prob plugin was  used to animate  the behaviour of the legacy model.  
As a result of the PAT modelling the suitability of UML-B as a domain/meta 
modelling notation was assessed. This has led to several proposals for enhanced 
features. 
In general minor bugs were identified during the exercising of  the tools, and recorded 
in sourceforge.  
 
3.2.5.3 B2Rodin* 
The B2Rodin tool was also briefly exercised late in the final year by applying it to  
translate the Dual case sensor model of year 2.The tool was easy to install and 
provided useful documentation with an example. 
The import of the Dual Case model was initially unmodified (eg with out pragmas so 
as to ignore  the events ) and the model translated into context and machine event B 
files. The fig below displays the import of the  model and shows how some errors in 
translation have been identified by the prover. Significantly all models and 
refinements were imported.  
However it was necessary that some pre processing of the dual case model had to 
occur before the translation became problem free.   This was largely due to the use of 
the pre event B style used in creating the dual case ie the use of  definitions in 
declaration of invariants which is not allowed in the Event B. Later the models 
operations(events) were added to the machine ( by applying pragmas) where some 
adjustment was also necessary to be more compliant with Event B.   
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Figure 3.41 – Example translation 
 

3.3. Case Study Achievements 
 
The salient achievements of the Case study are summarised as; 
 
1. Collection of  Domain Models and Templates 
 The successful development of several FMS domain models have been 
undertaken. They are depicted in fig 3.13 which relates the models created to their 
genericity and abstraction.  
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Figure 3.42 – FMS Case study model development 
 
 
A description of the models is given  above and in the case study references. 
The template pattern developed by Aabo  addresses detailed behaviour of the FMS 
domain and so illustrates how detailed aspects of FMS domain behaviour and design 
can be mapped. ie it has addressed how the semantic gap between the domain 
behaviour and design can be reduced which is a main aim. The University of 
Southampton has been able to integrate this detailed behaviour successfully in a 
generic architecture to provide an example of  a generic system for FMS and meet the  
generic aims of the  case study. In general the models and templates have provided 
techniques for re use in the domain and have gone some way in providing a generic 
package to support development. 
 
 
 
2. Contribution to the development of tools 
The FMS case has driven the  creation of the requirements manager tool in particular 
which supports instantiation of larger scale data models which use  UML-B. Further 
enhancements to UML-B have been identified and reported on in D18 and  D34. 
 
3. Contribution to Methodology 
 The principal methodology explored by the case is the application of UML-B 
and its verification using the toolset. The case study methodological contributions 
have been outlined above.   
 
 
4. New Rodin tools exercised on FMS and PAT domain 

The developed Rodin tools have been successfully exercised on FMS and PAT 
cases described above. Further feature improvement have been identified  aswell as 

77



minor  bugs recording. The assessment of the Rodin tools are described in D28 and 
D34. 
 
 
5. Domain users evaluation Metrics addressed 
The evaluation of the models and Rodin methods against the domain criteria for 
feasibility of the methods has been undertaken and is reported on in D34.  
 
 
We summarize the achievements of the case study development making reference to 
the intended  expectations of  the case study. 
  
a) )Feasibility of formal methods in application domain including assessment of 
usability and benefits of object-oriented style of formal specification and rigorous 
validation and verification 
 
This case study development has demonstrated the clear utility of RODIN-based 
formal methods in the avionics engine control domain. The model is generic w.r.t. 
static configuration data (context) as well as behaviour. The object-oriented modelling 
style is a natural fit for both static and dynamic system aspects: hardware components 
in the system environment (e.g. inputs), as well as system internal components (e.g. 
detections, confirmations) are modelled as instances, or objects, of a small number of 
classes (component types). There are many domains (e.g. car engine management, 
industrial process control, medical intensive care) that afford the same OO modelling 
philosophy. 
 
UML-B provides solid support for OO modelling in terms of class diagrams and 
statecharts; more diagram types are planned. UML-B diagram and package structures 
provide component-level structuring. This OO modelling is formalized by its 
automatic translation to Event-B for formal verification. A desirable future 
development would be the integration of the formal V&V into UML-B, e.g. 
representation of syntax errors or failed PO’s in the appropriate diagram, animation 
state representation on a diagram, etc.  
 
b) Development of techniques for re-using formal methods within application 
domain 
 
The case study has demonstrated the facility of RODIN/UML-B modelling for 
production of reusable models, through architectural principles of genericity, feature-
orientation, and OO structuring. A real (Aabo model integration) and a speculative 
example (space shuttle) of such reuse have been presented. 
 
c) Enhancement of UML to B tools to support use of object-oriented formal 
specification within application domain and to support re-use features 
 
As discussed in sections 3.1 – 3.2 UML-B already goes a long way to meet this 
requirement, although further work is needed for “round-trip engineering”, or the full 
integration of RODIN V&V with UML-B. 
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SECTION 4. CASE STUDY 3 – 
FORMAL TECHNIQUES WITHIN AN MDA CONTEXT 

 
4.1. Introduction 
This case study is concerned with the formalisation of various subsets of the MITA 
platform [MITA] (developed in Nokia within the NoTA - Network On Terminal 
Architecture - project) and, more generally, with the formalisation of the 
infrastructure and techniques to allow MDA to be used more formally. 
The objectives of this case study are to: 

a Investigate how formal techniques fit into the Model Driven Architecture 
(OMG MDA) framework as “MDA Mappings”. 

b Investigate which techniques are applicable at which stages of platform 
independence and platform specific models. 

c Investigate how to integrate and compare the verification and validation results 
from the various levels of abstraction. 

d Investigate methodological issues relating to formal model development with an 
emphasis of refinement and retrenchment. 

 
During year three the main focus of this case study has been on validation of the 
RODIN platform, tools and methods in the context of the MDA framework. All major 
work on MDA within Rodin was completed by March 2007 as the company ended the 
NoTA project in December 2006. After that the CS3 team moved to a different 
domain of a growing importance to Nokia, in which it conducted investigation of the 
use of the Rodin method and tools in hardware design. This initial evaluation was 
very successful from the company’s viewpoint (e.g. a prototype of a Rodin tool was 
developed and demonstrated during year two project review [O3]). All work in this 
area is now progressing outside of Rodin. The particular formalisms and techniques to 
be used in the new project are directly related to the Rodin development, although a 
different language for this work has been chosen. The experience gained by the team 
in applying formal techniques in the MDA context is being used in this new project. 
 
4.2. Major directions in case study development 
During year three the CS3 team has specifically focused on performing the following 
two tasks:  

− T1.3.5. Undertake further development steps, primarily integration of other 
case studies (when applicable) with the MITA framework. 

