
Project IST-511599 

RODIN 

“Rigorous Open Development Environment for Complex Systems” 

 

RODIN Deliverable D34 (D7.4) 

Assessment Report 3 

Editor: Pete White (Praxis High Integrity Systems) 

Public Document 

26th October 2007 

 

http://RODIN.cs.ncl.ac.uk/ 

Page 1 of 137  

http://rodin.cs.ncl.ac.uk/


Contributors: 

Jean-Raymond Abrial (Swiss Federal Institute of Technology, Zurich, Switzerland), 
Budi Arief (University of Newcastle upon Tyne, UK), 
Michael Butler (University of Southampton, UK),  
Joey Coleman (University of Newcastle upon Tyne, UK), 
Alexei Iliasov (University of Newcastle upon Tyne, UK),  
Ian Johnson (ATEC, UK),  
Cliff Jones (University of Newcastle upon Tyne, UK), 
Victor Khomenko (University of Newcastle upon Tyne, UK), 
Maciej Koutny (University of Newcastle upon Tyne, UK),  
Linas Laibinis (Åbo Akademi University, Finland).  
Sari Leppänen (Nokia, Finland),  
Thierry Lecomte (ClearSy, France),  
Michael Leuschel (Heinrich-Heine-Universität Düsseldorf),  
Ian Oliver (Nokia, Finland),  
Rozilawati Razali (University of Southampton, UK),  
Abdolbaghi Rezazadeh (University of Southampton, UK), 
Alexander Romanovsky (University of Newcastle upon Tyne, UK),  
Colin Snook (University of Southampton, UK),  
Elena Troubitsyna (Åbo Akademi University, Finland),  
Laurent Voisin (Swiss Federal Institute of Technology, Zurich, Switzerland), 
Jon Warwick (University of Newcastle upon Tyne, UK). 

Page 2 of 137  



REVISION HISTORY 
Version Status Date Notes 
0.1 Draft 02/06/05 First draft for internal comments (year 1) 
0.2 Draft 18/07/05 Complete draft ready for external review (year 1) 
1.0 Definitive 26/08/05 Definitive issue following external review (year 1) 
1.1 Draft 28/09/06 Draft for internal comments (year 2) 
1.2 Draft 29/09/06 Draft for external comments (year 2) 
2.0 Definitive 02/10/06 Definitive issue following external review (year 2) 
2.1 Draft 22/08/07 Draft for internal comments (year 3) 
2.2 Draft 5/9/2007 Draft for internal comments (year 3) 
2.3 Draft 6/9/2007 Draft for internal comments (year 3) 
2.4 Draft 17/9/2007 Draft for internal review (year 3) 
2.5 Draft 20/9/2007 Draft for internal review (year 3) 
2.6 Draft 2/10/2007 Draft for internal review (year 3) 
2.7 Draft 4/10/2007 Draft for internal review (year 3) 
2.8 Draft 8/10/2007 First complete draft for internal review (year 3) 
2.9 Draft 9/10/2007 Includes review comments from C Jones 
3.0 Definitive 26/10/2007 Definitive issue following Rodin exec review 

ANTICIPATED CHANGES 

None. 

Page 3 of 137  



TABLE OF CONTENTS 
Section 1 Introduction......................................................................................................... 5 

1.1 Background......................................................................................................... 5 
1.2 Scope................................................................................................................... 5 
1.3 Purpose................................................................................................................ 5 
1.4 Structure.............................................................................................................. 6 

Section 2 Assessment Approach......................................................................................... 7 
2.1 RODIN Objectives.............................................................................................. 7 
2.2 Response to Year Two Project Report................................................................ 7 
2.3 Measurement Criteria.......................................................................................... 9 
2.4 Approach........................................................................................................... 10 

Section 3 Overall Assessment Results.............................................................................. 12 
3.1 Overview........................................................................................................... 12 
3.2 Overall Results Summary ................................................................................. 13 
3.3 Summary of Quantitative Metrics Assessment................................................. 15 
3.4 Assessment overview conclusions.................................................................... 18 

Section 4 Methodology Assessment ................................................................................. 21 
4.1 Introduction....................................................................................................... 21 
4.2 The (generic) Event-B methodology ................................................................ 21 
4.3 Case Study Feedback ........................................................................................ 22 

Section 5 Case Study Assessments ................................................................................... 23 
5.1 CS1 – Formal Approaches to Protocol Engineering......................................... 23 
5.2 CS2 – Engine Failure Management .................................................................. 32 
5.3 CS3 – Formal Techniques within an MDA Context......................................... 55 
5.4 CS4 – CDIS Air Traffic Display Information System...................................... 61 
5.5 CS5 – Ambient Campus Assessment................................................................ 71 

Section 6 Open Tool Kernel Assessment.......................................................................... 82 
6.1 Introduction....................................................................................................... 82 
6.2 Current Status.................................................................................................... 82 
6.3 Progress since Year 2 Assessment.................................................................... 82 
6.4 Interaction with Plug-in Developers ................................................................. 83 
6.5 Kernel Metrics .................................................................................................. 83 
6.6 Conclusion ........................................................................................................ 89 

Section 7 Plug-in Assessments ......................................................................................... 90 
7.1 Mobility plug-in (Mobile B Systems)............................................................... 90 
7.2 ProB model checking and animation ................................................................ 99 
7.3 Brama.............................................................................................................. 110 
7.4 UML–B........................................................................................................... 117 
7.5 B2RODIN ....................................................................................................... 126 

Section 8 References....................................................................................................... 132 
 

Page 4 of 137  



SECTION 1 INTRODUCTION 

1.1 Background 

This document presents the results of the technical review and assessment conducted at 
the end of the three-year RODIN project.  This document is a RODIN project deliverable.   

The assessment was carried out according to the Procedure for Technical Review and 
Assessment [6], which established the metrics for RODIN, based on the contributions of 
goals and criteria from each RODIN partner.  This procedure [6] was revised and 
improved in the light of experience gained from production of the first version of this 
report at M12 (Deliverable: D14 [11]). 

1.2 Scope 

The scope of this deliverable is focussed on the five case studies under work package 1 
(WP1), the open source formal methods tool kernel developed for work package 3 (WP3) 
and the plug-ins developed as part of work package 4 (WP4).  

The methodology, which has been developed under work package 2 (WP2), is also 
briefly summarised in Section 4.  However, as noted in the Procedure for Technical 
Review and Assessment [6] and supported by comments at last year’s review [2], an 
effective assessment of the methodology will need to focus on more qualitative than 
quantitative measures.  This qualitative summary is already covered in the following 
project reports, and is therefore not repeated in this report. 

• D27 [19] describes how “patterns” and “templates” have been applied by the case 
studies in order to tailor the methodology to each specific case study’s needs.   

• D28 [20] provides a qualitative assessment of the methodology as a result of the 
case study feedback. 

• D29 [21] provides more in-depth feedback on the effectiveness of the Methodology 
as a result of the case studies. 

We do not consider WP5 (dissemination) or WP6 (project management) since these work 
packages do not contribute directly to the measurable RODIN objectives.  We do not 
define metrics to apply to WP7 itself. 

1.3 Purpose 

This document provides a view of the progress of the RODIN project in meeting its 
objectives and vision.  It highlights the accomplishments of each work package during 
the project’s lifetime. 

Page 5 of 137  



1.4 Structure 

Section 2 of this document discusses the assessment approach used for generating the 
metrics.  Section 3 presents the overall assessment results of the RODIN project at month 
M36.  Section 4 briefly discusses the feedback from WP2, the methodology part of the 
project.   

The document then provides the detailed quantitative feedback, with qualitative evidence 
and supporting information, from: 

• Each Case study, WP1 – Section 5,  
• The tool kernel, WP3 – Section 6, 
• Each tool Plug-Ins, WP4 – Section 7. 

Finally, Section 8 contains the references used within this document. 

Page 6 of 137  



SECTION 2 ASSESSMENT APPROACH 

2.1 RODIN Objectives 

To conduct the assessment the projects main objective must first be revisited.  RODIN’s 
objective is described in Section 2 of the Description of Work (DoW) [1]: 

“The overall objective of the RODIN project is the creation of a methodology and 
supporting open tool platform for the cost effective rigorous development of dependable 
complex software systems and services.” 

The Description of Work [1] identifies the following four specific measurable objectives: 

O1 A collection of reusable development templates (models, architectures, proofs, 
components, etc.) produced by the case studies.  The goals of the cases studies 
will be defined in detail by month 6.  Initial and intermediate results will be 
available by months 12 and 24, while a final set of development templates will 
be available by month 36 of the project. 

O2 A set of guidelines on a systems approach to the rigorous development of 
complex systems, including design abstractions for fault tolerance and guidelines 
on model mapping, architectural design and model decomposition.  Initial and 
intermediate guidelines will be available by months 12 and 24, with the final 
versions by month 36. 

O3 An open tool kernel supporting extensibility of the underlying formalism and 
integration of tool plug-ins.  Open specification of the kernel will be made 
publicly available by month 12 of the project.  Prototypes of the basic tools will 
be available by month 18.  Full working versions will be available by month 30, 
with final versions being ready by month 36. 

O4 A collection of plug-in tools for model construction, model simulation, model 
checking, verification, testing and code generation.  Open specification of the 
plug in tools will be made publicly available by month 12 of the project.  
Prototype versions of the plug-in tools will be available by month 18, while final 
versions will be available by month 36. 

Section 2.3 describes how each of these objectives has been assessed, 

2.2 Response to Year Two Project Report 

The Year Two Project Review [1] identified the following potential sources of risk, 
which needed to be addressed during Year Three: 

• the integration of platform kernel and plug-ins, in particular with respect to the 
combined use of several plug-ins; 

• the independence of the methodology work from the platform development and 
case studies, which should in fact be driving the research in the methodology;  

Page 7 of 137  



• the dissemination to external users.  

The above risks have all been addressed by the project and the mitigations are described 
in the associated Work Package deliverables.  The issue of integration is also covered in 
this report as follows: 

• Case studies have specifically assessed the following objectives, which are 
focussed on the integration of platform kernel and plug-ins: 

a Checking the scaleability of the system as its functionality is extended. 
b Checking the impact of legacy (sub) systems. 
c Checking the scaleability of the system with respect to the size and complexity 

of the models. 
d Checking the sensitivity of the methodology to changing requirements with 

respect to the models. 

• Each plug-in has assessed platform integration. 

In addition the following specific points were made in relation to WP 7, evaluation and 
assessment: 

1 There are inconsistencies between the year one [11] and year two [16] reports (in 
what was evaluated and how it was evaluated) that make it difficult to judge 
progress.  Similarly, there are inconsistencies within the year two report: subjective 
evaluation with only vague/generic justification, combined with lack of cohesion 
between the evaluations of the separate case studies, leads one to question the value 
of the measurement criteria and the grades awarded. 

2 In the assessment for the final year, the reviewers need to be able to see answers to 
the following questions with respect to the case studies and associated tasks and 
their role in assessing the RODIN system: 

a What was done? 
b Why was it done? 

c How was it done? 
d Was it successful?

3 The assessment in years one and two focussed on assessing each tool against a set 
of common criteria.  This would not be an acceptable way of assessing progress in 
year three.  Furthermore, in years one and two many of the grades were awarded 
based on qualitative statements without any quantitative evidence.  This will not be 
acceptable in the report in year three where it is clear that the case studies could 
have easily collected the necessary hard data. 

4 To conclude, the criteria for the final evaluation and assessment are inherently 
different and much more global than those set up at the beginning in D14 [11].  
There seems no definition of the final criteria so far.  Such criteria will certainly be 
less of scientific nature than of practical nature, i.e. from the point of view of the 
software engineers that are external to RODIN and potentially going to adopt it and 
to include it in their development process.  This should be the point of view that 
drives the evaluation and assessment, and therefore the whole project, in year three.  

Page 8 of 137  



To address these points, this report: 

• Keeps the same sub-sections and topics as in Assessment Report Two, with 
additional sub-sections to address work package specific issues.   

• Presents progress in a tabular form. 

• Each work package progress report now provides: 

o A justification for each evaluation grade; 
o A sub-section, which addresses work package specific evidence of quality or 

effectiveness.  This enables evidence of success that may not fit into the 
generic structure to be presented. 

o A sub-section, which reports on each of the tools used.  This indicates how it 
was used and what feedback was provided to the tool developers.  Similarly, 
each tool developer work package reports on the feedback it received from 
the case studies, and how it was able to make use of that feedback.  

2.3 Measurement Criteria 

The Procedures for Technical Review and Assessment [6] identified quantitative 
measurement criteria to be applied when assessing RODIN work packages 1 (case 
studies), 3 (Kernel) and 4 (Plug-ins).  

Each of the case studies has provided quantitative feedback on these criteria to assess the 
extent to which Objective O3 (Kernel assessment) and O4 (Plug-Ins assessment) have 
been addressed (see section 2.1 above). 

Objective O1 concerns the collection of a set of re-usable templates and patterns, which 
tailor the method and tools to the specific needs of each project.  Objective O2 concerns 
the provision of a methodology, which can be supported effectively by the toolset, and 
lends itself to adaptation to address each project’s specific constraint.  Case study 
feedback against these objectives has been extremely positive, however the feedback has 
inevitably been centred on specific case study issues.  As a consequence, the evidence of 
patterns and templates, which were adopted for each case study, provides the only 
quantitative measure of these objectives.   

The Procedures for Technical Review and Assessment [6] defines the following generally 
desirable properties, which are applicable to software development methods and tools.  
For our quantitative assessment, each property has been assessed to identify both the 
presence and quality achieved during the study. 

• Usability (U): methods, tools and templates should be as easy to use as possible, 
and be as generic as feasible in order to be applicable to other problems and other 
application domains. 

Page 9 of 137  



• Cost-Effectiveness (C): compared to existing tools and methods, those developed 
for RODIN are competitive with respect to the amount of computing and manual 
analysis needed for a given benefit. 

• Openness (O): ability of other researchers and commercial companies to apply the 
tools and techniques from RODIN in their own domains, without onerous 
intellectual property constraints.  

• Extensibility (X): the methods, tools and templates should admit extension so that 
other researchers and commercial companies can make their own changes to the 
items to make them more useful in their developments. 

• Soundness (S): the methods and tools used should be as correct as possible, and 
this correctness should be justifiable.  The case study requirements and 
specifications should be consistent and coherent.  The case study implementations 
should be correct with respect to their specifications and requirements. 

2.4 Approach 

The assessment was conducted using a set of questions relevant to each of the work 
packages.  These questions were listed in the Procedure for Technical Review and 
Assessment [6] and updated as a result of year one review and year one experience.  The 
questions vary for each WP1 case study.  A single set of questions was used for the 
assessment of the open source tool kernel (WP3) and the various plug-ins in (WP4). 

Each question has codes attached, which link them back to the measurement criteria in 
Section 2.3.  These codes are listed in brackets next to each question, e.g. (C, S) or (S, X). 

The following products were assessed: 

• Case study 1: Formal Approaches to Protocol Engineering 
• Case study 2: Engine Failure Management System Assessment 
• Case study 3: Formal Techniques within an MDA Context 
• Case study 4: CDIS Air Traffic Display Information System 
• Case study 5: Ambient Campus Assessment 
• Open source tool kernel 
• Plug-in: Mobility model checker 
• Plug-in: ProB model checking and animation tool 
• Plug-in: Brama 
• Plug-in: UML–B 
• Plug-In: B2RODIN 

For each product, there is an associated producer and a reviewer; the former was 
responsible for carrying out a self-assessment and the latter for providing an independent 
view of its validity.  The appointment of independent reviewers is a change to the original 
assessment process based on experience from the first year of RODIN.  Reviewers were 
chosen with appropriate knowledge of the area in which the product was applicable, but 
with no link with the producers. 

Page 10 of 137  



The review process conducted was as follows: 

1 The producer and the reviewer agreed the criteria, making use of the generic 
criteria defined in Procedures for Technical Review and Assessment [6].  Where 
necessary customised criteria were also agreed which were better suited to the 
current state of the products being assessed.  

2 The producer self-assessed his/her work based on the generic/customised criteria.  
The output from this process was a written assessment report for each item of work. 

3 The reviewer then carried out a sufficiently independent assessment to validate the 
self-assessment and added their findings to the written self-assessment. 

4 Praxis collated the validated written assessments into this overall assessment report, 
D34. 

The producers and reviewers were asked to provide answers to their corresponding set of 
questions.  These answers consisted of two parts: 

1 Numeric Grade between 0 and 5.  The following interpretation was used for each of 
the grades: 

[0] - Failure (Total failure) 
[1] - Weak (Unsatisfactory) 
[2] - Average (Acceptable but with room for improvement)  
[3] - Good (As good as, up to an expected standard) 
[4] - Very Good (Better than existing) 
[5] - Excellent (Satisfaction in every respect) 
[N/A] - Not applicable 

N/A is intended for use where it is too early to form a judgement; e.g. progress has 
been made on a component but it is not yet in a state where the measurement 
criteria can appropriately be applied. 

2 A written justification giving the rationale for the chosen grade together with any 
guidance on how to interpret the answer. 

Section 3 below summarises the responses received and relates them to the overall 
project objectives. 

Page 11 of 137  



SECTION 3 OVERALL ASSESSMENT RESULTS 

3.1 Overview 

To facilitate comparison with previous assessment reports, each of the following sections 
adopts the structure proposed in the assessment procedure report [6]. 

Section 4 provides a summary of the qualitative feedback from the Methodology. 

Section 5 through to Section 7 provide more detailed responses to the assessment 
questionnaire for each of the reviewed areas.  The progress reports in this document 
provide only a very brief summary of each RODIN constituent activity.  Further detail 
can be found in the other respective year three deliverables [18,19,20,21]. 

As a result of the case studies, we have achieved good coverage of the overall project 
objectives, c.f. §2.1.  The preliminary report on methodology [9] provided a sound set of 
guidelines for the rigorous development of complex system (objective 2) at the end of 
year one.  The case studies have subsequently adapted these guidelines to meet their 
specific project needs.   

Table 1 provides a summary of the scope of assessment covered by each case study 
report in Section 5.  

 CS1 
Formal 

PE 

CS2 
FMS 

CS3 
MDA 

CS4 
CDIS 

CS5 
Ambient 
Campus 

O1: Templates and patterns 
provided 

     

O3: RODIN Kernel assessed       
O4: Plug-Ins Assessed      

Mobility checker      
ProB      
Brama      
UML–B      
B2RODIN      

Integration Assessed      

Table 1: Summary of coverage of RODIN objectives by each case study 

Page 12 of 137  



3.2 Overall Results Summary 

A summary of the quantitative results of our assessments is given in Section 3.3 below.  
Table 2 summarises the qualitative results from each product of the RODIN project. 

Area Achievements 

Methodology (Section 
4)  

The methodology reports [9,15] have delivered a 
comprehensive set of generic guidelines, which have been 
applied successfully across all RODIN case studies. 

CS 1 (§5.1) The case study has demonstrated the feasibility of integrating 
formal methods into an existing industrial software 
development process.  The automatic refinement from 
Lyra/UML-2 models into the formal framework added 
significant value to Nokia process. 

CS 2 (§5.2) Two prototype products have been developed, a Failure 
management system and a production acceptance test system. 
In both cases UML has been integrated with Event-B.  
This case study has made the widest use of RODIN plug-ins.  
ATEC conclude that the major benefit of the method and 
toolset is through requirement refinement, rather than 
specification translation into implementation.  At times the 
toolset currently lacks the maturity to support certain 
application types. 

CS 3 (§5.3) The case study has focussed on the integration of the RODIN 
methods and tools with the OMG Model Driven Architecture 
(MDA) framework.  Latterly the focus has been on the 
validation of the RODIN platform, tools and methods. 
UML–B and ProB have been used extensively. 
It concludes that the RODIN toolset has made use of Event-B 
possible, with ProB plug-in adding value in the validation of 
models.  However, certain aspects of Event-B are too 
strict/abstract for use by a team, which is inexperienced in 
formal techniques. 

CS 4 (§5.4) The CDIS case study has concentrated on assessing the 
RODIN platform against alternative tools and methods.   
The original VDM CDIS models have now been ported to the 
RODIN platform   
It concludes that RODIN is more productive and easier to use 
than other similar tools such as B4free and AtelierB. 
Furthermore, the methodology’s modular approach to system 
modelling, using fewer constructs than standard B, should 
simplify deployment. 

Page 13 of 137  



Area Achievements 

CS 5 (§5.5) Case study five has developed a novel approach for modelling 
and verifying the correctness of complex mobile agent 
systems, which could not be captured by any existing 
languages.  Throughout the RODIN project, three ambient 
campus scenarios have been developed using this Context-
Aware Mobile Agents (CAMA) framework. 
The major achievement in year three was the development of 
a single hybrid (Event-B together with a process algebra with 
mobility characteristics) high-level programming notation that 
is capable of capturing both the behavioural and functional 
model of agents. 

Kernel (Section 6) A public version of the Event-B RODIN open tools kernel has 
been successfully delivered.  Feedback from the case studies 
has been a major influence on the final product. 
The case studies and plug-in providers report that the tool is 
easy to use, scaleable, and easily extended. 

Mobility Checker (§7.1) The mobility checker plug-in has been properly integrated into 
the RODIN platform and supports the automatic verification 
of mobile agent systems.   
It has been used extensively by case study five. 

ProB (§7.2) The ProB plug-in has been widely used across the project (see 
Table 1 for details) with very positive results.   
A number of case studies continued to use the pre-RODIN 
version of the tool, as the Eclipse plug-in doesn’t currently 
supports all features. 

Brama (§7.3) The Brama plug-in has been used by case study two, and 
provides a useful animation capability, which supports model 
validation. 
During year three the plug-in was improved and fully 
integrated into the RODIN platform. 

UML–B (§7.4) During year three the UML–B plug-in was redesigned via an 
independent meta-model.  As a consequence it has now been 
used by most case studies (see Table 1 for details). 
The results of the study indicate that integration between the 
tools is very good, and UML–B is significantly quicker to 
understand and modify than Event-B.   

Page 14 of 137  



Area Achievements 

B2RODIN (§7.5) The B2RODIN has been used by three case studies (see Table 
1 for details).  During year three the plug-in was improved and 
fully integrated into the RODIN platform. 
The plug-in is reported as providing a robust means of 
transferring AtelierB models, which conform to the Event-B 
language, onto the RODIN platform. 

Table 2: Qualitative summary of results from each RODIN product 

3.3 Summary of Quantitative Metrics Assessment 

The following charts summarise the quantitative results, which are derived from the more 
detailed summaries in Section 5 through to Section 7. 

Each assessment score, 0 to 5 and not applicable (N/A), was allocated against the case 
study, kernel, and plug-ins used by the case study as appropriate. 

Figure 1 shows the number of times each assessment score was achieved.  Figure 2 
shows, for each of the assessment criteria: Usability (U), Cost-effectiveness (C), 
Openness (O), Extensibility (X) and Soundness (S), the percentage of the results that 
were assessed with a particular score. 

Figure 3 and Figure 4 show the distribution of scores allocated to each case study and 
kernel/ plug-in respectively. 

Finally Table 3 summarises the case study responses to the integration criteria (c.f. §2.2), 
which were established at the end of year two. 

80
88 90

11
2

8

27

0
10
20
30
40
50
60
70
80
90

100

Excellent Very Good Good Average Weak Failed Not
applicable

 
Figure 1: Chart showing distribution of assessment scores 

Page 15 of 137  



Distribution of Score by Criteria

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Usability Openness Extensibility Soundness Cost
Effectiveness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Not
applicable

Excellent

Average
Score

 

Failed

Weak

Average

Good

Very
Good

Failed

Weak

Average

Good

Very Good

Figure 2: Chart showing distribution of scores across assessment criteria 

Distribution of Score by Kernel and Plug-In

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Kernel Mobility ProB Brama UML-B B2RODIN
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Not
applicable

Excellent

Average
Score

 
Figure 3: Chart showing distribution of assessment scores across case studies 

Page 16 of 137  



Distribution of Score by Case Study

0%

20%

40%

60%

80%

100%

CS1: Lyra CS2: Engine
Failure Mgt

CS3: Nokia
MDA

CS4: CDIS CS5: Ambient
Campus

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Not
applicable

Excellent

Average
Score

 

Failed

Weak

Average

Good

Very Good

Figure 4: Chart showing distribution of assessment scores across platform 
 
  Score   
Integration criteria Case Study 3 4 5 
a) scaleability as functionality extended CS1    

CS2    
CS4    
CS5    

Count of scores awarded – a)  2 2  
b) impact of legacy (sub) systems CS2    

 CS5    
Count of scores awarded – b)  2   

c) scaleability w.r.t. model size and complexity CS1    
 CS4    

Count of scores awarded – c)   1 1 
d) sensitivity to changing requirements CS4    

Count of scores awarded – d)   1  
Count of scores awarded  4 4 1 

Table 3: Integration assessment scores for each Case Study 

Page 17 of 137  



3.4 Assessment overview conclusions 

In this final year of the project, a summary of the extent to which each objective has been 
achieved is presented below: 

O1 The case studies (WP1) should provide a collection of reusable development 
templates (models, architectures, proofs, components, etc.). 

This objective has been achieved, with case studies 1, 2, 4 and 5 all delivering 
useful results, and in particular all case studies have provided a set of patterns and 
templates for future use.  See §5.3 below for details regarding case study three. 

A brief qualitative assessment of the project’s performance against this objective is 
provided in Section 4.  Further detail is available in the Final report on Case study 
development, D26 [18], and the Case study demonstrators deliverable, D27 [19]. 

Case Study Templates and patterns developed 

CS1: Formal PE Lyra UML2 profile. 
Structural consistency guarantees among Lyra phases. 
Patterns enabling verification of Lyra decomposition 
phases. 
Lyra fault-tolerance templates. 
Scenario-based Lyra model testing. 
Automated Lyra system design flow. 

CS2: FMS Verification and Validation methodology, covering 
animation validation, model validation, model 
verification, animation verification and interactive proof. 
Generic problem domains in UML. 

CS3: MDA Formal transformation of platform independent models 
(PIM) to platform specific models (PSM). 
Use Case / SDL development. 
Requirements change addressing fault tolerance. 

CS4: CDIS New Event-B method. 
Support for structured data. 
Event splitting and refinement. 
Productivity improvements. 

Page 18 of 137  



Case Study Templates and patterns developed 

CS5: Ambient Campus Context-Aware Mobile Agents (CAMA) framework, 
comprising: fundamental abstractions and property 
verification support. 
Methodologies and frameworks to support mobile agent 
systems (MAS), which include a number of refinement 
patterns. 

Table 4: Reusable patterns and templates delivered by each case study 

O2 The Methodology (WP2) should provide a set of guidelines on a systems approach 
to the rigorous development of complex systems, including design abstractions for 
fault tolerance and guidelines on model mapping, architectural design and model 
decomposition. 

The year one methodology report, D9 [9] provided a comprehensive set of generic 
guidelines, which were applicable to the RODIN case studies.  J-R. Abrial’s new 
book, “Modelling in Event-B: System and Software Design” (see §4.2 below for 
more detail) forms the major input to the generic RODIN methodology.  This has 
been used extensively on all case studies, with the example proofs being checked 
by the RODIN tools. 

This work was further enhanced by the year two methodology report [15], which 
addressed a number of key outstanding issues.   

Feedback from the case studies on the applicability and effectiveness of the 
methodology has been very positive.  As a consequence, we claim that this 
objective has also been achieved. 

Again, a brief qualitative assessment of the project’s performance against this 
objective is provided in Section 4.  Further detail is available in the report on 
assessment of tools and methods, D28 [20], and the final methodology report, D29 
[21]. 

O3 The Tool Kernel (WP3) should deliver an open platform, which supports 
extensibility of the underlying formalism via integrated tool plug-ins. 

The evidence from the case studies clearly demonstrates that this objective has been 
achieved.  Each Case study has made extensive use of the Tool kernel with 
favourable assessment scores, particularly with regard to its usability, extensibility 
and cost-effectiveness.  The kernel platform supports plug-in development very 
effectively.  As a consequence five plug-ins have been actively used on the RODIN 
case studies. 

Page 19 of 137  



The quantitative assessment results presented in Figure 1 indicate that the platform 
is better than existing platforms to support formal specifications.   

O4 WP 4 should deliver a collection of kernel plug-in tools for model construction, 
model simulation, model checking, verification, testing and code generation. 

The five plug-ins, which have been actively used by the case studies, address: 

• Model construction: UML–B, B2RODIN 
• Model simulation: Brama 
• Model checking: B2RODIN, ProB, mobility checker 
• Validation and testing: Brama, ProB 

Thus all aspects of this objective, with the exception of code generation, have been 
addressed.   

