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Abstract

One aim of the Rodin project is to contribute formal methods which will underpin the
creation of fault-tolerant systems. This final report from WP2 (Methodology) points to the
results achieved during the third year of the Rodin project and includes a bibliography of all of
the relevant publications.
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Chapter 1

Introduction

Earlier reports (D9, D19) from RODIN’s WP2 have attempted to extract information about
“methodology” from each of the case studies. This has led to questions and discussions about
the use of aspects of the proposed methods within the case studies.

For this report, we have elected to emphasize use by pointing to the material in the reports
on the relevant case studies — only the material in Chapters 2–4 is generic to the whole project.

Our work in preparing the DEPLOY IP proposal has also emphasized the need for any
successful formal method to be integrated into the methods used by industrial partners. As
such, we would now say that –while there is a core RODIN method– its benefits are manifested
in five different deployments (see Sections 5.1–5.5).

The current report should be read in conjunction with the earlier D9 and D19 — we have
not repeated the discussions there. Earlier references to methodology papers are, however,
collected at the end of this report.

There is a concluding chapter (7) on the “challenges” we see for the future.
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Chapter 2

The (generic) Event-B methodology

Jean-Raymond Abrial is close to finishing a new book that summarises the development method
for Event-B. The title of the book is “Modeling in Event-B: System and Software Design” and
it is to be published by Cambridge University Press. The book will contain approximately 16
chapters — the bulk of which are fully worked examples whose proofs have been constructed
and/or checked with the RODIN tools. Furthermore, there will be a website that includes
machine readable material including slides for teaching the material. This is an outstanding
achievement in technology dissemination.

The book will be sent to the reviewers (for their personal use only!) but will not itself be
a project deliverable for copyright reasons. It is however obvious that the dissemination of the
RODIN results will be perfectly served by the publication of this book.

The emphasis throughout the book (and all RODIN methods) is on “correctness by con-
struction” (CxC). This is in exact alignment with [LAB+06]. The overall plan of CxC is to
begin with an abstract model and to introduce design decisions as refinements. At each stage
of refinement, one proves that the previous specification will be met if the subsequent ones are
fulfilled.

The examples in Jean-Raymond Abrial’s book show beautiful layering of design decisions.
Of course, it is not always possible to get something right first time: one can end up in a blind
alley. But anyone who claims to have a faultless method that ensures against mistaken design
decisions is either a fool or a knave!

In addition to the material on abstraction and refinement, the book contains extremely useful
advice on the structuring of requirements. There is also an emphasis on proving properties of
(abstract) models as a way of increasing confidence that the system will meet the expectations
of those who commission and/or use the system to be created. (RODIN tools also offer links to
simulation.)

The main technical difference between Event-B and Abrial’s earlier “B book” [Abr96], is
the use of guarded events. These can be used to provide more natural “models” (than in raw
“B” or “VDM”) of many sorts of systems. Unfortunately, guarded events can also result in
“deadlocks” and appropriate proof obligations have to be discharged to establish that this is
not the case. (There should be no surprise about this: reactive systems can deadlock; for a
simple enough system, the guards obviously cover all cases and the proof obligation is trivial
to discharge.)

The new book also benefits enormously from the tool support offered by the RODIN Plat-
form and Tools. The wide range of examples (roughly one per chapter) make it easier to relate
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the method to new application areas. There is a chapter (number 9 in the current draft) on
formal development of “sequential programs”; this is followed by chapters on both “concurrent
programs” and (realisation as) “electronic circuits”.
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Chapter 3

Methods for Formal Development of Fault
Tolerant Systems

3.1 Systems approach
Within the RODIN project we worked on integrating formal methods and fault tolerance fields
to facilitate the development of complex dependable systems. Techniques for achieving system
fault tolerance provide us with the means to cope with failures of physical components and
certain design mistakes. Meanwhile, formal methods provide us with the powerful design tech-
niques enabling development of complex systems correct by construction. These techniques
are based on abstraction, refinement and proofs.

The basic idea underlying formal stepwise development by refinement is to design the
system implementation gradually by a number of correctness preserving steps, called refine-
ments [BvW98]. The refinement process starts from creating an –abstract albeit unimplementable–
specification and finishes with generating executable code. The intermediate stages yield speci-
fications containing a mixture of abstract mathematical constructs and executable programming
artefacts. In general, the refinement process can be seen as a way to reduce nondeterminism
of the abstract specification, to replace abstract mathematical data structures by data structures
implementable on a computer and to introduce underspecified (omitted) implementation deci-
sions. Stepwise development allows us to better master complexity via abstraction, refinement
and proof.

In the project we further developed systems approach to development of complex systems.
The approach is exemplified by Butler et al. [BSS96]. The essence of system approach is that
we start with an abstract formal model of the overall system, i.e., not only software but also
the relevant part of the environment in which the system operates. While refining the abstract
high-level model, we add the relevant details about environment behaviour as well as software
implementation details. Finally, upon reaching the desirable level of details we decompose we
overall specification, thus arriving at the low-level specification of software-implemented part
as such.

While developing a system by an application of system approach we have a picture of
whole system in mind. This facilitates better understanding of complex requirements that is
perceived as the crucial point in developing modern computer-based systems. Indeed a faulty
implementation of requirements can be easily diagnosed and corrected, while faulty design
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resulting from incomplete or poorly defined requirements are expensive and difficult to fix.
The system approach proved to be especially suitable for developing fault tolerant systems.

Fault tolerant systems contain mechanisms for detecting errors and recovering from them. The
necessary condition for creating a methodology for developing such systems is to model mech-
anisms for error detection and recovery explicitly, as an intrinsic part of the specification. The
systems approach allows us to achieve this. Indeed since the physical environment in which a
system operates is explicitly specified, we can also model the effect which the error occurrence
has on the environment behavior. In its turn this allows us to explicitly define error detection
conditions and introduce error recovery procedures.

3.2 Developing Fault Tolerant Control Systems

3.2.1 Systems Approach to Developing Control Systems
Control systems constitute a large class of systems, many of which are safety-critical. Fault
tolerance is directly contributing to system reliability – the ability of system operate correctly
over given period of time under a given set of operating conditions. Obviously, reliability has a
direct impact on system safety – freedom of accidents caused by the system.

In general, a control system is a reactive system with two main entities: a plant and a
controller. The plant behaviour evolves according to the involved physical processes and the
control signals provided by the controller. The controller monitors the behaviour of the plant
and adjusts it to provide the intended functionality and maintain safety.

The properties of a control system we would like to enforce –such as safety and fault
tolerance– cannot be attributed to either a plant or a controller alone. They are the proper-
ties of a system as a whole. Therefore, a systems approach provides us with a solid basis to
design controllers for dependable systems. According to the systems approach, in our initial
specification we model behaviour of the plant and the controller together.

The control systems are usually cyclic, i.e., at periodic intervals they get input from sensors,
process it and output the new values to the actuators. In our abstract specification the sensors
and actuators are represented by state variables shared by the plant and the controller. At each
cycle, the plant reads the variables modelling actuators and assigns to the variables modelling
the sensors. In contrast, the controller reads the variables modelling sensors and assigns the
variables modelling the actuators. We assume that the reaction of the controller takes a neg-
ligible amount of time so the controller can react properly on changes of the plant state. The
generic abstract specification is given in the machine ControlSystem below.

MACHINE ControlSystem
VARIABLES flag, state variables
INVARIANT flag ∈ {pl,contr,pred,det} ∧ safety inv ∧ fail ∈ BOOL
INITIALISATION flag := pl || fail := FALSE ||
EVENTS

Plant = WHEN flag=pl THEN evolution || flag := contr END;
Detection = WHEN flag=det THEN

IF error is detected
THEN fail := TRUE END || flag := det END;
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Abort = WHEN flag=contr ∧ (not safe ∨ fail = TRUE)
THEN shutdown END;

Control = WHEN flag=contr ∧ (safe ∧ fail = FALSE)
THEN control action || flag := pred END;

Prediction = WHEN flag=pred THEN flag := pl END
END

The overall behaviour of the system is an alternation between the events modelling plant
evolution and controller reaction. As a result of the initialisation, the plant operation becomes
enabled. Once completed, the plant enables the controller. The behaviour of the controller
follows the general pattern

Error detection; Shutdown or Routine control; Prediction

which is modelled by the corresponding assignments to variable flag.
The common mechanism for error detection is to find a discrepancy between the expected

state of the system and the state which is observed in the reality. The event Prediction spec-
ifies the calculations required to predict the expected state. The event Detection models error
detection by assigning value TRUE to variable fail. Due to high level of abstraction, in our
initial specification the variable fail is assigned non-determnistically and the event Prediction
is merely passing control to the plant.

Here we model failsafe - one of the most common mechanisms for error recovery. Failsafe
error recovery is performed by forcing the system permanently to a safe though non-operation
state (obviously this strategy is only appropriate where shutdown of the system is possible). In
the initial specification we shut down the system if an error is detected or safety is breached
(as defined in the condition of operation Abort). The shutdown is modelled as nondeterministic
assignment to state variables.