− T1.3.6. Evaluate benefits of formal techniques and tools applied at different 
stages of the development.  

 
 
4.2.1. Methodological issues brought up by the case study and methodological 
advances used in the case study 
This section briefly discusses major methodological issues addressed and reported by 
the MITA case study during year three.  
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MDA. Within this case study a method was developed [B1] for introducing formal 
transformation of platform independent models (PIM) to platform specific models 
(PSM) in a model driven architecture (MDA) context. While fault tolerance is not 
introduced in the PIM to make the models reusable for different platforms, the PSM 
often has to consider platform specific faults. A model transformation of the PIM in 
order to preserve refinement properties in the construction of the fault tolerant PSM is 
presented using Event B as a formal framework for the reasoning. 
UML and B. UML and B were extensively used in the experimental work conducted 
within this case study to evaluate the pragmatic aspects of the use of formal methods 
in NoTA. Report [O1] describes three experiments and the experience gained in the 
use of formal methods in a software engineering environment, that does not 
completely rely on the top-down stepwise development. These experiments were 
based on the Use Case/SDL Based Development, UML Based Development and the 
UML with Explicit Architecting. Directly relevant to Rodin was the extensive use in 
these experiments of AtelierB, ProB and U2B. 
Model-based testing. Some initial investigation of the model-based testing was 
conducted in the context of case study CS3 - see [L1]. The focus mainly was on 
gaining experience in applying formal methods and model-based testing in an 
industrial semi-formal environment. The approach used consisted of the two phases: 
an initial development of a high level model in B, followed by development of use 
cases in CSP. A number of the use cases were modelled and verified for building a 
reference model used for testing the implementation. This approach allowed the team 
to uncover errors that would otherwise most likely not been found, but at the price of 
creating the system essentially twice. 
Requirements Change Addressing Fault Tolerance. The team performed some 
initial investigation into how requirements change and the volatility of specifications 
can be addressed. The B Method takes the point of view that these are outside the 
scope of this particular method which concentrates on refinement and decomposition 
of the models. Some investigation was conducted with retrenchment but without tool 
and method support this has proven difficult. Requirements change and how to handle 
this formally still remain a challenge and some investigation has been made in 
collaboration with Southampton university [O2] 
Report [O2] describes an example development flow of a simple communicating 
system involving two communicating processes across a channel. A very abstract or 
generic communicating system is set up; this could be thought of as any pair of 
communicating entities or processes via some communication channel, for example, 
two mobile devices communicating across a UMTS connection or two operating 
system processes communicating via IPC. As part of the development, we initially 
assume that the channel is perfect followed by subsequent iterations where we add 
protection mechanisms to the processes to obtain some degree of fault tolerance with 
regards to the channel. 
The aim was to gain an understanding of how the evolution of such a set of 
requirements would be dealt with using Event-B and refinement.  These requirements 
as they develop do not necessarily refine earlier versions of the requirements - this is 
to simulate a typical industrial scenario. 
Analysis of the perfect design by some suitable technique, for example: FMEA, might 

82



reveal the potential for communication error.  One example of this might be that the 
communication channel could become congested by other unrelated communications 
or that the scheduling of the processes themselves could mean that sometimes some 
processes gain more CPU time than others. In the second iteration of the 
development, we surmise that the underlying communication mechanism may be busy 
with other activities (other nodes communicating) but the individual nodes themselves 
might want to send data and not experience blocking due to the perceived slowness of 
the underlying communication mechanism. In order to achieve this, buffering is made 
at each node to capture and store in- and outgoing transmissions. As the development 
proceeds, more details about the underlying communication mechanism emerge: 
when a message is sent from the output buffer, an acknowledgement is sent back 
when it is received by the input buffer.  The underlying communication mechanism 
may lose messages for some reason. 
The modelling flow can be visualised as in Figure 1 where from a set of requirements 
we construct a model which is then subsequently refined. If we take into 
consideration all the requirements and assume that these requirements are complete 
and consistent then we may construct further refinements of this model according to 
architectural need until we reach some suitable level of concreteness; typically the 
model would be free of non-determinism and be translatable to some suitable 
implementation language. 
 

 
Figure 1: Design flow with emerging requirements 

 
What typically happens is that requirements are developed in parallel with the 
modelling or because of the modelling – the formed being more typical in industrial 
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environments. During the course of subsequent refinements it becomes apparent that 
certain requirements cause a change in the model that can not be handled through the 
refinement process. In Figure 1 this is diagrammatically seen between models three 
and four. 
There are techniques such as retrenchment which support the weakening of the model 
so that the refinement process may continue. However these techniques suffer from 
complexity and lack of tool support and introduce additional artefacts which 
complicate the model. 
The alternative option here is restart the modelling in such a way that the lessons 
learnt and modelling already performed is not lost (we do not restart modelling from 
scratch) such that the new line of modelling starts taking into account the new 
requirements. Modelling continues in the same way as before until either we are 
required to restart or modelling is complete. In order to mitigate the effects of 
additional requirements and especially in the case of the introduction of failure modes 
or fault-tolerance features it is necessary to prepare the initial abstract model in such a 
way that these additional features can be added to the system through refinement of 
these additional features. 
Bluespec. Within this case study some efforts were devoted to combining Bluespec 
(Bluespec System Verilog) development with formal specification in B [03]. Bluespec 
is a rule based, declarative hardware specification language based on term rewriting. 
In this work a hardware specification code was generated from the Event B models 
developed using the Rodin platform. During this work it was found that this 
combination offers a sophisticated verification environment with the associated 
reduction in development errors. 
Context-awareness. As the computers are evolving to become truly pervasive and 
ubiquitous, assisting us in our everyday decisions, they need to acknowledge the 
context they are functioning in. In this strand of work the context is defined as "the 
setting in which an event occurs", being prevalent and impossible to manufacture. 
Consequently, the context is the information providing the possibility to interpret data 
in order to provide more information which in turn enables construction of specified 
knowledge. As the amount of data is likely to increase in the future, it should be rich 
enough to enable us to create specified knowledge. [N1] defines a model for 
implementing these ideas by showing how to refine and add a new context into a 
system. This is highly relevant to the ubiquitous systems, which typically rely on 
distributed nodes and communication in which a distinct agent might provide a new 
context. The ideas regarding refinement of context relies on the work on the wireless 
sensor networks for which a design framework was developed in [N2] (this work was 
inspired by the Nokia work on NoTA - see [Z]). The model proposed consists of at 
least a three layer structure, the application layer fusing the information to knowledge 
and representing it to the inquirer, the enabler layer propagating and composing the 
inquiry/data and the raw data producing layer. Moreover, a sensor network constitutes 
in n segments, the sensor, the en route and the gateway segment. As each layer's 
emphasis is on one segment, the distributed system layout is obvious; some part(s) 
must produce the data (and context), another enable communication (and compose 
relevant data) and one part take care of the user interface providing a concise accurate 
answer to the inquirer. 
 