Figure 4 summarises the effectiveness of the RODIN plug-ins, and again 
demonstrates that the platform and tools provide better support for formal 
specifications than existing platforms. 

Evidence from the case studies gives a clear indication that the approach is capable of 
delivering real benefit for industrial scale software developments. 

Figure 2 clearly illustrates the positive assessment feedback received on the project, 
showing that for all the assessed criteria, 55% returns indicated that the RODIN provides 
an improved support environment for formal software development (score 4 or 5).  There 
were no significant points where the assessment was “weak” or “average”.  Only eight 
areas were assessed as “failed”; all were related to the level of integrity and verification 
applied to plug-ins. 

Furthermore, the integration assessment results (c.f. Table 3) indicate that the platform is 
capable of extension to support other key aspects of a large-scale formal system 
specification. 

Page 20 of 137  



SECTION 4 METHODOLOGY ASSESSMENT 

4.1 Introduction 

Earlier work package reports, D9 [9] and D19 [15], have examined progress in each of 
the case studies in relation to the RODIN methodology.  This has led to questions and/or 
discussions about the use of aspects of the proposed methods within RODIN. 

As a result of this work, we have concluded that any successful formal method will 
always need to be integrated into the methods of industrial user organisation.  As such 
deployment of the method is critical to the success of a formal methods project. 

For the RODIN project, we now have a core RODIN method, which has its manifestation 
in five different deployments, as described in Sections 5.1 to 5.5. 

4.2 The (generic) Event-B methodology 

As reported in the Final report on Methodology (D29) [21], Jean-Raymond Abrial is 
close to finishing “Modelling in Event-B: System and Software Design”.  This new book 
summarises the development method for Event-B and contains fully worked examples 
whose proofs have been constructed and/or checked with the RODIN tools. 

The emphasis throughout the book (and all RODIN methods) is on “correctness by 
construction”, (CxC).  In summary, the overall plan of CxC is to begin with an abstract 
model and to introduce design decisions as refinements.  At each stage of refinement, one 
proves that the previous specification will be met if the subsequent ones are fulfilled. 

Abrial’s book contains eloquent advice on: 

• abstraction and refinement and the layering of design decisions; 
• the structuring of requirements; 
• proving properties of (abstract) models as a way of increasing confidence that the 

delivered system will meet the expectations of its commissioners and/or users.  
Here the RODIN tools provide added value by also offering links to simulation. 

The major technical innovation in moving from B to Event-B is the introduction of 
guarded events.  These can present “deadlocks” and appropriate proof obligations have to 
be discharged to establish that this is not the case.  The RODIN platform and tools 
provide enormous help to the user of Event-B.   

The wide range of examples in Abrial’s new book makes it easier to relate the method to 
new application areas.  There are also chapters on formal development of “sequential 
programs”, “concurrent programs” and “electronic circuits”. 

Page 21 of 137  



Overall, the feedback from the case studies on the usefulness and general applicability of 
this generic method has been extremely positive. 

4.3 Case Study Feedback 

As noted in §4.1, any successful formal method needs to be integrated into the methods 
of its industrial users.  The RODIN project specifically aimed to face this issue by 
undertaking five separate case studies, each with different characteristics.  For further 
details see the Final report on Methodology (D29) [21]. 

Case study one’s investigation into the use of RODIN in “protocol engineering” has paid 
particular attention to the integration of RODIN with the Lyra method. 

Case study two’s work on engine failure management, addressed use of the method by 
staff with limited formal methods experience.  Part of this work has examined use of the 
method during the verification and validation project lifecycle stages. 

Case study three examined the use of the method by a major industrial partner, Nokia, 
and how formal techniques fit with Model Driven Architecture. 

Case study four, CDIS, was able to compare the results of using the RODIN method with 
the formal methodology, VDM [89], which was adopted by Praxis at the outset of this 
implementation in 1992.  Although the resultant model presented in Event-B is both 
much clearer and more tractable, we do not claim that the entire difference is down to the 
RODIN language and methods.  It is always possible to improve on a formal model; in 
this case the improvement has been dramatic by clever factoring of ideas. 

Finally case study five attempts to address issues concerned with ambient systems.  Here 
the main faults, which need to be tolerated, are concerned with transmission 
errors/failures.  This work has led to the use of “patterns” to reduce the level of formal 
proof necessary for each new application.   

We therefore feel that the RODIN project demonstrates that the generic method is both 
capable of supporting a wide range of industrial strength projects, and can be adapted via 
re-usable patterns and templates to integrate with existing methods in an industrial 
context. 

Page 22 of 137  



SECTION 5 CASE STUDY ASSESSMENTS  

5.1 CS1 – Formal Approaches to Protocol Engineering 

5.1.1 Introduction 

The case study investigates the use of formal methods (in particular, refinement and 
model checking and model-based testing techniques) for industrial-scale development of 
telecommunication systems and communication protocols.  The work of the case study 
focuses on formalisation and validation of the Lyra design method, an industrial-strength 
domain specific design method example, developed at the Nokia Research Center.  

One of the main objectives of the case study is to integrate formal methods into the 
existing development process at Nokia through automation of the refinement steps in the 
design flow.  This has been achieved through automatic translation of Lyra/UML-2 
models into the formal framework.  The process includes:  

• Automated refinement with in-built correctness and consistency checking, and 
• Enhancement of the models with automatically generated fault-tolerance behaviour. 

Nokia perceive the major criteria for evaluating the success of RODIN to be: 

• The degree of automation achieved.  This indicates the applicability and usability of 
the enhanced development process in an industrial setting.   

• The enhanced development flow.  This provides added value to the industrial 
system and product development process. 

The objectives of the case study (from the Description of Work [1]) are to: 

a Investigate the benefits of using refinement approach versus algorithmic 
verification to verify system decomposition and composition. 

b Investigate model reduction techniques and proof methods for data abstractions and 
the use of model checking to verify correctness of system components. 

c Investigate applicability of formal reasoning techniques about fault tolerance in this 
application area. 

d Validate top-down and bottom-up formal techniques and supporting tools. 

5.1.2 Current Status 

Year Achievement Objective Papers 
1 Traceable requirements document for the positioning 

system case study, suggested by NOKIA 
c), d) [4] 

1 Specification and refinement patterns reflecting 
essential Lyra models and transformations 

a), d) [25] 

2 Modelling fault tolerance mechanisms in formalised 
Lyra-B models 

a), c), d) [26] 

Page 23 of 137  



Year Achievement Objective Papers 
2-3 Developed methodology for verification of the 

consistency of provided Lyra/UML2 models 
a), d) [24] 

2-3 Developed methodology for model-based testing of 
Lyra models and transformations  

a), b), c) [23] 

3 Extension of the developed specification and refinement 
patterns (with incorporated fault tolerance mechanisms) 
to model parallel execution of services 

a), c), d) [27] 

3 A prototype of model-based testing plug-in a), b), d)  
3 Automatic support for translation of Lyra/UML2 models 

into Lyra-B models, creating automatic system design 
flow 

b), d)  

Table 5: Case Study 1 - Annual achievements against objectives (c.f. §5.1.1 above) 

5.1.3 Progress since Year 2 Assessment 

In the final year of the RODIN project our work on the case study has progressed in four 
dimensions.  

1 In the work related to formalisation and the theoretical basis for automated 
refinement, the Lyra specification and refinement patterns, including the 
incorporated fault tolerance mechanisms, have been extended to cover modelling of 
services executing in parallel.  

2 To adjust the theoretical approach into an industrial-scale development framework 
and to allow MDA-like model transformations to implement automated refinement, 
the existing Lyra/UML2 profile has been enhanced further to include all definitions 
and constraints related to the developed refinement patterns. 

3 For the model-based testing of Lyra models and model transformations, a 
methodology and a plug-in prototype has been developed. 

4 To implement the developed approach with the RODIN tool platform and 
demonstrate the enhanced development process in practice, and also to address the 
Year 2 reviewer recommendations [1], the Integration Plan for CS1 has been 
developed. 

This has resulted in the development of an automated tool chain for Lyra-B.  
Mapping of Lyra/UML2 models into UML/B concepts together with consistency 
checking of structure and behaviour is now supported by the RODIN tool platform.  
The generated B models and their implementations will be used as the input for the 
model-based testing plug-in. 

Furthermore, the generated models describing the “basic valid behaviour” are used 
as a basis for implementing the “correct-by-construction” design paradigm, i.e. 
enhancing them with fault tolerant and parallel behaviour. 

Page 24 of 137  



5.1.4 Contribution to the Development of Platform and Plug-ins 

RODIN Platform 

The RODIN platform has been used for the formal development and verification of 
essential Lyra models and transformations.  The following assessment is based on the few 
months’ experience with platform version 0.7.4. 

Event-B view: The interface is nicely structured and easy to use.  The different windows 
are well thought out and provide a good overview of projects.  The wizards for adding 
events etc. can be very useful when making big additions at the same time.  Buttons for 
adding and removing are also very useful when editing the machines.  However, it is a bit 
strange that not all operations have buttons.  For instance, adding witnesses or refine 
events, as well as removing events has to be done via the right-click menu.  Overall, most 
of the things you need are in plain sight and easy to find. 

Prover view: Again, this provides a nicely structured, easily understood and navigated 
view.  The automatic prover handles many trivial proof obligations.  However, many 
recurring, simple proof obligations seem to be quite troublesome and often require 
manual proving.  For example, proving that a set is not empty is usually a major problem.  
On making a small change to an invariant, you also get a huge number of broken proofs 
that have to be dismissed manually, even though the automatic prover should have been 
able to check through these on its own much quicker.  Fairly often the automatic prover 
takes a wrong turn at the very first node, resulting in a very hard proven tree, while even 
the p0 predicate prover would have been able to prove the initial proof obligation.  

Features: RODIN is an open platform only having the core functionality; the plug-ins 
should take care of the rest.  Still there is a feeling that some features like animation 
should be available when you want to test your machine.  

General With some experience with B and Eclipse it’s easy to get started with RODIN.  
A few hours of testing features and generally getting to know where to find the things 
you need is all that’s needed to get a decent start.  An easily available Event-B language 
manual would improve usability.  This would help awareness of Event-B specifics, e.g., 
there is no point in trying to make a sequence, or that a carrier set can’t be empty. 

This case study has reported that a major problem with the version of the RODIN 
platform used is the lack of redundancy in handling the files where the machines are 
saved.  In particular, on several occasions when RODIN hung or crashed while building a 
project, the entire project was ruined (with no way to import data).  Unless RODIN 
terminates properly, the workspace cannot be reused until the Eclipse metadata is deleted.  
(It should be noted that this problem has not been reported on other case studies.) 

The error messages from syntactical errors are in most cases very unclear and hard to 
understand.  The guard or action, which caused the error, is identified; no further 
assistance is provided. 

Page 25 of 137  



RODIN seems to run a considerable number of provers, some of which may not be 
required, when building a project; this causes building to take a long time.  A facility is 
required to suspend proof until the user decides the model is ready. 

ProB Plug-In 

The ProB plug-in is used in combination with the model-based testing plug-in. 

The RODIN ProB plug-in has proved to be very useful for animating Event-B 
specifications.  The graphical user interface of ProB plug-in is quite intuitive and user 
friendly.  It is easy to animate and generate execution traces of Event-B specifications.  
However, there are still a few bugs in the prototype version, which does not fully support 
the Event-B language. 

We have used the ProB plug-in in the context of developing the model based testing 
(MBT) plug-in.  The MBT plug-in uses the ProB engine to generate execution traces.  
ProB is easy to configure and use as an independent plug-in for the RODIN platform.  
However, the plug-in to plug-in interaction is not well defined.  There was very little 
support available for such a purpose.  The lack of documentation and unavailable 
application programming interface (API) is also a major concern. 

UML–B Plug-In 

The UML–B plug-in is used for translating Lyra/UML2 models into the corresponding B 
specifications. 

Once the platform was installed, installing the UML–B plug-in was straightforward.  
UML–B appears as a separate perspective in the Eclipse environment.  Similarly, as in 
modelling in the RODIN platform, a project in UML–B has the corresponding nature, 
which makes it easy to distinguish between the other types of projects (e.g. Event-B).  

Modelling in UML–B was less intuitive at the beginning, despite the solid knowledge of 
UML.  The main difficulty in modelling in UML–B was caused by a quite rigid design 
flow supported by the modelling tool.  Namely, the design should start with a package 
diagram, then we should attach appropriate class diagrams to these packages, and then, 
possibly, we could attach a state chart to classes.  When the flow deviates from the 
required flow, the tool exhibits some unexpected behaviour.  However, a manual would 
help avoid situations like this.  In response to our comments, the tool has since been 
modified to enforce this design flow. 

Another difficulty was typing attributes of classes in class diagram.  It was less clear 
immediately how to (and if it is possible) introduce new types, different from those 
already pre-specified.  Creating a state chart was intuitive enough; however, we would 
expect more support for state chart refinement.  There are some features that are more 
difficult to understand (e.g. different types of treatment of states), especially for novices.  

Page 26 of 137  



Our work on the case study resulted in few requested features.  UML–B support of 
refinement was the most important in the list of these requests.  We needed support for 
refinement of states on a state chart, but also of refinement of classes in a class diagram.   

Overall, the tool became more mature during the case study development, and most 
importantly, more stable.  With a proper guidebook, it can be adopted quite fast and used 
in developments.  However, we believe that it is necessary to have prior knowledge of 
Event-B in order to undertake successful developments in UML–B, although the Event-B 
seems almost transparent. 

5.1.5 Contribution to the Integration Objectives 

a) Checking the scaleability of the system as its functionality is extended 

CS1 has used the new RODIN toolset (the platform, and the UML–B and the Pro-B plug-
ins) for automated Lyra/UML2-to-B model transformations and for generation of 
automatically refined models, which are “correct-by-construction”.  The experiments 
have not indicated any scaleability concerns related to the RODIN platform.  Integration 
of the model-based plug-in tool, developed in CS1, has shown that it could be quite 
difficult to implement interactions between separately developed plug-ins.  In particular, 
the model-based testing plug-in depends on outputs (execution traces) produced by the 
ProB plug-in.  However, missing API and appropriate documentation makes it really 
difficult to establish the connection between the plug-ins.  

Grade: [3] 

c) Checking the scaleability of the system with respect to the size and complexity of 
the models 

Most of the developed formal B models are in the form of specification and refinement 
patterns that can be instantiated easily during the “correct-by-construction” development 
process.  We expect this to increase their scaleability.  The instantiation and managing 
large data sets causes some concern. 

CS1 uses a set of Lyra/UML2 models for the Position Calculation System and PCAP 
(Position Calculation Application Protocol) to trial and evaluate the feasibility, 
applicability and scaleability of the developed approach.  These models are representative 
examples of the size and complexity of the models produced in an industrial development 
process by a system designer or a small team of designers.  In CS1 the RODIN tools have 
been applied for models of this size and complexity.  The experiments show that the 
RODIN platform performs well at this level.  

The Lyra method focuses on the description of system structure and behaviour.  Data 
(included mainly in the message parameters) has been encapsulated into abstract data 
structures.  The underlying idea is to use different tools and methods, specific for data 
handling, in this area.  Data handling has been left as a minor issue in CS1; only the data, 
which directly affects the system behaviour, has been treated in more detail in the 

Page 27 of 137  



formalization.  Therefore, scaleability of the RODIN platform in instantiation and 
managing large data sets has been outside the scope of CS1.  

CS1 has not addressed the scaleability of the RODIN platform in a distributed 
development environment (geographical distribution, large collections of separately 
developed system parts).  In supporting a compositional development concept in industry, 
scaleability of the design tools and approaches at the module/component level is regarded 
as the primary goal.  Module/component integration, both regarding the system 
composition and the tool environment, are separate concerns that need to be addressed 
separately. 

Grade: [4] 

5.1.6 Case Study Specific Metrics 

1 How well do the developed concepts, methods, and tools fit with the existing 
development framework? (U) 

The goal of this metric is to assess seamless integration of formal methods and 
tools to existing industrial development process.  To realize this, an invisible link 
between the existing development framework and the RODIN platform should be 
provided.  The created link should provide an engineering environment easy-to-use 
for “non-formalists”. 

The target has been to: 

• link the first three (out of four) Lyra phases into the RODIN platform, and 
• link the Lyra method with the model-based testing methods and tools in the 

RODIN platform. 
• To develop a small prototype for automated model transformations as a 

proof-of-concept for the automated “correct-by-construction”. 

These experiences and trials provide information for estimating the feasibility and 
applicability (w.r.t. competences, resources, etc.) of the approach in an industrial 
context.   

During the RODIN project, the following methods and tools were developed to 
integrate RODIN and Lyra/UML2 approaches: 

• Lyra/UML2 and B profiles and meta-models, 
• tools for transforming UML2 models into B, 
• Lyra B specifications and refinement patterns, 
• Model-based testing (MBT) plug-in. 

Currently, and mainly as a result of work done during year two of the project, those 
three phases, namely Service Specification, Service Decomposition and Service 

Page 28 of 137  



Distribution are linked to RODIN platform.  This allows the use of RODIN tools 
and methods in a more rigorous development flow without significant competence 
renewal.  UML2 models from these Lyra phases are translated (using ATL, or ATL 
- U2B combination) into the corresponding B models.  The translation process is 
based on the use of meta-models, which allows flexible enhancements to the 
methodological framework later on.  During the translation the syntactic 
consistency of input models is checked.  Currently the linking only works in one 
direction, so that Lyra UML models and other required design information are used 
as inputs for the RODIN model transformations.  Therefore, the design errors 
discovered with the RODIN platform cannot be traced back to UML2 models.  
Traceability was not included in RODIN targets, but should be considered as a 
research item for future actions.  The tool chain and conceptual work flow for 
automated model transformations will be demonstrated with a small prototype 
implementation.  

Model-based testing is not yet fully linked.  Currently, the theoretical basis for 
model-based testing of Lyra B models has been developed.  Implementation 
options for Lyra – MBT linkage to the RODIN platform either by using the ProB 
plug-in tool or an external model-checker tool have been examined. 

Based on the experiences in successfully trialing this fully automated approach, the 
anticipated need for competence renewal inside the company is minimal.  Also, the 
threshold for adapting the “invisible” formal methods framework into production 
level system development processes should be low.  

The target in trialing and demonstrating the integration of formal methods and tools 
to existing industrial development processes and prevailing practices has been well 
achieved and exceeded in certain areas.  On the other hand, the progress in the 
MBT side has not met the target level.  

Grade: [4] 

2 How much support does the RODIN approach provide for a more rigorous 
development process?  Specifically, how many new tasks in the development 
process can be tackled using the methods developed in RODIN? (C) 

The goal of this metric is to evaluate large-scale applicability of the RODIN 
methods and tools in an industrial development process, in order to provide 
significant amount of added value to the whole industrial development in terms of 
improved quality and R&D efficiency.  

During the RODIN project, the following methods have been developed to achieve 
this goal: 

• the constraints for checking inter- and intra-consistency of provided Lyra 
UML models, 

Page 29 of 137  



• B-Lyra specification patterns, enhanced to include fault tolerance 
mechanisms, 

• tool support to ensure consistency and verify correctness of development 
steps. 

The target is to provide support for more rigorous development in the first three 
Lyra phases (out of four).  The tools and methods in the RODIN platform should be 
used to assist and automate the more rigorous system development flow.  RODIN 
work, including concept definitions and more detailed specifications for later 
implementations, should give reference for estimating the anticipated quality 
improvement and workload reduction.  

The behavioural consistency of the refinement steps is validated using the RODIN 
platform.  The consistency checks are based on meta-models and specifications for 
refinement patterns, including fault-tolerant behaviour.  Consistency checks cover 
both the refinement steps between the first three Lyra phases (inter-consistency 
rules) and between the modelling concepts inside a certain Lyra phase (intra-
consistency).  The refinement patterns provide a basis for automating the industrial 
engineering workflow producing designs “correct-by-construction”.  Fault-
tolerance mechanisms (in combination with service decomposition and distribution) 
are automatically incorporated into the refinement process.  Fault-tolerant 
behaviour has not been considered much in the original version of the Lyra method 
nor in the UML models given as input for the RODIN work initially.  This part of 
the RODIN work enhances significantly the original method description.  

Based on the interviews with industrial engineers, their estimation is that the 
productivity could be increased four-fold by launching this kind of an automated 
and more rigorous workflow.  Also, correct-by-construction designs would reduce 
significantly the need for testing, which currently constitutes approx. 70% of the 
development time.  

The target for this task has been well met.  Although the handling of user data was 
included in the original goals, this is a challenging research item of its own; it has 
left for future development.  

Grade: [4] 

3 How much support does RODIN provide for automation of the development 
process?  Specifically, how many new tasks in the development process can be 
tackled using the methods developed in RODIN? (C, X) 

The goal of this metric is to assess the automation of a “correct-by-construction” 
design approach in an industrial development process.  How much quality is 
increased due to ensuring correctness by design?  How much R&D productivity is 
enhanced through: 

Page 30 of 137  



• reduced overall work effort in an industrial development process 
(automation), 

• reduced need for testing due to design-time validation, 
• direct use of design models in testing, e.g. model-based testing and automated 

test case generation.  

Automation of model transformations (Lyra UML models to B or UML–B) with 
the ATL tool has been automated at the required level – a small prototype 
implementation will be demonstrated.  The refinement process verifying the 
behavioural consistency between the Lyra phases is fully automatic.  However, it is 
based on using specification and refinement patterns, and indicates the future need 
for additional support for model instantiation.  For MBT some initial simple 
examples exist for test generation using ProB plug-in.  

This task overlaps with the previous tasks.  The level of automation achieved in 
these proof-of-concept trials and planned as near-future research items confirm the 
estimations for R&D productivity increases that we have presented in the 
evaluation statements of the previous tasks.  

Grade: [4] 

5.1.7 Conclusion 

Our evaluation has shown that the work on the case study has progressed according to the 
initial plan and achieved the expected objectives.  The achieved results allow integration 
of formal methods into the existing development process at Nokia through automation of 
the refinement steps in the design flow and automatic translation of Lyra/UML-2 models 
into the formal framework.  Nokia considers the achievement of such automation as 
having added significant value to industrial system development. 

Page 31 of 137  



5.2 CS2 – Engine Failure Management 

5.2.1 Introduction 

The engine failure management system provides a protective wrapper to the Engine 
control subsystem, protecting it from failures in its system inputs and so enhancing the 
dependability of the control system.  It detects failures, and then manages these failures in 
order to provide the control subsystem with an acceptable input or graceful degradation 
of behaviour.  (Deliverable D2 [3] and the initial RODIN presentation provide a more 
detailed definition.) 

Additionally, during RODIN year three, ATEC undertook a further production 
acceptance test case study (PAT) as part of this work.  The PAT case study is described 
in the deliverable D26 [18] as part of case study 2.  PAT provides a configurable system 
of test specifications for the production hardware of the engine controller. 

The objectives of the case study (from the Description of Work [1]) are to: 

a Investigate the use of formal methods on engine failure management applications. 
b Investigate methods of using formal methods efficiently via reuse. 
c Investigate methods for specifying a generic software support package for engine 

failure management applications. 
d Produce prototype products that could be used to support the development of a 

software support package for engine failure management. 
e Investigate benefits of integrating UML and B. 

5.2.2 Current Status 

Year Achievement Objective Papers Contributor
1 Initial failure management behavioural 

model 
a) [28] Soton, 

ATEC, 
1 Traceable requirement specification of 

FMS 
a)  ATEC 

1 Generic model and methodology for 
developing domain models 

a), b), c) [29,30] Soton, 
ATEC 

1 ÅA development of behavioural model 
using classical refinement 

a), b) [31]  ÅA 

2 Generic model development  

Features and develop Context manager 
to handle instantiations 

a), b), c) [30] Soton 

2 Independent Pilot study investigation 
assessing methodology and evaluating 
technology 

a), e) [30] ATEC 

2/3 ÅA further work to convert to event B 
and UML–B and provide guidelines 

a), d), e) [33]  ÅA 

Page 32 of 137  



Year Achievement Objective Papers Contributor
3 Behavioural modelling of generic model a), b), c), 

d), e) 
[36,79] Soton 

3 PAT case applying RODIN related 
technology on legacy system for a 
commercial customer 

b), c), d), 
e) 

 ATEC 

Table 6: Case Study 2 - Annual achievements against objectives (c.f. §5.2.1 above) 

5.2.3 Progress since Year 2 Assessment 

Failure Management System (FMS) developed by Southampton University (Soton) 
and Åbo Akademi University (ÅA) 

Work has advanced from the static model, which was developed during years one and 
two, to a dynamic failure management system.  The current model is a generic failure 
management system, which is re-usable and extensible.  Re-usability is demonstrated by 
the integration of more specific contributions by ÅA in section 3.2 of the final delivery 
report D26 [18].  

Further contributions made by Åbo Akademi (ÅA) and Soton can be summarised as: 

1. Transfer of pilot study failure management system onto RODIN platform (Soton) 
2. Generic failure management system (Soton) 
3. Dynamic features of failure management system (Soton, ÅA) 
4. Development of failure management system using refinement (Soton, ÅA) 
5. Translation of parts of ÅA’s classical B models into UML–B (Soton) 
6. Integration of ÅA and Soton ideas (Soton, ÅA). 

In year three, the focus of the development of FMS was on producing the dynamic part of 
the existing static model.  The model was kept generic and abstract, such that it can be 
refined later into different more specific applications of FMS – thus enabling re-use.  The 
model is mainly built – using UML–B – out of components with associations and object 
constraints, using an object-oriented development approach.  The generic model can be 
seen as the composition of a number of functional features – detection, confirmation, 
condition and action – which can be adapted in further refinements. 

The FMS case study has seen progress through the academic partners’ development of 
their models using the new RODIN tools. 

The formal, classical refinement development of the FMS can be enhanced by the use of 
UML, in particular, a subset of UML called UML–B [32].  The result of integrating this 
formal refinement approach into the UML-based development of the FMS is a set of 
UML–B models distributed through phases of the development process [33].  Each 
development phase corresponds to a refinement step.  It is characterized by a set of 
UML–B models (class and state chart diagrams) representing the main structural and 
behavioural aspects of the FMS at the corresponding level of abstraction.  To automate 

Page 33 of 137  



the process of obtaining a formal specification from UML–B models, we use the U2B 
tool [34], which translates the UML–B models into Event-B.  We use the automated 
Event-B tool support for verifying correctness of our development.  The results showed 
that we were able to prove the correctness of models significantly faster, with higher 
percentage of automatic proofs than in our previous classical refinement development 
[35]. 

The new RODIN tools were used for the validation and verification of the UML–B 
model.  Both the classical ProB model-checker and the RODIN ProB plug-in animator 
were used to validate the model; the RODIN prover supported model verification. 

Production Acceptance Testing (PAT) undertaken by AT Engine Controls (ATEC) 

Although ATEC has needed to divert some work from the FMS case study, they have 
utilised RODIN technology for a new situation, a semi automatic Production Acceptance 
Test system (PAT).  The PAT system tests the hardware platform and in-situ software 
(which includes an FMS system) for manufactured production units.  The requirement 
and a more detailed description of its development are described in the main report D26 
[18]. 

The challenge was to utilise the RODIN technology to develop a real implementation for 
a customer operating under commercial timescales.  This has been achieved through the 
development of a static UML–B structural model of the system.  This model was used to 
drive a configurable specification that interfaces with a target system, which uses some 
existing code.  The development environment used the Eclipse and EMF environment 
shared by RODIN.  The new RODIN tools were exercised in some simple modelling of 
legacy in the domain. 

5.2.4 Contribution to the Development of Platform and Plug-ins 

Feedback on the Platform and Plug-ins has been given in presentations and directly to 
developers.  Bug tracking and forum websites were also made available.  

RODIN Platform 

In both cases models have been entered via the UML–B Plug-In, which uses the Event-B 
platform.  Verification of the behavioural models was undertaken on this platform using 
the platform’s static checker and prover. 

ATEC perspective (Year 3) 

Installation 

ATEC initially found the installation of the Platform and Plug-Ins required some 
knowledge of the Eclipse environment and familiarity with update sites.  Initially this was 
not very intuitive.  However, the use of automatic update sites, made later installations 
much easier.  It would be useful to have a more documentation about manual procedures, 

Page 34 of 137  



which could be followed for installation to the platform, when there are difficulties with 
automatic updating or further procedures have to be followed.  A proposed CD 
containing a complete installation should resolve any difficulties for the novice.  

Long-term support of the installation is a significant issue for the future since ATEC 
needs to support some products over long life spans, e.g. 10 years or more. 

A concern is that future changes in the platform may make models developed on older 
platform configurations obsolete.  Backwards compatibility of the platform for its models 
and availability of previous platform releases is an issue, which needs to be addressed for 
any long-term adoption of the technology.    