Let us observe that system progress is stopped upon executing Abort event. Routine control
operations can be executed provided the system is safe and fault-free. The routine control is
specified by the event Control. We will decompose the overall system specification at the later
refinement steps and eventually will arrive at the specification of the controller as such.

Our initial specification entirely defines the intended functionality of a fault-free system but
leaves the means for fault tolerance underspecified. This is explained by the lack of the imple-
mentation details, which is typical at the early stages of development. These details become
available at the later stages of the development, e.g., when results of hazard analysis conducted
at a lower level are supplied. We complete specification of fault tolerance mechanisms by
further refinement steps.

3.2.2 Refining Fault Tolerance Mechanism
We start refinement of control systems by replacing variable fail modelling error occurrence
by the variables representing failures of system components. It is an example of data refine-
ment. This data refinement expresses the fact that error occurs when one or several system
components fail. The refinement relation defines the connection between the newly introduced
variables and the variables that they replace.

While refining the specifications, we add the refinement relation to the invariant of the
refined machine. In addition to replacing variable fail, our next refinement step also introduces
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a more deterministic specification of plant behaviour. In the abstract specification we modelled
plant behaviour as a nondeterministic update of sensor values. Such an abstraction includes
modelling of both fault-free and faulty behaviour. In the refined specification of the plant we
separate them.

The behaviour of fault-free plant evolves according to the certain physical laws which can
be expressed as the corresponding mathematical functions. Moreover, these functions can be
further adjusted to model deviations caused by imprecision of sensors measuring the physical
values. We use these functions to model fault-free behaviour of the plant. On the other hand,
faults make the plant to deviate from the dynamics defined by these functions. We specify
occurrence of faults non-deterministically and locally to the plant. However, we model the
effect of fault occurrence by assigning sensors values different from the ones which they would
obtain in the absence of faults.

Refinement of plant behaviour also allows us to refine error detection mechanism. Observe
that the mathematical functions modelling the plant’s behaviour as described above can be used
to predict the next state of the system. Hence we can refine operation Prediction to include the
calculation of the expected system states. Furthermore, we also can refine operation Detection
to check whether the expected state matches the obtained sensor readings. The detected mis-
match signals the presence of an error. The result of this refinement step is a specification of
the following form:

MACHINE ControlSystemRefined
REFINES ControlSystem
VARIABLES flag, state variables of ControlSystem

new variables for modelling failures of components
variables modelling expected states

INVARIANT constraints of variables AND data refinement relation
INITIALISATION initialization of variables
EVENTS

Plant = WHEN flag=pl
THEN simulation of evolution of the plant based on

the corresponding physical laws and
non-deterministic occurrence of failures ; flag := contr END;

Detection = WHEN flag=det THEN
IF real state does not match expected state
THEN failures of components are detected END;
flag := det END;

Abort = WHEN flag=contr AND (not refined safe OR components failed)
THEN shutdown END;

Control = WHEN flag=contr AND
(refined safe AND components are fault-free)
THEN control action ; flag := pred END;

Prediction = WHEN flag=pred
THEN calculate next expected state

using the same physical laws as for simulating the plant ;
flag := pl END

END
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3.2.3 Introducing Redundancy by Refinement
Let us note that in the specification obtained at the previous refinement step all errors are
considered to be equally critical, i.e., leading to the shutdown. While introducing redundancy
at our next refinement step, we obtain a possibility to distinguish between criticality of errors.
The distinction is done with respect to safety as follows: an occurrence of a marginal error
means that the system can continue its functioning without compromising safety; on the other
hand, an occurrence of critical errors endangers system safety so the shutdown needs to be
executed.

In terms of the state space, we split the set of faulty system states into the subset of faulty but
safe (and hence operational) states and the subset of faulty and unsafe states. The introduction
of redundancy into the specification allows us to transform the system from fault nonmasking
to masking. Fault masking is a mechanism that reconfigures the system upon error detection
in such a way that the effect of the error is nullified. For instance, the simplest and the most
common implementation of fault masking is triple modular redundancy (TMR) arrangement.

TMR uses majority voting to single out a failed component and reconfigures the outputs of
redundant components in such a way that the erroneous output is disregarded. An occurrence
of errors that can be masked leaves both functioning of the system and safety intact, so we
call these errors marginal. On the other hand, occurrence of critical errors, i.e., the errors
that cannot be masked, jeopardizes normal functioning and safety of the system. Hence the
partitioning of faulty system states can also be thought of as the partitioning into a subset of
masked and unmasked errors. The introduction of redundancy as described above results in the
refinement machine of the form ControlSystemRefinedRedundant.

Observe that, although the guard of Abort event is unchanged by this refinement step, the
event nevertheless becomes enabled less often. This is because Detection event is now distin-
guishes between the critical and marginal errors so that the occurrence of the marginal failures
does not enable Abort anymore.

MACHINE ControlSystemRefinedRedundant
REFINES ControlSystemRefined
VARIABLES flag, state variables of ControlSystem

new variables for modelling redundancy
variables modelling expected states
variables for modelling failures of components

INVARIANT constraints of variables AND data refinement relation
INITIALISATION initialization of variables
EVENTS

Plant = WHEN flag=pl
THEN simulation of the behaviour of the plant

with redundant components
and the occurrence of component failures; flag := contr END;

Detection = WHEN flag=det THEN
IF mismatch between the states of redundant components is detected
THEN
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IF the error cannot be masked
THEN critical failure of redundant components is detected END
ELSIF the real state does not match the expected state
THEN critical failure of other components is detected
ELSE flag := det END . . . END;

Abort = WHEN flag=contr AND (not refined safe OR components failed)
THEN shutdown END;

Control = WHEN flag=contr AND
(refined safe AND components are fault-free OR failures are masked)
THEN control action ; flag := pred END;

Prediction = WHEN flag=pred
THEN calculate next expected state using

the same physical laws as for simulating the plant;
flag := pl END

END

At the final refinement step the system is decomposed into the plant and the controller. The
specification of the controller includes all events except Plant. From this specification we can
generate the executable code.

3.2.4 Summary of the Approach
According to our approach the system model evolves as follows:

• Abstract specification of entire system: the initial specification captures requirements for
routine control, models failure occurrence and defines safety property as a part of its in-
variant

• Specification with refined error detection mechanism: the abstract specification is aug-
mented with the representation of failures of the components, a more elaborated descrip-
tion of plant’s dynamics and a detailed description of error detection.

• Specification of the system supplemented with redundancy: the specification is refined
to describe the behaviour of the redundant components and the control over them. The
error detection mechanism is enhanced to distinguish between criticality of failures.

• Decomposition: the specification of overall system is split into specifications of the con-
troller and the plant.

• Implementation: executable code of controller is produced.

This approach was described in detail by Laibinis and Troubitsyna [LT04]. The approach was
further developed by Ilic et al. [IT05, ITLS06a] to include treatment of transient faults.
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3.3 Methods of Ensuring Fault Tolerance in Service-Oriented
Development

3.3.1 Systems Approach to Modelling a Service Component
The service-oriented development is becoming a popular approach in the development of com-
plex computer-based systems. The notion of service provides a convenient mechanism for
modelling and reasoning about interactions and hence, service-oriented development paradigm
is particularly suitable for the development of communicating systems. Within Nokia Research
Centre, service-oriented development paradigm has been conceptualized within Lyra frame-
work [LTO04].

Lyra is a UML-based service-oriented method specific to the domain of communicating
systems and communication protocols. The design flow of Lyra is based on concepts of de-
composition and preservation of the externally observable behaviour. The system behaviour
is modularised and organized into hierarchical layers according to the external communication
and related interfaces. It allows the designers to derive the distributed network architecture
from the functional system requirements via a number of model transformations.

Within RODIN we formalized Lyra in Event-B [LTL+06b] and introduced reasoning about
fault tolerance into the design flow [LTL+06a]. One of the central concepts of Lyra is the
notion of a service component. It is defined as a coherent piece of functionality that provides
its services to a service consumer via Provided Service Access Point PSAP(s). The notion of
a service component can be generalized to represent the service providers at different levels of
abstraction.

A service component has two essential parts: functional and communicational. The func-
tional part is a ”mission” of a service component, i.e., the service(s) that it is capable of provid-
ing. The communicational part is an interface via which a service component receives requests
to execute the service(s) and sends the results of service execution.

Execution of a service usually involves certain computations. We call the B representation
of this part of a service component Abstract CAlculating Machine (ACAM). The communica-
tional part is correspondingly called Abstract Communicating Machine (ACM), while the entire
B model of a service component is called Abstract Communicating Component (ACC). The ab-
stract machine ACC below presents the proposed pattern for specifying a service component in
B.

While specifying a service component, we adopt a systems approach, i.e., model the service
component together with the relevant part of its environment, the service consumer. Namely,
when modelling the communicational (ACM) part of ACC defined by the events input and
output, we also specify how the service consumer places requests to execute a service in the
event input and reads the results of service execution in the event output, as defined in the
machine ACC below. The parameters of the request in data, can be used by ACAM while
performing the required computations, which produces the result out data.