4.2.2. Impact of the case study on the platform development 
During year three an intermediate version of the Rodin platform was used in 
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developing a number of MITA models (see [B1, O2]) and in circuit development with 
Event B and Bluespec [O3]. Application of the platform has been successful and the 
results of this work were feed backed to the platform development team. 
 
4.2.3. Impact of the case study on the plug-in developments 
 
The experience in using the U2B and ProB plug-ins is summarised in [O1]. This 
paper reports an experiment in which formal methods (B and B method) were 
introduced into one of the current development flows of the MITA systems.  
UMLB (U2B) 
U2B is a useful tool as any attempt to formalise and use UML in a more structured 
and rigorous form complete with some form of detailed analysis is more than 
required. UML as a whole suffers from an incomplete, inconsistent semantics which 
makes accurate application of the UML problematic at best. Bridging the gap between 
languages such as UML and B/Event B is critical for general acceptance in industrial 
environments; though much more work is required on the methodological aspects of 
such integration. The experience shows that the latter point has not been tackled in a 
generic enough way in this project; though it can be argued that only specific aspects 
of this problem such as those pertaining to fault-tolerance were. 
U2B overall provides a good compromise between the mathematical abstractness of 
B/Event B to the apparent concreteness of UML (at least to the engineer who forgets 
the underlying concepts of languages such as UML). However this makes the 
language more difficult to use without better methodological support - one has to 
think more in B/Event B terms rather than UML. Application of traditional (sic.) 
domain modelling techniques or even E-R techniques produces simple enough static 
or structural models but actions/operations/invariants are required to be written in a 
form more applicable to B/Event B rather than the object-oriented ideals of UML.  
While most of the criticism is directed at the support for U2B (something which U2B 
is not addressing at this time), a more direct criticism can be levelled at the quality 
and complexity of the proofs generated. Because of the complexity of the mapping 
from UML and its various structures: class, state, action/operation etc and the OO-
mapping overhead the amount of proof obligations becomes much larger than that 
generated from an equivalent model utilising B/Event B only.  
ProB 
ProB provides much necessary support for the default theorem proving and thus 
verification techniques already present in the Rodin tool. Use of ProB was extremely 
useful in validating verified models - verification removes certain error conditions and 
ensures that the model to be validated is "correct". Verification in the style of 
development used in MITA became a secondary concern with the focus more on 
establishing that the specification met the customer's demands rather than on 
establishing the adherence to certain properties. This fits in well with the style of 
development commonly seen in industry where constructing a model to investigate 
the properties of the system is not always feasible - ProB and the validation style of 
development in this sense provides a way of first constructing and demonstrating 
systems then discovering properties later. 
The use of ProB was particularly useful with regards to the initial work made with the 
B language. In use ProB (the Rodin integrated version was not utilised as it was not 
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available at the time) is stable and reasonably fast. Scalability is always an issue but 
in the sizes of models presented to the tool, no problems regarding this have been 
seen. 
B2Bsw  
Within this case study some efforts were devoted to developing and evaluating an 
early prototype of the Rodin plug-in supporting circuit development with Event B and 
Bluespec (see [O3]). This plug-in was successfully integrated in the Rodin platform 
and used in developing a number of case studies. 
 
4.3. Overview of the achievements of the case study 
Nokia consider the three years work on the RODIN Case Study 3 to be a partial 
success. They have obtained 

• useful practical results in evaluating feasibility of applying formal methods in 
the context of MDA 

• considerable experience with the use of B in a number of challenging 
applications 

• extended skills in using the Rodin platform and the ProB and UMLB plug-ins as 
the major support for formal modelling 

• good experience in developing Rodin Eclipse plug-ins for the Rodin platform 
 
However specific methodological support for Event B and fault-tolerance is still 
lacking. Other aspects such as mobility, distribution and concurrency still remain 
unaddressed at this time. 
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SECTION 5. CASE STUDY 4: 
CDIS AIR TRAFFIC CONTROL DISPLAY SYSTEM 

 
 

5.1 Introduction 
 
CDIS is a computerised system that provides important airport and flight data for the duties of 
air traffic controllers based at the London Terminal Control Centre. Each user position is a 
workstation that includes a page selection device (to select CDIS pages) and an electronic 
display device (to display the selected pages). The original system was developed by Praxis1 in 
1992 and has been operational ever since. This system is an example of an industrial scale 
system that has been developed using formal methods. In particular, the functional requirements 
of the system were specified using VVSL [5.3] — a variant of VDM [5.2]. The formal 
development resulted in about 1200 pages of specification documents and about 3000 pages of 
design documents. The reliability of the delivered system is encouraging for formal methods in 
large scale system development because the defect rate was a considerable improvement on other 
similarly sized projects [5.4]. 
 
During the first year of the project a useful subset of the CDIS specification was defined, 
reviewed and distributed. Examples of problem areas in the original CDIS development were 
identified: 
 

1. The lack of any formal proof in the original development. 
2. The difficulty in comprehending the original specification and the difficulty of 

modularising the specification. 
3. The difficult of dealing with distribution and atomicity refinement. 

 
In Year 2 we focused on addressing items 1 and 2 above, through redeveloping the CDIS subset 
of Year 1. During this phase we used the B4free tool and a mixture of old style B specification 
and mimicking some aspects of new methodology recommended by Rodin project. Two different 
attempts at reworking subset specification commenced: a “translation” approach and a “specify 
equivalent system from scratch” approach. It was quickly found that the translation approach 
was not sensible and we focused in Year 2 on the second approach of specifying the system over 
again. 
 
Furthermore we made some preliminary attempt to address the third item by producing a 
simplified distributed version of CDIS B-specification. This simplified distributed version, later 
acted as a guideline to extend the idealised model into a distributed version and handle the 
generated proof obligations.   
  
Redeveloping an existing system also allowed us to reflect on the lessons learned from the 
original development. Our aim was to overcome the lack of comprehensibility and formal proof 
of the original CDIS development by adopting a methodology that makes use of available B4free 
tool support. 
 
During Year 3 as soon as the early internal versions of the RODIN platform became available we 
started to port our B models form B4ree tool to the new RODIN tool. In the first instance we 
attempted to use B2RODIN plug-in to carry out the porting. B2RODIN requires a particular style 
of B which has not been followed in the second year models. We could modify the second year 

                                                 
1Praxis High Integrity Systems Ltd., U.K. 
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models and then use the B2RODIN plug-in to convert them to RODIN style but we found it 
more effective to manually input B models into the RODIN tool. In the later stages we extended 
the CDIS B models with adding two other refinement levels. In addition to this we developed a 
distributed version of CDIS on RODIN platform. In the next sections we explain this process in 
more detail.  
 