Navigation 

The platform is windows intensive and encourages the use of larger displays.  The 
navigation around the platform is menu driven but locating information was not always 
intuitive.  New users may benefit from examples for navigating between different 
perspectives.  Once familiar with the platform, this was not such a problem.  However 
swapping between different perspectives normally required some window adjustment.  

PAT Case Study Feedback 

The UML–B plug-in supported the entry of the PAT partial specification.  The Event-B 
translation of the partial specification in UML–B allowed the UML–B model to be 
viewed from the Event-B perspective of the platform, which was significant for viewing 
the full textual translation (via pretty print) and providing the facility to check and prove 
the partial specification model.  The reactive nature of the prover was useful in 
identifying problems as they occurred, allowing them to be addressed early.  Initially 
much of the model was entered using the UML–B interface, rather than using an 
incremental approach.  This meant that several line items required proof obligations.  
However the ability to add and verify functionality gradually is not diminished, as it was 
useful to identify problems caused by small model changes.  The order that the proof 
obligations were resolved did not appear to impact proof.  The model was checked and 
animated using the ProB plug-in. 

The PAT generic editor did not directly involve the RODIN platform but used its 
underlying technology; this study forms the basis of future research work for UML–B 
development in the Platform (see comments on UML–B below).   

University of Southampton perspective (Year 3) 

The RODIN platform is an excellent toolset for specifying critical systems and verifying 
their correctness; however, due to the complex layout of the platform it is very hard to 
navigate all the menus and buttons.  The platform is based on too many wizards, which 
eventually confuse and take time.  

Page 35 of 137  



The following bug report and feature requests are of note: 

• Bug Report #1724770 - axioms entered in constant wizard not displayed 

The wizard view does not show straight away, whether a variable or axiom has 
been added successfully.  Thus for some time, when adding a constant and an 
axiom using the constant wizard, the fact that an axiom was dropped and 
disappeared from the model was not revealed.  Fewer wizards would make the 
platform more usable and less cluttered. 

• Feature Request #1777260 - Propagation of changes 

The RODIN platform does not seem to allow for late model changes.  If a change is 
made to the abstract model, or a low-level refinement, these changes have to be 
made manually to all subsequent refinements.  This is especially time-consuming if 
new events are added or a type change made.  Changes made to more abstract 
refinements should thus be propagated automatically to subsequent refinements.  

• Feature Request #1779420 – Error Messages 

In the event of errors, RODIN generates error messages and warnings.  Sometimes 
these error messages are hard to understand and not very meaningful.  However 
with some experience it will be easier to interpret them and understand their cause.  

RODIN Prover 

The proving capabilities of the RODIN platform are very useful, and greatly reduce the 
effort required for at least some POs that are proved automatically.  In comparison with 
B4Free, these would need manual proof, which is tedious.  

The interactive prover interface is set up to provide useful information about the PO, 
which makes it easier to discharge the PO.  Hypotheses can simply be added or ignored 
and automatic rewriting can be applied for some constructs. 

Plug-in Integration 

Plug-ins are integrated into the RODIN platform using perspectives, which is very useful, 
because the user can easily switch between them.  The plug-ins used in case study two 
are evaluated below. 

Åbo perspective (Year 3) 

Launching the application was easy.  A very basic tutorial accompanying the tool 
provides significant help.  However, that is the point at which help stopped.  There was 
no available manual on how to access certain tool features or how to proceed with 

Page 36 of 137  



specification and proving.  Recently, a manual has been included in the tool distribution, 
and this should help its dissemination. 

Without the guide, the tool was explored intuitively.  This is one of the tool’s strengths.  
Indeed, we found the tool interface reasonably intuitive.  Available wizards for creating 
events, adding variables and invariants give very good guidelines for creating 
specifications.  This, however, is only because we are familiar with the concepts and have 
experience of other B tools.  The main difference is in the organization of a project, i.e., 
specifications, which adheres to Eclipse standards.  Moreover, type checking of 
specifications is performed each time a project is saved, instead of launching the type 
checker individually.  However, reported error messages are not always clear and 
understandable.  Sometimes they may be very obscure and confusing.  Having the list of 
possible error messages with some guidelines would be extremely helpful. 

Each time the project is saved, not only is type checking performed but proof obligations 
are also generated and discharged automatically if possible.  This really saves time 
compared with AtelierB.  The RODIN platform enabled more proof obligations to be 
discharged automatically, compared with AtelierB, for the same development, i.e., based 
on the same specifications.  However, when it comes to proving the remaining proofs, not 
everything is as intuitive.  Here, there would be real benefit from a detailed proving 
manual, although the initial guidebook provides a partial explanation.  

Having previously used AtelierB Event-Based modelling, translating them into Event-B 
was fast and intuitive.  We noticed few differences and difficulties.  For instance, the 
elements of an enumerated set, i.e., constants, are not distinguished and this has to be 
done manually.  Regarding proof, it is less easy to understand the best approach to case 
analysis, suggesting a witness for existential proofs, the types of provers to use and when. 

Overall, the tool is quite stable, with no unwanted behaviour (e.g. system crash).  The 
acceptance period was rather short.  However, initially it would probably be faster if there 
were a nice, small guide-example for practice. 

ProB Plug-In 

The pre RODIN ProB plug-in was used in the FMS case study in year two and the 
RODIN version in the final year.  The RODIN version was also used on the PAT case 
study during year three.  

The Plug-in was used on the Dual Case sensor model in the year two pilot study by 
ATEC [14,16]. 

The following observations were made. 

• Useful tool and intuitive 
• Could be improved by: 

a enhanced animation to highlight what has changed from each event  

Page 37 of 137  



b improved refinement checking 
c integrating with same platform as Prover. 

In response a RODIN plug-in was integrated onto the same platform as the Prover  

ATEC perspective (Year 3) 

ATEC applied the ProB Plug-in on PAT later than Southampton (see below).  
Consequently, they did not experience the same syntax.  The points were reported: 

• Installation on the RODIN platform is not fully automatic as it required additional 
installation of some objects. 

• The ProB integration onto the same platform as other tools was an improvement, 
however its selection and use on this platform could be clearer. 

• Documentation describing the use of the ProB on the RODIN platform needs to 
reflect this 

• The partial specification model of the PAT was successfully verified using the 
ProB disprover and animator. 

• Not all ProB features have been accommodated on the new platform, notably the 
model checker.  Also the animator did not show a history of its execution.  The tool 
needs to export to classical B to use this feature. 

• The disprover gives acceptance of proof if it cannot find any counter examples.  
This could be misleading where a small state space limit may give acceptance but a 
larger state space may find a counter example. 

• Overall the ProB tool is very useful for the industrial novice.  However it needs all 
the features of the pre RODIN tool to be included on the RODIN platform. 

University of Southampton perspective (Year 3) 

The ProB plug-in is one of the most used tools of the RODIN platform.  It is extremely 
useful to animate a model to check whether the implementation matches the required 
functionality.  It is very important to animate the model, as this is the only way to make 
sure that the model performs the way it should.  ProB can also be used to aid discharging 
POs by animating the model with the goal of the PO in mind. 

In the early stages, there were slight problems with differences in supported syntax, 
where some syntax, which was allowed in RODIN, was not yet recognised by the ProB 
plug-in.  This did not hinder model animation, as it was always possible to rewrite the 
unacceptable statement.  Furthermore, these errors were reported to the developers, who 
addressed them instantly and provided an updated plug-in.  

An earlier version of the ProB plug-in used a view to switch to the ProB plug-in.  This 
was improved and a ProB Perspective was made available.  In this way, the user can now 
switch to the ProB animator more easily. 

Page 38 of 137  



The following feature request is of note: 

• Feature Request #1777267 – Model Checking 

A desirable ProB feature is the model-checking capability of classical ProB.  
Currently, the ProB plug-in can only be used to animate the model – for more 
advanced model checking functionality, the model has to be exported as a B 
machine and can then be animated using the standalone ProB tool. 

Brama 

The University of Southampton assessed this Plug-in. 

University of Southampton perspective (Year 3) 

The Brama plug-in was not used for the development of FMS due to the lack of detailed 
documentation and restricted time.  The animation part of the tool was, however used on 
small models, where it was quite successful.  A Flash animation was not constructed, as it 
requires background knowledge of Flash animation creation. 

UML–B Plug-In 

The pre RODIN UML–B plug-in and its related method have been assessed in the FMS 
models years one and two.  The RODIN plug-in was available in year three and was used 
in the FMS and PAT case studies. 

Feedback from first year  

• Use of the uB action and constraint language requires detailed understanding of the 
translation into B, which depends on details such as multiplicities in associations. 

• Graphical feedback to indicate inconsistencies in model. 
• The requirement to handle data instantiation of generic models. 

Response 

• uB has been improved such that it is more intuitive from a UML–B modelling 
perspective. 

• Some graphical visualisation of errors has been added. 
• New requirements manager tool was developed (later versions referred to as a 

Context manager plug-in). 

Feedback from second year 

• Pilot study identified need for stronger guidelines for novice to refine models. 

Page 39 of 137  



• UML vs. B investigation/justification by industrial user identified potential 
improvements in UML–B by adopting some UML constructs, e.g. sequence 
diagrams, Case diagrams. 

Response 

• Guidelines for refinement patterns developed by ÅA. 
• Investigation and development into UML extension of UML–B 

ATEC Perspective (Year 3) 

• Easy installation 
• Relatively easy to use but insufficiently mature for large development.  This is 

largely due to minor bugs and some significant workaround, e.g. refinement of 
classes not possible. 

• Several bugs found have been reported in SourceForge. 
• Documentation would also from having examples that could be imported to assist 

novice learning. 
• The most useful improvements in RODIN UML–B, over pre RODIN, were 

visibility in error marking and the use of contexts. 
• Context views found useful for partitioning (c.f. metric 6, §5.2.6 below) 
• Further enhancements have been identified, mainly through the development of the 

generic editor on the PAT case (c.f. metric 6, §5.2.6 below). 

University of Southampton perspective (Year 3) 

UML–B was used in the FMS case.  However, at some stages, in the development only 
Event-B was used because of the rapid changes made to the UML–B plug-in.  This made 
the development very hard because some older versions of the model could not be 
imported into the newer versions.  Due to the immaturity of the tool, a lot of bugs were 
present, of which major ones were reported (see D26 [18]).  This all contributed to delay 
the development of the UML–B FMS.  Once a more stable version of UML–B was 
available, the Event-B model was translated into UML–B; only minor problems then had 
to be overcome. 

The following feature requests and error report are of note: 

• Feature Request #1777265 - comment on specific variable (etc) in UML–B  

The ability to comment on specific variables, axioms, invariants etc, especially if 
hidden from the actual UML–B diagram, would be extremely useful.  These 
comments could be inserted in the properties tab (as in Event-B), and then added to 
the pretty print. 

• Feature Request #1777262 - State machine transition naming   

Page 40 of 137  



At the moment it is not possible to create a state machine that has two transitions 
with the same name.  This, however, would be very useful so that the developer can 
represent a disjunction within the guard of an event.  

• Feature Request #1777268 - refinement by state machine  

Some events might be specified as events of a class.  It may be that at a later 
refinement stage, these events would be more suitable to be refined using a state 
machine.  Currently this is not possible, and as a solution, the complete event has to 
be moved into the state machine.  This is very time-consuming and error prone. 

• Feature Request # 1779366 – UML–B integrated roundtrip engineering 

A highly desirable capability of UML–B for productive working, which should be 
addressed in the next round of UML–B development, is integrated round-trip 
engineering.  Currently, when saving a UML–B model, the user must switch to the 
RODIN/Event-B perspective to analyse the model.  Once he has identified 
consequent changes, he must return to UML–B to perform that change.  For 
industrial-strength productive usability, the RODIN platform and Event-B language 
should act as far as possible as a “black box” analysis engine for the UML–B 
modelling activity, and its workings should only be visible through the UML–B 
interface.  Specifically: 

o Errors and warnings from RODIN syntax/type analysis should be presented 
on the appropriate UML–B diagrams. 

o Similarly for proof obligations and animation interactions (state variable 
values, enabled operations). 

• UG Forge Error Report #58 

UML–B currently lacks support for refinement.  The model-to-be-refined has to be 
copied and pasted within the .UML–B file and then renamed.  The refines events 
and seen contexts etc. have to be set manually.  These missing features are already 
addressed and automatically undertaken within RODIN, and would be a very useful 
feature to include in UML–B.  The problem associated with the lack of refinement 
support by UML–B is that the instance context also gets copied when copying the 
machine in the .UML–B file. 

Abo perspective (Year 3) 

Åbo have reported that their experience of using UML–B on case study two introduced 
no additional points to those already reported on case study one, see §5.1.4 above. 

B2RODIN  

ATEC applied this plug-in on its Dual Case sensor model during year three, as reported 
in D26 [18]. 

Page 41 of 137  



ATEC Perspective (Year 3) 

• Easy installation. 
• Good documentation with example. 
• Easily converted documentation example. 
• Unsuccessful conversion of dual case as some pre-formatting was required, e.g. 

dual case conversion of some classic B features (e.g. definitions, use of pre 
conditions) had to be reworked into Event-B format. 

• The error detection was adequate and usefully supported further by Event-B static 
checker. 

• Likely use will be to convert large-scale classic B to Event-B system on RODIN 
platform.  Guidelines to support pre-formatting of Classic B file would be useful, 
e.g. what will not convert (e.g. definitions and recommended workaround in each 
case)? 

5.2.5 Contribution to the Integration Objectives 

a) Checking the scaleability of the system as its functionality is extended 

Feedback on the new RODIN toolset has been received from Southampton, Åbo (FMS 
model) and ATEC (PAT development).  No partner has indicated scaleability as a 
significant issue with the integrated toolset. 

However it has already been stated that: 

• Navigation is more difficult as windows platforms are extended. 
• Maintenance of old models could become a problem as platform functionality is 

added since there will be an increased risk that upgrades may not be backward 
compatible with older versions of the tool. 

Managing scaleability in the models 

The UML–B methodology used in all the models addresses scaleability as it encourages 
O-O design concepts, such as classes, which naturally lend themselves to large-scale 
instantiations.  RODIN event refinement also allows the specification of alternative 
development paths, e.g. the refinement of machine2 as either machine3a or machine3b.  
This will facilitate the production of behavioural model variants, thus supporting 
generic/product-line working. 

FMS models 

Managing scaleability has been addressed principally in the case study by the 
development of the generic model (c.f. §5 of D26 [18]), where the configuration of the 
model was intended to cater for FMS variants. 

Page 42 of 137  



The development of the generic FMS model in year one identified issues concerned with 
large data set model instantiations and managing dynamic behavioural changes through 
features.  This resulted in the development of a requirement manager tool (later referred 
to as the context manager) in year two and some exploration of feature development.  
The context manger was not applied to the year three generic model development, as it 
needed further modification to maintain compatibility with the UML–B developments.  

The less-generic Åbo model also addresses scaleability by adopting UML–B classes to 
handle collections of sensors and by refining classes to develop behaviour. 

In contrast one aim of the ATEC pilot study in year two was to explore basic 
development techniques for a fairly concrete dual sensor system with the view either to 
integrate its functionality in the scaleable generic model or to extend its scaleability 
through UML–B development.  This was not undertaken in the final year due to ATEC’s 
focus on the PAT case study. 

PAT case study 

The PAT structural model has been derived from domain analysis.  Its O-O design lends 
itself to scaleable data centric configurability. 

The model was used to generate automatically the generic editor, which illustrates the 
extensibility of the approach to requirements scaleability. 

The model domain elements were also used to guide the structural development of the 
interpreter, which was implemented along more traditional methods.  (The intention to 
model all the behaviour of the interpreter and then translate this to an implementation was 
considered too risky given the project team’s experience). 

The development of the generic system delayed large-scale data entry until the model 
was considered stable.  This resulted in delays to the verification of the interpreter by 
traditional methods. 

Grade: [4] 

b) Checking the impact of legacy (sub) systems 

The PAT system has had to consider legacy issues due to: 

• The need to re-use existing application functionality, including low-level 
application code such as communication drivers, menus and error handling. 

• The application of a legacy compiler to support legacy code. 

The development is described in D26 [18] and is commented on below. 

Page 43 of 137  



The implementation showed that reuse of legacy code could be integrated with new 
design requirements.  However in practice this involved extensive rewriting of existing 
code, as the new requirement was better understood and a more generic implementation 
was needed.  The UML model, which was used to generate the generic editor and guide 
the structural development of the interpreter, was useful in defining the generic design 
requirement.  The interpreter needed to use some legacy code and the intention was to 
model fully the interpreter functionality, but this was not achieved.  Instead some partial 
specification modelling was provided to examine the impact of legacy functionality on 
the new requirement.  A simple functional model of a test element was specified and its 
dependency on legacy code was introduced.  The behaviour of the legacy code was 
introduced only where it impacted the new requirement.  Further refinements introduced 
other dependant behaviour.  The model, though trivial, illustrates the impact of the legacy 
behaviour and how it can be incorporated into the requirement.  The intent was to use the 
specification to isolate and replace legacy code as required for future maintenance.  

The RODIN platform was used to develop the partial specification.  The UML–B plug-in 
was useful in specifying partial behaviour as it provided a good visual representation of 
the legacy system.  The use of contexts was also used to isolate the legacy structural 
items, which helps in maintaining legacy code.  The animation of the specification using 
ProB helped to illustrate this behaviour to other users. 

The target implementation needed an existing compiler, which it proved impractical to 
integrate into the Eclipse platform.  However the use of an alternative compiler installed 
on Eclipse assisted development by providing a more effective interactive development 
environment.  The implementation code was imported from the old compiler, modified 
and compiled in the newer environment, then imported into the older compiler for final 
translation.  Having two platforms for the development only caused a minor hindrance.   

In conclusion the impact of legacy systems can be applied in modelling partial behaviour 
to assist new development requirements analysis.  However the formal translation of the 
full requirement involving the legacy system, from a model into an implementation, 
requires significant experience.  The legacy development environment, i.e. compiler, is 
old and inappropriate for integration into the Eclipse platform.  Thus the design requires 
porting to a standalone platform, which could create potential translation problems. 

Grade: [3] 

5.2.6 Case Study Specific Metrics 

These metrics principally address ATEC’s assessment of the usability of the technology.  

1 Evaluate the reduction of cost of development in future products. (U, C) 

Criteria Rationale: development efficiency makes the technology commercially 
attractive to the industrial user.  This assessment is based on the hypothesis that: 

Page 44 of 137  



UML–B will support the specification of generic products that can be efficiently 
configured for different specific applications products. 

ATEC is interested in the costs of using the technology throughout a project 
lifecycle.  This evaluation has involved an exploratory investigation into workflow 
and the associated learning costs. 

Justification of grading: 

Learning 

• The cost of learning and applying the methods requires strong guidance for 
novice industrialists (c.f. §5.2.4, Assessment Report 2 [16]). 

• The RODIN toolset was relatively easy to use and was applied by the 
industrialist to the PAT model.  However, lack of experience in the methods 
limited a novice’s progress.  More behavioural examples in event UML–B 
would have benefited a novice’s understanding of the notation. 

• The academic experience of learning and using the tools on the FMS are 
reported below.  However, in both cases the academics had previous 
experience, which was beneficial in adopting the toolset.  This has been 
considered in ATEC’s evaluation of the training and investment required. 

Åbo perspective 

Åbo already had a level of experience using several related tools and 
methodologies prior to RODIN.  They are: 

• experienced in the B Method, and the corresponding AtelierB and B 
toolkit modelling and verification tools; 

• familiar with Event-Based modelling; 
• proficient in UML and the underlying concepts of O-O design.  

This prior knowledge of specific methods and associated tools had a large 
impact on our understanding and acceptance of the tools developed within 
RODIN, in particular the RODIN platform and the UML–B plug-in. 

University of Southampton perspective 

The RODIN platform and plug-ins are easily understandable with previous 
knowledge of B, UML and the ProB tool.  The transfer from B to Event-B is 
straightforward, as it appears a simplification of B.  The disadvantage of Event-
B is that it does not contain all data structures that might be needed –should a 
new data structure be needed, it has to be modelled using functions and other 
available features.  UML models can be constructed in the usual and familiar 
way and B annotations can be made to the diagrams.  It takes some time to 
remember some of the modelling rules dictated by the UML–B approach, e.g. 

Page 45 of 137  



the UML–B view must be used to make changes to Event-B, otherwise changes 
will be overwritten.  The ProB animator is straightforward to use and should be 
self-explanatory even for someone without previous knowledge of ProB.  

Potential Workflow improvement 

The impact of modelling on workflow was assessed largely in year two; in year 
three the impact on legacy systems (c.f. §5.2.5 above) was considered.  The new 
toolset’s contribution to improvement in the modelling process was undertaken in 
year three and has been reported in the platform and tool evaluation sections (c.f. 
§5.2.4 above). 

• Modelling assists requirement analysis, which reduces the risk of late changes 
due to the wrong requirements being met.  Although the approach can be 
adapted, it can prove inflexible at times.  However, modelling takes more 
time at this stage than traditional methods of requirement analysis (c.f. §5.2.4, 
Assessment Report 2 [16]). 

• Modelling enables the intended requirements to be translated into design and 
implementation accurately with minimum errors.  This can result in reduced 
verification time and provide a reference to assist the efficiency of other 
workflow processes e.g. testing, documentation and certification (c.f. §5.2.4, 
Assessment Report 2 [16]). 

• Modelling doesn’t increase significantly the burden on other workflow 
processes such as maintenance and testing (c.f. §5.2.4, Assessment Report 2 
[16]). 

• Limited use of the technology can applied to the development of legacy 
products (c.f. §5.2.5 above, PAT partial specification). 

• The UML–B toolset could provide more efficient modelling once it is robust 
enough for industrial use. 

• The use of UML–B to express modelling behaviour was shown to have 
benefits over the more textual approach used in the Dual case sensor of year 
two.  Significantly the partial PAT model could be expressed better visually 
and more efficiently using state machines.  Furthermore the use of contexts 
enabled easier structuring of design so that a mapping between the 
functionality and its static structure was visible. 

Reusability and configurability of models 

• The generic model was not developed sufficiently to verify different engine 
variants configurations.  However the work demonstrates this is achievable. 

• The generic PAT case study editor successfully provided a configurable 
package for real system test specification variants.  

• Not all FMS models included all the behavioural functionality identified in 
the traceable requirements deliverable D4 [4].  However we have illustrated 
how this can be achieved. 

Page 46 of 137  



• The final FMS models have demonstrated that the domain aims of genericity 
and reusability have been met. 

Grade: [4] 

2 Evaluate the impact on maintaining current quality levels. (U, S) 

Overview 

Criteria Rationale: This assessment is based on the hypothesis that: 

The use of the UML–B method will result in high quality products. 

Thus, UML–B and the RODIN methodology should prevent errors from being 
introduced and detect errors early to promote their removal. 

ATEC has considered how effective the methods are at detecting and avoiding 
errors from year two.  This was reviewed in year three. 

Grade Justification: 

• ATEC explored the flexibility of formal models when developing prototype 
requirements in year two.  They found the formal approach restricted rapid 
development but could be adopted.   

• The strong process used to translate requirements into design helps avoid 
errors.  However it requires guidance during the refinement process. 

• The RODIN methods, tools and processes do not address non-functional 
requirements. 

Year 3 

• The UML–B method enabled formality to be expressed at a higher level; 
consequently the novice could avoid errors.  In the PAT model the dot 
notation was used in the diagrams rather than the lower level syntax.  The 
automatic generation of Event-B from the classes also reduced errors.  The 
partial model translated into Event-B and proved by automatic proofs, further 
illustrated the effectiveness of error avoidance through design translation. 

• Error detection in the application model has been assisted by the functional 
visualisation.  In the PAT model it was useful for the legacy read behaviour 
to be expressed visually as two events (read and abort) on a state diagram as 
this highlights the source of this behaviour in this case of a legacy read (c.f. 
§3.2 of D26 [18]). 

• The new UML–B plug-in provides error marking in its diagrams for syntax 
errors.  This was useful in identifying incomplete model requirement 
(currently only errors which violate the UML–B abstract syntax are checked, 
further work is required to implement other syntax errors). 

Page 47 of 137  



Grade: [3] 

3 Evaluate whether the improvement of ease of certification has been achieved (U, S) 

Overview 

Criteria Rationale: The method may facilitate a means of producing documentary 
evidence for certification, such as that required in EUROCAE ED-12.  This would 
lead to greater acceptability of the methods by the industrial user. 

During year two ATEC considered how the methods contribute to certification 
standards and how the products are suitable for independent verification (c.f. 
§5.2.4, Assessment Report 2 [16]). 

Table 7 summarises the year two investigations.  The /  column indicates 
whether the RODIN method and platform helps ( ) or hinders ( ) certification. 

No Description Consideration  /  

1 Traceability between system 
requirements and software 
requirements should be provided to 
enable verification of the complete 
implementation of the system 
requirements and give visibility to 
the derived requirements 
Note system requirements allocated 
to software include functional, 
performance and safety related 
requirements.  These requirements 
are considered high level.  Some 
derived requirements are regarded as 
high level though not directly 
traceable to the system requirement. 
(c.f. §5.5 [88]) 

“Information is traceable if the origin 
of its components can be 
determined.” this assists verification 
processes of review and analysis for 
requirement coverage. 
B refinement models do not label 
explicitly the introduction of 
requirements and their development.  
This may hinder the analysis and 
assurance of a model as it would: 
a compromise tracing to and from 

the system requirements. 
b compromise visibility of derived 

requirements for safety analysis. 
A solution may be to explore ways 
to tag model development against 
requirements in order to generate 
traceability matrixes. 

 

2 Compliance of safety requirement. By adopting invariants that reflect 
system safety constraints, confidence 
is increased that the model is 
complete and its implementation will 
conform.  This should assist 
certification.   

 

3 The software architecture and low 
level requirements are developed 
from the high level requirements. 

The refinement process and checking 
mechanism, which controls 
permissible changes, aids 
development of compatible low-level 

 

Page 48 of 137  



No Description Consideration  /  
The goal is to avoid errors during the 
development process. 
(c.f. §4.4, 5.2 [88]) 

requirements.  Identification of data 
invariants with refinement proof by 
the tools may also support the 
verification of this requirement.   

4 Traceability between the low-level 
requirements and high level 
requirements should be provided to 
give visibility to the derived 
requirements and the architectural 
design decisions made during the 
software design process and allow 
verification of the complete 
implementation of the high level 
requirements. 
Note low-level requirement refer 
here to design requirements from 
which source code can be produced 
(c.f. §5.5 [88]). 

The guideline distinguishes design 
requirements from high-level 
requirements in its analysis to allow 
for separate review and analysis 
activities.  This distinction is less 
clear using B model refinement, 
where it seems that high-level 
requirements modelling and design 
are closely bound. 
The tracing of high-level 
requirements to the design is 
compromised, as requirements are 
not tagged in the model.   

 

5 Test cases are required to 
demonstrate compatibility of the 
system with requirements and 
provide assurance of requirement 
coverage (c.f. §6.2 [88]). 

Conventionally requirements 
compatibility and test coverage is 
only intended to be applicable to 
testing of the target code and is not 
concerned with modelling. 
However demonstration of test case 
completeness will be easier if the B 
refinement model can demonstrate 
requirements coverage and the 
resulting implementation can be 
shown not to introduce incomplete, 
or unintended requirements. 
Mapping of requirements with 
animation test cases using ProB 
should help to give this assurance. 

 

6 Dead code should be removed (c.f. 
§6.4 [88]). 

Although the guideline requires 
structural coverage analysis to be 
applied to the source code, the 
identification of dead model code 
would provide assurance in the 
source code and assist certification. 
The tracing of model detail to 
requirements would assist this. 

 

7 Deactivated code is allowed but 
needs to be verified and shown not to 
be executed inadvertently (c.f. §6.4 
[88]). 

Though not identified in the pilot 
study model the generic FMS model 
could generate deactivated code.  
This would be where a configuration 
did not require instantiation of all the 

 

Page 49 of 137  



No Description Consideration  /  
generic model behaviour.   

8 Qualification for tools is required 
when the output generated by the 
tool is not verified.  The objective of 
qualification is to provide confidence 
that the tool is at least equivalent to 
the processes it is eliminating or 
reducing (c.f. §12.2.4 [88]). 

UML–B will not need to be verified 
as its output will be verified during 
model verification.  The requirement 
manager may need verification 
depending on how the requirements 
are verified in the model verification.  
E.g. what ensures that the 
instantiation is as intended? 
The verification tools ProB and 
B4free will need qualification if their 
verification results are to be relied 
on. 
The onus appears to be on the tool 
user to gain qualification agreement.  
A formal methods novice may not 
find this easy. 