MACHINE ACC

SEES Data
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VARIABLES

in data
out data
res

INVARIANTS

inv1 : in data ∈ DATA
inv2 : out data ∈ DATA
inv3 : res ∈ DATA

EVENTS

INITIALISATION

BEGIN
act1 : in data, out data, res := NIL,NIL,NIL

END

EVENT input
ANY

param
WHERE

grd1 : param ∈ DATA ∧ ¬ (param = NIL)
THEN

act1 : in data := param
END

EVENT calculate
WHEN

grd1 : ¬ (in data = NIL)
THEN

act1 : out data :∈ DATA \ {NIL}
END

EVENT output
WHEN

grd1 : ¬ (out data = NIL)
THEN

act1 : res := out data
act2 : in data, out data := NIL,NIL

END

END
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In our initial specification we abstract away from the details of computations required to ex-
ecute a service, i.e., ACAM (the event calculate) is modelled as a statement non-deterministically
generating the results of service execution. These results are stored in the output buffer out data.
The service consumer obtains the results of service provision as a result of executing event out-
put. Already in the abstract specification we model possibility of failure – out data might
contain values representing the results of not only successful service executions but also failed
ones.

While executing the operation output, the input and output buffers are emptied and the
service component becomes ready to accept a new service request. Here we reserve the abstract
constant NIL to model the absence of data.

The specification ACC defines a generic specification patterns which is recursively used to
define service components on different levels of abstraction throughout the entire development
flow. The pattern can be instantiated by supplying the details specific to a service component
under construction. For instance, the ACM part of ACC models data transfer to and from a
service component very abstractly. We have shown how it can be instantiated for the Positioning
system example [LTL+06b]. While developing a more complex service component, this part
can be instantiated with more elaborated data structures and the corresponding protocols for
transferring them.

3.3.2 Introducing Fault Tolerance in the Lyra Development Flow
Originally, the Lyra methodology addressed fault tolerance implicitly, i.e., by representating not
only successful but also failed service provision in the Lyra UML models. However, it leaved
aside modelling of mechanisms for detecting and recovering from errors – the fault tolerance
mechanisms. We demosntrated that, by integrating explicit representation of the means for fault
tolerance into the entire development process, we established a basis for constructing systems
that are better resistant to errors, i.e., achieve better system dependability.

In Service specification phase a service is specified according to ACC pattern, i.e., is essen-
tially modelled by its interface. In the Service Decomposition and Service Distribution phases
we decompose the service provided by a service component into a number of subservices and
map then onto a given network architecture. The service component can execute certain sub-
services itself as well as request other service components to do it. According to Lyra, the flow
of the service execution is managed by a special service component called Service Director. It
implements the behaviour of PSAP of a service component as specified earlier. Moreover, it
co-ordinates the execution flow by enquiring the required subservices from the external service
components.

In general, execution of any stage of a service can fail. In its turn, this might lead to
failure of the entire service provision. Therefore, while specifying Service Director, we should
ensure that it does not only orchestrates the fault-free execution flow but also handles erroneous
situations. Indeed, as a result of requesting a particular subservice, Service Director can obtain
a normal response containing the requested data or a notification about an error. As a reaction
to the occurred error, Service Director might

• retry the execution of the failed subservice,
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(a) Fault free execution flow
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(d) Aborting service execution
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Success

Service
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Execution_time > Max_SRT

(e) Aborting the service due to timeout

Figure 3.1: Service decomposition: faults in the execution flow

• repeat the execution of several previous subservices (i.e., roll back in the service execu-
tion flow) and then retry the failed subservice,

• abort the execution of the entire service.

The reaction of Service Director depends on the criticality of an occurred error: the more
critical is the error, the larger part of the execution flow has to be involved in the error re-
covery. Moreover, the most critical (i.e., unrecoverable) errors lead to aborting the entire ser-
vice. In Fig.3.1(a) we illustrate a fault free execution of the service S composed of subservices
S1, . . . , SN . Different error recovery mechanisms used in the presence of errors are shown in
Fig.3.1(b) - 3.1(d).

Let us observe that each service should be provided within a certain finite period of time –
the maximal service response time Max SRT. In our model this time is passed as a parameter
of the service request. Since each attempt of subservice execution takes some time, the ser-
vice execution might be aborted even if only recoverable errors have occurred but the overall
service execution time has already exceeded Max SRT. Therefore, by introducing Max SRT
in our model, we also guarantee termination of error recovery, i.e., disallow infinite retries and
rollbacks, as shown in Fig.3.1(e).

A service director implementing fault tolerance mechanisms can be defined as the refine-
ment of ACC pattern, as shown in the machine ServiceDirector below.

MACHINE ServiceDirector

REFINES ACC
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SEES Data2

VARIABLES

in data
out data
res
time left
old time left
curr task
finished
results
curr state
active
changed
resp

INVARIANTS

inv1 : time left ∈ N ∧ old time left ∈ N ∧ curr task ∈ N
inv2 : finished ∈ BOOL
inv9 : results ∈ 0 . . (curr task − 1)→ STATE
inv3 : curr state ∈ STATE ∧ curr task ∈ 0 . . max next ∧ active ∈ P(SERVICE)
inv4 : changed ∈ BOOL ∧ (finished = FALSE⇒ time left > 0)
inv5 : time left ≤ old time left
inv6 : resp ∈ RESPONSE
inv7 : finished = TRUE ∧ ¬ (resp = ABORT)⇒ curr task = max next
inv8 : resp = ABORT⇒ finished = TRUE
inv10 : finished = TRUE⇒ resp ∈ {SUCCESS,ABORT}

EVENTS

INITIALISATION

BEGIN
act1 : in data, out data, res := NIL,NIL,NIL
act2 : time left, old time left, curr task := max time,max time, 0
act3 : resp, finished := SUCCESS,FALSE
act8 : results := ∅
act4 : curr state :∈ STATE
act5 : active, changed := ∅,FALSE

END

EVENT input
REFINES input

ANY
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param
time
mode

WHERE
grd1 : param ∈ DATA ∧ time ∈ N 1 ∧ mode ∈ MODE ∧ ¬ (param = NIL)

THEN
act1 : in data, curr state := param, Init state(param 7→ mode)
act2 : results, curr task := ∅, 0
act3 : finished, changed := FALSE,TRUE
act4 : time left, old time left := time, time
act5 : resp := SUCCESS

END

EVENT timer
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE
grd2 : changed = TRUE ∧ time left = old time left
grd3 : {tt | tt ∈ N 1 ∧ tt < time left} 6= ∅

THEN
act1 : time left :∈ {tt | tt ∈ N 1 ∧ tt < time left}

END

EVENT timer out
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE
grd2 : changed = TRUE ∧ time left = old time left
grd3 : {tt | tt ∈ N 1 ∧ tt < time left} = ∅

THEN
act1 : time left, resp := 0,ABORT
act2 : finished := TRUE

END

EVENT handle SUCCESS
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE ∧ changed = TRUE
grd2 : Eval(curr task 7→ curr state) = SUCCESS
grd3 : curr task < max next ∧ time left < old time left

THEN
act1 : results, curr task := results ∪ {curr task 7→ curr state}, curr task + 1
act2 : active := Next(curr task + 1)
act3 : old time left := time left
act4 : resp := SUCCESS

END

EVENT handle SUCCESS complete
WHEN
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grd1 : ¬ (in data = NIL) ∧ finished = FALSE ∧ changed = TRUE
grd2 : Eval(curr task 7→ curr state) = SUCCESS ∧ curr task = max next
grd3 : time left < old time left

THEN
act1 : finished := TRUE
act2 : old time left := time left
act3 : resp := SUCCESS

END

EVENT handle REPEAT
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE ∧ changed = TRUE
grd2 : Eval(curr task 7→ curr state) = REPEAT
grd3 : time left < old time left

THEN
act1 : active := active ∪ Repeat(curr task 7→ curr state)
act2 : old time left := time left
act3 : resp := REPEAT

END

EVENT handle CANCEL
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE ∧ changed = TRUE
grd2 : Eval(curr task 7→ curr state) = CANCEL
grd3 : time left < old time left

THEN
act1 : active := active ∪ Cancel(curr task 7→ curr state)
act2 : old time left := time left
act3 : resp := CANCEL

END

EVENT handle CONTINUE
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE ∧ changed = TRUE
grd2 : Eval(curr task 7→ curr state) = CONTINUE
grd3 : time left < old time left

THEN
act2 : old time left := time left
act3 : resp := CONTINUE

END

EVENT handle ROLLBACK
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE ∧ changed = TRUE
grd2 : Eval(curr task 7→ curr state) = ROLLBACK
grd5 : time left < old time left
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THEN
act1 : curr task := Rollback(curr task 7→ curr state)
act2 : results := (0 . . Rollback(curr task 7→ curr state)− 1) � results
act3 : active := Next(Rollback(curr task 7→ curr state))
act4 : old time left := time left
act5 : resp := ROLLBACK