5.2 Major directions in case study development 
 
We briefly discussed in the previous section that our starting point in Year 3 of the project was 
based on the B models which they have been developed during Year 2. These models were 
developed using the B4free tool and were mainly based on standard B notation also some 
attempts to mimic the new Event-B style has been made. In Year 3 we started to port these B 
models to the new RODIN platform. Both the new Event-B notation and recommended 
methodology in RODIN are noticeably different from the standard B which supported by B4free. 
In the light of these changes both in the notation and the methodology we have adopted the 
second year models to achieve different goals of the project such as reusability, traceability and 
adaptability. In the first instance we applied the changes to an idealised version of the CDIS and 
later stage we adapted this approach for the Distributed version. In the following section we 
review the major achievements during redevelopment of CDIS models on the RODIN platform. 
 
5.2.1 Methodological Considerations Arising from CDIS 
 
As stated above, in the first instance we shall be concerned with an idealised view of the system, 
as modelled in the original core specification. Thus, we model a system that has a centralised 
database from which information can be retrieved. In order to get a better overview of the entire 
system, we follow a top-down approach. At the top level, we ignore all of the airport-specific 
features to produce a specification describing a generic display system. Through an iterated 
refinement process, we introduce more features into the specification until all of the CDIS 
functionality is specified. At each step the tool generates a number of proof obligations which 
must be discharged in order to show that the models are consistent with their invariants. Since 
each refinement introduces only a small part of the overall functionality, the number of proof 
obligations at each step is relatively small (approximately less than 20). 
 
The purpose of CDIS is to enable the storage, maintenance and display of data at user positions. 
If we ignore specific details about what is stored and displayed then CDIS becomes a `generic' 
display system. We begin by constructing a specification for a generic system (which will be, of 
course, somewhat influenced by the original VDM specification) and, through subsequent 
refinements, introduce more and more airport-specific details so that we produce a model of the 
necessary complexity, and reason about it along the way. By providing a top-down sequence of 
refinements it is possible to select an appropriate level of abstraction to view the system: an 
abstract overview can be obtained from higher level specifications whilst specific details can be 
obtained from lower levels. 
 
5.2.1.1 Separation of Context and Machine 
 
Based on the new RODIN methodology a model can be divided to two sections, the static and 
the dynamic parts. The static part which has been named as the Context, contains the definitions 
of reference Sets, Constants, Axioms and related Theorems. The dynamic part which embodies 
the main part of the formal method includes all defined Variables and their associated Invariants 
along with Events which are acting on the variables. 
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In the B models of the second year, although it was not enforced by the B4free tool, in the 
modelling process the separation between the context and dynamic part of the model has been 
mimicked. To keep the uniformity between the initial VVL core specification, several simple 
Contexts such as META_DATA, PAGE_CONTEXT, DISPLAY_CONTEXT, 
DISPLAY_CONTEXT and MERGE_CONTEXT have been declared.  
In an attempt to increase the comprehensibility of the B Models, we decided to produce a single 
Context which contains all the definitions which we need for the first level specification of our 
system. This change in the RODIN-based B model resulted in a simple flat structure of the first 
stage context and in our view it has increased the readability of the specification. 
 
5.2.1.2 Simplifying the Machine Structure 
 
In the next stage we turned to the main part of our model, the specification Machine. As the new 
Event-B language now supports less construct in comparison to standard B, we had to make 
conspicuous changes in the second year models. Some of the changes are as follow: 

• Removing input parameters with surrounding parentheses from the front of event’s name 
and replacing them by variables inside ANY clauses.   

• Removing PRE clauses and replace them with ANY clauses. 
• Removing SELECT clauses and replace them with ANY clauses. 
• Removing LET clauses and replace them with ANY clauses. 
• Removing any nested combination of ANY clauses or nested combination of ANY with 

PRE/LET/SELECT and replace it with a single ANY clause. 
• Adding a separate new INITALISATION event 
• Some other small changes like changing the Remove Operator from set   to “\” 

 
Another advantage of the new RODIN tool over the B4ree is that there is no need to define the 
operation of the refinement levels which they are skip in the specification level. This helps to 
have a neater model with better readability. 
 
In order to get a better overview of the entire system, a top-down approach has been taken during 
modelling process in Year 2. The same approach has been followed in the third year. At the top 
level, we ignore all of the airport-specific features to produce a specification describing a generic 
display system. Through an iterated refinement process, we introduce more features into the 
specification until all of the CDIS functionality is specified. This procedure is supported by the 
new RODIN tool. At each step the tool generates a number of proof obligations which must be 
discharged in order to show that the models are consistent with their invariants. Since each 
refinement introduces only a small part of the overall functionality, the number of proof 
obligations at each step is relatively small. 
 
5.2.1.3 Different Approaches to the Record Refinement in CDIS 
 
Another aspect of CDIS redevelopment in RODIN tool is the modelling of structured data. The 
undertaken approach which has been reported in [5.1] is based on deferred set and constant 
functions. In this approach the structured data would be defined as an abstract set. This serves as 
the type definition of the structured date or record. According to the modelling needs the record 
will be refined by introducing the individual fields. The introduction of necessary fields will take 
place in a stepwise manner by the means of constant functions. The main advantage of this 
method is that we introduce new record’s fields whenever it is necessary. In addition this 
approach is compatible with The B- Method general refinement approach. In the rest of this 
section we discuss the two different paths that we have taken to refine the record types in the 
RODIN tool. 
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Both in the VDM and second year B models we have structured data types in the form of some 
records. In the second year B models instead of introducing the whole structure at once we have 
gradually introduced different fields when they were needed. The main motivations of this 
approach is to enable a stepwise development of complex record structures (in the spirit of 
refinement) by introducing additional fields as and when they become necessary. 
 
One possible style of using abstract types as records has been followed in the second year 
models. This approach is based on delaying the introduction of record type to later stages of 
refinement. In some cases at the abstract level, we might be unaware that a simple (non-record) 
state variable requires a record structure at a later stage in the development. Hence in the most 
abstract level we have a set of simple abstract types which they have been defined as deferred 
set. For example to define the central database of the CDIS system in very abstract level we have 
defined it as a total function from Attr_id to Attr_value. Both of Attr_id and Attr_value are sets. 
In the refined model we have replaced the Attr_value with a new type named Airport_attr. Now 
the new type is a record as following: 

 
Airport_attr :: value:   Attr_value 
  Last_update: Date_time 

 
After this refinement the next step is to amend the type of any variables or local parameters 
which have been affected. For example in the case local parameters which have been defined in 
ANY statements, we have to define the relation between the abstract parameters and the refined 
one through the use of witness clauses. Also we found that in many situations the tool can handle 
the related proof obligation quite easily but in some cases discharging related proof obligation is 
not very straightforward.  Therefore in the third models we have followed a different approach to 
model records. 
 