 

9 User modifiability- What ensures 
that a designated non-modifiable 
component of the software is 
protected from unintended 
modification? 
(c.f. §5.2.3 [88]). 

The FMS generic model may need to 
show how its behaviour remains 
protected when a user can instantiate 
the model. 
This may be achievable by only 
allowing instantiation through a 
specific interface. 

 

Table 7: Year Two Assessment Overview 

Year three did not investigate certification issues further.  The grading is derived 
from the following summary justification. 

Justification: 

• Certification can still be applied 
• Slightly more effort may be required 

Grade: [3] 

4 Evaluate the reduction of cost of late requirement changes (U, C, S) 

Overview 

Criteria Rationale: Typically the cost (impact) of incorporating late requirements 
change is expensive.  Thus, any cost reduction in this area, which results from using 
the RODIN method and tools, will provide real benefits.  

Page 50 of 137  



ATEC has considered how the methods contribute to early validation of 
requirements (reducing the likelihood of late change), understanding design, as well 
as managing the impact of late changes.  The industry often needs to support long 
maturity cycles of products (over 10 years) so long term maintenance has also been 
considered.  

Justification: 

• Early requirement validation is possible (c.f. §5.2.4, Assessment Report 2 
[16]). 

• Change can be accommodated relatively easily if the model is designed well 
(c.f. §5.2.4, Assessment Report 2 [16]). 

• The three-year FMS models successfully introduced some detailed 
functionality into each model, i.e. a confirmation mechanism without the 
need to change the static design. 

•  The PAT generic model easily configured test variants.  However the 
development of the structural model did impose delays to development and 
the interpreter code needed rewriting.  This implies that large structural 
changes to the model from new requirements could have a potentially 
significant impact on maintenance. 

• The PAT legacy modelling is expected to assist future development. 
• Long-term maintenance is a concern where backward compatibility of the 

RODIN platform with its plug-ins needs  to be assured . 

Grade: [3] 

5 Evaluate whether improvement of portability has been achieved (U, X) 

Overview 

Criteria Rationale: The evaluation of portability has been assessed in terms of 
MDA (model driven architecture) concepts.  This assessment is based on the 
hypothesis that: 

The use of the UML–B method will result in platform independent models and 
facilitate the transformation to different platform specific models thus improving 
portability. 

ATEC has considered how the methods contribute to developing a platform 
independent model and platform specific model. 

Grade Justification: 

• Pilot study successfully developed a platform specific model for dual sensors 
(c.f. §5.2.4, Assessment Report 2 [16]). 

Page 51 of 137  



• The final FMS generic model does not yet contain all the functionality of the 
case.  However the functionality introduced is generic and thus some form of 
platform independence has been achieved.  The transference to a platform 
specific model, i.e. the generation of a variant, has not yet been achieved. 

• The PAT model generic editor provides a platform independent model. 
• The Åbo FMS model provides a template pattern that can be reused in the 

FMS environment, i.e. it is portable to some degree.  However when the 
pattern was applied to the PAT case, it was shown to be less appropriate as 
the pattern didn’t focus on the main functionality of the case study. 

Grade: [3] 

6 Evaluate the improvement to the UML–B method (U, C) 

Overview 

This evaluation is based on the extent to which the UML–B method and its 
development have assisted model development through reusability and validation. 

FMS models 

UML–B influenced the development of the generic FMS models by dictating an 
object-oriented modelling approach from the outset.  Initially the context diagram, 
gave structure to the model, which enabled its behaviour to be defined.  

Object-orientation was natural for FMS; its structure consists of components, 
relations and instances that have different behaviours.   

The UML–B modelling approach encouraged development of re-usable models.  
The instance context can be replaced easily.  The behavioural model, which 
consists of several refinements, can be reused by adding further refinements, thus 
extending the functionality of the abstract model, or by feature replacement. 

The new RODIN UML–B plug-in extended the FMS modelling capability in year 
three, as its new features, e.g. contexts and hierarchical state machines, allowed 
behaviour to be expressed more clearly.  Model translation on the RODIN platform 
has enabled the powerful verification capability to be used for model proving.  

In contrast to the generic FMS model, the Åbo model development began as a 
classic B design and was modified to UML–B, which made the visualisation of the 
design more understandable.  The immaturity of the early RODIN UML–B plug-in 
hindered its model development in year three.  

The integration of specific behaviour from the Åbo model into the generic model 
took place later in year three using the new UML–B tool (though some 
workarounds were required to cater for current tool bugs). 

Page 52 of 137  



Unfortunately ATEC had insufficient time to apply the new UML–B plug-in to 
FMS. 

However in assessing the final FMS development, undertaken by University of 
Southampton and Åbo, ATEC believes that UML–B is more readily understood 
than classical B.  

E.g.: 
• The UML–B package diagram shows graphically the contexts to machines 

relationships, which is much clearer than textual naming conventions.  
• The context diagram visualisation of static structure dependencies is clearer. 
• Contexts allow design layering.  This eases maintenance.  In year three the 

application of UML–B illustrated how the context data could be layered, for 
example model primitives were separated from the rest of the static data.  
Similarly the test environment, such as ProB, can be isolated from the design. 

• State machine representations provide a clearer representation of state. 

However the FMS models developed did not manage to address all the 
functionality of the requirement specification, which was disappointing.  The 
logistics of tool feature availability and the general difficulty of domain modelling 
contributed to this shortfall in functionality rather than the modelling language. 

UML–B’s model verification and validation capability was improved by its 
translation into Event-B.  This allowed use of the powerful RODIN platform 
provers.  However, the UML–B (diagrams) notation’s error marking of incorrect 
syntax is limited.  

PAT Case Study 

The new UML–B plug-in was successfully applied to a partial specification of the 
PAT case study.  ATEC viewed this as a success, since it enhanced the 
understanding of the legacy behaviour, which is beneficial for future maintenance 
and development of the interpreter.  The RODIN platform provers and ProB 
provided a sound verification and validation of the model. 

Future enhancement 

Although the PAT generic editor was created with UML and used EMF, its 
verification would have been strengthened by the adoption of UML–B, which 
would have allowed formal verification to be investigated.  However this was 
impossible as UML–B lacked a number of key features.  This use of UML–B, and 
its application using EMF technology, forms the basis of future development 
research of UML–B on the RODIN platform.  The case studies also highlighted 
features, such as multiple inheritance and classes as a collection available in UML, 
which are currently deficient in UML–B (c.f. UML–B, §5.2.4 above). 

Page 53 of 137  



Grade Justification: 

• Year two concluded that benefits were to be gained from choosing UML–B 
over UML and B approaches (c.f. §5.2.4, Assessment Report 2 [16]). 

• Year three indicated potential benefits from using new UML–B on FM and 
PAT case studies, but the maturity of the tool hindered progress 

Grade: [3] 

5.2.7 Conclusion 

The FMS case study has created several models and in the year three provided some 
integration of this work.  Whilst all of the requirements specification [19] was not 
addressed they illustrate that the domain aims can be satisfied using this approach. 

Industrial acceptance of the technology is seen in the value of model development in the 
workflow process.  The early expectation of the case study, to develop the FMS model 
translation into an implemented system (concept to grave), was not realised due to lack of 
experience and pursuit of other evaluation aims.  However ATEC feel, while this 
experience is being gained, it has found the current practical use of modelling with 
RODIN is through requirement exploration guiding development rather than its direct 
translation into implementation. 

In conclusion the case study has successfully applied RODIN methods and tools to both 
cases and generated several domain models (e.g. generic FMS) and guidelines for 
working (Åbo template). 

The new toolset has been relatively easy to use once familiar with the methodology.  
However, in some cases the tools still lack the maturity in features or development to be 
used commercially or for some types of application.  The bugs and feature requests have 
been stored in SourceForge.  

Page 54 of 137  



5.3 CS3 – Formal Techniques within an MDA Context 

5.3.1 Introduction 

This case study is concerned with the formalisation of various subsets of the MITA 
platform [42] (developed in Nokia within the NoTA – Network on Terminal Architecture 
project), including the formalisation of the infrastructure and development of techniques 
to allow MDA to be used more formally. 

The objectives of this case study (from the Description of Work [1]) are to: 

a Investigate how formal techniques fit into the Model Driven Architecture (OMG 
MDA) framework as “MDA Mappings”. 

b Investigate which techniques are applicable at which stages of platform 
independence and platform specific models. 

c Investigate how to integrate and compare the verification and validation results 
from the various levels of abstraction. 

d Investigate methodological issues relating to formal model development with an 
emphasis of refinement and retrenchment. 

5.3.2 Current Status 

The primary driver within Nokia for this case study has been the NoTA project, which 
ended in December 2006.  Consequently, although use has been made of the early 
versions of the ProB and UML–B tools, this case study has not been able to provide 
feedback on the versions of these tools, which are now integrated with the RODIN 
platform. 

The main mandate for case study three was to investigate the use of formal methods, in 
particular B/Event-B/B-Method, in the context of existing Nokia approaches and 
practises focusing on MDA. 

Several results on the use of MDA and MDA-based techniques (a.k.a.: MBE, MDE, CtM 
etc.) have been promising (see D26 [18] for more detail), including a method developed 
for introducing formal transformations of platform independent models (PIM) to platform 
specific models (PSM) [41].  At the same time a number of factors have caused 
difficulties, e.g. the need to change from an O-O type of modelling to Event-B 
development methods has not been properly supported by tools, weakness of the UML 
semantics, and unavailability of suitable and generic transformation mechanisms.  

During year three a number of important contributions have been finalised; including: a 
method for incorporating fault tolerance into NoTA systems, an approach to refinement 
of the context, and a prototype of a plug-in for circuit development. 

During year two the NoTA High Interconnect layer was formally developed using UML 

Page 55 of 137  



and B (see D18 [14], §4.2.6).  To allow this, high level models of the context in which 
this layer functions, including NoTA Domain Model, the NoTA Architecture and the 
Interface partitioning, were formally defined. 

Nokia consider the three years work on the RODIN case study three to be a partial 
success and that the objectives set for this case study have been achieved. 

The results from year three demonstrate that while the tools and general methods are 
practical, certain aspects of very strict methods are difficult to apply cost-effectively.  
The extent to which the methods and tools can be applied very much depends upon the 
nature of the project.  In certain, well defined, controlled cases a strict refinement based 
approach provides benefits. 

Year Achievement Objective Papers 
2 NoTA High Interconnect layer modelled a) [14] 

2-3 Considerable experience in using ProB and 
UML–B (U2B) 

d) [40,38] 

2-3 A method for applying fault tolerance d) [39] 
2-3 Initial work on model-based testing c), d) [38] 
2-3 A method for using MDA a), b) [41] 
2-3 Context-aware refinement d) [43,44] 
2-3 A prototype of a plug-in for circuit development 

(B2Bsw) 
 [37] 

Table 8: Case Study 3 - Annual achievements against objectives (c.f. §5.3.1 above) 

5.3.3 Progress since Year 2 Assessment 

Since year two a number of important contributions, which were initially reported in 
D18[14], have been finalized – see Table 8 above and D26[18].  

Only partial success has been achieved in obtaining insight on various patterns (and thus 
transformation techniques) for fault-tolerance that is making fault-tolerance a “platform” 
in MDA parlance.  While some patterns do exist these have tended to be tailored 
specifically for the B/Event-B language, the particular process and problem in question. 

Nokia found some success in the hardware domain and work in this area is progressing 
outside of RODIN due to the lack of support within the project for this work.  Hardware 
development places certain constraints on the use of Event-B and we were unable to 
investigate this further within the RODIN context. 

Page 56 of 137  



5.3.4 Contribution to the Development of Platform and Plug-ins 

RODIN Platform 

The RODIN platform has been used successfully for modelling a subset of the NoTA 
High Interconnect layer, and for modelling circuits and generating Bluespec programs for 
Event-B models (in combination with a plug-in for circuit development). 

ProB 

ProB provides much necessary support for the default theorem proving and thus 
verification techniques already present in the RODIN tool.  Use of ProB was extremely 
useful in validating verified models – verification removes certain error conditions and 
ensures that the model we are validating is “correct”.  Using our development style, 
Verification became a secondary concern, with the focus more on establishing that the 
specification met the customer’s demands rather than on establishing the adherence to 
certain properties.  This fits in well with the style of development commonly seen in 
industry where constructing a model to investigate the properties of the system is not 
always feasible – ProB and the validation style of development in this sense provides a 
way of first constructing and demonstrating systems then discovering properties later. 

In use ProB is stable and reasonably fast.  Scaleability is always an issue but in the sizes 
of models we have presented to the tool we have not seen any problems. 

UML–B 

Overall UML–B provides a compromise between the mathematical abstractness of 
B/Event-B to the apparent “concreteness” of UML (at least to the engineer who forgets 
the underlying concepts of languages such as UML).  However this makes the language 
awkward to use without better methodological support – one has to think more in 
B/Event-B terms rather than UML.  Application of “traditional” (sic.) domain modelling 
techniques or even E-R techniques produces simple enough static or structural models but 
actions/operations/invariants are required to be written in a form more applicable to 
B/Event-B rather than the object-oriented ideals of UML.  

5.3.5 Contribution to the Integration Objectives 

a) Checking the scaleability of the system as its functionality is extended 

During the team’s work on case study three no negative effects have been identified 
whilst extending system functionality (in particular, when the B2Bsw plug-in was added 
to the platform and when the team experimented with the ProB and UML–B plug-ins). 

Page 57 of 137  



d) Checking the sensitivity of the methodology to changing requirements with 
respect to the models 

The team performed some initial investigations into how requirements change and the 
volatility of specifications can be addressed.  The B Method itself takes the point of view 
that these are outside the scope of this particular method, which concentrates on 
refinement and decomposition of the models.  As far as the RODIN toolset is concerned, 
development of a tool supporting requirement change and traceability was not part of the 
tool definition.  Some investigation was conducted with retrenchment but, again, without 
tool and method support this has proven difficult.  Requirements change and how to 
handle this formally still remain a challenge and some investigation has been made in 
collaboration between Nokia and the University of Southampton but the results are still 
forthcoming. 

Some results have been obtained regarding requirements change and the fact that using 
formal methods reduces the amount of change in a specification due to the level of 
previous work, which aims to ensure that the system being developed is the system 
actually wanted by the customer. 

5.3.6 Case Study Specific Metrics 

The Description of Work [1] defines the following metrics for this case study: 

1 How well does this formal approach fit with existing processes?  (U, X) 

Moreover, do existing processes admit these more formal techniques and tools to be 
integrated with them?  Generally this is the case however there are issues regarding 
the amount of pragmatism that needs to be made in reality. 

A fully formal approach is not generally suitable in many cases.  However we can 
show that the additional and sophisticated analyses made during analysis and 
design time significantly reduce the amount of debugging and testing time later.  
One of the main problems of testing is that it is not an exhaustive technique and 
susceptible to not actually testing the relevant features of the system.  Model 
checking, animation and to a lesser degree, proof (though this is mainly due to lack 
of experience in mapping proof obligations to tests) provide a wealth of 
information about "weak" or potentially weak points in the system. 

Grade: [4] 

2 How well do these techniques integrate with an object-oriented approach?  (U) 

B and Event-B are not based on the ideas of object orientation and thus admit 
different ideas to O-O.  However the use of the ubiquitous UML leads to the 
situations where we need to map O-O ideas to B/Event-B and the problem here is 
the amount of B/Event-B generated to support the more advanced structures which 

Page 58 of 137  



has a detrimental effect upon the complexity of the proof and animation of the 
specification. 

U2B in its previous incarnations has been advantageous in the generation of B.  We 
however have not tried the latest versions targeting Event-B due to the necessity of 
using ProB, which did not support Event-B during the case study three timeframe. 

Grade: [2] 

3 How many of these technologies have been transferred to the Nokia Business 
Units?  (U, X) 

NoTA is currently being readied for a transition to a production environment. 

Grade: [3] 

4 How well can this approach check components against (very loose) specifications?  
(C, S) 

Most specifications are inherently loose at the beginning.  Formal methods force 
the developers to concentrate more on the ideas driving the system's development 
and thus improves the specification overall towards a more well formed and thus 
less loose specification. 

Grade: [3] 

5 What is required to understand over constrained models, their causes and effects? 

This was not explored this in detail, as over-constrainment seems to occur with the 
composition of features and other factors related to product line development.  

Grade: [2] 

6 Can this approach deal with requirements volatility?  (C, X) 

Again related to the previous point this was not explored further during year three. 

The preliminary results regarding requirements change are that the use of formal 
methods reduces the amount of change of a specification due to the amount of 
previous work made on making sure that the system being developed is the system 
actually wanted by the customer. 

Grade: [2] 

Page 59 of 137  



5.3.7 Conclusion 

Nokia consider the three years work on RODIN case study three to be a partial success.  
They have obtained: 

• useful practical results in evaluating feasibility of applying formal methods in the 
context of MDA; 

• considerable experience with the use of B in a number of challenging applications; 
• extended skills of using the RODIN platform and the ProB and UML–B plug-ins as 

the major support for formal modelling; 
• good experience in developing RODIN Eclipse plug-ins for the RODIN platform. 

However specific methodological support for Event-B and fault-tolerance is still lacking.  
Other aspects such as mobility, distribution and concurrency still remain to be addressed. 

While B/Event-B have their uses and indeed the RODIN toolset itself has made the use of 
Event-B possible the current incarnations of the toolset and the language is not yet mature 
enough nor is the support available for the kinds of work the case study three team wishes 
to undertake at this point in time. 

The team’s current project is to investigate the use of highly distributed and mobile 
systems with computationally heterogeneous environments as the basis for a semantic 
web.  The project will require the use of fault-tolerance techniques and potentially the use 
of languages such as Event-B for specific parts of the system – in this respect parts of 
RODIN will be used actively within Nokia. 

For the coming years the case study three Nokia team will remain the active users of such 
techniques.  Nokia do however have an active education programme specifically for 
modelling techniques based around the UML language, which specifically addresses the 
aspects of formality and abstraction of models into which the use of tools such as RODIN 
can be easily integrated.  As preliminary training in B needed to be undertaken before the 
RODIN platform was available, the AtelierB toolset was used.  This was successful, and 
enabled the engineers to gain early familiarity with formalisation techniques and the 
RODIN methodology.  This highlighted both the amount of preliminary knowledge 
required by the engineers in some aspects of the method and the misunderstandings about 
such techniques.  No issues were reported in transferring from AtelierB to the RODIN 
platform. 

Page 60 of 137  



5.4 CS4 – CDIS Air Traffic Display Information System 

5.4.1 Introduction 

Originally CDIS was a display information system supporting a new terminal control 
room at the London Area and Terminal Control Centre in the early 1990s.  It was a 
distributed real-time information system for air traffic controllers.  CDIS was developed 
using advanced software engineering techniques including the extensive use of formal 
methods for specification and design.  Praxis (now Praxis High Integrity Systems) 
developed CDIS for the Civil Aviation Authority (now National Air Traffic Services). 

The CDIS development produced a number of formal specifications, including a 1000+ 
page main specification written in the VVSL variant of VDM-SL (a model-based 
specification language).  The key concurrent aspects of the system are captured in a 
separate specification written in CSP (A process algebra). 

There are a number of publications on the development of the original CDIS software.  
The primary reference being “Using Formal Methods to Develop an ATC Information 
System” [60]. 

The objectives of this case study (from the Description of Work [1]) are to: 

a provide some of the initial drivers for the theoretical work in RODIN, by offering 
specification, design and verification material from an existing industrial-scale 
development and identifying the challenging issues that arose during that 
development; 

b exercise the intermediate tools deliverables of the RODIN project by subjecting 
them to the "stress testing" that only real industrial problems can provide; 

c provide a realistic assessment of the final results of RODIN by comparing what was 
possible in the 1990s with what can be achieved on the same development with the 
RODIN notations and tools. 

This case study was intended to provide RODIN with the opportunity to compare the 
capabilities of modern formal methods tools against what was commercially feasible ten 
years ago.  The size of the specification was the first major test of the RODIN tool 
platform, as it had to highlight any scaleability issues, which the developed platform might 
have.  Once the specification was developed on the RODIN tool, the secondary aim was to 
investigate the degree of analysis that is possible for the specification. 

Another key test for the tool platform was the degree to which the tool supports the 
refinement of the specification to a detailed design.  The initial CDIS design is concurrent 
and heterogeneous, with a number of different classes of workstation and system support 
devices.  The concurrency aspects were not described in the original VVL-based 
specification of CDIS, and during the original development the concurrency aspects were 
introduced during a manual refinement step.  The main drawback of this approach was that 

Page 61 of 137  



there were no formal links between the original specification and the subsequent 
refinements.  Another major goal in re-modelling CDIS was to investigate whether the 
tool can facilitate the introduction of distribution and the resulted concurrency, as this will 
represent a major advance in the system development process. 

5.4.2 Current Status 

During the first year of the project the original CDIS specification and design documents 
were retrieved and we validated our ability to regenerate some part of them from source.  
In the second stage a subset of the CDIS original specification was selected and extracted 
by the CDIS Technical Authority, Anthony Hall. 

As this case study was intended to use the new Event-B notation and associated 
methodology and utilize the new tool platform extensively, during year two an Event-B 
development of this CDIS subset was undertaken.  Most of the functionality of the subset 
was incorporated into the Event-B development.  Some elements of the distributed design 
were incorporated in the development and the rest of it was to be completed in Year 
three.  All Event-B models in the year two CDIS development were checked and verified 
using the B4free tool.   

During Year three the development was ported to the RODIN environment to help with 
evaluation of the environment.  Although some attempts were made during year two to 
mimic the newly introduced notation of the RODIN Event-B, it was not possible to take 
the full advantage of the new notation until the new tool platform became available.  The 
reason being that B4free tool only supported the standard B-method.  Thus we had to 
amend the B models, which were developed during the second year to adjust them with 
the new Event-B constructs. 

The process of porting from standard B to the new RODIN platform proved to be very 
challenging and it has provided the main platform developer with a wide variety of 
feedback and a wish list to be considered for future extensions. 

After releasing a number of sub-versions, the tool has gradually reached a reasonable 
stage of stability, which can now produce and discharge a much wider set of proof 
obligations in comparison with the B4free tool.  The new facilities resulted in several 
amendments and enrichments to the produced B models during year three.  As another 
result of tool enhancement we were able to develop our B models further and add two 
further refinement levels, which now bring the total refinement levels to six in addition to 
the initial specification model.  Most of these refinements are horizontal refinements, 
where we have inter-cooperated new feature to the previous levels. 

Another path taken during the year three was to develop a realistic distributed version for 
CDIS.  As has been noted earlier, the initial VVL-based CDIS models and the 
corresponding B models which have been developed during year two were all an 
idealised centralised versions.  Some attempts toward producing a distributed model were 
initiated during year two.  During the last few months we have developed a simple 
witness case study to work out the exact approach to extend the idealised version to a 

Page 62 of 137  



distributed version.  After completing this stage and developing some useful strategies for 
handling the proof obligation, which have arisen from this extension, we proceeded to the 
next step.  In this stage developed a full-flag distributed version. 

The development process of the distributed version involved both horizontal and vertical 
refinement.  As usual the horizontal refinement reflects the process of introducing new 
features into the system.  On the other hand the vertical refinement represents the 
refinement of data structures and the effects of this refinement on the events to make the 
whole model more implementable. 

A summary of overall activities is presented in the following table: 

Year Achievement Objective Papers 
1 Retrieval of original CDIS specification and 

design 
Extracting the system requirements. 

a) [3] 

1 Selecting suitable subset of requirements 
Strengthening and finalising requirements 
document. 

a) [4] 

2 Producing B specification and refinements for 
CDIS 
Porting initial VVL-based Spec to Event-B. 

a), b) [8] 

2-3 Producing initial distributed model 
To produce more realistic model and assess 
reusability and extendibility. 

a), b) [14] 

3 Porting the second year B models to the new 
RODIN platform and further extend them. 
To examine the new faculties in the new 
platform and provide feedback to the tool 
developer. 

b), c) [18] 

 

3 Producing specification and refinement for a 
realistic distributed model. 
To assess reusability and sensitivity to changes 
in the requirements and model—to assess how 
the tool is coping with complex models and 
associated proofs.   

b, c) [18] 

Table 9: Case Study 4 - Annual achievements against objectives (c.f. §5.4.1 above) 

5.4.3 Progress since Year 2 Assessment 

As summarised in the above table, substantial achievements have been made since year 
two.  The major progress has been to:  

• Port the B models which were developed during year two to the new RODIN tool 
o This includes replacing standard B constructs using new Event-B constructs 

and using the new facilities, e.g.: refining one event by more than one event. 

Page 63 of 137  



• Extend the refinement levels by introducing two new refinement levels. 
• Discharge all proof obligations, including new types of proofs, which are specific 

to the new RODIN tools, e.g.: Well Defined (WD) proofs. 
• Apply strict separation of context and model based on the new methodology, which 

is both recommended by RODIN and enforced by the RODIN tool.  
• Produce a realistic distributed specification with four levels of refinement. 

o This stage includes all features, which were described during stage one for 
non-distributed models. 

• Discharge all proof obligations for distributed models. 

As is clear form the above list, during year three we have been working very closely with 
the RODIN main platform team.  This has helped us to examine every aspect of the tool 
and its system modelling facilities.  In the next section we discuss how our involvement 
with the tool has contributed to its improvements. 

5.4.4 Contribution to the Development of Platform and Plug-ins 

CDIS was an industrial-strength case study with a high degree of complexity.  Although 
as far as RODIN is concerned only a subset of the initial system has been chosen to be 
redeveloped, but still it intended to utilize the main platform and some plug-ins very 
heavily.  The initial plan was that in addition of the main platform it has to assess ProB 
and U2B plug-ins. Due to some technical complexity in CDIS models unfortunately up to 
now we have not been able to use these plug-ins as it was expected.  Also we intend to 
keep this possibility open for near future. 

In the next section were review the use of main RODIN platform in CDIS case study and 
how it has contributed toward the main platform enhancement. 

RODIN Platform 

As soon as the early pre-release versions of the main RODIN platform reached an 
acceptable level of stability we started to port the B models produced during year two 
using the B4free tool.  

Initially, we attempted to use the B2RODIN plug-in at this stage to convert and port our 
models from the B4free based standard B to the RODIN Event-B style.  This attempt was 
unsuccessful and the plug-in did not succeed in producing any Event-B output.  Therefore 
we decided to undertake the above task manually. 

As a result a number of issues needed to be tackled; a prime example being the 
replacement of some standard B constructs, which no longer existed in Event-B, with 
corresponding constructs and adjusted the modelling style to that recommended by 
RODIN methodology.  

Page 64 of 137  



During this stage we provided the developer with a sizable set of feedback and a wish list 
for future modifications, some of which have yet to be incorporated in the tool.  This 
feedback ranged from interface issues to performance related aspects.  Examples are: 

• Interface issues: 
o The interface to some resources of the project like “Log files”, “Comment 

view” and “Project resource files” was obscure 
o The “Problem view” on the window platform did not show mathematics style 

characters correctly. 
o Other interface related issues, where the related view or button/control did not 

show up as expected 
• Some inconsistencies in the early version of the underlying model repositories.   
• Performance related issues such as slow speed of workspace rebuilding in the 

earlier versions. 
• Lack of help and documentation when early versions released. 

Having completed the CDIS specification and early refinement stages, we started to use 
the RODIN tool prover.  Again during this stage we provided a sizable set of feedback to 
the tool developer.  The issues identified were related either to the prover interface or to 
weaknesses of the internal prover algorithms. 

There have been very noticeable improvements in all aspects of the tool.  However we 
still have a wish list of features to be integrated in future tool versions.  Some of the 
additional features, which we recommend be provided are: 

• A higher level of support for model documentation and multiple commentary lines 
• An improved editing environment which supports: 

o A free style line format, which support multi-lines constructs, to facilitate the 
breaking of log lines across multiple lines. 

o Redo and undo facilities  
o Pop-up help in the form of callouts when holding the mouse over predefined 

variables, constants, etc  
o Auto-complete facilities as provided by other contemporary editors. 

Grade [4] 

ProB Plug-In 

The current version of this plug-in only supports animation of a simplified version of 
CDIS.  This is because we have used some constructs and aspects of Event-B and the 
new methodology, which are not yet supported by ProB. 

Grade [N/A] 

Page 65 of 137  



UML–B Plug-In 

The UML–B plug-in could not be used as planned since it is currently unable to support 
the CDIS complexity.  We expect that this support should be available very shortly.  

Grade [N/A] 

B2RODIN Plug-In 

This plug-in was needed as we intended to port our second year models to the RODIN 
platform.  Our attempts at that time with early versions of this plug-in were unsuccessful. 