END

EVENT handle ABORT
WHEN

grd1 : ¬ (in data = NIL) ∧ finished = FALSE ∧ changed = TRUE
grd2 : Eval(curr task 7→ curr state) = ABORT
grd3 : time left < old time left

THEN
act1 : finished := TRUE
act2 : old time left := time left
act3 : resp := ABORT

END

EVENT calculate ABORT
REFINES calculate

WHEN
grd1 : ¬ (in data = NIL) ∧ finished = TRUE ∧ resp = ABORT

THEN
act1 : out data := Abort data

END

EVENT calculate ELSE
REFINES calculate

WHEN
grd1 : ¬ (in data = NIL) ∧ finished = TRUE ∧ ¬ (resp = ABORT)

THEN
act1 : out data := Output(results(curr task − 1))

END

EVENT output
REFINES output

WHEN
grd1 : ¬ (out data = NIL)

THEN
act1 : res := out data
act2 : in data, out data := NIL,NIL

END

EVENT read response
ANY
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ss
data

WHERE
grd3 : ss ∈ active ∧ data ∈ DATA \ {NIL}
grd1 : changed = FALSE
grd2 : active 6= ∅

THEN
act1 : curr state := update(ss 7→ curr state 7→ data)
act2 : active := active \ {ss}
act3 : changed := TRUE

END

END

We model the decomposed service as a sequence over the abstract set TASKS. Each element
of TASKS represents the individual subservice. Moreover, we introduce the abstract function
Next to models the service execution flow.

The currently executed subservice is modelled by the variable curr task. The results of the
current subservice execution are stored in the variable curr data. The results of all subservices
already executed are accumulated in the variable results. The variable finished indicates the
end of service execution. The variable is set to TRUE when the whole sequence of subservices
has been executed or some unrecoverable error has occurred.

To model progress of time, we introduce the variable time left. When a service request
is received, time left is set to the maximal service response time Max SRT. The variable
old time left is used to force interleaving between progress of the execution flow and the pas-
sage of time. The event timer decreases the value of time left, disables itself and enables the
event group handle, which specifies the service co-ordinating behaviour of Service Director.

In the event group handle, we model not only requesting a certain subservice and obtaining
its response, but also handling notifications about errors. We introduce the abstract function
Eval, which evaluates the obtained response from a requested subservice. The result of eval-
uation is assigned to the variable resp. If the subservice was successfully executed then the
variable resp gets the value OK. In this case the next element from the sequence of subservices
is chosen for execution according to the function Next. If a benign failure has occurred and
error recovery merely requires to retry the execution of the failed subservice then the variable
resp is assigned the value REPEAT. This situation is illustrated in Fig. 3.1(b). However, if a
more critical error has occurred, i.e., the variable resp gets the value ROLLBACK, the execu-
tion of several subservices preceding the failed service should be repeated as well. This case
is depicted in Fig. 3.1(c). The inverse of the function Next defines which subservices should
be re-executed, i.e., to which subservice the execution flow should rollback. In this case, we
also delete the results of executing these subservices from results. Finally, if an unrecoverable
error has occurred, i.e., the value of resp becomes ABORT, then the execution of the service is
terminated (i.e., the variable finished is assigned TRUE) as shown in Fig. 3.1(d).

Let us note, that the variable resp also obtains the value ABORT once the timeout has
occurred. This is modelled in the event timer. The system might be in a state where the
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value of time left had already became zero, while the execution of the service has not yet been
finished, as depicted in Fig. 3.1(e).

While defining the execution flow over subservices in ServiceDirector, we abstracted away
from modelling the details of the communication between Service Director and the external
service providers – the USAP communication. Moreover, we omitted the explicit represen-
tation of the external service providers as such and modelled only the results of subservices
provision. In our next refinement steps we decompose the obtained specification to introduce
the detailed representation of the external service providers and the USAP communication.

Essence the fault tolerance mechanisms is preserved in the further refinement steps, so we
omit their representation here. However, in the case distribution of services over the given
architecture involves communication between several service directors, the model of fault tol-
erance mechanism becomes significantly more complex. This is also the case for the model
which explicitly deals with parallel execution of services. More details on these issues can be
found elsewhere [LTL07].

3.4 Formal Approaches to Developing Fault Tolerant Agent
Systems

3.4.1 CAMA: Basic Concepts
Agent technology offers a number of advantages over traditional distributed systems, such as
asynchronous communication, anonymity of individual agents and ability to change operational
context. Middleware is the core part of agent systems providing coordination and mobility
mechanisms. In RODIN we used systems approach to develop fault tolerant agent systems.

The work was carried out within CAMA (Context Aware Mobile Agent) systems frame-
work [AIR06]. The CAMA inter-agent communication is based on the LINDA paradigm [D.G85],
which provides a set of language-independent coordination primitives that can be used for co-
ordination of several independent agents. These primitives allow agents to put tuples (vectors
of values) in a shared tuple space, remove them from it, and test the shared space for their
presence.

The major contribution of CAMA is a novel mechanism to structure inter-agent communi-
cation, allowing groups of communicating agents to work in isolated subspaces called scopes.
A scope is a dynamic container for tuples. The tuples contained within a scope are visible
only to the agents participating in this particular scope. Hence, a scope provides an isolated
coordination space for its agents.

Each agent carries special attributes describing the functionality it implements. Such an
abstract description of agent functionality is called role. Graphically a scope with agents par-
ticipating in it is depicted in Fig.3.2. Let us observe, that each agent participating in the scope
S should implement at least one role from the set Roles S of the roles supported by S.

Scopes also act as the service discovery mechanism. Agents can look up for activities or
services by analysing scope attributes. Scope attributes are represented as a LINDA tuple and
the discovery procedure is based on LINDA tuple matching.

In its turn, a location is a container for scopes. Locations constitute the core part of a CAMA

system. Finally, platform provides an execution environment for agents. It is composed of a
virtual machine for code execution, networking support, and client middleware for interacting
with a location.
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Figure 3.2: Scope with participating agents

A graphical representation of an overall CAMA system is given in Fig.2. As it is easy to see,
the middleware supporting agent execution is distributed between agents and locations. In the
project we formally developed a part of CAMA middleware supporting activities of an agent in
a location, i.e., the parts of middleware denotes as A-L and L-A in Fig.3.3. The development
was done by an application of systems approach.
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Figure 3.3: CAMA system

3.4.2 Systems Approach to Specifying Mobile Agent Systems
A typical behaviour of an agent can be described as follows: an agent connects to a loca-
tion and then joins an existing scope. In a scope it can cooperate with agents participating in
the same scope. When an agent leaves the scope, it either joins another scope or disconnects
from the location. To support this behaviour the CAMA middleware provides three categories
of operations: location engagement, scoping mechanism, and communication. The location
engagement operations associate or disassociate an agent with a location. The scoping mech-
anism operations allow an agent to enquiry for available scopes, create new scopes, destroy
previously created scopes, join and leave existing scopes.

One of the major challenges in designing agent systems lies in ensuring interoperability of
agents. This problem can only be properly addressed if we define the essential properties of
the overall agent system, derive the properties to be satisfied by a location and each agent, and
ensure that they are preserved in the agent and location development. This goal can be achieved
by adopting the system approach to developing agent systems, i.e., modelling the entire set of
agents together with a location.

Below we present specification and refinement of middleware supporting activities of agents
on a single location. Our development starts from an abstract specification given in the machine
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Cama, which models the entire agent system, i.e., the agents and the location together. The
variable agents represents the set of agents that joined the location. The operations Engage
and Disengage model joining and leaving the location correspondingly. While an agent is in
the location, it performs some computations, as modelled by the operation NormalActivity. To
express that these computations are performed locally within the agent and hence do not affect
the abstract state of the system, we model them by the statement skip.

MACHINE Cama
SETS Agents
VARIABLES agents
INVARIANT agents ⊆ Agents
INITIALISATION agents:= ∅
EVENTS

Engage = ANY aa WHERE aa ∈ Agents ∧ aa 6∈ agents
THEN agents := agents ∪ {aa} END;

NormalActivity = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents
THEN skip END ;

Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents
THEN agents := agents - {aa} END

END

In our initial specification we abstracted away from explicit modelling of the system be-
haviour in the presence of faults, e.g., due to temporal losses of connection. Although, the
result of failure – disengagement of an agent from the location – is implicitly modelled in the
operation Disengage. In our first refinement step we introduce an explicit representation of the
system behaviour in the presence of temporal losses of connection.

Let us observe that in most cases an agent loses connection only for a short period of
time. After connection is restored, the agent is willing to continue its activities virtually un-
interrupted. Therefore, after detecting a connection loss, the location should not immediately
disengage the disconnected agent but rather set a deadline before which the agent should recon-
nect. If the disconnected agent restores its connection before the deadline then it can continue
its normal activity. However, if the agent fails to do it, the location should disengage the agent.