In this adopted approach during refinement stage we do not change the name of record type. 
Instead of this we introduce the necessary fields through the use of constant mappings. For 
example we define the database of the previous case as: 
 

Database = Attr_id → Attrs 

And then we define the constant function to relate a value to an attribute. 
value � Attrs → Attr_value 

 
The main advantage of this approach is that we do not need to use the witness to define the 
relation between the refined and abstract parameters. In addition to this, it will eliminate the need 
for having extra invariants. These make the generated proof obligations simpler and as a result 
some interactive proofs now could be discharged automatically without any user interactions. 
Another advantage is that increased the comprehensibility of our formal models.  
 
5.2.1.4 Event Splitting and Refinement 
 
Another major change that we have introduced in the third year models in comparison to the 
second year B4free-based models is using the new event splitting facility in the RODIN tool. In 
the abstract level of CDIS models there are events which represent more that one concrete action 
in the refined model.  
 
An example of this can be seen in refinement level 4 of CDIS where the RELEASE_PAGE of 
level 3 has been refined by two events which are RELEASE_PAGE and 
RELEASE_PAGE_OVERLAY.  This means that in the more abstract level no difference is 
observable between these events and therefore they can be seen as one event. It is only possible 
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to distinguish between the two events in the more refined level when we introduce further details 
into our model. 
 
5.2.1.5 Changing Modelling Style to Achieve Higher Productivity  
 
In this section we review some minor changes which we have made in the style of the third year 
models to achieve higher level of automatic proof or increase the readability and 
comprehensibility of the B models.  Also these changes might be seen very trivial but based on 
our experiment with the RODIN tool they had great effect either on the comprehensibility of our 
models or level of automatic proof discharging or even both of them. Some of these changes in 
style of modelling maybe not directly tailored to the RODIN tool, but from our view point it is 
very important to document them. This can help other developer to take the advantage of these 
subtle techniques to improve their modelling. 
 
The first style change that we want to point out here is using relation instead of power set. In 
refinement level 3 of the Year 2 models we have the following declaration: 

 
edd_acks_required � EDD_id � �(Attr_id)  

that we have changed it to this one: 
edd_acks_required � EDD_id ↔ Attr_id 

 

These two declarations are almost identical from the mathematical view point but from 
modelling view point the story is different. In a very simple comparison between the third and 
second year models it can be seen that this change has resulted in a lot of simplification in the 
events which manipulating this variable. For example complex lambda notation and nested 
restriction has reduced to simple composition. The first effect of this is on the comprehensibility 
of the model which has been increased. Secondly it has simplified the generated proof obligation 
in such a way that either could be discharged automatically or with minimum intervention from 
the user which was not the case with previous style. 
 
The second aspect of style related issue is using clarification declaration. In many situations 
especially when we use local parameters in ANY statements the type of parameter could be 
implicitly defined through the guards. If the guard if fairly simple it is very easy to find out the 
type of local parameter. In many practical situations this is not the case and comprehensibility of 
the model will increase if you add a clarification declaration for these parameters. In our 
RODIN-based models we have used the method to assist the potential viewers of our model. In 
addition to this it has helped us to deal with the interactive proofs more easily.    
 
5.2.1.6 Refining the Centralised Specification to a Distributed Model 
 
A major criticism of the initial CDIS development was that there was no formal link between the 
system’s centralised, abstract specification and the distributed design and implementation. 
During Year 3 we developed an abstract specification which allows us to have multiple views of 
the centralised database. Each view represents an image of the database values which a user 
position currently holds. When an update takes place in the centralised database, due to delay in 
the communication links it takes some time to propagate the changes to the related terminals. 
Therefore it is perfectly possible that different viewing position have different view of the 
database values. Some of these views represent a point in the history of the updating. For this 
reason this approach can be called updating history modelling. 
 
Although the multiple view specification is still a centralised model, it provides us with the 
means to refine to a more realistic distributed version. In the refined model we have replaced the 
multiple-view system with three different elements. The first element is the main database. Any 
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update first will take place in this database. The second element is a set of local databases which 
represent the data in the user terminals. The final part of the model is a list of updates that should 
take place in the user terminals. In this model it is perfectly possible for each terminal to have a 
different view of the main database which represents a point in the past history of the updates.  
 
We are not considering the presented approach as the only realistic abstract specification but it 
has provided a practical method to formally link the specification to a distributed refinement. We 
have produced a B model based on this approach in RODIN platform. We consider the 
refinement of the multiple-view abstract specification to the distributed version as a vertical 
refinement. In practice there are two different approaches for refining the initial specification. 
Based on the first approach the vertical refinement can precede any horizontal refinement by 
which we introduce more features into the model. In the second approach, which we have taken, 
we postponed the vertical refinement after we have introduced all the requirements into the 
model. One justification for this could be that going form multiple-view model to distributed 
model is a design decision and any design aspects should introduced after we have a complete 
specification. 
 
According to what we have presented earlier we have produced a distributed version of CDIS in 
RODIN platform. This version consists of one specification and five refinement levels. The first 
four refinements are horizontal refinements and the final level is the vertical refinement as we 
defined in the previous paragraph. Our experience with the centralised version of CDIS has 
helped us to develop the distributed version more accurately and quickly. Furthermore we were 
able to discharge all proof obligations without a major difficulty.   
 
 5.2.2 Impact of the CDIS Case Study on the RODIN Platform 
 

The CDIS case study was intended to provide RODIN with the opportunity to compare the 
capabilities of modern formal methods tools against what was commercially feasible ten years 
ago. The size of the specification was the first major test of the RODIN tool platform, as it had to 
highlight any scale-ability issues, which the developed platform might have. Once the 
specification was developed on the RODIN tool, the secondary aim was to investigate the degree 
of analysis that is possible for the specification. 

Another key test for the tool platform was the degree to which the tool supports the refinement of 
the specification to a detailed design.  The initial CDIS design is concurrent and heterogeneous, 
with a number of different classes of workstation and system support devices. The concurrency 
aspects were not described in the original VVL-based specification of CDIS, and during the 
original development the concurrency aspects were introduced during a manual refinement step. 
The main drawback of this approach was that there were no formal links between the original 
specification and the subsequent refinements. 
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As soon as the early pre-release versions of the main RODIN platform reached an acceptable 
level of stability we started to port the B models produced during year two using the B4free tool. 