Grade [N/A] 

5.4.5 Contribution to the Integration Objectives 

a) Checking the scaleability of the system as its functionality is extended 

A full experimentation with plug-ins was not possible in the case of CDIS.  Consequently 
no solid conclusion has yet been reached.  Some preliminary experiments in this area 
suggest that the tool scales well as plug-in functionality is extended. 

Grade [3] 

c) Checking the scaleability of the system with respect to the size and complexity of 
the models 

As far as the main RODIN platform is concerned, the current version copes very well 
with sizable complex CDIS models.  The automatic proof-discharging rate has increased 
with the introduction of recent versions.  The linking facilities between semi-automatic 
proofs the source model has been enhanced.  Another aspect is the prover interface, 
which is now much easier to understand.  Although the performance of the tool, 
especially during the workspace re-build process, has improved noticeably, there still 
appears to be room for further performance improvement.  As mentioned in section 5.4.4 
above, improvements in the editor interface are highly desirable.  The prover itself also 
needs some optimisation. 

Grade [5] 

d) Checking the sensitivity of the methodology to changing requirements with 
respect to the models 

This metric depends on the context, in which it is applied.  One common aspect when 
changing requirements is when we develop the system specification and undertake some 
stepwise refinement.  During the refinement process sometimes the developer can 
identify an inconsistency, ambiguity or incompleteness in the initial requirements.  In this 
situation they have to return to the specification and make some changes.  An ideal tool 

Page 66 of 137  



would propagate the changes, which have been made in higher level, or at least would 
provide some assistance in this regard.  As far as the RODIN tool is concerned, this was 
not part of the tool definition; it may be considered for future extensions and 
enhancements. 

The second aspect of this metric is the situation similar to that experienced with the CDIS 
case study where initially we developed a centralised version and subsequently extended 
it to a distributed version.  In this case the strategies, which we adopted, based on the 
recommended methodology were largely reusable.  Additionally, proof obligations of the 
non-distributed version were very helpful in dealing with the distributed version’s proof 
obligations. 

Grade [4] 

5.4.6 Case Study Specific Metrics 

1. Comment on the relative ease of comprehension of the Event-B specification as 
compared with the original VVSL specification?  (U) 

The layered development has considerably improved the comprehensibility of the 
specification.  This is because we were able to capture the essential functionality of 
the system in the abstract specification.  The abstract model is written using slightly 
less than four pages of Event-B; and we claim that this abstract model allows the 
reader quickly to grasp the essence of the system.  Six subsequent refinements were 
used to introduce additional features of the system.  The main features of these 
refinements are that they add details to the information structures and introduce 
further constraints on the events’ guard.  The layered nature of their introduction 
means they can be absorbed in a stepwise fashion thus easing comprehensibility.   

Grade: [5] 

2. How does the time taken to construct the Event-B development of the subset 
compare with the known design time for the original CDIS development?  (C) 

The B development, which was based on the B4free tool in year two, represents 
about five months of effort.  This includes the time to read and understand the 
original requirements and specification.  It also includes the time spent learning to 
use B4free efficiently, as well as the time spent checking the models and 
performing the proofs using B4free.  Other time included is the time spent 
clarifying some issues with the system with Anthony Hall (Praxis) halfway through 
the development and revising the development as a result.  It is therefore difficult to 
compare directly with the time taken for the original VVSL specification.  Our 
subjective assessment is that the time taken is comparable, with the advantage that 
in the case of the Event-B the development has been machine checked and proved. 

During year three the following activities have been completed: 

Page 67 of 137  



• Porting the initial B models for the idealized central model, which they 
have been developed during year two, to the RODIN platform. 

• Amending the modelling style, to bring it inline with the RODIN 
recommended style. 

• Adding two further refinement levels, this brings the total levels of 
refinements to six. 

• Discharging all proof obligations.  Considering the fact that the new 
RODIN tools produce more proof obligations and generally behave 
differently, it took us some time to deal with the new style of proof 
obligations. 

• Developing a distributed version of the CDIS system, including one 
specification and four levels of refinements. 

• Discharging all proof obligation of the distributed system. 

The above activities have taken almost six month to complete.  Considering that: 

• The RODIN tool has evolved during the modelling process and sometimes 
we had to wait for required facilities or bugs to be fixed.  

• The RODIN tool produces more proof obligations and in many situations 
behaves differently from previous tools such as B4free. 

• Until recently there was no adequate help on the different aspects of the 
RODIN tool and its interactive prover. 

• We have developed two more refinement levels in the centralized version. 
• We have developed the distributed models including one specification and 

four refinement levels. 

We believe this to be a good achievement.  We are confident that similar systems 
can be modelled much more quickly in future. 

Grade: [4] 

3. Comment on the expressive power of Event-B relative to the original specification; 
how do they improve on the original specification notation (VVSL)?  (C, S) 

The mathematical languages of Event-B and VVSL, in most cases, are equally 
expressive.  The key difference was not the notation; rather it was the style of 
specification used in the Event-B development.  In particular the use of refinement, 
whereby details of functionality was introduced in layers, led to a more 
comprehensible specification.  The layered approach, along with the contemporary 
interface of the RODIN tool and its progressive prover, made it possible to 
mechanically check the models, produce comprehensive proof obligations and 
discharge all proof obligations either automatically or semi-automatically. 

In a few small cases, such as syntax support for “record types”, VVSL has 
advantages, which could be added to the Event-B language.  

Page 68 of 137  



It is worth emphasizing that the CDIS specification is necessarily complicated.  
Even though the core specification has been criticized for its complexity, it is 
unrealistic to expect any significant improvements in the size of a specification that 
captures all aspects of CDIS, regardless of the notation used.  However, the bottom-
up construction in VVSL forces a level of specification that is too detailed to get an 
appreciation of the overall system behaviour. 

Grade: [5] 

4. As a result of any improved expressiveness, how much additional verification has 
been made possible by the tool?  (X, S) 

After porting the B models from year two to the RODIN toolset, we have 
discharged all proofs either automatically or via the interactive prover.  The 
RODIN tool now generates a wider range of proof obligations, compared with 
B4free.  These proof obligations include consistency proof (Feasibility and 
Invariance Preservation) and Well-Definedness.  Separation of context and models, 
according to the new methodology recommended by RODIN, has made the proof 
generation and the discharging process very easy.  Furthermore the layered 
development eased the proof of consistency of the specification, since at each step 
we had a small number of relatively simple proof obligations.  In both cases of 
centralised and distributed models of CDIS most of proofs were discharged 
automatically.  A few numbers of proof obligations, which would not prove 
automatically, were proved very easily using the interactive prover.   

Grade: [5] 

5. How well has the subset specification complexity and size challenged the space and 
time limitations of the RODIN tools; can we draw conclusions about whether the 
tools can cope with the entire original specification?(X) 

The final refinement level of the CDIS system comprises more than seven pages of 
Event-B.  Also this is a sizable piece of code, which includes complex definitions 
and different relations, functions and other operators.  This didn’t challenge the 
RODIN tool.  Despite the above, there some minor cases where performance and 
efficiency of the tools could be improved.  These include workspace reconstruction 
and proof obligation generation after new changes are introduced into the model 
and some aspects of the automatic prover.  

In addition to these points, handling and presentation of long and complex guard 
lines and assignments should be improved to ease formal model management. 

Grade: [4] 

Page 69 of 137  



6. How many errors and inconsistencies in (the chosen subset of) the original 
specification have been identified?  (C, S) 

So far no errors or inconsistencies have been found in the original specification.  
Some missing features were identified, but these omissions turned out to be a result 
of the year one sub setting exercise. 

Grade: [4] 

5.4.7 Conclusion 

In conclusion, it is clear from the above section that the main tool platform has reached a 
reasonable level of maturity and stability.  In comparison to the previous generation of 
similar tools such as B4free and AtelierB, the tool is much more productive and the 
interface is much easier to use. 

The new adopted methodology provides a much more modular approach to system 
modelling.  Furthermore it uses fewer constructs in comparison to standard B and 
therefore it should be much easier to deploy. 

Page 70 of 137  



5.5 CS5 – Ambient Campus Assessment 

5.5.1 Introduction 

This case study aims to identify the extent to which various parts of the RODIN approach 
can provide effective support for the most challenging stages of the formal design process 
of complex fault-tolerant mobile systems.  In particular, the wireless communication 
medium, on which the implementation part of this case study is based, typically causes 
transmission errors leading to a whole range of critical faults that must be tolerated.  
Moreover, such mobile applications need to deal with a variety of abnormal and 
unpredictable events due to system openness, mobility of its participants and their 
dynamic nature. 

The work on the Ambient Campus case study (from the Description of Work [1]) has 
focussed on: 

a elucidation of the specific fault tolerance and modelling techniques appropriate for 
the application domain,  

b validation of the methodology developed in WP2 and the model checking plug-in 
for verification based on partial-order reductions, and  

c documentation of the experience in the forms of guidelines and fault tolerance 
patterns. 

More specifically, in this case study we have been investigating how to use formal 
methods combined with advanced fault tolerance techniques in developing highly 
dependable Ambient Intelligence (AmI) applications.  In particular, we have been 
developing modelling and design templates for fault tolerant, adaptable and 
reconfigurable software.  The case study covers the development of several working 
ambient applications (referred to as scenarios) supporting various educational and 
research activities (see D26).  During year 3, we have worked on the Student induction 
scenario, where we have developed a system providing assistance to new students in the 
registration process at the beginning of the term and in familiarising themselves with the 
campus environment. 

We drew on the Context-Aware Mobile Agents (CAMA) abstraction, framework and 
middleware (which were developed in Year 1 and Year 2) as the building block of our 
work in Year 3.  The CAMA middleware architecture was formally developed using the 
B Method.  This allowed us to verify the properties of the scoping mechanism and the 
ability of agents to tolerate disconnections.  The result of the modelling activity was used 
to implement various parts of the middleware, most notably the scope-related operations.  
Exception handling has proved to be the most general fault tolerance technique; as it 
allows effective application-specific recovery.  If exception handling is to make 
programmers’ work more productive and less error-prone, the programming and 
execution environments need to provide it with adequate support.  

Page 71 of 137  



5.5.2 Current Status 

Year Achievement Objective Papers 
1 Traceable requirements document for the 

ambient campus case study 
a), c) [4] 

1-2 Development of the Context-Aware Mobile 
Agents (CAMA) framework and middleware 

a), b), c) [8(pp. 63-

75),14,61, 
62,63,64] 

1-2 Development of the first ambient campus 
scenario (ambient lecture scenario) 

a), b) [65,66,67] 

1-2 Model checking CAMA systems a) [64] 
2 Development of the second ambient campus 

scenario (presentation assistant scenario) 
a), b)  

2 Finalising the set of CAMA abstractions a)  
2-3 Refinement and modification of the CAMA 

framework and middleware 
a), b), c) [69] 

2-3 Methodology for formal development of open 
Multi-Agent Systems 

a) [66] 

3 Mobility Checker plug-in for verification of 
liveness and mobility properties of multi-agent 
systems modelled using the Event-B formalism 

a) [68]  

3 Formal refinement patterns for Event-B method, 
development of patterns for software fault-
tolerance 

c) [70] 

3 Plug-in to the RODIN platform for automated 
application of refinement patterns 

b), c) [71] 

3 Involvement in the Advanced MSc student 
group work at the Newcastle University’s 
School of Computing Science 

b), c)   

3 Development of the third ambient campus 
scenario (student induction scenario) using 
RODIN tools and methods 

a), b), c) [68]  

Table 10: Case Study 5 - Annual achievements against objectives (c.f. §5.5.1 above) 

5.5.3 Progress since Year 2 Assessment 

During year 3 we have completed and finalised the following work: (see D26 [18] and 
D27 [19] for more details): 

• Methodology: During years one and two, we developed a framework called 
CAMA (Context-Aware Mobile Agents), which consists of: 

o a set of fundamental abstractions used in the formal development of ambient 
systems, 

o verification of properties of their models,  
o a formal design of the CAMA middleware using the B method, 

Page 72 of 137  



o an implementation of these systems.  

In the first two years there was a considerable progress in understanding how agent 
system development can benefit from formalisation and verification.  We consider 
that formally applied, top-down developments, of agent interaction protocols to be 
the only complete and rigorous software engineering technique in design of open 
systems.  We recognise that formal methods are not easy to use and the associated 
costs can be very high.  To facilitate adoption of the RODIN formal modelling 
framework as the mainstream software engineer tool, we have proposed a set of 
abstract design patterns that provide general guidance during a formal development 
and also a tool and a set of refinement patterns that considerably reduce 
development costs.  Refinement patterns are formally described reusable model 
transformation rules.  Pattern correctness is proved once and all refinements 
produced using a pattern are automatically correct, which results in a considerable 
decrease in number of proof obligations. 

To facilitate adopting RODIN’s formal modelling framework as a mainstream 
software engineering tool, during year three we have developed a set of abstract 
design patterns that provide general guidance during a formal development and also 
a tool and a set of refinement patterns that considerably reduce development costs.  
Refinement patterns are formally described reusable model transformation rules.  
Pattern correctness is proved once, and all refinements produced using a pattern are 
automatically correct, which results in a considerable decrease in proof obligations. 

As part of our work on this case study, we proposed a formal modelling based 
approach to developing MAS, which should be capable of capturing both the 
functional model (e.g. what kind of computations an agent is capable of doing) and 
the behavioural model of an agent (e.g. how an agent moves, how it interacts with 
other agents, etc.).  While it possible to use just the Event-B notation (provided by 
the RODIN platform) to describe and verify statically the functional model of an 
agent, it is quite challenging or even impossible to do the same with the behavioural 
model.  In this novel approach, we introduced a hybrid (Event-B combined with 
constructs inspired by process algebras) high-level programming notation for the 
specification of mobile applications that can faithfully capture both the behavioural 
and the functional model of an agent.   

Plug-ins: In year three of the project, the development of the mobility plug-in 
progressed on two different fronts.  On the theoretical front, we have developed a 
hybrid high-level programming notation that is capable of modelling mobile agent 
systems.  Furthermore, in order to utilise our existing efficient model-checking 
engine, it was necessary to provide a translation of this language into Petri nets.  
Using the theoretical results developed in year two of the RODIN project for the 
translation of pi-calculus to Petri nets, it was reasonably straightforward to translate 
this new language into Petri nets.  On the implementation front, we have developed 
a tool that is properly integrated and uses the RODIN platform functionality.  An 
internal version of the plug-in was released in March 2007 following the plans for 
the 30M deliverables.  The final public version of the plug-in, together with its full 

Page 73 of 137  



supporting documentation, is scheduled for release according to plan in September 
2007.  We have completed this work, and we have also carried out the evaluation of 
the plug-ins relevant to this case study (c.f. §5.5.4 below). 

• Advanced MSc student group work: as part of the evaluation and assessment 
tasks, we have conducted an extensive work on teaching two groups of Advanced 
MSc students at Newcastle University’s School of Computing Science about 
CAMA abstractions, middleware and tool support and on getting feedback from 
them.  Two (separate) systems were designed and developed by the two groups: 

o eCampus Meeting System: provides electronic support for meetings, where 
the meeting’s chairperson can set up the meeting, add topics for the meeting 
and invite others to participate in the meeting.  The participants can then post 
comments, vote on issues discussed in the meeting, and view the minutes of 
the meeting on the meeting website.  Formal modelling through the RODIN 
platform was used in designing the system, and the system was implemented 
using the CAMA middleware, as well as database and web servers.   

o Student and Faculty Interaction System: allows students and faculty 
(university staff) to interact as they go about their daily activities on campus, 
in particular regarding lectures and campus event.  A location-based scheme 
(context-awareness) was simulated, allowing the students and staff to receive 
services appropriate to their current location.  As with the other group, the 
RODIN platform was used for the formal modelling, and the implementation 
was based on CAMA. 

Student induction scenario: During year three, we have developed the third and final 
scenario for the ambient campus case study.  This scenario demonstrates the ability of 
agents to migrate logically from one platform to another using the CAMA framework.  
We used formal specifications followed by step-wise refinement in designing this 
scenario.  We also introduced smartdust devices [72], which provide features for 
automatic location detection; thus enabling specific services to be delivered in each 
predefined location.  We have also developed a set of demonstrators for this scenario, 
including models, templates, screenshots and a demo. 

5.5.4 Contribution to the Development of Platform and Plug-ins 

RODIN Platform 

The RODIN platform was used extensively by case study five during year three.  The 
case study five modelling was one of the first applications of the platform in the context 
of realistic, large-scale specifications.  Few problems have been found; mainly with the 
tool interface and these were promptly addressed by the platform developers.  As a result 
of the study case study five raised four feature requests and six separate bug reports.  All 
bug reports have been closed.  Table 11 identifies the feature requests raised by case 
study five. 

Page 74 of 137  



ID Title Description 

#1595966 Sequence types Sequence types have been requested.  Specifically, it 
would be good to have the classic B concatenate (a ^ 
b) and explicit specification ([a,b,c,d]) functions. 

#1592016 Automatic 
Completion 

When writing Event-B automatic completion 
(equivalent to Eclipse's ctrl+backspace) would be 
really helpful. 

#1609359  Empty action When the action is empty, the kernel complains about 
an invalid assignment. 
A warning has now been generated to indicate that 
an empty maths element has been found whenever 
this problem occurs with expressions, predicates, or 
assignments. 

#1793844 Decomposition 
Support  

Support for decomposition (and ideally instantiation 
as well) is vital if RODIN is to be of practical use. 

Table 11: Feature requests raised by case study five 

Table 12 highlights the most significant bug reports generated by case study five. 

ID Title Description 

#1609712 Space required after 
some names 

It took me while to figure out that I have to put space 
after keywords like NAT, INT and etc. 

#1665991 Search does not 
work 

Hypothesis search in the prover interface has the 
following problems: 
1 after a search there is no way to select hyp.'s in 

the bottom pane; 
2 search hyp.'s in the proof view do not appear. 

#1741022  Syntax error: EOF 
expected 

In version 0.7.4 this error occurs for any expressions 
containing & and "or". 

#1742823 Comments 1 It is hard to open the pop-up window to edit/view 
a comment (may be Linux-specific). 

2 Comments do not need keyboard translations, 
unless it is expected that users type in formulae 
instead of text. 

Table 12: Significant bug reports generated by case study five 

Mobility Checker Plug-In 

The ambient campus case study was the main source of requirements used for the 
building of the mobility plug-in.  The feedback received from the case study drove the 

Page 75 of 137  



development and the addition of features in the tool.  Based on the theory and the 
development approach used in the building of the plug-in, it is possible to model check an 
Event-B specification (deadlock detection and invariant violations) for free.  As a result it 
will also be possible for case studies that use the ProB model checker to experiment with 
the mobility plug-in as well. 

ProB Plug-In 

The ProB plug-in is an essential tool for understanding complex models.  Large, involved 
specifications are hard to read, even more so in Event-B, where specifications tend to 
have large number of events due to the absence of sequential composition.  Model 
animation is efficient and user friendly for model interpretation. 

B2RODIN Plug-In 

This plug-in has been developed to transfer AtelierB projects into the new RODIN 
platform.  The plug-in is extremely simple to use and no issues have been found.  We 
have applied the B2RODIN plug-in to transfer previous AtelierB and Click'n'Proof 
developments into the new RODIN Platform.  The plug-in performance was satisfactory 
and it is very easy to use.   

5.5.5 Contribution to the Integration Objectives 

Case study five’s primary integration focus has been on objectives a) and b). 

a) Checking the scaleability of the system as its functionality is extended 

This objective is defined below: 

Checking the scaleability of the system as its functionality is extended – how does 
adding a plug-in affect the performance of the system, does it get harder to develop 
plug-ins (and integrate them into the platform) as the number of plug-ins grows, 
and how does the usability of the system decline as the number of plug-ins 
increases? 

We have used the full internal versions of the RODIN toolset (including the platform, 
mobility, B2RODIN, model-based testing and ProB plug-ins) for developing the student 
induction scenario.  The previous versions of the platform and the plug-ins were partially 
used during years one and two for developing the ambient lecture scenario and the 
presentation assistant scenario.  These experiments have not indicated any scaleability 
concerns related to integration of new plug-ins into the RODIN platform.  The Eclipse 
framework supports a number of useful ways of virtualising the development 
environment and avoiding any overheads caused by the use of many plug-ins. 
Consequently it handles the scaleability issues very well. 

Grade: [4] 

Page 76 of 137  



b) Checking the impact of legacy (sub) systems 

This objective is defined below: 

Checking the impact of legacy (sub)systems – how does the ‘correct through 
construction’ refinement-based methodology integrate with processes where 
already developed models have to be re-used, is reverse engineering a reasonable 
approach, and which plug-in(s) will support this, if any? 

We are currently at the initial stages of integrating refinement-based methodology with 
processes, where previously developed models have to be re-used.  The main reason for 
this is that full advantage of the refinement-based methodology complemented by model-
checking approach to the verification of mobile systems was not possible until the last 
phase of the work.  The approach, which in our view would be successful, is one where 
an already developed model is translated into the high-level Petri net formalism, which 
underpins our model-checking approach.  We have already applied such a translation to 
complex B models developed prior to RODIN.  The mobility plug-in would then be very 
well suited for the verification task involving both pre-existing and newly developed 
parts of the overall specification. 

Grade: [3] 

5.5.6 Case Study Specific Metrics 

1. Given the four AmI scenarios developed previously by the ISTAG group, analyse 
how much has the use of formal techniques improved the original ideas about this 
application?  (C, U, X) 

Transition from the initial ideas to the formal models was made more explicit and 
manageable thanks to the application of the requirement development methods 
proposed by J-R. Abrial (see D8 [8]).  Furthermore, we applied the stepwise 
refinement technique of the B method to develop a concrete model for the case 
study, which forms the base of the demonstration delivered at the end of Year two.  
In particular, by introducing error recovery at the early stages of design, this 
allowed us to address some key aspects of fault tolerance more rigorously. 

In our work we have developed a method, which combines state-based and process-
based modelling.  This will allow us to support stepwise development using the B 
method alongside the modelling and automatic verification of complex temporal 
properties, including those related to mobility. 

With respect to our experience with teaching the advanced MSc students, we 
described the ISTAG scenarios [74] to introduce them to this area and to help them 
select the specific scenarios they would implement. 

Grade: [4] 

Page 77 of 137  



2. How well do RODIN methods and tools fit to the four ISTAG scenarios, in 
particular Scenario 4 Annette and Solomon in the Ambient for Social Learning?  
(C, U) 

We were able to capture those aspects of ISTAG scenarios [74] that are relevant to 
coordination, mobility and fault-tolerance using the CAMA framework.  The 
concepts of scopes and agents could be successfully applied in developing Scenario 
four, although clearly we do not have answers to all the technological challenges 
raised.  Moreover, scoping can be used for isolation of the private conversations 
between the mentor, the students and the ambients (the issue not mentioned in the 
original ISTAG scenario) as well as for implementing general meetings taking 
place in the dedicated room (location in CAMA terms).  CAMA concepts of roles 
as well as coordination model can be applied to ensure consistent access to the 
shared resources typical for the ISTAG scenarios.  The Ambient Social Learning 
space can be implemented using the CAMA framework; this ensures efficient 
cooperation whilst preserving de-coupling of actors, as well as system openness.  
Scenarios one and three, which have physical mobility, can be suitably modelled by 
CAMA agents migrating between locations. 

As the ISTAG scenarios have neither rigorously defined requirements nor formally 
defined specifications, we believe that modelling them using the CAMA 
framework, coupled with the assistance of the RODIN method, is an important 
contribution to the understanding and refining of ISTAG scenarios. 

Scenario three fits exactly the idea of scenario four (pages 43-48 of [74]).  It has 
been developed to support campus activities, which involve students and teachers 
moving in the campus and joining various lecture rooms.  This is directly related to 
the idea of accessing various learning spaces and can be implemented in a 
straightforward way using the logical mobility which CAMA and the mobility 
plug-in supports. 

The two systems, which Newcastle students developed, in fact represent 
functionality, which can be viewed as part of scenario four.  

Grade: [4] 

3. How clearly can we show that we have enhanced dependability and fault 
tolerance?  (O, S) 

There is clear lack of understanding of how to approach the problem of error 
recovery in multi-agent systems.  There are a number of proposed solutions 
tackling different aspects of the problem; but there is still no systematic approach 
encompassing all the stages of design and lifetime of multi-agent systems.  

The CAMA framework and formal development allowed us to develop fault 
tolerant systems with much more effective application level recovery.  Formal 

Page 78 of 137  



reasoning about fault tolerance properties, based on refinement and verification, is a 
distinct characteristic of our approach; as this is not supported by any of the 
existing methods.  We are working on a formalisation of an exception propagation 
mechanism that is to be integrated into the formal agent design process.  

Students have been able to tackle harder problems quicker and with less mistakes 
and errors using our software and tools.  It would be simply impossible for them to 
develop the same two systems in the same limited time without their use.  They 
used a number of the specific fault tolerance mechanisms from CAMA – among 
others, error detection (disconnections), as well as restricting and controlling the 
number of participants in the scope. 

Grade: [3] 

4. How well has the crystallization of ideas via the formal specification improved 
early discussion of the system requirements, especially whether the requirements 
are fit for purpose?  (C, S) 

The effort input to the preparation of the requirement document and the formal 
models has clearly benefited the work on formal specifications for the case study 
scenario.  During this work we discovered a number of omissions and 
inconsistencies in the requirement document, which resulted in several iterations of 
work on the requirement document and the subsequent alterations of the formal 
model.  Our experience demonstrated the importance of describing informally 
relevant decisions about a system design while undertaking formal modelling and 
development using the refinement method. 

Due to the Newcastle MSc students’ limited time available to conduct the group 
work (8 weeks) – and the fact that these two groups had to learn system design and 
modelling using the RODIN platform from scratch – the development approach 
was not strictly speaking a top-down development.  Nevertheless, the students 
learned a lot about the systems they were developing during modelling and 
feedback from the modelling stage helped them to improve the implementation. 

Grade: [3] 

5. How fully does the implemented case study use the fault tolerance techniques and 
methodology proposed and how closely they match the case study requirements?  
(U, X) 

Currently a preliminary implementation of the proposed error recovery mechanisms 
has been applied in the case study.  More specifically, we employed the exception 
propagation mechanism to provide cooperative recovery in the situations where 
there is an inconsistency in the observations of the global state caused by a fault. 

Page 79 of 137  



Students have clearly enjoyed the working with the CAMA environment; they very 
quickly learned how to use it, used the full functionality and needed little 
introduction.  It was a very positive experience. 

During year three, we found that the techniques provided through CAMA are 
powerful enough to support the vast majority of the fault tolerance needs, which 
need to be addressed by the developers of mobile distributed systems.  The 
concepts of scopes and exceptions are crucial in addressing the fault tolerance 
issues.  It is also observed that plug-ins can be used to extend CAMA features.  We 
therefore believe that scaleability is addressed sufficiently in CAMA.  

Grade: [3] 

6. How general are the development method and the fault tolerance techniques, 
judging by their application in several Ambient Campus scenarios?  (U, X) 

The fault tolerance mechanisms provided by the CAMA abstractions, and 
supported by the CAMA middleware, provide nested scoping for error confinement 
and flexible exception handling for application specific error recovery.  The 
middleware itself detects disconnections and crashes of the PDAs – the most 
typical failures for the ambient systems – and raises predefined exceptions to be 
handled in the agents participating in the corresponding scope.  These general 
mechanisms were successfully applied in the context of the Ambient Lecture 
scenario and, in particular, in supporting the student group work.  The development 
method, which is based on the B method and process algebra, and used in 
modelling and designing the scenarios, is general enough, as it is relies on the 
general concepts of scopes, agents, roles and locations, which are typical for a wide 
range of ambient applications.  The proofs were completed using AtelierB, except 
for about dozen interactive proofs; the prover automatically discharged all proofs.  

Grade: [4] 

5.5.7 Conclusion 

Case study five has developed and investigated a novel approach for modelling and 
verifying the correctness of complex mobile agent systems.  None of the existing 
languages were capable of capturing their complete behaviour.  Our achievement in year 
three has been the development of a single hybrid (Event-B together with a process 
algebra with mobility characteristics) high-level programming notation that is capable of 
capturing both the behavioural and the functional model of agents.  This language has 
strong theoretical foundations and its structured operational semantics are also presented 
here.  Finally, an efficient model checker has been developed as a plug-in for the RODIN 
platform.  The plan for this tool is to support a significant part of the Event-B notation 
and also behaviourally rich process algebra expressions.  Within case study five, a 
number of refinement patterns were investigated.  We have developed in year three a 
number of patterns that help to automate design of systems with rich behaviour but 
shallow functionality.  Many mobile agent system protocols and abstractions can be 

Page 80 of 137  



modelled adequately simply by the composition of these patterns.  There are also a 
number of patterns that help introduce inter-agent communications.  The modelling of the 
case study in year three was one of the first applications of the RODIN platform in the 
context of realistic, large-scale specifications.   