Such a behaviour can be adequately modelled by the timeout mechanism. Upon detecting
a disconnection the location activates a timer. If the agent reconnects before the timeout then
the timer is stopped. Otherwise, the location forcefully disengages the disconnected agent. To
model this behaviour, in the first refinement step we introduce the variable timers representing
the subset of agents that have disconnected but for which the timeouts have not expired yet.
Moreover, we introduce the variable ex agents to model the subset of agents that missed their
reconnection deadline and should be disengaged from the location. Finally, we add the new
events Disconnect, Connect and Timer to model agent disconnection, reconnection and timeout
correspondingly.

To ensure that the refined system does not introduce additional deadlocks, we define the
variant, which constraints the number of successive disconnections and reconnections. The
constant Disconn limit defines the maximal number of successive disconnections. The vari-
able disconn limit obtains the value Disconn limit in the initialisation. Each newly introduced
events decreases the value of the variant either by decreasing the value of disconn limit (when
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an agent disconnects) or by removing elements from the set timers (when a disconnected agent
either reconnects or misses the reconnection deadline). The value of the variant is restored by
executing the NormalActivity event.

In our specification we assume that an agent failure due to the loss of connection is detected
by the location. However, an agent might by itself detect an error in its functioning and leave
the location. Therefore, the agent might get disengaged from the location due to the following
three reasons:

• because it has successfully completed its activities in the location,

• due to the disconnection timeout,

• due to a spontaneous failure detected by the agent itself.

In the refined specification given in the machine Cama1 below, we model all these differ-
ent types of leaving by splitting the operation Disengage into three corresponding operations:
NormalLeaving, TimerExpiration and AgentFailure.

REFINEMENT Cama1
REFINES Cama
CONSTANTS Disconn limit
PROPERTIES Disconn limit ∈ NAT ∧ Disconn limit > 1
INITIALISATION

agents := ∅ || timers := ∅ ||
ex agents := ∅ || disconn limit := Disconn limit

VARIABLES agents, timers, ex agents, disconn limit
INVARIANT

timers ⊆ agents ∧
ex agents ⊆ agents ∧
timers ∩ ex agents = ∅ ∧
disconn limit ∈ NAT

VARIANT
card(timers) + 2*disconn limit

EVENTS
Engage = ANY aa WHERE aa ∈ Agents ∧ aa 6∈ agents

THEN agents := agents ∪ {aa} END;
NormalActivity = ANY aa WHERE aa ∈ agents

THEN disconn limit := Disconn limit END;
NormalLeaving ref Disengage = ANY aa WHERE

(aa ∈ agents) ∧ (aa 6∈ timers) ∧ (aa 6∈ ex agents)
THEN agents := agents - {aa} END;

TimerExpiration ref Disengage = ANY aa WHERE
(aa ∈ agents) ∧ (aa ∈ ex agents)

THEN agents := agents - {aa} || ex agents := ex agents - {aa} END;
AgentFailure ref Disengage = ANY aa WHERE

(aa ∈ agents) ∧ (aa 6∈ timers) ∧ (aa 6∈ ex agents)
THEN agents := agents - {aa} END;
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Connect = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)
THEN timers := timers - {aa} END;

Disconnect = ANY aa WHERE
(aa ∈ agents) ∧ (aa 6∈ ex agents) ∧ (aa 6∈ timers) ∧ disconn limit > 1

THEN timers := timers ∪ {aa} || disconn limit := disconn limit - 1 END;
Timer = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN ex agents := ex agents ∪ {aa} || timers := timers - {aa} END
END

The refined specification Cama1 is a result of superposition refinement and atomicity refine-
ment of the abstract specification Cama. This refinement step allowed us to introduce both
error detection and error recovery into the system specification. Hence, already at a high level
of abstraction we specify fault tolerance as an intrinsic part of the system behaviour.

3.4.3 Introducing Scoping Mechanism
In the abstract specification and the first refinement step we mainly focused on modelling inter-
actions of agents with the location. Our next refinement step introduces an abstract represen-
tation of the scopes as an essential mechanism that governs agent interactions while they are
involved in cooperative activities.

The creation of a scope is initiated by an agent, which consequently becomes the scope
owner. The other agents might join the scope and become engaged into the scope activities.
The agents might also leave the scope at any instance of time. The scope owner cannot leave
the scope but might close it (this action is not permitted for other agents). When the scope
owner closes the scope, it forces all agents participating in the scope to leave.

The introduction of the scoping mechanism also enforces certain actions to be executed
when an agent decides to leave a location. Namely, to leave the location an agent should first
leave or close (if it is the scope owner) all the scopes in which it is active.

The scoping mechanism has deep impact on modelling error recovery in agent systems. For
instance, if the scope owner irrecoverably fails, then, to recover the system from this error, the
location should close the affected scope and force all agents in this scope to leave.

We refine the machine Cama1 to specify the scoping mechanism described above. In the
refinement machine Cama2, we introduce the variable scopes, which is defined as a relation
associating the active scopes with the agents participating in them. Moreover, we add the
variable sowner to model scope owners. It is defined as a total function from the active scopes
to agents.

We define the new events Create, Join, Leave and Delete to model creating a scope by the
owner, joining and leaving it by agents, as well as closing a scope. In the excerpt from the
refinement machine Cama2, we demonstrate the newly introduced variables and events as well
as the effect of the refinement on the events AgentFailure and TimerExpiration. The guard of
the event NormalLeaving is now strengthened to disallow an agent to leave the location when
it is still active in some scopes.

REFINEMENT Cama2
REFINES Cama1
SETS ScopeName
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CONSTANTS ScopeLimit
PROPERTIES ScopeLimit ∈ NAT1
DEFINITIONS activeAgent(aa) == (aa 6∈ ex agents ∧ aa 6∈ timers)
VARIABLES . . . , scopes, sowner , slimit
INVARIANT

scopes ∈ ScopeName↔ agents ∧ sowner ∈ ScopeName 7→ agents ∧
dom(sowner) = dom(scopes) ∧ sowner ⊆ scopes ∧ slimit ∈ NAT

VARIANT slimit
EVENTS
. . .

Create = ANY aa, nn WHERE
(aa ∈ agents) ∧ (activeAgent(aa)) ∧
(nn ∈ ScopeName) ∧ (nn 6∈ dom(scopes)) ∧ slimit > 0

THEN
CHOICE

scopes, sowner := scopes ∪ {nn 7→ aa}, sowner ∪ {nn 7→ aa}
OR skip END ||
slimit := slimit - 1

END;
Join = ANY aa, nn WHERE

(aa ∈ agents) ∧ (activeAgent(aa) ∧
(nn ∈ dom(scopes)) ∧ ((nn 7→ aa) 6∈ scopes) ∧ slimit > 0

THEN
CHOICE

scopes := scopes ∪ {nn 7→ aa}
OR skip END ||
slimit := slimit - 1

END;
Leave = ANY aa, nn WHERE

nn ∈ dom(scopes) ∧ aa ∈ agents ∧ aa 6= sowner(nn) ∧
activeAgent(aa) ∧ (nn 7→ aa) ∈ scopes ∧ slimit > 0

THEN
scopes := scopes - {nn 7→ aa} ||
slimit := slimit - 1

END;
Delete = ANY aa, nn WHERE

nn ∈ dom(scopes) ∧ aa ∈ agents ∧
activeAgent(aa) ∧ aa=sowner(nn) ∧ slimit > 0

THEN
scopes, sowner := {nn} �− scopes, {nn} �− sowner ||
slimit := slimit - 1

END;
NormalLeaving = ANY aa WHERE

aa ∈ agents ∧ aa 6∈ timers ∧
activeAgent(aa) ∧ aa 6∈ ran(scopes) ∧ aa 6∈ ran(sowner)

THEN agents := agents - {aa} END;
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TimerExpiration = ANY aa WHERE aa ∈ agents ∧ aa ∈ ex agents
THEN

agents := agents - {aa}; scopes := scopes �− {aa};
scopes := sowner −1 [{aa}] �− scopes;
ex agents := ex agents - {aa}; sowner := sowner �− {aa}

END;
AgentFailure = ANY aa WHERE aa ∈ agents ∧ activeAgent(aa)

THEN
agents := agents - {aa}; scopes := scopes �− {aa};
scopes := sowner −1 [{aa}] �− scopes; sowner := sowner �− {aa}

END
END

Let us observe that an agent does not always successfully creates or joins a scope. This is
modelled by the skip statements in bodies of operations Create and Join. At the later refinement
steps we will elaborate on the causes of these failures.

Termination of the added new events Create, Join, Leave and Delete is guaranteed by in-
troducing the new variable slimit, which serves as the variant expression for the new event
operations. As in the previous refinement step, the value of the variant expression is reset in the
NormalActivity event.

This refinement step is again an example of a superposition refinement. The newly de-
fined variables and events allowed us to introduce the general representation of the scoping
mechanism.