Initially, we attempted to use the B2RODIN plug-in at this stage to convert and port our models 
from the B4free based standard B to the RODIN Event-B style. This attempt was unsuccessful 
and the plug-in did not succeed in producing any Event-B output. Therefore we decided to 
undertake the above task manually. 

As a result a number of issues needed to be tackled; a prime example being the replacement of 
some standard B constructs, which no longer existed in Event-B, with corresponding constructs 
and adjusted the modelling style to that recommended by RODIN methodology.  

During this stage we provided the developer with a sizable set of feedback and a wish list for 
future modifications, some of which have yet to be incorporated in the tool. This feedback 
ranged from interface issues to performance related aspects.  Examples are: 

• Interface issues: 
o The interface to some resources of the project like “Log files”, “Comment view” and 

“Project resource files” was obscure 
o The “Problem view” on the window platform did not show mathematics style 

characters correctly. 
o Other interface related issues, where the related view or button/control did not show 

up as expected 
• Some inconsistencies in the early version of the underlying model repositories.   
• Performance related issues such as slow speed of workspace rebuilding in the earlier 

versions. 
• Lack of help and documentation when early versions released. 

Having completed the CDIS specification and early refinement stages, we started to use the 
RODIN tool prover.  Again during this stage we provided a sizable set of feedback to the tool 
developer.  The issues identified were related either to the prover interface or to gap in the 
internal prover rules. 
There have been very noticeable improvements in all aspects of the tool.  However we still have 
a wish list of features to be integrated in future tool versions. Some of the additional features, 
which we recommend to be provided, are: 

• A higher level of support for model documentation and multiple commentary lines 
• An improved editing environment which supports: 

o A free style line format, which supports multi-lines, constructs, to facilitate the 
breaking of log lines across multiple lines. 

o Redo and undo facilities  
o Pop-up help in the form of callouts when holding the mouse over predefined 

variables, constants, etc  
o Auto-complete facilities as provided by other contemporary editors. 

 
 
5.2.3 Impact of the CDIS Case Study on the Plug-in Developments 

UML-B Plug-In 
 
This has not been done yet due to lack enough support of plug-in for complex models as CDIS. 
We expect that this support should be available very shortly. 
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B2RODIN Plug-In 
This plug-in was needed as we intended to port our second year models to the RODIN platform. 
Our attempts at that time with early versions of this plug-in were unsuccessful. 

ProB Plug-In 
The current version of this plug-in only supports animation of a simplified version of CDIS. This 
is because we have used constants mapping in defining records, which is not yet supported by 
ProB. 
 
5.3 Overview of the Achievements of the CDIS Case Study 
 
In this we intended to review the overall achievements of the CDIS case study. During the first 
year of the project a useful subset of the CDIS specification was defined, reviewed and 
distributed. Examples of problem areas in the original CDIS development were identified: 
 

1. The lack of any formal proof in the original development. 
2. The difficulty in comprehending the original specification and the difficulty of 

modularising the specification. 
3. The difficult of dealing with distribution and atomicity refinement. 

 
In Year 2 we focused on addressing items 1 and 2 above, though we also made some progress 
towards dealing with item 3. Two different attempts at reworking subset specification 
commenced: a “translation” approach a “specify equivalent system from scratch” approach. It 
was quickly found that the translation approach was not sensible and we focused in Year 2 on the 
second approach of specifying the system over again. 
Redeveloping an existing system also allows us to reflect on the lessons learned from the original 
development. Our aim in this section is to demonstrate how we have attempted to overcome the 
lack of comprehensibility and formal proof of the original CDIS development by adopting a 
methodology that makes use of available tool support in an effective way. The major outcome in 
Year 2 for CDIS was the elaboration of an approach for large scale formal development. 
 
The CDIS work heavily influenced work on adding records to Event-B which is described in a 
paper presented at FM06 in Canada [5.1]. In addition, the approach for large scale formal 
development elaborated for CDIS partly in Year 2 and more comprehensively in Year 3 will 
pave the path to development of large scale systems in new Event-B system.  
 
Our aims during the third year of the project were as follow: 
 

1. Injection of real industrial requirements into the RODIN platform. 
We have ported all the second year B models to the RODIN platform. In addition to this 
we have made several improvements to increase the readability and comprehensibility of 
the model. We have achieved a higher level of automatic proof discharging. In many 
cases this has exceeded over ninety percent of the initial generated proofs. Considering 
the fact that the new RODIN platform now produces more proof obligation such as Well-
Definedness (WD) proofs in comparison to the old B4free tool it can be seen as a great 
achievement. Beside the above mentioned achievements, we have developed the second 
year models further. They have been extended by introduction some other details in the 
form of two further refinements levels. Accordingly now we have produced one 
specification and 6 refinement levels. The refinements levels incorporate both horizontal 
and vertical refinements.  
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2. Validation of the RODIN model-checking approach on an industrial-scale 
concurrency specification. 
In addition to idealised central version of the CDIS which we discussed in the previous 
point we have developed a distributed version of CDIS. This version includes one 
specification and 4 refinement levels. We have discharged all of the generated proof 
obligation ether by the means of automatic prover or the interactive prover. 
 

3. "Stress-testing" of the RODIN tools platform plug-ins in order to ensure they will 
be useful in an industrial environment. 
Due to the lack of enough support of the plug-ins for such complex models we have not 
been able to assess this section. We expect this should be possible very shortly. 
 

4. An industrial view of the success of RODIN, by providing a detailed comparison of 
the difference between what was achievable 10 years ago in the industrial 
development of complex systems and what will be achievable by the end of the 
RODIN project. 
In a visit to Praxis we have presented our B-Models to experts including some members 
of the initial development team of CDIS. These have provided the project with very 
positive and constructive feedbacks. Most of these feedbacks already have been taken 
into account and we have amended our models accordingly. 
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SECTION 6. CASE STUDY 5: 
AMBIENT CAMPUS 

 
 

6.1 Introduction 
 
 
This case study aims at identifying the extent to which various parts of the RODIN 
approach can provide effective support for the most challenging stages of the formal 
design process of complex fault-tolerant mobile systems. In particular, the wireless 
communication medium, on which the implementation part of this case study is 
based, will necessarily generate a variety of transmission errors leading to a whole 
range of critical faults that must be tolerated. Moreover, mobile applications will 
inevitably require dealing with a variety of abnormal and unpredictable events due to 
system openness, mobility of its participants and their dynamic nature. 
 