Page 81 of 137  



SECTION 6 OPEN TOOL KERNEL ASSESSMENT 

6.1 Introduction 

The objectives of work package 3 (from the Description of Work [1]) are to develop 
some basic kernel tools implemented on a certain platform container that can be 
extended by the plug-ins being developed in work package 4.  

To ensure the openness of the platform, we planned to: 

a Finalize the Event-B Language.  
b Provide an adaptation of the Low Level Basic Tools: Static Analyzers.  
c Provide an adaptation of the Intermediate Level Basic Tools: Proof Obligation 

Generators.  
d Provide an adaptation of the Upper Level Basic Tools: Provers.  
e Design and implement the Connection Language.  
f Design and implement the Project Manager.  
g Design and implement the Open Platform.  

6.2 Current Status 
Year Achievement Objective Papers 

1 Major technical decisions concerning the platform 
container and plug-in mechanism taken and recorded. 

 D3.1[5] 

2 Event-B language definition finalised a D3.2[6] 
2 Overall platform architecture, plug-in mechanism and 

Event-B kernel tools specified. 
b, c, d D3.3[10] 

 Platform prototype and Event-B kernel tools developed 
and delivered. 

b, c, d D3.4[12] 

3 Implementation of the platform and the Event-B kernel 
tools is on going.  An internal version has been 
delivered in month 30. 

e, f, g D3.5[17] 

3 Public version of the Event-B kernel tools delivered. e, f, g D3.6[22] 

Table 13: RODIN Kernel - Annual achievements against objectives (c.f. §6.1 above) 

6.3 Progress since Year 2 Assessment 

The progress of this work package is on schedule with respect to the objectives in the 
Description of Work [1].  Notably, the following milestones have been achieved during 
Year 3: 

• M3.3: Complete platform integrating WP4 plug-ins 

Page 82 of 137  



Plug-ins are now available via SourceForge for downloading and can alternatively be 
installed by means of the update and install mechanism built into Eclipse. 

6.4 Interaction with Plug-in Developers 

Various project partners have contributed to the RODIN platform using the extension 
mechanisms provided.  Examples of the interaction include: 

• ClearSy and Southampton have used the extensibility of the RODIN database to 
add elements that they needed to the Event-B database.   

• ClearSy’s animator extends the Event-B editor for specifying animation 
parameters.   

• Düsseldorf has (partly) ported ProB to the RODIN platform making use of the 
Event-B database (this contribution uses mostly the extension mechanisms already 
present in Eclipse). 

• Furthermore Düsseldorf has contributed a plug-in for the prover, with symbolic 
model checking of goals that can also generate counter examples. 

6.5 Kernel Metrics 

6.5.1 Requirements and Functionality 

1 How well does the tool perform its stated purpose? (C) 

All essential features of the platform and kernel tools have been implemented.  The 
platform is stable and is used actively by the project members. 

Grade: [5] 

2 How rigorously is the required tool behaviour defined?  (O, S, U) 

All behaviours of the kernel tool are defined formally.  For instance: 

• the Static Checker is defined using both ad-hoc formalisms (BNF syntax for 
the parser, attributed grammar for well-formedness and type-checking) and an 
Event-B model (for graph checking) 

• the Proof Obligation Generator specification is derived from the Event-B 
language definition, applying some simple mathematical transformations. 

Grade: [5] 

Page 83 of 137  



3 How much does it contribute to system correctness?  (C, S) 

As kernel tools provide means for mathematically proving system correctness, their 
use provides correctness by construction. 

Grade: [5] 

4 How much does it extend/shrink system development and testing phases? (C) 

This criterion is not directly relevant to work package 3.  It is assessed in the case-
studies work package. 

Grade: [N/A] 

6.5.2 Tool Usability 

1 How long does it take a developer, who is knowledgeable in the specification 
language used, to learn how to use the tool effectively?  (U) 

This criterion is not directly relevant to work package 3.  It is assessed in the case-
studies work package. 

Grade: [N/A] 

2 How long does it take the tool to run to completion on a specification of 
representative size?  (C) 

The performance of the tools has been improved considerably by implementation of 
differential static checking, proof obligation generation, and proving.  More studies 
are needed to judge the performance with respect to very large specifications. 

Grade: [4] 

3 What is the tool’s response time to a change by a user to the specification?  (U) 

One of the major requirements when designing the tools was to take into account 
the need for incremental development of models.  Consequently, the tools perform 
very well when modelling small changes. 

Grade: [5] 

Page 84 of 137  



4 What is the cost of the hardware and operating system required to run the tool at 
an acceptable speed?  (C) 

The tool runs on a standard PC.  There is no requirement to add special hardware or 
software. 

Grade: [4] 

5 What is the cost of the tool licence for one, five or twenty users for a year, including 
support?  (C) 

The tools are freely available on SourceForge.  Hence, no licence cost is incurred.  
With regard to support, no commercial offer is yet available.  However, during the 
course of the RODIN project, free support has been provided through SourceForge. 

Grade: [5] 

6.5.3 Development and Integrity of the Tool 

1 How quickly can an identified tool bug be fixed in tool’s code?  (U, X, O) 

Most of the bugs found in the tool during development where fixed in less than a 
day.  A key factor for the ease of bug fixing is due to the fact that kernel tools 
always provide a trace relating their output to their input.  Hence, fault location can 
be very straightforward. 

Grade: [4] 

2 How quickly can an identified tool bug be fixed in the development and testing 
system?  (U, X, O) 

All tests have been developed using the JUnit framework.  Hence, it is very easy to 
add a new test to the test database (just add a new method to an existing test class).  
It is also very easy to rerun all tests on a tool (just one button click).  As concerns 
the error database, it is located on the SourceForge site and easy to access through 
any Web browser. 

Grade: [5] 

3 How quickly can minor and major new tool features be implemented?  (X) 

All tools have been designed and implemented with extensibility in mind.  As a 
consequence, they all provide extension points so that new functionality can be 
added with minimum effort using the plug-in mechanism of Eclipse. 

Grade: [5] 

Page 85 of 137  



4 How long is the time required to bring in and educate a typical tool developer?  (U, 
X) 

The tools are developed in Java using the Eclipse Java Development Tools, which 
are quite widespread.  Hence, most developers know the development environment 
or are familiar with a very similar setting.  For instance, ETH Zurich had two 
undergraduate students working on the tools, and they didn't need any time to learn 
how to use the tool (although neither Java, nor Eclipse are taught at ETH). 

Configuration management is done using CVS on SourceForge, which is also a 
standard tool. 

Grade: [4] 

5 How many operating systems and architectures are supported and how many are 
possible?  (U) 

The RODIN kernel is based on the Eclipse platform and developed in Java.  
Consequently the tools can be made available on all standard platforms, i.e.: 
Windows, Mac OS X, Linux, Solaris, AIX and HP-UX.  However, due to a lack of 
test platforms, only a subset has been tested.  Currently the tools run on three major 
computer platforms: PC/Windows, PC/Linux and Mac/MacOS X. 

Grade: [4] 

6 How extensive are unit, functional and system testing of the tool?  (U, S) 

Some unit tests have been undertaken for sensitive elements of the tools 
(computation intensive parts).  Extensive functional and system testing has been 
developed for the Event-B tools.  

An exploratory development approach has been adopted for the user-interface, 
which is still maturing.  Consequently this element relies on active evaluation by 
project members with an increasing involvement of functional testing. 

Grade: [4] 

7 How easy is it to compare two versions of the tool?  (U, S) 

All tests are carried out using the JUnit framework.  As a consequence, test results 
are self-evaluated by the tests themselves, which makes assessing the test results 
straightforward.  Therefore, it is very easy to compare two versions of the tools. 

Grade: [5] 

Page 86 of 137  



8 How well does the tool admit self-analysis?  (U, S) 

The kernel tools do not admit self-analysis.  They can prove a model correct by 
construction but are not relevant for proving a program directly.  The use of a code-
generation plug-in might alleviate that, but none was available during the kernel 
tool development and no bootstrapping is planned. 

Grade: [N/A] 

9 How reliable are error tracking and regression testing?  (U, S) 

All errors discovered in the tools give rise to the development of one or more tests 
that give evidence that the error has indeed been fixed.  All these tests accumulated 
during the initial development and bug fixing are run in a systematic fashion. 

Grade: [5] 

10 What is the self-fault detection history, and in particular how many faults does the 
trend predict in the current tool?  (S) 

It is currently too early to apply an analysis to the fault detection history.  The 
number of incoming fault reports is small but so is the number of users. 

Grade: [N/A] 

11 What classes of self-fault are detectable or not detectable in the tool?  (S) 

The tools have been developed defensively; they undertake a lot of internal 
integrity checks (using assertions for instance).  All these checks give rise to 
logging of all cases where an internal inconsistency has been detected. 

Grade: [4] 

6.5.4 Input (source) Language Issues 

1 What fraction of the possible source language grammar does the tool accept, 
analyse, and analyse correctly?  (U, S, X) 

The support of the Event-B notation of the current version of the tools is almost 
complete.  Only external variables and deadlock-freeness are missing.  However, 
Event-B can already be used efficiently without them. 

Grade: [4] 

Page 87 of 137  



2 If the source language is based on an external definition e.g. an ISO standard, how 
much must it change to be acceptable to the tool?  (U) 

There is no external definition of Event-B, nor any other tool implementation of the 
notation.  Hence, the RODIN tools are the reference implementation. 

Grade: [N/A] 

3 What is the earliest point in system development when a source document may be 
analysed?  (C) 

Source documents can be analysed at any point in time. 

Grade: [5] 

6.5.5 Output Format 

1 How easy is it to auto-parse the tool output?  (U, X) 

Tools output is provided in two forms.  Error messages are output as Eclipse 
markers which can be analysed very easily with a Java plug-in. Proofs are stored in 
the RODIN platform database which is accessible either by a Java plug-in, or 
directly as an XML document. 

Grade: [5] 

2 What level of control over the output volume and content is allowed?  (U, X) 

The RODIN user interface provides various views on the tools output.  For 
instance, for proofs, one can see the proof status of a component, or a list of all 
proof obligations together with their proof status (discharged or not), or for each 
proof obligation, a detailed view of its proof tree.  Also, the user interface provides 
various means for filtering the tools output; so that the user can choose precisely 
which parts he wants to see. 

Grade: [5] 

Page 88 of 137  



3 How well does the output relate to the input, for instance for error reporting?  (C, 
U) 

All transformations made by the tools (most notably proof obligation generation) 
are fully traced to their source.  As a consequence, when a proof obligation is not 
provable, it's very easy to trace it back to the source elements that gave rise to it.  
We expect that this will allow user to find the cause of errors much more easily 
than with previous formal tools. 

Grade: [5] 

6.6 Conclusion 

The core RODIN platform comprises: 

• RODIN database, 
• Event-B database, 
• Proof obligation manager, 
• New predicate prover, 
• Proof obligation generator, 
• Static checker, 
• Event-B editor user interface, and 
• Event-B prover user interface. 

These components are stable and sufficiently powerful for practical use. 

Large-scale trials and/or case studies still have to be carried out to confirm that the tool 
continues to scale-up.  This has certainly been the case for the medium size case studies 
attempted during the RODIN project. 

The design goal of extensibility has been achieved, as demonstrated by the various plug-
ins already developed. 

The RODIN project demonstrates that the platform is viable and sets new standards for 
formal methods tools in academia and industry. 

Page 89 of 137  



SECTION 7 PLUG-IN ASSESSMENTS 

7.1 Mobility plug-in (Mobile B Systems) 

7.1.1 Introduction 

Mobile agent systems (MAS) are complex distributed systems, which are built from 
asynchronously communicating mobile autonomous components.  Such systems have a 
number of advantages over traditional distributed systems, including: ease of deployment, 
low maintenance cost, excellent scaleability, autonomous reconfiguration and effective 
use of infrastructure.  MAS are distinct enough to require specialised software 
engineering techniques.  A number of methodologies, frameworks and middleware 
systems have been proposed to support rapid development of MAS applications.  
However, currently there is no single widely recognised standard and the problem of 
building large and dependable MAS remains open. 

While it is possible to use just the Event-B notation (provided by the RODIN platform) to 
describe the functional model of an agent and statically verify it, it is quite challenging or 
even impossible to do the same with the behavioural model [45,46].  Based on a novel 
approach presented in [47], we developed a hybrid high level programming notation 
(Event-B combined with constructs inspired by two process algebras: KLAIM [48,49] 
and pi-calculus [50,51] which is capable of capturing faithfully both the behavioural and 
the functional model of an agent.  By using a combination of static verification and model 
checking we are able to offer two different views on a model and carry out 
complimentary analysis of functional and dynamic properties.  Since MAS are highly 
concurrent the state space explosion problem is present during model checking.  One 
should therefore use an approach that alleviates this problem; in our case, based on partial 
order semantics of concurrency and the corresponding Petri net unfoldings [52].  A finite 
and complete unfolding prefix of a Petri net PN is a finite acyclic net, which implicitly 
represents all the reachable states of PN together with transitions enabled at those states.  
Efficient algorithms exist for building such prefixes [53], and complete prefixes are often 
exponentially smaller than the corresponding state graphs, especially for highly 
concurrent systems, because they represent concurrency directly rather than by 
multidimensional “diamonds” as it is done in state graphs.  For example, if the original 
Petri net consists of 100 transitions which can fire once in parallel, the state graph will be 
a 100-dimensional hypercube with 2100 vertices, whereas the complete prefix will be 
isomorphic to the net itself.  Since mobile systems are usually highly concurrent, their 
unfolding prefixes are often much more compact than the corresponding state graphs.  In 
order to take advantage of the compact representation provided by PN unfoldings, the 
newly developed hybrid language is translated into Petri nets.   

Page 90 of 137  



7.1.2 Current Status 

During the three years of the project the following goals have been achieved: 

• Extension to a full recursive variant of π-calculus [54] for the theoretical and 
algorithmic foundations of the compositional translation from the π-calculus to 
Petri nets, which were first developed for its finite fragment [55].  

• Tool support (standalone) for the finite fragment of pi-calculus [58] (it should be 
emphasized that this tool appears to perform well both in speed and scaleability 
terms; much better than the ‘state-of-art’ Mobility Workbench). 

• Extension of the previous developments to the KLAIM based process algebra 
[56].  

• A new efficient method for computing the shortest violation traces in the Petri net 
unfolding approach [57]. 

• Introduction of a high-level programming notation for the specification of mobile 
agent systems.  This new modelling language is a hybrid of Event-B together with 
a process algebra with mobility characteristics that can faithfully capture both the 
behavioural and the functional model of an agent. 

• Tool support for the automatic verification of mobile agent systems.  This tool has 
been properly integrated with the RODIN platform (plug-in to the platform). 

• A proposal to develop algorithms for efficient implementation of the model-
checking kernel of the mobility plug-in [59].  The paper introduces a new 
condensed representation of a Petri net's behaviour which copes well not only 
with concurrency, but also with other sources of state space explosion, such as 
sequences of non-deterministic choices. 

7.1.3 Progress since Year 2 Assessment 

In general, the work progresses according to the milestones listed in the RODIN DoW.  
In particular, in addition to the progress reported a year ago, in year three of the project 
we have made definite progress on two different fronts.  

On the theoretical front, we have developed a hybrid high-level programming notation 
that is capable of modelling mobile agent systems.  Furthermore, in order to utilise our 
existing efficient model-checking engine, it was necessary to provide a translation of this 
language into Petri nets.  Using the theoretical results developed in year two of the 
RODIN project for the translation of pi-calculus to Petri nets, it was reasonably 
straightforward to translate this new language into Petri nets.   

On the implementation front, we have developed a tool that is properly integrated and 
uses the RODIN platform functionality.  The experience obtained in year two of RODIN, 
from building the standalone tool for the automatic verification of finite pi-calculus, was 
extremely helpful in achieving this goal.  An internal version of the plug-in was released 
in March 2007 following the plans for the 30M deliverables.  At the moment we are 
working on a public release version of the plug-in together with its full supporting 

Page 91 of 137  



documentation.  Furthermore we are looking for opportunities to test the performance of 
the automatic verifier for the recently developed models. 

7.1.4 Integration with the Platform 

The mobility plug-in has been properly integrated with the platform and uses several 
features provided by the RODIN platform and the Eclipse IDE e.g. access to database, 
extensions to database, Eclipse user interface, etc. 

7.1.5 Use by the Case Studies 

The mobility plug-in is used by the Ambient Campus (CS5) case study.  The first useable 
version of this plug-in was made available in March 2007.  Actually, this case study was 
the main source of requirements used for the building of this tool.  The feedback received 
from the case study drove the development and the addition of features in the tool.  Based 
on the development approach used in the building of the plug-in, it is possible to model 
check an Event-B specification (deadlock detection and invariant violations) for free.  As 
a result it is also possible for every case study that uses the ProB model checker to 
experiment with the mobility plug-in. 

7.1.6 Plug-in Metrics 

Requirements and functionality 

1 How well does the tool perform its stated purpose? (C) 

The tool was designed to perform automatic verification of mobile agent systems 
that we modelled with the newly invented hybrid programming language.  Since 
there is no other tool or language that can faithfully capture the full behaviour (both 
functional and behavioural) of mobile agent systems we are unable to provide 
comparative results.  On the other hand, the tool will be used for the automatic 
verification of models developed in the Ambient Campus case study.  Since these 
models are expected to be fairly complex, they will provide a good measure of the 
performance of the plug-in. Furthermore since we are getting the functionality of 
model checking Event-B specifications for free, it will possible to have some 
comparative results with the ProB model checker. 

Grade: [4] 

2 How rigorously is the required tool behaviour defined?  (O, S, U) 

The tool’s behaviour has full theoretical underpinnings in the form of research 
papers and proofs dealing with the translation from hybrid programming language 
to Petri nets, as well as with Petri net unfolding theory. 

Grade: [5] 

Page 92 of 137  



3 How much does it contribute to system correctness?  (C, S) 

This is an expected contribution based on the previous advancements made using 
Petri net-based model checking.  Furthermore, it is now possible to contribute to the 
system correctness of mobile agent systems.  The combination of Event-B and 
process algebra will add to the correctness of the system since we can now combine 
static verification and model checking, we can offer two different views on a model 
and carry out complimentary analysis of functional and dynamic properties. 

Grade: [5] 

4 How much does it extend/shrink system development and testing phases? (C) 

Model checking is a technique that is particularly effective in detecting concurrency 
related defects at an early stage of system design.  As a result, the use of the tool 
can shrink system development and testing phases significantly.   

However, the main benefit is in verifying correctness criteria rather than relying on 
testing.  

Grade: [4] 

Tool usability 

1 How long does it take a developer, who is knowledgeable in the specification 
language used, to learn how to use the tool effectively?  (U) 

Someone, who is familiar with the specification language, should require a small 
amount of learning time to use the tool.  The required steps to operate the tool, after 
building the specification, are automatic and require minimal user interaction.  
Furthermore, a large amount of the tool’s functionality (e.g. the functional part of a 
mobile agent system is modelled on the Event-B notation) comes for free from the 
RODIN platform. 

Grade: [5] 

Page 93 of 137  



2 How long does it take the tool to run to completion on a specification of 
representative size?  (C) 

The main engine of the tool has a proven performance record in the model checking 
community.  Moreover, scaleable experiments performed in year two, to model 
check π-calculus specifications [58], show much better performance when 
compared with other ‘state of the art’ tools.  Finally, the models developed in the 
Ambient Campus case study are expected to be fairly complex; they will provide a 
good measure of the performance of the plug-in.  We expect that the tool will be 
able to finish the automatic verification of these models in reasonable time. 

Grade: [4] 

3 What is the tool’s response time to a change by a user to the specification?  (U) 

A change to the specification by the user requires executing the tool from the 
beginning. 

Grade: [4] 

4 What is the cost of the hardware and operating system required to run the tool at 
an acceptable speed?  (C) 

A medium range Windows PC is adequate to run the tool at an acceptable speed.  
The addition of extra memory allows larger specification to be tackled. 

Grade: [5] 

5 What is the cost of the tool licence for one, five or twenty users for a year, including 
support?  (C) 

The released version of the tool will be free.  

Grade: [5] 

Development of the tool 

1 How quickly can an identified bug be fixed in code?  (U, X, O) 

The code of the two translators, which were developed within the project, is 
relatively small and well documented; consequently, it is quite easy to identify and 
fix bugs.  The main engine has been stable now for some years; changes to it 
would require more significant effort.  On the other hand, the developer of the 
main engine participates in RODIN and commits some of his time for bug fixes. 

Grade: [5] 

Page 94 of 137  



2 How quickly can an identified bug be fixed in the development and testing system?  
(U, X, O) 

The tool uses the standard Eclipse testing facilities, e.g. JUnit testing.  Adding new 
tests is a fairly straightforward process and requires relatively small time and effort. 

Grade: [3] 

3 How quickly can minor and major features be implemented?  (X) 

Minor features are easy to implement and do not require substantial code rewriting.  
This is due to the direct access to the combined action and state information, which 
is easily accessibly in the Petri net representation. 

Grade: [3]  

4 How long is the time required to bring in and educate a typical tool developer?  (U, 
X) 

We expect that this will be relatively short for someone familiar with the basic 
concepts of process algebras and state machines.  Furthermore the translators are 
relatively small and well documented; however, we do not yet have experimental 
data to support this.  

Grade: [N/A] 

5 How many operating systems and architectures are supported and how many are 
possible?  (U) 

The release version will support the Windows and Unix versions of the RODIN 
platform. 

Grade: [4] 

Testing and verification 

1 How extensive are unit, functional and system testing of the tool?  (U, S) 

Standard JUnit tests will be used for several parts of the tool.  These tests will be 
performed in every release version of the tool and will provide sufficient evidence 
that the tool is working according to the specification. 

Grade: [3] 

Page 95 of 137  



2 How easy is it to compare two versions of the tool?  (U, S) 

The different release versions of the tool will be distributed with a release history, 
which documents all changes.  Furthermore, if there are no changes in the input 
language of the tool between different versions, comparing their relative 
performance is straightforward. 

Grade: [3] 

3 How well does the tool admit self-analysis?  (U, S) 

The tool has not been designed for this purpose. 

Grade: [N/A] 

4 How reliable are error tracking and regression testing?  (U, S) 

Error tracking is reliable due to the standard algorithms used for the derivation of 
counterexamples from the unfolding structures.  

Grade: [4] 

5 What is the self-fault detection history, and in particular how many faults does the 
trend predict in the current tool?  (S) 

There are no data available to form a conclusive predictive answer at the moment. 

Grade: [0] 

6 What classes of self-fault are detectable or not detectable in the tool?  (S) 

It is possible to detect faults in the construction of a Petri net from a given mobile 
agent systems model, such as isolated places and duplicate arcs.  Furthermore, in 
every release version we will run a standard set of benchmarks to detect differences 
in performance. 

Grade: [3] 

Source language 

1 What fraction of the possible source language grammar does the tool accept, 
analyse, and analyse correctly?  (U, S, X) 

The tool is suitable for the task of model checking of mobile agent systems 
modelled in the newly developed programming notation.  This programming 
notation is a hybrid of Event-B combined with constructs inspired by two process 

Page 96 of 137  



algebras: KLAIM and pi-calculus.  The process algebra constructs are fully 
supported and we plan to support a substantial part of the Event-B notation by the 
end of the project. 

Grade: [4] 

2 If the source language is based on an external definition e.g. an ISO standard, how 
much must it change to be acceptable to the tool?  (U) 

There is no ISO standard.  The tool requires the newly developed programming 
notation for mobile agent systems as input.  No changes to this notation are 
necessary. 

Grade: [4] 

3 What is the earliest point in system development when a source document may be 
analysed?  (C) 

Model checking is a technique that is particularly effective in detecting concurrency 
related defects and can be applied at an early stage of system design. 

Grade: [5] 

Output form 

1 How easy is it to auto-parse the tool output?  (U, X) 

The output of the tool is in plain text format and it is easy to parse. 

Grade: [4] 

2 What level of control over the output volume and content is allowed?  (U, X) 

The user has a substantial level of control over the output volume of the tool.  The 
tool can output information about the statistics of the developed models (e.g. size, 
time to unfold the model, etc.) together with the results of the automatic verification 
process and a usable trace in case of the discovery of an error in the specification.  

Grade: [4] 

Page 97 of 137  



3 How well does the output relate to the input, for instance for error reporting?  (C, 
U) 

Part of model checking is the generation of traces leading to error situations, which 
can then be simulated or visualised with the help of the included animator. 

Grade: [5] 

7.1.7 Conclusion 

During the third year of the project, we managed to continue our work according to the 
objectives and milestones listed in the RODIN DoW[1].  Based on the experience gained 
in year two of the project, by building a model checker for finite pi-calculus 
specifications, we proceeded in two steps.  Initially, we developed a hybrid specification 
language for mobile agent systems together with the theoretical translation of this 
language into Petri nets.  Following this we developed an efficient model checker for the 
automatic verification of mobile agent systems and we integrated this tool to the RODIN 
platform.  The final public version of the plug-in, together with its full supporting 
documentation, are scheduled to be released according to plan in September 2007. 

Page 98 of 137  



7.2 ProB model checking and animation 

7.2.1 Introduction 

ProB is an animator and model checker for the B-method.  This plug-in integrates ProB 
within RODIN and applies it to Event-B specifications.  It can be used for animation 
purposes, as well as for disproving individual proof obligations. 

Writing a formal specification for real-life, industrial problems is difficult and error 
prone, even for formal methods experts.  Whilst specifying a formal model for later 
refinement and implementation it is crucial to get approval and feedback from domain 
experts to avoid the costs of changing a specification late in the development.  ProB’s 
animation features can help to demonstrate what a specification actually does.  Domain 
experts can explore the B model and check whether a B specification corresponds to their 
expectations. 

The disprover plug-in for RODIN uses the ProB animator and model checker to find 
automatically counterexamples for a given problematic proof obligation.  When the 
disprover finds a counterexample, the user can directly investigate the source of the 
problem (as pinpointed by the counterexample) and should not attempt to prove the proof 
obligation.  In some circumstances the plug-in can be used as a prover, i.e., in that case 
the absence of a counterexample actually is a proof of the proof obligation. 

7.2.2 Current Status 

Initially the ProB model checker was ported to the Eclipse platform, and extended with 
domain specific Flash animation features.  An extensible editing platform was also 
developed, and combined with the Animator.  This provides an integrated development 
and testing tool for classical B models.  This work was reported at the B2007 conference 
in Besançon [75, 76]. 

During a second phase, the ProB model checker has been adapted for Event-B.  The 
animator has been fully integrated into the RODIN platform and can be installed from 
http://www.stups.uni-duesseldorf.de/ProB/update/prototype/.  It supports animation of 
most Event-B constructs and has been used successfully by various RODIN partners.  
Moreover, another plug-in has been developed which enables a user to apply ProB during 
proof development.  In that case the tool can be used to find potential counterexamples to 
the proof obligations.  This work was reported at the AFADL 2007 conference in Namur 
[77]. 

7.2.3 Progress since Year 2 Assessment 

The ProB animation plug-in has been: 

• ported from a stand-alone Eclipse version of ProB to an integrated RODIN plug-in; 

Page 99 of 137  

http://www.stups.uni-duesseldorf.de/ProB/update/prototype/


• enabled to animate Event-B specifications; 
• made more robust; 
• extended to support further Event-B constructs. 

The disprover plug-in has been developed and integrated within the proving interface.  

7.2.4 Integration with the Platform 

The latest ProB Plug-in uses both the RODIN database and its building mechanism.  This 
improved the robustness of the implementation compared to the previous version of ProB 
for Eclipse.  During the development of the ProB plug-in we also discovered and fixed a 
performance problem within the RODIN platform.  

7.2.5 Use by the Case Studies 

ProB has been used by all case studies during the verification and validation lifecycle 
stage.  In all cases feedback has been positive, indicating that ProB adds significant value 
to the process. 

7.2.6 Plug-in Metrics 

Requirements and Functionality 

1 How well does the tool perform its stated purpose? (C) 

If a tool fails to do what it claims, is inconsistent or erratic in its operation or takes 
too long to do it, it will not be commercially attractive and it will be hard to assure. 

The ProB tool can animate large B formal models.  It can also be used for 
automated consistency and refinement checking.  The tool has proved useful on 
various industrial case studies (some of which are within RODIN, such as case 
study 1, Lyra protocol engineering, and case study 3, Formal Techniques within an 
MDA Context).  