3.4.4 Introducing Error Recovery by Refinement
In our current specification the event AgentFailure treats any agent failure as an irrecoverable
error. Indeed, upon detecting an error, the failed agent is removed from the scope in which it
participates and then disengaged from the location. However, usually upon detecting an error
the agent at first tries to recover from it (possibly involving some other agents in the error
recovery). If the error recovery eventually succeeds, then the normal operational state of the
agent is restored. Otherwise, the error is treated as irrecoverable.

In our next refinement step, we introduce error recovery into our specification. We define
the the variable astate to model the current state of the agent. The variable astate can have
one of three values: OK, RE or KO, designating a fault free agent state, a recovery state, and
an irrecoverable error correspondingly. We introduce the event AgentRecoveryStart, which
is triggered when an agent becomes involved in the error recovery procedure. Observe that
AgentRecoveryStart implicitly models two situations:

• when an agent itself detects an error and subsequently initiates its own error recovery,

• when an agent decides to become involved into cooperative recovery from another agent
failure.

In both cases the state of the agent is changed from OK to RE.
The event AgentRecovery abstractly models the error recovery procedure. Error recovery

might succeed and restore the fault free agent state OK, or continue by leaving an agent in the
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recovery state RE. Finally, error recovery might fail, as modelled by the event AgentRecovery-
Failure. The event AgentRecoveryFailure enables the event AgentFailure, which removes the
irrecoverably failed agent from the corresponding scopes and disengages it from the location.

The introduction of agent states affects most of the events – their guards become strength-
ened to ensure that only fault free agents can perform normal activities, engage into a location
and disengage from it, as well as create and close scopes. In the excerpt from the refinement
machine Cama3, we present only the newly introduced events and the refined event AgentFail-
ure.

REFINEMENT Cama3
REFINES Cama2
SETS STATE = {OK, KO, RE}
DEFINITIONS activeAgent(xx) == (xx 6∈ ex agents ∧ xx 6∈ timers)
VARIABLES . . ., astate, recovery limit
INVARIANT
. . . ∧ astate ∈ agents→ STATE ∧ recovery limit ∈ agents→ NAT

VARIANT
∑

aa.(aa ∈ agents | recovery limit(aa))
EVENTS
. . .

AgentFailure = ANY aa WHERE
aa ∈ agents ∧ activeAgent(aa) ∧ astate(aa) = KO

THEN
agents := agents - {aa}; scopes := scopes �− {aa};
scopes := sowner −1 [{aa}] �− scopes; sowner := sowner �− {aa};
astate := aa �− astate; recovery limit := aa �− recovery limit

END;
AgentRecovery = ANY aa WHERE

aa ∈ agents ∧ activeAgent(aa) ∧ astate(aa) = RE ∧
recovery limit(aa) > 0

THEN
recovery limit(aa) := recovery limit(aa) - 1 ||
ANY vv WHERE vv ∈ {OK, RE} THEN astate(aa) := vv END

END;
AgentRecoveryStart = ANY aa WHERE

aa ∈ agents ∧ activeAgent(aa) ∧ astate(aa) = OK ∧
recovery limit(aa) > 0

THEN
recovery limit(aa) := recovery limit(aa) - 1 ||
astate(aa) := RE

END;
AgentRecoveryFailure = ANY aa WHERE

aa ∈ agents ∧ activeAgent(aa) ∧ astate(aa) = RE
THEN

astate(aa) := KO
END

END
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As before, in this refinement step we define the system variant to ensure that the newly in-
troduced events converge, i.e., do not take the control forever. To guarantee this, we intro-
duce the variable recovery limit, which limits the amount of error recovery attempts for each
agent. Each attempt of error recovery decrements recovery limit. As soon as for some agent
recovery limit becomes zero, error recovery of this agent terminates and the error is treated as
irrecoverable. We define the variant as the sum of recovery limit of agents.

While specifying the error recovery procedure, it is crucial to ensure that error recovery
terminates, i.e., does not continue forever. In this refinement step the variant also serves as the
means to express this essential property of the system.

Further refinement steps allow us to introduce representation of agent roles into the speci-
fication and hence ensure semantic compatibility of agents. Since these steps do not affect the
specification of fault tolerance mechanisms, we omit their representation here. Their detailed
description can be found elsewhere [LTIR06].

3.5 Rigorous Design of Fault-Tolerant Transactions for Repli-
cated Database Systems

3.5.1 Fault Tolerant Replication
System availability is improved by the replication of data objects in a distributed database sys-
tem. However, during updates, the complexity of keeping replicas identical arises due to fail-
ures of sites and race conditions among conflicting transactions. Fault tolerance and reliability
are key issues to be addressed in the design and architecture of these systems. In the project
we carried out a formal development of a distributed system using Event B that ensures atomic
commitment of distributed transactions consisting of communicating transaction components
at participating sites [YB06]. This formal approach carries the development of the system from
an initial abstract specification of transactional updates on a one copy database to a detailed
design containing replicated databases in refinement. Through refinement we verify that the
design of the replicated database confirms to the one copy database abstraction.

It is advantageous to replicate data objects when the transaction workload is predominantly
read only. However, during updates, the complexity of keeping replicas identical arises due to
site failures and conflicting transactions. In addition to providing fault tolerance, one of the
important issues to be addressed in the design of replica control protocols is consistency. The
One Copy Equivalence criteria requires that a replicated database is in a mutually consistent
state only if all copies of data objects logically have the same identical value.

The One Copy Serializability is the highest correctness criterion for replica control proto-
cols [BHG87] . It is achieved by coupling consistency criteria of one copy equivalence and
providing serializable execution of transactions [BHG87, OV99]. In order to achieve this
correctness criterion, it is required that interleaved execution of transactions on replicas be
equivalent to serial execution of those transactions on one copy of a database. The one copy
equivalence and serial execution together provide one copy serializability which is supported
in a read anywhere write everywhere approach. For example, consider any serial execution
of a transaction produced by system in the read anywhere write everywhere replica control. A
transaction which writes to a data item does so by writing data everywhere. Thus from the view
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point of a transaction which reads the values produced by an earlier transaction, all copies were
written simultaneously. So no matter which copy a transaction reads, it reads the same value
written by an earlier transaction. Though serializability is the highest correctness criteria, it is
too restrictive in practice.

3.5.2 Systems Approach to Development of Replicated Database Systems
In the project we focused on providing a formal analysis of read anywhere write everywhere
replica control protocol for a distributed database system. An update transaction which spans
several sites issuing a series of read/write operations is executed in isolation at a given site.
The basic idea is to allow update transactions to be submitted at any site. This site, called the
coordinating site, broadcasts update messages to replicas at participating sites. Upon receipt of
update requests, each site starts a sub transaction if it does not conflict with any other active
transactions at that site. The coordinating site decides to commit if a transaction commits at all
participating sites. The coordinating site decide to abort it if it aborts at any participating site.

We took a systems approach to tackle this problem. Our system model consist of a sets
of sites and data objects. The distributed database consists of sets of objects stored at different
sites. Users interact with the database by starting transactions. The data objects are assumed to
be replicated across all sites. The Read Anywhere Write Everywhere replica control mechanism
is considered for updating replicas. We consider the case of full replication and assume all data
objects are updateable. A transaction is considered as a sequence of read/write operations
executed atomically, i.e., a transaction will either commit or abort the effect of all database
operations.

The abstract specification maintains a notion of a central or one copy database. It models
the entire database as a function from object to values and defines events modelling starting
transaction, committing writing or aborting transactions, as well as reading transactions.

In the refinement, the notion of replicated database is introduced via replacing the abstract
variable modelling one copy database by the variable modelling replicated database. The corre-
sponding events required to handle replicated database are introduced by superposition refine-
ment. Let us note that one copy equivalence criteria is expressed as a part of gluing invariant
in the refinement process. This allows us to formally ensure (by proofs) that conditions defined
by the one copy database criterion are satisfied by the operations over the replicated database.

3.6 Discussion
In this section we presented in details only a few approaches which contributed to development
of RODIN methodology. These are the works which are the most illustrative examples of an
application of systems approach to the development of complex fault tolerant systems. In the
project we have collected the solid evidences (reported, e.g., in D 26 – Final report on Case
Studies Development and D34 – Assessment report 3) demonstrated the advantages of systems
approach. We believe that our work has significantly enriched software engineering field with
the methods facilitating system-level thinking.
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Chapter 4

Other methodological issues

4.1 Introduction
One important aspect of the RODIN project concerns with the development of an appropri-
ate methodology for formal modelling of systems. This chapter reports on the advancement
of methodological aspects during the third year of the project. The developments of the case
studies on the Rodin Platform have driven the development of the RODIN methodology. Con-
sidering the diverse nature of the different case studies, each of the case studies has contributed
to the development of specific aspects of the methodology. Although in the third year, special
emphasis was put on validating the Rodin platform and integration of plug-ins, but the method-
ological issues which were identified earlier have been addressed. In the following sections we
summarise the most important methodological aspects which have been addressed during this
stage. This document is aimed to summarise the experience of case studies in domain RODIN
methodology and offer a strategy for developing similar systems from certain application do-
main.