The overall project work on the Ambient Campus case study has been focusing on: 

• elucidation of the specific fault tolerance and modelling techniques appropriate for 
the application domain,  

• validation of the methodology developed in WP2 and the model checking plug-in 
for verification based on partial-order reductions, and  

• documentation of the experience in the form of guidelines and fault tolerance 
patterns. 

More specifically, in this case study we have been investigating how to use formal 
methods combined with advanced fault tolerance techniques in developing highly 
dependable Ambient Intelligence (AmI) applications. In particular, we have been 
developing modelling and design templates for fault tolerant, adaptable and 
reconfigurable software. The case study covers the development of several working 
ambient applications (referred to as scenarios) supporting various educational and 
research activities. These applications are agent-based, and they can run on multiple 
platforms, such as Personal Computers (PCs), Personal Digital Assistants (PDAs), 
and smartphones. There are three specific scenarios defined and investigated within 
this case study: 

• Ambient lecture scenario: deals with the activities carried out by teacher and 
students during a lecture – including questions and answers, and group work 
among students – using mobile devices (PDAs and smartphones). More details of 
this scenario can be found in .  

• Presentation assistant scenario: covers the activities involved in giving a 
presentation, where the audience can have the slides shown on their PDA, and they 
can also raise specific questions on each slide through the PDA. 

• Student induction scenario: provides assistance to new students in the registration 
process at the beginning of the term and in familiarising themselves with the 
campus environment. 

In Year 3, we have focussed on the third scenario where, by using smartdust devices 
or motes , we can provide a real context-awareness of the agents involved in this 
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scenario. Each student carries a PDA and a mote which periodically broadcasts the 
identity of the associated student through its Zigbee radio. Each location (room) is 
equipped with a smartdust receiver that picks up the signal sent by the student’s mote. 
Therefore, when a student enters a room, his/her presence will be detected by the 
system, and services available in that location can then be delivered through his/her 
PDA. Initial work on this scenario is published in . 
 
6.2 Major directions in case study development 
 
During Years 1 and 2, we developed a framework called CAMA (Context-Aware 
Mobile Agents), which consists of: 
• a set of fundamental abstractions used in the formal development of ambient 

systems, 
• support for the verification of properties of their models, 
• a formal design of the CAMA middleware using the B method, 
• an implementation of these systems. 
In the first two years there was a considerable progress in understanding how agent 
system development can benefit from formalisation and verification.  We consider 
that formally applied, top-down development, of agent interaction protocols to be the 
only complete and rigorous software engineering technique in the design of open 
systems.  We recognise that formal methods are not easy to use and the associated 
costs can often be very high.  
To facilitate the adoption of RODIN’s formal modelling framework as a mainstream 
software engineer tool, during Year 3 we have developed a set of abstract design 
patterns (T1.5.5) that provide general guidance during a formal development and also 
a tool and a set of refinement patterns that considerably reduce development costs.  
Refinement patterns are formally described reusable model transformation rules. 
Pattern correctness is proved once, and all refinements produced using a pattern are 
automatically correct, which results in a considerable decrease in the number of proof 
obligations. 
 
2.1. Methodological issues brought up by the case study and  methodological 
advances used in the case study 
 
Due to the unique nature of this case study it has been the major driver in developing 
a number of advanced methodological solutions addressing rigorous stepwise design 
of mobile open fault tolerant reconfigurable systems. Among the specific issues 
addressed are reuse by employing refinement and development patterns, ensuring 
component interoperability through rigorous system development and system 
adaptivity. This CS has had a major impact on directing the methodological and 
theoretical research within the overall project, as outlined below.  
 
Mobile agent systems (MAS) are complex distributed systems made of 
asynchronously communicating mobile autonomous components. Such systems have 
a number of advantages over traditional distributed systems, including: ease of 
deployment, low maintenance cost, scalability, autonomous reconfiguration and 
effective use of infrastructure. MAS are distinct enough to require specialised 
software engineering techniques. A number of methodologies, frameworks and 
middleware systems were proposed to support rapid development of MAS 
applications. However, there is as yet no single widely recognised standard and the 
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problem of building large and dependable MAS remains open. As part of our work on 
this CS, we proposed a formal modelling based approach to developing MAS which 
should be capable of capturing both the functional model (e.g., what kind of 
computations an agent is capable of doing) and the behavioral model of an agent (e.g., 
how an agent moves, how it interacts with other agents, etc.).   While it possible to 
use just the Event-B notation (provided by the RODIN platform) to describe the 
functional model of an agent and statically verify it, it is quite challenging or even 
impossible to do the same with the behavioral model.     
 
ROLE Drinker 

  BODY 

    order    =    serve ◦ (); 

    drink    =    skip 

ROLE Pub 

  VARIABLES       int : beer = 0 

  INVARIANT       beer ∈ 0 . . . 10 

  BODY 

    serve =  IF 

                     beer > 0 

                  THEN 

                     beer := beer − 1; 

                     drink ◦ () 

                  END 

SYSTEM 

  LOCATIONS pub1, pub2 

  INVARIANT beer@Pub ≥ drinker@pub 

  AGENTS 

    Student(drinker) := move(pub1).order; 

    Pub(pub) := move(pub1). beer@pubC < 3 ? move(home); 

END 

 
 Figure 2. Example input to the Mobility Plugin combining Event-B-like  
 state-based specification and a process algebra scenario. 
 
In this novel approach, described in [7] and originating from [12], we introduced a 
hybrid (Event-B combined with constructs inspired by process algebras) high level 
programming notation for the specification of mobile applications that can faithfully 
capture both the behavioral and the functional model of an agent (T2.1, T2.2). 
 
Formal methods are not a panacea, the main difficulties in using them are complexity 
of use and scalability. To this end, considerable efforts are devoted to tool support, as 
exemplified by the RODIN project. However, even with a powerful tool support, 
formal methods will not be fully accepted as a mainstream software engineering 
paradigm. The approach we have been working on, called refinement patterns, helps 
developers in applying formal methods using computer-aided model transformations 
as part of the rigorous stepwise system development in B. In our approach such 
transformations are used to capture standardised development steps rigorously 
introducing well-defined fault tolerance into system. These patterns are formally 
described and their correctness can be verified to ensure that the model 
transformations preserve model correctness. Patterns can be applied and undone 
instantaneously during modelling; they significantly reduce the number of proofs that 
have to be done to demonstrate model correctness. We believe that once a large 
number of patterns is accumulated, the automated model transformation supported by 
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patterns will have a profound effect on formal modelling. Pattern instantiation is a 
little more than a mouse click and a well-designed pattern library can do for formal 
modelling what class libraries have done for mainstream system development using 
programming languages. (T2.2) 
We use the Event-B well-formedness and refinement conditions as the basis for 
formulating pattern correctness conditions. A pattern is proved to be correct for a 
whole class of input specifications. In the most general case, this class covers all 
Event-B specifications. Some restrictions are introduced when formulating a pattern 
by introducing parameters and requirements. Additional restriction may appear when 
trying to prove the pattern correctness. 
 