For example, ProB can animate all 13 refinements of Abrial’s PRESS B case study.  
The final model contained “about 20 sensors, 3 actuators, 5 clocks, 7 buttons, 3 
operating devices, 5 operating modes, 7 emergency situations, etc” [78].  The 13th 
refinement has 163 operations.   

A number of RODIN partners have successfully applied the Event-B version of 
ProB to various specifications (e.g. case study 3 used ProB to animate various 
hardware models, such as a Huffman encoder/decoder). 

The disprover plug-in consists of a user interface (UI) that displays the results of a 
proof and a core component that encapsulates the proof logic.  The UI is an 
extension to the RODIN proving user interface.  It allows the user to select a node 

Page 100 of 137  



in the proof tree, to be checked with ProB.  The core plug-in provides a way to 
apply the ProB disprover.  Its role is to:  

• Translate the sequence into a B machine.  
• Call ProB through the Eclipse ProB core plug-in.  
• Return results to the user interface.  
• Handle failures, time outs and user cancellation requests.  

Grade: [4-5] 

2 How rigorously is the required tool behaviour defined?  (O, S, U) 

The use of rigorous mathematical generation enables more rigorous testing, and 
could support mathematical analysis of the tool’s operation. 

The tool animates B models according to the standard mathematical B semantics, 
albeit for given fixed sizes of the basic sets.  The relationship to classical B 
consistency checking and refinement checking is clearly described in various 
papers about the tool. 

Grade: [3-4] 

3 How much does it contribute to system correctness?  (C, S) 

Due to the acquisition and user training costs, any tool must provide significant 
gains in system correctness if it is to be to be adopted commercially. 

As the various case studies have shown, ProB has very quickly identified a series of 
errors.  As a result of ProB’s automated nature, little additional user training is 
required. 

Grade: [5] 

4 How much does it extend/shrink system development and testing phases? (C) 

If a tool increases system correctness then one would normally expect a decrease in 
the amount of system re-testing after the tool has been applied. 

ProB does contain a very preliminary test case generation component; but currently 
this cannot be applied to realistic models.  Development and testing are diminished 
only to the extent that the various formal models are more likely to be correct and 
exhibit the desired functionality.  The development phase of the formal models 
itself should be considerably diminished, as the traditional interactive proofing 
approach is very labour intensive. 

Grade: [3] 

Page 101 of 137  



Tool Usability 

1 How long does it take a developer, who is knowledgeable in the specification 
language used, to learn how to use the tool effectively?  (U) 

Arguably, this is the prime usability criterion.  Typically a development team’s trial 
use of a tool will determine its use.  If the tool proves too difficult to learn 
relatively quickly then it is unlikely to be selected. 

ProB can be used straightaway be people versed in B.  It has also been used to 
teach B, highlighting the fact that it can help people to understand and master the B 
method. 

Grade: [5] 

2 How long does it take the tool to run to completion on a specification of 
representative size?  (C) 

The slower the tool, the more the developer will be frustrated. 

This question is difficult to answer for ProB, due to the exponential state explosion 
problem (“how long is a string?”).  However, anecdotal evidence indicates that in 
the early development phases errors are more prevalent and the tool runs much 
more quickly (as it quickly finds an error).  Later in the development, errors 
become increasingly difficult to locate and the tool takes longer to run.  Due to the 
exponential state explosion problem, an exhaustive check may not be feasible. 

Grade: [3] 

3 What is the tool’s response time to a change by a user to the specification?  (U) 

Typically specifications are created incrementally and usually, in an industrial 
development, are adjusted throughout the project as a result of requirements 
change.  A usable formal tool must be able to accept such changes without undue 
overhead in re-analysis and rework. 

Using ProB, a new specification can be very quickly reloaded.  In its Eclipse 
version the parser re-runs automatically in the background. 

Grade: [4] 

4 What is the cost of the hardware and operating system required to run the tool at 
an acceptable speed?  (C) 

The acceptable tool speed may vary from project to project, but a tool that runs on a 
standard PC has a clear commercial advantage over one that requires a high-

Page 102 of 137  



specification server to run.  If a CPU-intensive tool can farm out work over a 
network of PCs then this may make its use more practical. 

A standard PC is adequate for animating all the RODIN case study B models. 

Grade: [4] 

5 What is the cost of the tool licence for one, five or twenty users for a year, including 
support?  (C) 

Cost is rarely the primary consideration in tool selection, but it can be significant.  
If the project can only afford a single licence but has twenty developers then the 
tool can become a bottleneck and become less usable overall. 

Academic licences are free; the tool is free to RODIN project participants.  A 
commercial licensing plan has not yet been investigated. 

Grade: [4] 

Development and Integrity of the Tool 

These results, at the end of year three, measure the usability and extensibility of the tools 
for external developers. 

1 How quickly can an identified tool bug be fixed in tool’s code?  (U, X, O) 

This is a combined measure of the precision of the tool’s output (defining the bug), 
accessibility of the tool’s source code (finding the bug) the re-analysis (fixing the 
bug) and re-test (checking the fix) speed.  We have also considered whether 
multiple fixes can be applied concurrently. 

Most bugs have been fixed within a few days, usually less. 

Grade: [3-4] 

2 How quickly can an identified tool bug be fixed in the development and testing 
system?  (U, X, O) 

This measures the ease of adding tests to the testing system, verifying the test 
results and maintaining the errors database. 

Page 103 of 137  



The Prolog source code has a custom framework to support unit and regression 
testing.  It is easy to add new unit tests.  New regression tests have to be added to a 
Tcl script that runs the tool on sample specifications and checks whether stored 
traces can be reproduced.  It is also easy to add a new regression test.  The Eclipse 
version of the tool also has extensive tests. 

Grade: [3-4] 

3 How quickly can minor and major new tool features be implemented?  (X) 

This metric relates to the tool’s overall design; it is hard to define a good design, 
but this is one significant measure.  If even minor features require substantial tool 
rewriting then the tool is inflexible.  If major features can be added in a relatively 
straightforward manner then this indicates very well designed code. 

During year two, several features were added to the tool: integration with CSP, 
automated refinement checking, Flash-based animation engine, symmetry 
reduction, support for records and other new B features.  This indicates that new 
features can be implemented relatively quickly. 

The new Eclipse version of ProB is designed to be more easily extendable to 
outside developers: we have provided extension points, which we have used to 
extend ProB. 

Grade: [3] 

4 How long is the time required to bring in and educate a typical tool developer?  (U, 
X) 

This not only measures the accessibility of the tool’s design but also the chosen 
implementation language and the surrounding toolset for configuration 
management. 

Work at the core of ProB requires deep knowledge about Prolog, co-routineing and 
constraint solving.  At present a single person (Michael Leuschel) is primarily 
developing and maintaining the core, even though a new PhD student was able to 
add a new data type (free types for Z) after about six months.  Work on other 
components is more accessible, and more than a dozen different people have 
implemented various extensions.  The new Eclipse version makes developing 
extensions more straightforward (for developers familiar with Java and Eclipse). 

Grade: [3] 

Page 104 of 137  



5 How many operating systems and architectures are supported and how many are 
possible?  (U) 

It is relatively easy to implement a tool on a single operating system and 
architecture.  Adding a second, very different operating system is typically much 
more difficult.  The classic pair of operating systems to try is Windows vs. UNIX.  
Getting the tool to run the same way (and demonstrably so) on multiple platforms 
indicates the platform independence of the code, and indicates good potential 
longevity of the tool. 

We provide precompiled binaries for Linux, Mac OS X, and Windows.  Solaris 
binaries could also be generated (but there has been no demand).  A platform-
independent version is also available; however this requires a valid SICStus 
licence. 

Grade: [4-5] 

6 How extensive are unit, functional and system testing of the tool?  (U, S) 

There remains no substitution for testing.  Opinions on the efficacy of unit testing 
vary, but functional and system tests of the tool are necessary to demonstrate what 
the tool currently does and does not do. 

The Prolog source code has a custom developed unit and regression testing 
framework.  The Prolog tool currently has more than 760 unit tests, which can also 
be run by the user. 

For regression testing there is a Tcl script that runs the tool on sample 
specifications and checks whether stored traces can be reproduced and whether 
invariant violations can be found (for example there are various machines which 
encode hundreds of theorems about set theory, relations, functions, sequences and 
checks that the tool does not find counter examples to those theorems). 

The Eclipse and Java components also have a large number of unit tests associated 
with them. 

Grade: [4] 

7 How easy is it to compare two versions of the tool?  (U, S) 

Associated with testing is the ability to compare test results; it is much easier to see 
what has changed from a known baseline (e.g. the previous release of the tool) and 
justify the changes rather than justify an entire set of test results.  An easy and 
mostly automated comparison can prove invaluable. 

Page 105 of 137  



An extensive release history is distributed with the tool, explaining changes 
between the various versions. 

Grade: [3] 

8 How well does the tool admit self-analysis?  (U, S) 

Not all tools can do this; the SPARK Examiner, Perfect Developer and ProofPower 
are examples of tools that can admit self-analysis, whereas FDR cannot – its 
analysis pertains to parallel systems, not to conventional single-thread programs.  
Where a tool could reasonably admit self-analysis, it is good to perform it.  An 
alternative view of this issue is to ask the question: “Can the tool be produced using 
the facilities of the tool itself?” 

At present, the tool is not intended for developing code; its purpose is to analyse 
formal models.  Building a formal tool of parts of the tool is not unreasonable; 
however modelling the core constraint-solving engine of ProB in B probably lies 
outside the of B’s current capabilities. 

However, the tool uses its model checking capabilities to check for errors (see 
regression testing above); several errors were caught (in earlier versions) this way 
when the tool was able to disprove theorems from set theory. 

Grade: [2-3] 

9 How reliable is error tracking and regression testing?  (U, S) 

It is not enough to track errors; for a high-assurance tool it must be very difficult 
for identified errors to slip through the cracks.  Applying a hazard analysis to the 
error tracking system may yield useful information about where such slips may 
occur and how to prevent them. 

No hazard analysis has been performed to date. 

Grade: [0] 

10 What is the self-fault detection history, and in particular how many faults does the 
trend predict in the current tool?  (S) 

Tracking the faults identified in the tool will give some idea of whether the faults 
are limited in number and apparently decreasing (indicating a maturing tool), 
detected at a near-constant rate (indicating ineffective error fixing) or increasing 
(indicating a fragile tool design). 

Page 106 of 137  



No systematic statistics are kept on this matter.  However, all emails from users are 
kept.  A log of open issues is maintained. 

Grade: [2] 

11 What classes of self-fault are detectable or not detectable in the tool?  (S) 

A combination of the testing and operational environment of the tool will determine 
what faults in the tool are likely to be detected.  For instance, a large regression test 
suite with automated difference detection is likely to pick up non-deterministic 
behaviour.  The tool developers should identify what self-fault classes cannot be 
detected, and work to introduce detection or prevention measures. 

The tool is run on a standard benchmark suite to detect deterioration (or 
improvements) in performance. 

Grade: [3] 

Input (source) Language Issues 

1 What fraction of the possible source language grammar does the tool accept, 
analyse, and analyse correctly?  (U, S, X) 

Very few tools accept all of a complex source language.  However, it is reasonable 
to expect a very large fraction of the source language to be accepted and the 
unacceptable constructs to be identified clearly. 

ProB accepts 95% of the Event-B language. 

Grade: [4] 

2 If the source language is based on an external definition e.g. an ISO standard, how 
much must it change to be acceptable to the tool?  (U) 

It is plausible that there will be a large set of programs or specifications written in 
the ISO language.  The fewer specification changes necessary to make them 
acceptable to the tool, the better. 

There is no ISO standard.  We strive to be compatible with B4Free/AtelierB. 

Grade: [3] 

Page 107 of 137  



3 What is the earliest point in system development when a source document may be 
analysed?  (C) 

This is an aspect of effectiveness in the system development cycle.  It is well 
recognised that the earlier specification errors can be detected, the cheaper they are 
to fix. 

The new Eclipse version of ProB analyses the specification after 10 seconds of 
inactivity; As a consequence it is able to analyse source documents as early as 
possible. 

Grade: [5] 

Output Format 

1 How easy is it to auto-parse the tool output?  (U, X) 

This is often important when the tool is incorporated into an existing program 
development system, and its output will affect subsequent development operations.  
This task becomes harder if the tool’s output is difficult to parse.  The ideal is for 
the output to be in a suitable standard format e.g. XML, as this allows the use of 
off-the-shelf parsers and conversion tools. 

Where the tool maintains data in a persistent state (such as a database), “auto 
parsing” should be interpreted as “accessing the data via a standard querying 
mechanism, such as SQL or ODBC”. 

Output is in ASCII format (or Prolog format when storing the state space).  ProB 
also provides .dot output as well as Postscript/PDF views of the state space. 

Grade: [3-4] 

2 What level of control over the output volume and content is allowed?  (U, X) 

Controllable output will broaden the possible users of the tool.  Some developers 
will simply want to know if the analysis is complete and correct; others will want a 
great deal of data about an identified fault, and it is important that both 
requirements can be satisfied.  The result of a formal proof, for instance, may vary 
from a binary “proved/not proved” and a full step-by-step proof log detailing each 
application of a theorem or deduction rule.  A caveat is that it should be very 
difficult to hide actual failures in the output. 

A command-line version is available for scripting. 

Page 108 of 137  



The .dot/PS/PDF output can be influenced by user preferences. 

Grade: [4] 

3 How well does the output relate to the input, for instance for error reporting?  (C, 
U) 

This is important for day-to-day operation of the tool.  If the tool finds a fault, it 
should make it easy for the developer to establish the location of the cause of the 
fault (rather than just the points at which symptoms of the fault are visible). 

Syntax errors are highlighted in the code.  The new Eclipse version uses the Eclipse 
mechanism for locating errors in the source code (for syntax errors as well as a few 
semantic errors).  Model and refinement checks provide the user with traces that 
exhibit the erroneous behaviour.  Traces can be saved to an ASCII file. 

Grade: [4] 

7.2.7 Conclusion 

Animation has proven extremely useful when developing B models.  Our plug-ins 
provide support for animating Event-B models, and are fully integrated into the RODIN 
development environment.  The plug-ins have proven popular with other RODIN 
partners, and have been used to uncover a considerable number of errors in formal 
models. 

Page 109 of 137  



7.3 Brama 

7.3.1 Introduction 

Brama animates Event-B models, with objectives to: 

• enable multi-refinement level model to be debugged, thus providing confidence that 
the model behaves as expected; 

• show a B model such that it can be understood by a non B specialist, thus enabling 
third party validation. 

A dedicated website has been created at http://www.brama.fr/index_en.html. 

Since D16 [13], Brama has been: 

• extended with improvements to: 
o support of Event B expressions and predicates,  
o animation capabilities,  
o man-machine interface improvement 

• documented, and 
• experimented with in Case Study 2 (c.f. §5.2 above) and other industrial projects. 

7.3.2 Current Status 

During the three years of the project, the following goals have been achieved: 

• Development of an Event-B animation tool. 
• Provision of scheduling features, enabling automatic, delayed execution of events. 
• Improvement of underlying evaluation algorithms. 
• Proper integration with the RODIN platform as a platform plug-in. 

7.3.3 Progress since Year 2 Assessment 

The Brama plug-in has been: 

• Documented. 
• Improved, with a better man-machine interface and better error messages. 
• Applied to various Event-B scenarios, 
• Integrated with the Composys plug-in. 

7.3.4 Integration with the Platform 

Brama is integrated into the RODIN the platform as a plug-in.  It provides several views 
(events, variables, constants, model structure and execution history).  It also contributes 
the RODIN model editor (constant value editor). 

Page 110 of 137  

http://www.brama.fr/index_en.html


7.3.5 Use by the Case Studies 

Case Study 2 – Engine Failure management has used the Brama plug-in (c.f. §5.2 above). 

7.3.6 Plug-in Metrics 

Requirements and functionality 

1 How well does the tool perform its stated purpose?  (C) 

Brama was designed to assist verification of model correctness and compliance 
with modelled systems.  A model can be examined, by selecting a particular 
sequence of events or by letting the tool choosing a sequence.  Scenarios can be 
saved, resumed, and replayed.  The tool has been used by various 
students/engineers. 

Grade: [5] 

2 How rigorously is the required tool behaviour defined?  (O, S, U) 

The tool behaviour has been specified using natural language. 

Grade: [3] 

3 How much does it contribute to system correctness?  (C, S) 

The tool assists: 

• model behaviour (scenarios, etc) verification, and  
• detection of broken invariants.  

Grade: [4] 

4 How much does it extend/shrink system development and testing phases?  (C) 

The tool is applicable at any stage of the development.  It has been used at tender 
writing stage, providing an initial reference for the complete development. 

Grade: [3] 

Page 111 of 137  



Tool usability 

1 How long does it take a developer, who is knowledgeable in the specification 
language used, to learn how to use the tool effectively?  (U) 

Animating a RODIN model takes minutes and is interface-based.  Graphical 
animation requires some Flash knowledge and FlashMX development experience. 

Grade: [3] 

2 How long does it take the tool to run to completion on a specification of 
representative size?  (C) 

An animation step executes in under a second.  Several animations are available on 
the web, demonstrating this fact.  When the animation engine is unable to find 
suitable values for variables in a non-deterministic substitution, the animation slows 
down for seconds. 

Grade: [4] 

3 What is the tool’s response time to a change by a user to the specification?  (U) 

A modification is directly reflected in the animated model.  However, the animation 
has to be restarted after such modifications. 

Grade: [4] 

4 What is the cost of the hardware and operating system required to run the tool at 
an acceptable speed?  (C) 

Any PC is able to run the tool. 

Grade: [5] 

5 What is the cost of the tool licence for one, five or twenty users for a year, including 
support?  (C) 

The released version of the tool is free.  

Grade: [5] 

Page 112 of 137  



Development of the tool 

1 How quickly can an identified bug be fixed in code?  (U, X, O) 

The tool is based on the Java Eclipse framework, heavily using JTesting.  
Testbenches are executed on Windows, Linux and MacOsX platforms. 

Grade: [4] 

2 How quickly can an identified bug be fixed in the development and testing system?  
(U, X, O) 

Adding new tests is fairly straightforward and requires relatively little time and 
effort. 

Grade: [3] 

3 How quickly can minor and major features be implemented?  (X) 

Minor features are easy to implement.  Major features are either implemented as 
plug-in extensions or by modifying object-oriented code. 

Grade: [3]  

4 How long is the time required to bring in and educate a typical tool developer?  (U, 
X) 

Educated/non educated tool developers have developed several extensions.  The 
available development documentation has enabled developers to modify efficiently 
the tool in one week. 

Grade: [3] 

5 How many operating systems and architectures are supported and how many are 
possible?  (U) 

The release version supports the Windows, Linux and MacOsX versions of the 
RODIN platform. 

Grade: [4] 

Page 113 of 137  



Testing and verification 

1 How extensive are unit, functional and system testing of the tool?  (U, S) 

The tool comes with an extensive set of test cases.  The animation engine has also 
been used in an industry tool, for verifying railway safety critical data (track 
topology). 

Grade: [3] 

2 How easy is it to compare two versions of the tool?  (U, S) 

The different release versions of the tool will be distributed with a release history, 
which documents all changes.  

Grade: [3] 

3 How well does the tool admit self-analysis?  (U, S) 

The tool has not been designed for this purpose. 

Grade: [N/A] 

4 How reliable are error tracking and regression testing?  (U, S) 

Error tracking is reliable due to the Brama data structure.   

Grade: [3] 

5 What is the self-fault detection history, and in particular how many faults does the 
trend predict in the current tool?  (S) 

Data is not available to provide a conclusive predictive answer at present. 

Grade: [0] 

6 What classes of self-fault are detectable or not detectable in the tool?  (S) 

Evaluation errors are detectable if an invariant is broken. 

Grade: [3] 

Page 114 of 137  



Source language 

1 What fraction of the possible source language grammar does the tool accept, 
analyse, and analyse correctly?  (U, S, X) 

The tool supports completely the RODIN platform language. 

Grade: [4] 

2 If the source language is based on an external definition e.g. an ISO standard, how 
much must it change to be acceptable to the tool?  (U) 

There is no ISO standard. 

Grade: [N/A] 

3 What is the earliest point in system development when a source document may be 
analysed?  (C) 

The tool should be applied at the very beginning of a development. 

Grade: [5] 

Output form 

1 How easy is it to auto-parse the tool output?  (U, X) 

The output of the tool is displayed directly in the RODIN platform interface 
(animation form). 

Grade: [5] 

2 What level of control over the output volume and content is allowed?  (U, X) 

The output volume is directly related to the input model.  

Grade: [5] 

3 How well does the output relate to the input, for instance for error reporting?  (C, 
U) 

If the model doesn’t behave as expected, scenarios can be saved to help determine 
where the error occurred. 

Grade: [5] 

Page 115 of 137  



7.3.7 Conclusion 

As expected, as well as presenting the results of modelling, formal model animation 
enables non-experts to discover modelling errors.  The Brama plug-in has been developed 
in close collaboration with final users (within and outside the project), and experimented 
on real, industrial size projects.  The regular and accurate feedback collected 
demonstrates a real involvement and interest from modelling practitioners and animation 
recipients. 

Page 116 of 137  



7.4 UML–B 

7.4.1 Introduction 

UML–B is an extension feature for the RODIN platform.  It provides a UML-like 
graphical front-end for Event-B modelling and adds class-oriented and state machine 
modelling capabilities.  UML–B is automatically translated into Event-B for analysis and 
verification. 

7.4.2 Current Status 

UML–B has been used in several of the case studies and extensively on case study 2 
(Engine Failure management) (see section 5.2).  Several papers [28,29,30,79] have been 
published concerning its use in case study 2.  UML–B has been demonstrated at both 
RODIN industry days and at the Memot workshop, Oxford, July 2007.  Two formal 
experiments have been performed to compare users’ comprehension of UML–B verses 
B/Event-B models.  The first experiment was performed on the pre-RODIN version of 
UML–B and compared against classic B models.  The second, more recent, experiment 
compares the latest version of UML–B with Event-B. 

7.4.3 Progress since Year 2 Assessment 

UML–B was not assessed at year two because it was not sufficiently developed to 
support a robust evaluation.  The year one assessment examined the pre-RODIN version 
of UML–B.  The assessment highlighted some of the problems with the old version and 
these have been taken into account when developing the new version.  The new version 
of UML–B is a UML-like modelling notation rather than a specialisation of UML.  This 
major decision was taken after trying to implement the new version as a ‘stronger’ 
specialisation of UML 2.0 via its improved profile concepts.  Although this was partially 
successful, we still felt that increased freedom to design the appropriate modelling 
concepts was needed, and that these concepts needed to be brought to the fore (rather 
than attaching them as additional features via stereotyping).  Therefore UML–B was 
redesigned via an independent meta-model.  

• The meta-model was used to generate a model repository using the meta-model 
modelling framework (EMF).   

• A graphical editor was generated using the graphical modelling framework (GMF). 
• A meta-model ‘builder’ was implemented to convert UML–B models to Event-B.  

(Eclipse builders are programs that are informed of changes to resources in the 
current workspace so that those changes can be processed.  For example, the Java 
compiler runs as a meta-model builder). 

• Further meta-model plug-ins were added to provide user interface facilities such as 
a new project wizard, a project nature, and a perspective layout.  

Page 117 of 137  



• The UML–B plug-ins were packaged as a meta-model ‘feature’ and released on the 
RODIN project file release system so that it can be installed from the RODIN 
project update site. 

7.4.4 Integration with the Platform 

The UML–B, Event-B builder uses the platform API in order to create an Event-B project 
and populate it with the corresponding Event-B models.  The API was easy to use.  The 
Event-B keyboard was extended to provide additional key combinations.  This was 
difficult to implement because the lexical analyser is not extensible.  Consequently, the 
lexor was copied and adapted.  The ‘attributes’ extension point of the RODIN database 
was used to add an attribute to Event-B elements to provide a link to the UML–B element 
from which it was created.  Further integration is currently underway in order to retrieve 
problem markers from the Event-B elements so that the problems can be reflected onto 
the UML–B source element. 

7.4.5 Use by the Case Studies 

UML–B has been used on CS2 by teams working at ATEC, UK and Åbo Akademi, 
Finland.  ATEC provided feedback on the pre-RODIN version of UML–B.  The main 
point raised by CS2 in the year one and year two assessment reports was that use of the 
action and constraint language, uB, relied upon knowing details of the translation 
process.  This was mainly due to the translation of associations as a function to sets of 
instances.  This has been changed to translate to relations so that the action and constraint 
language is simpler.  In addition, the use of ‘self’ is now mandatory, whereas before it 
could be omitted.  However, further work is required to complete a self-contained 
notation.  In year two CS2 suggested widening UML–B to utilise other UML diagram 
notations.  

More recently the case study has used the new version of UML–B.  This has been 
successful but has revealed a need for dummy ‘refined classes’ in order to handle 
refinement of class features.  This feature has now been added to UML–B. 

Similarly, CS4 required the use of ‘records’, which were refined by context extension.  
Records are analogous to ClassTypes in UML–B  (ClassTypes are Classes that have only 
constant attributes and no variable data or methods).  The ability to ‘extend’ ClassTypes 
in extended (refined) contexts was added to UML–B as a result of this case study. 

CS1 used a bespoke profile of UML called UML-Lyra.  As a consequence, Åbo Akademi 
has investigated a model transformation from UML-Lyra to UML–B. 

Page 118 of 137  



7.4.6 Plug-in Metrics 

Requirements and Functionality 

1 How well does the tool perform its stated purpose? (C)  

The new version of UML–B works well and is easier to understand than the 
previous version.  

Some housekeeping requires further attention.  For example, data can be lost if 
several diagrams are edited at the same time.   

There are several areas that are not yet implemented.  For example, better mark-up 
of errors on the diagrams is required. 

Grade: [4] 

2 How rigorously is the required tool behaviour defined?  (O, S, U)  

The abstract syntax for UML–B is defined by a meta-model written in UML.  OCL 
constraints are included to describe well-formedness constraints.  The translation 
into Event-B is defined in natural language and by tables.  

Grade: [3]  

3 How much does it contribute to system correctness?  (C, S)  

The tool translates UML models to B where other tools can be used to validate and 
verify the models formally.  The use of a well-known diagrammatic specification 
notation makes the models accessible to domain experts who can validate them.  
Thus the contribution is to facilitate the benefits of both UML and B notations. 

Grade: [5] 

4 How much does it extend/shrink system development and testing phases? (C)  

Compared to developing in B, the diagram entities represent significant amounts of 
B notation making it much quicker to create models and to re-factor them when 
problems are discovered.  Compared to modelling in UML, the usual benefits of 
formal development (i.e. early detection of errors) are gained. 

Grade: [4] 

Page 119 of 137  



Tool usability  

1 How long does it take a developer, who is knowledgeable in the specification 
language used, to learn how to use the tool effectively?  (U)  

The translation tool runs automatically and requires no user action.  Assuming 
knowledge of the specification language, UML–B, and familiarity with similar 
UML tools, the drawing tool is easy to use.  Students were able to use the tool after 
a one-hour tutorial. 

Grade: [5]  

2 How long does it take the tool to run to completion on a specification of 
representative size?  (C)  

The typical time for tool completion is less than one second.  The largest models 
may take a few seconds. 

Grade: [5]  

3 What is the tool’s response time to a change by a user to the specification?  (U)  

UML–B decreases the rework overhead compared to making changes in B because 
it is so much quicker to re-work the models in a diagrammatic modelling tool. 

Grade: [4] 

4 What is the cost of the hardware and operating system required to run the tool at 
an acceptable speed?  (C)  

Any desktop PC, which is capable of running Eclipse at an acceptable speed, can 
support the plug-in.  A minimum specification of 1Ghz processor with 1GB of 
RAM is suggested but an older PC with approximately half this spec will run 
UML–B tolerably. 

Grade: [5]  

5 What is the cost of the tool licence for one, five or twenty users for a year, including 
support?  (C)  

UML–B (and all the software it requires) is free of charge.  Support is provided, as 
needed, free of charge. 

Grade: [5]  

Page 120 of 137  



Development of the Tool 

These metrics address tactical and technical views of the product and resource objects.  

1 How quickly can an identified bug be fixed in code?  (U, X, O)  

This depends on the nature of the bug.  Simple translation bugs can be fixed very 
quickly (within a few hours).   

However, it is often difficult to determine the cause of the problem when bugs are 
discovered in the drawing tool.  Such bugs may take weeks to fix.  

Bugs are usually addressed in batches before a re-release is made onto the 
SourceForge FRS system. 

Grade: [2]  

2 How quickly can an identified bug be fixed in the development and testing system?  
(U, X, O)  

The bug tracking system of SourceForge is used.  There is no testing system. 