4.2 Requirement Modelling and Layering Specification
In modelling real life systems developers have to deal with a huge list of requirements. Devis-
ing an appropriate strategy to develop the formal specification from informal requirements is
an important stage in the formal modelling process. With each formal specification there are
associated a number of proofs which should be discharged. Too much complexity in a formal
specification can affect the comprehensibility of the produced model and even with the sup-
port of contemporary tools it might take tremendous effort to discharge the associated proof
obligations.

During the third year development of CDIS case study on the Rodin platform we partly
focused to address the issue that we discussed in the above paragraph. The Initial core spec-
ification of CDIS was developed as a single model using VVSL [Mid93] — a variant of
VDM [Jon90]. This initial specification has been criticized for the lack of comprehensibil-
ity and its susceptibility to mechanised proof. To tackle these problems we had to develop an
appropriate approach for formal specification of large systems. Influenced by the step-wise re-
finement approach recommended as a generic methodology in the new Event-B, we followed a
layered approach to gradually integrate all informal requirements into the formal specification
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of CDIS. We call this process “horizontal refinement” to distinguish it form vertical refine-
ment in which a formal specification evolved to a formal design document. In other words,
during horizontal refinement, our main aim is to start from a generic abstract specification and
produce a complete Formal specification. By classifying requirements into manageable sub-
sets and incorporation one subset at a time into the initial specification, we eventually produce
a complete formal specification. Design related refinements or vertical refinements can start
after the complete formal specification has been produced.

This approach will help to improve the comprehensibility of the formal specification be-
cause we can choose an appropriate level of abstraction to look at. In the meantime, the layered
structure of the specification means that in each level we have to deal with a limited number
of proof obligations. As we mentioned this approach has been adopted during development
of CDIS case study as an example of industrial system and well-documented in Section 5 of
deliverable D26.

4.3 Complex Data Types and Layered Refinement
During formal modelling we may need to model structured data types. One important aspect
of structured data type modelling is that –in most cases– we do not need to introduce all of the
details of the structured data in one step: this is to avoid unnecessary complexity and keep the
model as simple as possible. In compliance with the general approach of layered refinement in
Event-B, a layered approach to modelling of structured data was devised. Also this approach
has been applied in the context of the CDIS case study but it is general enough to be applied to
all similar cases.

An important aspect of CDIS redevelopment with the Rodin tools is the modelling of struc-
tured data. The undertaken approach which has been reported in [EB06] is based on deferred
set and constant functions. In this approach the structured data would be defined as an abstract
set. This serves as the type definition of the structured date or record. According to the mod-
elling needs, the record will be refined by introducing the individual fields. The introduction of
necessary fields will take place in a stepwise manner by the means of constant functions. The
main advantage of this method is that we introduce new record’s fields whenever it is necessary.
In addition this approach is compatible with The B-Method general refinement approach. In
the rest of this section we discuss the two different paths that we have taken to refine the record
types in the Rodin tool.

Both in the VDM and second year B models, we have structured data types in the form
of records. In the second year B models instead of introducing the whole structure at once
we have gradually introduced different fields when they were needed. The main motivation of
this approach is to enable a stepwise development of complex record structures (in the spirit of
refinement) by introducing additional fields as and when they become necessary.

One possible style of using abstract types as records has been followed in the second year
models. This approach is based on delaying the introduction of a record type to later stages of
refinement. In some cases at the abstract level, we might be unaware that a simple (non-record)
state variable requires a record structure at a later stage in the development. Hence in the most
abstract level we have a set of simple abstract types which they have been defined as a deferred
set. For example to define the central database of the CDIS system at a very abstract level we
have defined it as a total function from Attr id to Attr value. Both of Attr id and Attr value are
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sets. In the refined model we have replaced the Attr value with a new type named Airport attr.
Now the new type is a record as following:

Airport attr :: value : Attr value
Last update : Date time

After this refinement the next step is to amend the type of any variables or local parameters
which have been affected. For example in the case local parameters which have been defined
in ANY statements, we have to define the relation between the abstract parameters and the
refined one through the use of witness clauses. Also we found that in many situations the tool
can handle the related proof obligation quite easily but in some cases discharging related proof
obligation is not so straightforward. Therefore in the third models we have followed a different
approach to model records.

In this adopted approach, during refinement stage, we do not change the name of record
type. Instead of this we introduce the necessary fields through the use of constant mappings.
For example we define the database of the previous case as:

Database = Attr id→ Attrs

And then we define the constant function to relate a value to an attribute.

value ∈ Attrs→ Attr value

The main advantage of this approach is that we do not need to use a witness to define
the relation between the refined and abstract parameters. In addition to this, it will eliminate
the need for having extra invariants. These make the generated proof obligations simpler and
as a result some interactive proofs now could be discharged automatically without any user
interactions. Another advantage is that increased the comprehensibility of our formal models.
This approach has been reported in D26.

4.4 Proofs and Gluing Invariants Discovery
In this section we outline the way in which the gluing invariants can be discovered by investigat-
ing the generated proof obligation. In many situations when we construct a formal refinement,
linking the refinement to its previous level model is not always a straightforward task. One very
useful approach that has worked in many cases is to rely on the interactive prover to discover
the gluing invariants. The basic rule of this method is quite simple and we will discuss it very
briefly in the following section.

Initially construct your refinement with just a basic typing invariant and no gluing invariant.
The first pass of automatic proof can resulted in several proof obligations that could not be
proved automatically. In the next stage the developer needs to examine the generated proof
obligation carefully. The goal part of in the unproved proofs should give the developer an
overview of what form of gluing invariants is needed. When the first round of invariants are
added to the model, new proof obligations associated with these new invariants are generated.
In order to discharge these additional proof obligations we may need to add another set of
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invariants to our model. After few iterations of invariant strengthening, we should arrive at
set of invariants that are sufficient to discharge all the proof obligations automatically. An
appropriate gluing invariant is the key to prove the correctness of a refinement step. In this
section we outlined how we used the interactive prover to guide us in constructing a gluing
invariant. As well as easing the burden of inventing the gluing invariant, this approach also
has the consequence that the form of the gluing invariant we use closely matches the form of
the proof obligations thereby making the mechanical proofs much easier and in many cases
completely mechanised. For a more detailed overview of this approach interested readers can
refer to [BY07].

4.5 Adjusting Modelling Style to Achieve Higher Productiv-
ity

In this section we summarised some cases involving minor tuning in the modelling styles which
can have noticeable effects on the generated proofs. Again these issues have been applied in
the context of CDIS case study but one can expec to adapt it for any similar cases.

In the context of CDIS modelling on the Rodin platform some adjustments have been made
into models to achieve higher level of automatic proof or increase the readability and com-
prehensibility of the B models. Also these changes might be seen trivial — but based on our
experiment with the RODIN tool they had a great effect either on the comprehensibility of our
models or level of automatic proof discharging or even both of them. Some of these changes
in style of modelling may be not directly tailored to the RODIN tool, but from our viewpoint
it is very important to document them. This can help other developers to take the advantage of
these subtle techniques to improve their modelling.

The first style change that we want to point out here is using relation instead of power set.
In refinement level 3 of the Year 2 models we have the following declaration:

edd acks required ∈ EDD id 7→ P(Attr id)

that we have changed to:

edd acks required ∈ EDD id ↔ Attr id

These two declarations are almost identical from the mathematical viewpoint but from a
modelling viewpoint the story is different. In a very simple comparison between the third and
second year models it can be seen that this change has resulted in significant simplification in
the events which manipulate this variable. For example complex lambda notation and nested
restriction has been reduced to simple composition. The first effect of this is on the comprehen-
sibility of the model which has been increased. Secondly, it has simplified the generated proof
obligation in such a way that either they could be discharged automatically or with minimum
intervention from the user which was not the case with previous style.

The second aspect of style related issue is using clarification declaration. In many situations
especially when we use local parameters in ANY statements the type of parameter could be
implicitly defined through the guards. If the guard if fairly simple it is very easy to find out the
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type of local parameter. In many practical situations this is not the case and comprehensibility
of the model will increase if you add a clarification declaration for these parameters. In our
RODIN-based models we have used the method to assist the potential viewers of our model. In
addition to this it has helped us to deal with the interactive proofs more easily.

4.6 Augmenting Semiformal Notation With Formal Notation
Using UML as a graphical based notion is widespread and well accepted in the software in-
dustry. One major weakness of such approaches is the lack any underlying formal semantics
that could help to verification task of produced models. One major direction in recent years’
research was to combine UML with other formal notations to produce a set of formally verifi-
able models either directly or indirectly. In the context of the RODIN project, this constituted
a significant part of the project in the form of developing related plug-ins.

These efforts comprised different activities including developing a combined notation known
as UML-B and related methodology and supporting tools. The core part of tool support to
translate UML-B models into Event-B models is provided by U2B. Using these facilities in the
Rodin platform provide a significant method to formalise and use UML in a more structured
and rigorous way. UML as a whole suffers from an incomplete, inconsistent semantics which
makes accurate application of the UML problematic at best. Bridging the gap between lan-
guages such as UML and Event-B paves the way for wider acceptance of Event-B and Rodin
platform in industrial environments. U2B overall provides a good compromise between the
mathematical abstractness of Event-B to the apparent lack of verifiability in UML. More de-
tails on how this approach has been used in the context on RODIN case studies can be found in
D26.