 

Refinement pattern 
pattern addinc 
parameters e 
req_typing e � Events 
variable v 
  invariant v � Z 
  action v :� 0..5 
action v := v + 1 for e 
guard v < 10 for e 
 
Input specification Pattern application result 
machine ex 
variables s 
invariant s � N 
initialisation s := 0 
events 
  a = begin s := s + 1 end; 
  b = begin s := s + 2 end 
end 

refinement ex_addinc 
refines a 
variables s, q 
invariant s � N, q � Z 
initialisation s := 0 
                q :� 0 . . . 5 
events 
  a = when q < 10 then 
                   s := s + 1 
                   q := q + 1 
             end; 
  b = begin s := s + 2 end 
end 

 Figure 1. A refinement pattern and its application example 
 
Refinement patterns are suitable for describing fault-tolerance related design 
procedures and techniques. One of the benefits of the patterns mechanisms is that it 
helps to prevent design mistakes when modelling a fault-tolerance mechanism.  The 
two major techniques developed for tolerating software bugs are recovery blocks and 
N-version programming. These techniques and their variants have been successfully 
used in many critical industrial applications. We have developed the refinement 
patterns for these two techniques, demonstrated their correctness and applied in CS5 
modelling. 
We believe that extensive use of patterns in a development gives an indication of 
development quality provided the individual patterns used in the development are 
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thoroughly analysed and come from respected sources. This is along the line of the 
blue-prints idea of Event-B design philosophy. Currently, we have developed a 
considerable number of practical refinement patterns including three fault-tolerance: 
TMR, NVP and RB. (T2.2 and T2.3) 
CS5 served as an inspiration for many refinement patterns. We have developed a 
number of patterns that help to automate design of systems with rich behaviour but 
shallow functionality. Many mobile agent system protocols and abstractions are can 
be adequately modelled just by the composition if these patterns. There are also a 
number of patterns that help introduce inter-agent communication. (T2.4) 
 
2.2. Impact of the case study on the platform development 
 
The RODIN platform was used extensively by CS 5 in the work on Year 3 scenario. 
The modelling of the case study one of the first applications of the platform in the 
context of realistic, large-scale specifications. Few problems have been found, mainly 
with the tool interface and these were promptly addressed by the platform developers 
(bug reports and suggestion were submitted on a regular basis through the 
sourcefourge tracking facility).    
 
2.3. Impact of the case study on the plug-in developments 
 
B2RODIN Plug-In 
This plugin has been developed to transfer AtelierB projects into the new RODIN 
platform. The plugin is extremely simple in use and no issues have been found. We 
have applied the B2RODIn plugin to transfer previous AtelierB and Click'n'Proof 
developments into the new Rodin Platform. The plugin performance was satisfactory 
and it is very easy to use. 
 
MobilityChecker 
Motivated and inspired in a direct way by CS5, we developed a plug-in for the 
RODIN platform based on an automatic verification engine of proven efficiency 
(developed for high-level Petri nets) that supports the model checking of a given 
specification of mobile systems. A key issue here is a behaviour preserving translation 
of the source specification into a high-level Petri net. In our work, we were following 
a technique used previously in translating two process algebras, KLAIM [8,10,11] 
and π-calculus [9,13], extended by the modelling of state based transformations 
coming from Event-B. The verifier checks for deadlock freeness and invariant 
violations and it is capable to provide feedback in case of discovering an error in the 
specification. These error traces can be visualised with the help of the included 
animator, providing further assistance to the designer. 
  
ProB Plug-In 
The integrated version of the ProB tool was to animate various stages of CS5 design 
directly from the platform. It is a very robust tool that works very well even with large 
and complex models. The interface is also very good. The only minor downside is 
that animation of complex models can be somewhat slow.  ProB plugin to the 
platform is essential tool for understanding complex models. Large, involved 
specifications are hard to read, even more so in Event-B which specifications tend to 
have large number of events due to absence of sequential composition. Model 
animation is an efficient and user friendly for model interpretation. 
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Model-Based Testing 
The theory for model-based testing plug-in is based on user-provided testing 
scenarios. It employs the Event-B method  as a formal framework supporting stepwise 
system development by refinement. Formal specifications of CS5 are also developed 
and refined in a stepwise manner. Moreover, testing of the fault-tolerance 
mechanisms is one of the main issues in CS5. Some of the CS5 models, e.g., 
middleware specifications, were tested while developing the theoretical basis of 
model-based testing plug-in. Using the model-based testing approach, test scenarios 
were identified at the abstract specification level and then refined (together with the 
corresponding specifications) at each refinement step as  shown in Fig. 1. In Fig. 1, 
the left hand side shows refinements of models Mi, while the right hand side 
represents refinement of testing scenarios Si.    
            

    
  

Figure 1. Our Model-based testing approach using refinement 
 
These scenarios also included tests of the incorporated fault tolerance mechanisms. 
While developing the theory of model-based testing plug-in, CS5 was used as its main 
case study. As a result, the model-based testing technique adapted to stepwise 
development of this case study. The described development was done in close 
collaboration with the team working on CS5.  
 
6.3. Overview of the achievements of the case study 
 
In CS5 we developed and investigated a novel approach for modelling and verifying 
the correctness of complex mobile agent systems. None of the existing languages 
were capable of capturing the complete behaviour of mobile agents. Our achievement 
was the development of a single hybrid (Event-B together with a process algebra with 
mobility characteristics) high level programming notation that is capable of capturing 
both the behavioral and the functional model of agents. This language has strong 
theoretical foundations and its structured operational semantics are also presented 
here. Finally, an efficient model checker has been developed as a plug-in for the 
RODIN platform. The plan for this tool is to support a significant part of the Event-B 
notation and also behaviourally rich process algebra expressions. Within CS5, a 
number of refinement patterns were investigated. We have developed a number of 
patterns that help to automate design of systems with rich behaviour but shallow 
functionality. Many mobile agent system protocols and abstractions are can be 
adequately modelled just by the composition if these patterns. There are also a 
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number of patterns that help introduce inter-agent communications. The modelling of 
the case study in Year 3 was one of the first applications of the RODIN platform in 
the context of realistic, large-scale specifications. In this way, the original objectives 
of this CS have been fulfilled. 
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