4.7 Verification Versus Proof-based Modelling
Animation and verification of the initial specification before attempting the theorem-based
prover in many situations has proved to be an effective approach. This facilitates finding
any flaws and gaps in the specification before wasting a lot of time on struggling with un-
dischargeable proofs. This facility has been provided by the ProB Plug-in on the Rodin plat-
form.

ProB provides much necessary support for animation and verification of Event-B models.
Using ProB was reported very useful in validating early specification models. Verification
removes certain error and ensures that the proof associated with model would be discharged
more smoothly by the Rodin prover. Animating the model in the ProB enables us to establish
whether or not the formal specification met the customer’s demands and comply with system’s
requirements. This fits in well with the style of development commonly seen in industry where
constructing a model to investigate the properties of the system and their feasibility. ProB and
the its supported validation style of development in this sense provides a way of first construct-
ing and demonstrating systems then discovering properties later. The Animation of the model
at this can be used in order to investigate failed POs. The ProB disprover can be used to pro-
duce a counter example to a proof obligation, which may help strengthening any related guards
or invariants.
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In addition to this the use of ProB is particularly useful with regards to the people who
want to start exploring the new Event-B language and Rodin Platform. Practitioners may find
it more natural and simpler to animate and verify their model first and when they gained more
confident they can start using the proof-based approach later. Again the D26 document can be a
useful source of further information regarding the application of ProB in different case studies.

4.8 Conclusions
In this chapter we have reviewed a range of different methods and approaches based on the
new Event-B notation and its supporting tool. These methodological aspects are believed to be
general enough that they can be applied to similar cases. We hope this will provide guidelines
for whoever wants to gain a basic understanding of the field and start modelling with Event-B
and use the platform.
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Chapter 5

Specifics from the case studies

This chapter sets out how the general methods described in the previous chapters have been
merged with those of the groups developing the case studies. We repeat that we now see this as
an essential ingredient of a DEPLOYment strategy.

5.1 Case Study 1: Formal Approaches in Protocol Engineer-
ing

The work in the third year of RODIN on the case study on “Protocol Engineering” is described
in Section 2 of D26 along with an overview of its achievements during the whole project. Of
particular interest is the methodological link of the Lyra research [LTL+06c] to refinement in
B [LTL+05] and Deliverable D8; fault-tolerance is discussed in [LTL+06c].

Specific progress in year three of RODIN includes: concurrency issues see Laibinis et al.
in [BJRT07]; use of the RODIN platform; and a formal basis for the Lyra B models see Malik
et al. in [BJRT07]. Further details (in the context of the case study) are given in Section 2.2
of D26. Of particular interest are the developing notion of consistency of Lyra models and
modelling recovery (after fault) actions.

5.2 Case Study 2: Engine Failure Management System
Section 3 of D26 describes the work on the “Engine Failure Management System” (FMS). As
its name suggests, this case study is ideal for fault-tolerant (“resilience”) considerations; the
additional “Production Acceptance Test” (PAT) case undertaken in year three is also described
in Section 3 of D26.

As described in Section 3.1.2 of D26, most of the work on FMS was actually complete by
year two of Rodin and is reported on in D9 and D19. Noteworthy are the successful use of a
“Traceable Requirement Document”; the deployment of the ProB model checker; and the “in-
stantiation validation” (this led in year three to a support plug-in for “Context Management”).

The PAT work is described in Section 3.1.3 of D26. The main methodological issues here
were on genericity and dynamic failure management.

It is important to remember that staff at the company (ATEC) who undertook this case
study had limited FM experience. As was our intention when we set out the DoW, this gives
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us a different sort of evaluation (see D34) of the RODIN methodology. Without trespassing
on the territory of D34, it is reasonable to claim a success in this deployment of the Rodin
methodology and tools.

5.3 Case Study 3: MDA
The evolution of Nokia’s business needs has been reported in D33 along with the impact that
these changes had on the MDA case study. Basically, Nokia concluded the NoTA project at the
end of 2006. It is of course common for industrial entities to change their directions within the
timescale of such a project and it is to Nokia’s credit (and that of the Project Coordinator) that
RODIN got as much out of this case study as it did.

The results are set out in Section 4 of D26: specific topics (Section 4.2.1 of D26) include:
fault-tolerance (use of MDA), UML/B, model-based testing, evolution of requirements,

5.4 Case Study 4: CDIS
The “CDIS” case study is described in Section 5 of D26. Much of the activity in year three
has been concerned with the use of the RODIN tools (to replace the earlier use of “B4free”)
but there has also been considerable effort on looking at the way the year two models facilitate
reusability, traceability and adaptability.

The impact of the move from “pure” B to Event-B is discussed in Section 5.2.1.2 as is the
approach to “records”.

This work considered both an idealised (in the sense of assuming a single database) and a
distributed version. Atomicity concerns were addressed by “event splitting”.

A key outcome and success of this work is the use of a generic model — separating “con-
text” and dynamic parts. The figures on the automatic discharge of POs are also very en-
couraging — cf. Section 5.2.1.4. We are –of course– fully aware that that such high levels of
automatic support come about only by careful layering and it is unlikely that less expert users
will immediately achieve such good results.

As was set out in the initial DoW, a key reason for undertaking this study was the previous
work on CDIS (by Praxis) using a variant of VDM [Jon90] known as VVSL [Mid93]. Although
the model presented in Event-B is both much clearer and more tractable, the Rodin project
members are not claiming that the entire difference is down to the Rodin language (Event-B)
and methods. It is always possible to improve on a formal model; in this case the improvement
has been very dramatic by extremely clever factoring of ideas.

5.5 Case Study 5: Ambient Campus
This case study pushes the RODIN methodology in an attempt to cover “ambiance” (Mo-
bile Agent Systems); here, the main faults to be tolerated are concerned with transmission
errors/failures. The progress is described in Section 6 of D26 where several “scenarios” are
discussed.
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A particular focus of the third year has been on the use of “patterns” to reduce the amount
of formal proof (proof obligations) required for each new application (and, indeed, the number
of mistakes made during design).

Section 6.2 of D26 sets out the main conclusions from the Ambient Campus study. The
work in [IKKR05] and Iliasov et al. in [BJRT07] presents a combination of Event-B with
aspects of process algebraic notation. The use of –and impact on– RODIN platform and plugins
is also described. Interestingly, this also discusses testing.
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Chapter 6

Other items of report

6.1 Key meetings
Meetings associated with RODIN methodology were:

• A project internal event was held at Nokia Research in Helsinki in January 2007: this
was extremely fruitful and led to the decision to report the methodological aspects of the
Case Studies in their respective sections of D26.

• An open workshop on “Methods, Models and Tools for Fault Tolerance” was held in
Oxford in conjunction with the “Integrated Formal Methods” symposium in July 2007.
The proceedings are available as [BJRT07]. We have agreement from Springer Verlag
again (see next item) to publish a post-conference set of papers that are developed from
the workshop presentations and includes invited contributions from leaders in the field of
formal methods for fault tolerance.

• The proceedings of the earlier conference are available as [BJRT05]; the corresponding
collection of developed and invited papers has now been published as [BJRT06].

• Elena Troubitsyna presented a very clear overview of the RODIN methodology work at
the second RODIN Industrial Awareness day (Paris, September 2007).

6.2 Publications
New publications/reports relating to methodology: [Pop07, SPJ08, JHJ07, HH07, Meh07,
RK07, JLW07, KK07, KKKV06, DKK06c, KPPK07, Jon07b, JP07, CJ07] (the bibliography
below includes earlier publications). The proceedings of the VSTTE conference held at ETH in
October 2005 contain papers from several of those involved in the project. Unfortunately, the
proceedings have been unaccountably delayed for an inordinate length of time (no one in the
RODIN project was responsible for any of this delay). The proceedings are finally “in press”
as Number 4171 of Springer’s LNCS series.
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Chapter 7

The way forward

Many of the technical challenges that we see for the future of applying formal methods as a help
for designing and developing fault-tolerant (or resilient) systems are described in the Project
Proposal for the DEPLOY (FP-7) project.

A good example of an issue on which the industrial partners in that project will need support
is handling probabilistic requirements: it is almost inevitable that fault-tolerance has to be
discussed in terms of things like MTBF. Although there is a significant corpus of research
papers on probabilistic notations, we feel that there is basic thinking required before it fits
smoothly into something close to the RODIN methods.

Another area that we expect to pursue concerns scaling of both methods and tools. We
have recognised with the interactions within RODIN that a major issue for the adoption of both
methods and support tools is how readily they can be integrated with procedures being used
within the organisations.

Lastly, we have been absolutely clear in discussions with the DEPLOY collaborators that
any generic methods will have to be merged with the current methods and tools of the particular
organisation where DEPLOYment occurs.
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