Grade: [N/A] 

3 How quickly can minor and major features be implemented?  (X)  

UML–B is well structured and is modularized into thirteen plug-ins, which have 
low coupling.  The Eclipse extension point mechanisms are used to isolate aspects 
of the tool with a view to separating concerns.  Existing Eclipse tool building 
projects are used (e.g. EMF, GEF, GMF) to provide powerful programming 
features.  Hence new requirements can usually be added quickly.  Some 
requirements however, may be constrained by these features if they do not align 
with the vision of the feature builders. 

Grade: [3] 

4 How long is the time required to bring in and educate a typical tool developer?  (U, 
X)  

An experienced Eclipse Java developer could easily start maintenance almost 
immediately.  An inexperienced developer (with no meta-model knowledge) has 
successfully made changes to the translator tool after a day or two.  Some parts of 
the system (e.g. those requiring knowledge of GMF) would take longer to learn. 

Grade: [3]  

Page 121 of 137  



5 How many operating systems and architectures are supported and how many are 
possible?  (U)  

UML–B runs within Eclipse and therefore runs on any operating system supported 
by Eclipse.  It has been demonstrated to run on the Windows, Linux and MAC-
OSX versions of Eclipse. 

Grade: [5] 

Testing and Verification 

The following metrics address tactical and technical views of product objects.  

1 How extensive are unit, functional and system testing of the tool?  (U, S)  

Currently, testing is purely on an ad-hoc basis when features are added or 
corrections are made.  Little regression testing is performed. 

Grade: [0]  

2 How easy is it to compare two versions of the tool?  (U, S)  

The SourceForge CVS facilities are used to develop the code.  Eclipse acts as a 
client to the CVS repository and provides excellent version comparison facilities. 

Grade: [5]  

3 How well does the tool admit self-analysis?  (U, S)  

Self-analysis is not applicable since the tool is a translator not an analyser. 

Grade: [N/A]  

4 How reliable is error tracking and regression testing?  (U, S)  

Errors are being tracked using the tracking system on SourceForge (initially a 
system at Southampton was used, so many bugs are on UGForge).  The error 
tracking system is very reliable.  Little regression testing is performed.  

Grade: [1]  

Page 122 of 137  



5 What is the self-fault detection history, and in particular how many faults does the 
trend predict in the current tool?  (S)  

Bugs are being raised regularly due to the immaturity of the tools. 

Grade: [0]  

6 What classes of self-fault are detectable or not detectable in the tool?  (S)  

Translation faults resulting in inconsistent B are detected when the output is 
verified using B tools.  A translation fault that resulted in consistent but incorrect B 
might be detected if animation is performed but could go undetected. 

Grade: [3]  

Source language 

These metrics address tactical and technical views of process objects.  

1 What fraction of the possible source language grammar does the tool accept, 
analyse, and analyse correctly?  (U, S, X) 

All of the source language (UML–B) is accepted.  

Grade: [5]  

2 If the source language is based on an external definition e.g. an ISO standard, how 
much must it change to be acceptable to the tool?  (U)  

The source language has been designed as part of the tool and is not based on a 
standard. 

Grade: [N/A]  

3 What is the earliest point in system development when a source document may be 
analysed?  (C)  

UML–B may be used on an arbitrarily abstract package.  In this respect, it draws on 
the underlying Event-B methods, which are designed to identify specification errors 
as soon as they are introduced. 

Grade: [5]  

Page 123 of 137  



Output form  

These metrics address a technical view of the product object.  

1 How easy is it to auto-parse the tool output?  (U, X) 

The output is in Event-B, which is automatically parsed upon creation/update. 

Grade: [5] 

2 What level of control over the output volume and content is allowed?  (U, X)  

UML–B is a translation tool, not an analysis tool. 

Grade: [N/A] 

3 How well does the output relate to the input, for instance for error reporting?  (C, 
U)  

We can re-interpret this question to consider how well errors reported by the Event-
B analysis tools can be related back to the UML–B models.  Currently there is no 
automatic feedback mechanism.  The translation inserts comments into the Event-B 
model to assist the user in tracing the UML–B source of Event-B elements.  This 
has been sufficient for the current case study work.  We plan to add automatic error 
mark-up of the UML–B diagrams as a future development. 

Grade: [3] 

7.4.7 Plug-in Additional Metrics 

A series of empirical evaluations, including two formal experiments and two surveys, 
were performed to assess the usability of UML–B.  Usability in this context means the 
understandability/comprehensibility, learnability, operability and attractiveness of the 
method [80].  The experiments evaluated the comprehensibility of the UML–B model, 
while the surveys assessed the usability of UML–B as a whole.  

The first experiment compared the comprehensibility of pre-RODIN UML–B with that of 
classical B.  This was used as a baseline and to assess the basic concepts of UML–B.  The 
subjects’ comprehension was measured based on the interpretation of the symbols used, 
the tracing of input and output, the mapping between models and problem domains, and 
the model modification.  The experiment confirmed that subjects found it easier and 
quicker to understand models in UML–B than in classical B.  In particular, the results 
suggest, with 95% confidence, that a UML–B model could be up to 16% (overall 
comprehension) and 50% (comprehension for modification task) easier to understand 
than the corresponding B model [81].  

Page 124 of 137  



Following the first experiment, a theoretical underpinning was developed to explain why 
graphical representation together with textual representation should assist model 
comprehension.  Stronger mechanisms for measuring the degree of comprehension based 
on the Cognitive Theory of Multimedia Learning [82] were invented.  The second 
experiment [87] utilised these mechanisms to assess subjects’ abilities to construct 
problem domain knowledge.  The idea was that a UML–B model is comprehensible if it 
allows subjects to not only recognise the presented information but also to extend the 
understanding of the presented information in novel situations such as problem solving.  
The construction of knowledge structures was measured by subjects’ ability to explain 
cause-and-effect, compare and contrast two elements, describe main ideas and supporting 
details, list a set of items and analyse a domain into sets and subsets [83].  These criteria 
were used together with Bloom’s Taxonomy [84] as the measurement instrument.  The 
second experiment compared a (RODIN) UML–B model versus an Event-B model.  The 
results of the experiment suggest, with 95% confidence, that a UML–B model could be 
up to 32% (overall understanding) and 76% (understanding for modification task) better 
and quicker than an Event-B model in promoting problem domain understanding.  A 
UML–B model allows the subjects to analyse, generalise and criticise the presented 
problem domain quickly and use the understanding to provide solutions. 

The surveys based on the grounded theory [85] were performed to understand the nature 
of experience of using UML–B [86].  The first survey investigated the pre-RODIN 
UML–B and the second the RODIN UML–B.  The surveys found that the method 
appeals to users who opt into B modelling but prefer working with UML’s development 
style.  UML–B’s graphical representation alleviates the difficulty of developing a formal 
model from scratch by stimulating the formulation of ideas through the use of visual 
objects at the abstraction level.  However, the method requires users to understand the 
principles and roles of both UML and B notations as well as the integration rules.  Users 
also require strong support from the environment.  Supporting tools and comprehensive 
documentation need to be available, useful, easy-to-learn and easy-to-use. 

7.4.8 Conclusion 

UML–B is a usable notation and supporting toolset.  Improvements to the notation, based 
upon a bespoke meta-model rather than a UML extension, have provided greater 
flexibility and specialisation.  This has made the notation easier and more natural to use 
compared to the previous U2B3 version.   

The new tools are based upon the Eclipse plug-in framework and utilise Eclipse feature 
projects.  This has improved the structure and maintainability of the toolset. 

Since the U2B translator tools (and RODIN Event-B tools) run automatically as Eclipse 
builders, integration between the tools is very good.  The Eclipse problem view reports 
errors, which are easily traced back to the UML–B source elements.  Further 
improvements are planned to mark up the errors on the UML–B diagram elements. 

A series of empirical investigations has revealed that UML–B is significantly quicker to 
understand and modify than Event-B for novice users. 

Page 125 of 137  



7.5 B2RODIN 

7.5.1 Introduction 

The B2RODIN tool enables existing B models to be reused with the RODIN platform.  
Such models should comply with the Event-B language definition [7].  B2RODIN tool is 
reachable at the update site http://www.bmethod.com/html/outils_en.html. 

Since D16 [13], the B2RODIN plug-in has been improved, documented and closely 
integrated with Brama and CompoSys (a RODIN plug-in that has been developed 
alongside the project and experimented with on other industrial projects).  B2RODIN has 
been experimented with during case studies two, four and five (c.f. § 5.2, 5.4 and 5.5). 

7.5.2 Current Status 

During the three years of the project, the following goals have been achieved: 

• Development of a tool able to transform AtelierB models into RODIN models.  
AtelierB models must be Event-B compliant, i.e. only a restricted class of models is 
accepted as input (no nested substitutions, condition/action form, etc.). 

• Support for Brama.  The Brama animator requires valued constants.  This valuation 
can be added to original B models (as comments) and processed by B2RODIN, to 
have valid RODIN constants.  

• Proper integration with the RODIN platform as a platform plug-in. 

7.5.3 Progress since Year 2 Assessment 

The B2RODIN plug-in has been: 

• Integrated with other RODIN plug-ins (Brama and Composys). 
• Documented. 
• Improved, with a better man-machine interface and better error messages. 
• Applied to various B models (case-studies, industrial projects). 

7.5.4 Integration with the Platform 

B2RODIN is integrated with the platform as a plug-in and provides a valuable wizard. 

7.5.5 Use by the Case Studies 

B2RODIN has been used by case studies two, four and five (c.f. § 5.2, 5.4 and 5.5). 

Page 126 of 137  



7.5.6 Plug-in Metrics 

Requirements and functionality 

1 How well does the tool perform its stated purpose? (C) 

The tool was designed to help people migrate AtelierB models to the RODIN 
platform, without having to retype the entire model.  Only Event-B compliant 
models are accepted (not nested substitutions, SELECT/ANY/BEGIN are the only 
supported substitutions).  There is little filtering of the input model, which 
sometimes leads to failures, but for adequate models, the transformation is 
performed as expected. 

Grade: [4] 

2 How rigorously is the required tool behaviour defined?  (O, S, U) 

The tool is reusing the AtelierB B-compiler, which has been heavily tested.  
B2RODIN has been checked against a large set of models. 

Grade: [4] 

3 How much does it contribute to system correctness?  (C, S) 

On its own, the tool doesn’t contribute to system correctness.  The RODIN static 
checker, and then the RODIN prover, verifies the validity of the transformation.  

Grade: [N/A] 

4 How much does it extend/shrink system development and testing phases? (C) 

The tool doesn’t contribute, as it only permits to reuse existing models. 

Grade: [N/A] 

Tool usability 

1 How long does it take a developer, who is knowledgeable in the specification 
language used, to learn how to use the tool effectively?  (U) 

The tool is provided with documentation explaining what sub-language is 
supported, and with a tutorial.  Handling the tool takes minutes. 

Grade: [5] 

Page 127 of 137  



2 How long does it take the tool to run to completion on a specification of 
representative size?  (C) 

The majority of transformations are completed in less than 10 seconds. 

Grade: [5] 

3 What is the tool’s response time to a change by a user to the specification?  (U) 

The transformation of the initial AtelierB specification is directly taken into 
account by the tool, provided that the model complies with the Event-B form. 

Grade: [5] 

4 What is the cost of the hardware and operating system required to run the tool at 
an acceptable speed?  (C) 

Any PC is able to run the tool. 

Grade: [5] 

5 What is the cost of the tool licence for one, five or twenty users for a year, including 
support?  (C) 

The released version of the tool is free.  

Grade: [5] 

Development of the tool 

1 How quickly can an identified bug be fixed in code?  (U, X, O) 

The tool is based on the B compiler library.  The code related to the transformation 
is quite small and well identified.  To date no bug has been reported.  Problems 
detected are more related to acceptance and transformations of non-compliant B 
models. 

Grade: [4] 

2 How quickly can an identified bug be fixed in the development and testing system?  
(U, X, O) 

Adding new tests is fairly straightforward and requires relatively little time and 
effort. 

Grade: [3] 

Page 128 of 137  



3 How quickly can minor and major features be implemented?  (X) 

Minor features are easy to implement and do not require substantial code rewriting.  
This is due to the reuse of the existing B compiler library. 

Grade: [3]  

4 How long is the time required to bring in and educate a typical tool developer?  (U, 
X) 

The key issue is learning the B compiler structure.  We have in-house 
documentation describing data structures and examples demonstrating how to 
extend the library. 

Grade: [3] 

5 How many operating systems and architectures are supported and how many are 
possible?  (U) 

The release version supports the Windows, Linux and MacOsX versions of the 
RODIN platform. 

Grade: [4] 

Testing and verification 

1 How extensive are unit, functional and system testing of the tool?  (U, S) 

A model database has been set up.  These models have been tested with the tool.  
They provide sufficient evidence that the tool is working according to the 
specification. 

Grade: [3] 

2 How easy is it to compare two versions of the tool?  (U, S) 

The different release versions of the tool will be distributed with a release history, 
which documents all changes.  

Grade: [3] 

3 How well does the tool admit self-analysis?  (U, S) 

The tool has not been designed for this purpose. 

Grade: [N/A] 

Page 129 of 137  



4 How reliable are error tracking and regression testing?  (U, S) 

Error tracking is reliable due to B tree data structure (B compiler).   

Grade: [3] 

5 What is the self-fault detection history, and in particular how many faults does the 
trend predict in the current tool?  (S) 

Data is not available to provide a conclusive predictive answer at present. 

Grade: [0] 

6 What classes of self-fault are detectable or not detectable in the tool?  (S) 

Faults are only related to non-compliant B models.  In these cases, transformations 
are not adequate and resulting RODIN models can’t be type checked. 

Grade: [3] 

Source language 

1 What fraction of the possible source language grammar does the tool accept, 
analyse, and analyse correctly?  (U, S, X) 

The tool supports the Event-B structure and a subset of the AtelierB language.  The 
output language is fully compliant with the RODIN platform. 

Grade: [4] 

2 If the source language is based on an external definition e.g. an ISO standard, how 
much must it change to be acceptable to the tool?  (U) 

There is no ISO standard. 

Grade: [N/A] 

3 What is the earliest point in system development when a source document may be 
analysed?  (C) 

The tool should be applied at the very beginning of a development. 

Grade: [5] 

Page 130 of 137  



Output form 

1 How easy is it to auto-parse the tool output?  (U, X) 

The output of the tool is directly provided to the platform. 

Grade: [5] 

2 What level of control over the output volume and content is allowed?  (U, X) 

The output model is directly related to the input model.  They are both comparable 
in size and complexity. 

Grade: [5] 

3 How well does the output relate to the input, for instance for error reporting?  (C, 
U) 

For compliant models, all model elements are in both input and output.  Some 
modifications exist, mainly in the expression language and may be checked 
manually.  The RODIN type checker helps verification by ensuring that the output 
model complies with the RODIN modelling language. 

Grade: [5] 

7.5.7 Conclusion 

B2Rodin has proved a useful, time saving tool, helping to migrate Event-B modelling 
from AtelierB to RODIN.  The tool is able to translate correctly the B language subset 
that closely matches the language supported by the RODIN platform, and provides a 
means to add semantic information to the original model in order to ease its translation. 

Page 131 of 137  



SECTION 8 REFERENCES 

1. Contract for specific targeted research project, Rigorous Open Development 
Environment for Complex Systems (RODIN).  Proposal no. 511599, Annex I 
Description of Work, 27th April 2004. 

2. FP6 Project Review, IST 511599 RODIN, P. Gibson, T. Margaria.  20 Oct 2006. 
3. Definitions of case studies and evaluation criteria.  RODIN deliverable D2/D1.1, 

Project IST-511599, School of Computing Science, Newcastle University. 
4. Traceable Requirements Document for Case Studies, B. Arief, J. Coleman, 

A. Hall, A. Hilton, A. Iliasov, I. Johnson, C. Jones, L. Laibinis, S. Leppanen, 
I. Oliver, A. Romanovsky, C. Snook, E. Troubitsyna, J. Ziegler.  RODIN 
deliverable D4/D1.2, Project IST-511599, School of Computing Science, 
Newcastle University, 2005. 

5. Final Decisions.  RODIN deliverable D5/D3.1.  Project IST-511599, School of 
Computing Science, Newcastle University. 

6. Procedures for Technical Review and Assessment.  RODIN deliverable 
D6/D7.1, Project IST-511599, School of Computing Science, Newcastle 
University, 25th May 2006. 

7. Event-B language, C. Metayer, J-R. Abrial, and L. Voisin.  RODIN deliverable 
D7/D3.2, Project IST-511599, School of Computing Science, Newcastle 
University. 

8. Initial Report on Case Study Development, E. Troubitsyna, Ed.  RODIN 
deliverable D8/D1.3, Project IST-511599, School of Computing Science, 
Newcastle University, 2005. 

9. Preliminary report on methodology.  RODIN deliverable D9/D2.1, Project IST-
511599, School of Computing Science, Newcastle University, August 2005. 

10. Specification of basic tools and platform.  RODIN deliverable D10/D3.3, Project 
IST-511599, School of Computing Science, Newcastle University. 

11. RODIN Assessment Report for Year 1.  RODIN deliverable D14/D7.2, Project 
IST-511599, School of Computing Science, Newcastle University, 26th August 
2005. 

12. Prototypes of basic tools and platform.  RODIN deliverable D15/D3.4, Project 
IST-511599, School of Computing Science, Newcastle University. 

13. Prototype plug-in tools.  RODIN deliverable D16/D4.2, Project IST-511599, 
School of Computing Science, Newcastle University. 

14. Intermediate Report on Case Study Development, E. Troubitsyna, Ed.  RODIN 
deliverable D18/D1.4, Project IST-511599, School of Computing Science, 
Newcastle University, 2006. 

15. Intermediate Report on Methodology, C.B Jones, Ed.  RODIN deliverable 
D19/D2.2, Project IST-511599, School of Computing Science, Newcastle 
University, 2006. 

16. RODIN Assessment Report for Year 2.  RODIN deliverable D22/D7.3, Project 
IST-511599, School of Computing Science, Newcastle University, 2nd October 
2006. 

17. Internal versions of basic tools and platform.  RODIN deliverable D23/D3.5, 
Project IST-511599, School of Computing Science, Newcastle University. 

Page 132 of 137  



18. Final report on Case study development.  RODIN deliverable D26/D1.5, Project 
IST-511599, School of Computing Science, Newcastle University. 

19. Case study demonstrators.  RODIN deliverable D27/D1.6, Project IST-511599, 
School of Computing Science, Newcastle University. 

20. Report on assessment of tools and methods.  RODIN deliverable D28/D1.7, 
Project IST-511599, School of Computing Science, Newcastle University. 

21. Final report on methodology.  RODIN deliverable D29/D2.3, Project IST-
511599, School of Computing Science, Newcastle University. 

22. Public versions basic tools and platform.  RODIN deliverable D30/D3.6, Project 
IST-511599, School of Computing Science, Newcastle University. 

23. Synthesis of Scenario Based Test Cases from B Models, M. Satpathy, 
Q.A. Malik, and J. Lilius.  Proceedings of Formal Approaches to Software 
Testing and Runtime Verification, First Combined International Workshops 
FATES 2006 and RV 2006, Seattle, USA, August 2006, Lecture Notes in 
Computer Science, Vol. 4262, pp. 133-147, Springer. 

24. Formal Verification of Consistency in Model-Driven Development of 
Distributed Communicating Systems and Communication Protocols, D. Iliac, 
E. Troubitsyna, L. Laibinis, and S. Leppänen.  Proceedings of IEEE 2nd 
International Symposium on Leveraging Applications of Formal Methods, 
Verification and Validation (ISoLA 2006), pp. 436-455. 

25. Formal Model-Driven Development of Communicating Systems, L. Laibinis, 
E. Troubitsyna, S. Leppänen, J. Lilius, and Q.A. Malik.  Proceedings of ICFEM 
2005 – 7th International Conference on Formal Engineering Methods, 
Manchester, November 2005, Lecture Notes in Computer Science, Vol. 3785, 
Springer. 

26. Formal Service-Oriented Development of Fault Tolerant Communicating 
Systems, L. Laibinis, E. Troubitsyna, S. Leppänen, J. Lilius, and Q.A. Malik.  
Rigorous Development of Complex Fault-Tolerant Systems, chapter 14, pp. 261-
287, Lecture Notes in Computer Science, Springer. 

27. Formal Reasoning About Fault Tolerance and Parallelism in Communicating 
Systems, L. Laibinis, E. Troubitsyna, and S. Leppänen.  To appear in 
proceedings of the Workshop on Methods, Models and Tools for Fault-
Tolerance  (MeMoT 2007) at the International Conference on Integrated Formal 
Methods 2007 (IFM 2007). 

28. Rigorous development of reusable, domain-specific components, for complex 
applications, C. Snook, M. Butler, A. Edmunds, and I. Johnson.  Proc. 3rd Intl. 
Workshop on Critical Systems Development with UML, J. Jurgens and 
R. France, Ed., pages 115–129, Lisbon, 2004. 

29. The engineering of generic requirements for failure management, C. Snook, 
M. Poppleton, and I. Johnson. 
Accepted for Eleventh International Workshop on Requirements Engineering: 
Foundation for Software Quality, REFSQ'05, Oporto, 2005. 

30. Towards a methodology for rigorous development of generic requirements, 
C. Snook, M. Poppleton, and I. Johnson.  REFT, Newcastle, 2005; LNCS 4157, 
Springer-Verlag, November 2006, pp. 326-342. 

Page 133 of 137  



31. Formal Development of Mechanisms for Tolerating Transient Faults, D. Ilic, 
E. Troubitsyna, L. Laibinis and C. Snook.  TUCS Technical Report, No.763, 
April 2006. 

32. UML–B: Formal modelling and design aided by UML, C Snook and M Butler.  
ACM Transactions on Software Engineering and Methodology, 15(1), 2006, 
pp. 92-122. 

33. Formalizing UML-based Development of Fault Tolerant Control Systems, 
D. Ilic, E. Troubitsyna, L. Laibinis, and C Snook.  Proceedings of the Workshop 
on Methods, Models and Tools for Fault Tolerance, Jul 2007 (to appear). 

34. U2B - A tool for translating UML–B models into B, C. Snook, and M. Butler.  
UML–B Specification for Proven Embedded Systems Design, J. Mermet, Ed., 
Chapter 6, Springer, 2004. 

35. Formal Development of Mechanisms for Tolerating Transient Faults, D. Ilic, 
E. Troubitsyna, L. Laibinis, and C. Snook.  REFT 2005, LNCS 4157, Springer-
Verlag, November 2006, pp. 189–209. 

36. Towards Feature-Oriented Specification and Development with Event-B, 
M. Poppleton.  In Proceedings of REFSQ 2007: Requirements Engineering: 
Foundation for Software Quality 4542, pp. 367-381, Trondheim, Norway.  
P. Sawyer, B. Paech, P. Heymans, Eds. 

37. Circuit Development with Event-B and Bluespec - RODIN Plugin Overview, 
I. Oliver.  Presented FDL’06 (Forum for specification and design languages).  
September 19-22, 2006, Darmstadt, Germany. 

38. Model Based Testing of an embedded session and transport protocols, 
V. Luukkala, I. Oliver.  Presented at the 9th IFIP Int. Conference on Testing of 
Communication Systems (TESTCOM) and 7th Int. Workshop on Formal 
Approaches to Testing of Software (FATES), June 26-29 2007, Tallinn, Estonia. 

39. An Investigation into the Introduction of Fault Tolerance Concepts with Event-
B, I. Oliver, J. Colley, M. Butler.  NRC-TR-2007-Awaiting Number, Nokia 
Research, Finland, 2007 

40. Experiments and Experiences with UML and B, I. Oliver.  NRC-TR-2007-006, 
May 2007, Nokia Research, Finland. 

41. Formal Transformation of Platform Independent Models into Platform Specific 
Models, P. Boström, M. Neovius, I. Oliver, M. Waldén.  Proceedings of the 7th 
International B Conference (B2007), Besançon, France, LNCS.  4355, pp. 186-
200, January 2007, Springer-Verlag. 

42. Mobile Internet Technical Architecture.  IT Press, 2002. 
43. A Formal Model of Context-Awareness and Context-Dependency, M. Neovius, 

K. Sere, L. Yan, M. Satpathy.  In Proceedings of 4th IEEE International 
Conference on Software Engineering and Formal Methods - SEFM 2006, Pune, 
India September 11-15, 2006. 

44. A Design Framework for Wireless Sensor Networks M. Neovius, L. Yan.  In 
Proceedings of World Computer Congress - WCC 2006, Ad Hoc networking 
track, Santiago de Chile, Chile, August 20-25 2006. 

45. Combining CSP and B for Specification and Property Verification, M. Butler 
and M. Leuschel.  Proc. Of Formal Methods 2005, J. Fitzgerald et al., Springer, 
LNCS (3582) 2005, pp. 221-236. 

Page 134 of 137  



46. How to Drive a B Machine, H. Treharne and S. Schneider.  Proc. of ZB2000: 
Formal Specification and Development in Z and B, Springer, LNCS 1878 (2000) 
188-208. 

47. Mobile B Systems, A. Iliasov, V. Khomenko, M. Koutny, A. Niaouris and 
A. Romanovsky.  Workshop on Methods, Models and Tools for Fault Tolerance, 
Oxford 2007. 

48. The KLAIM Project: Theory and Practice, L. Bettini et al..  Proc. of Global 
Computing: Programming Environments, Languages, Security and Analysis of 
Systems, Springer, LNCS 2874 (2003) pp. 88-150. 

49. Mobile Distributed Programming in X-Klaim, L. Bettini, R. De Nicola.  Proc. of 
Formal Methods for Mobile Computing, M. Bernardo and A. Bogliolo, Springer, 
LNCS 3465 (2005) pp. 29-68. 

50. A Petri net Semantics for pi-calculus, N. Busi, R. Gorrieri.  Proc. of 
CONCUR'95, LNCS 962 (1995) pp. 145-159. 

51. A Calculus of Mobile Processes, R. Milner, J. Parrow and D. Walker.  
Information and Computation 100 (1992) pp. 1-77. 

52. Symbolic Model Checking: an Approach to the State Explosion Problem, 
K. L. McMillan.  PhD Thesis, Carnegie Mellon University, 1992. 

53. Model Checking Based on Prefixes of Petri Net Unfoldings, V. Khomenko.  
PhD Thesis, University of Newcastle upon Tyne, 2003. 

54. Petri Net Semantics of the Finite pi-calculus Terms, R. Devillers, H. Klaudel and 
M. Koutny.  Fundamenta Informaticae, 2006. 

55. A Petri Translation of π-Calculus Terms, R. Devillers, H. Klaudel and 
M. Koutny.  Proc. ICTAC, 2006. 

56. A Petri Net Semantics of a Simple Process Algebra for Mobility, R. Devillers, 
H. Klaudel and M. Koutny.  Electronic Notes in Theoretical Computer Science, 
2006. 

57. Computing Shortest Violation Traces in Model Checking Based on Petri Net 
Unfoldings and SAT, V. Khomenko.  Proc. REFT Workshop at FME05, 2005. 

58. Applying Petri Net Unfoldings for Verification of Mobile Systems, 
V. Khomenko, M. Koutny and A. Niaouris.  Proc. MOCA, 2006. 

59. Merged Processes - a New Condensed Representation of Petri Net Behaviour, 
V. Khomenko, A. Kondratyev, M. Koutny and W. Vogler.  Proceedings of 
CONCUR 2005 (August 2005), to appear in Lecture Notes in Computer 
Science. 

60. Using Formal Methods to Develop an ATC Information System, A. Hall.  IEEE 
Software, March 1996. 

61. Exception Handling in Coordination-based Mobile Environments, A. Iliasov and 
A. Romanovsky.  Proceedings of 29th Annual International Computer Software 
and Applications Conference (COMPSAC 2005), IEEE Computer Society Press, 
2005, pp. 341-350. 

62. Towards Formal Development of Mobile Location-based Systems, A. Iliasov, 
L. Laibinis, A. Romanovsky, and E. Troubitsyna.  Proceedings of Workshop on 
Rigorous Engineering of Fault-Tolerant Systems (REFT 2005), Newcastle Upon 
Tyne, UK 2005, pp. 53-64. 

Page 135 of 137  



63. Structured Coordination Spaces for Fault Tolerant Mobile Agents, A. Iliasov and 
A. Romanovsky.  LNCS 4119, C. Dony, J. L. Knudsen, A. Romanovsky, and 
A. Tripathi, Eds., 2006, pp. 181-199. 

64. On Specification and Verification of Location-based Fault Tolerant Mobile 
Systems, A. Iliasov, V. Khomenko, M. Koutny, and A. Romanovsky.  
Proceedings of Workshop on Rigorous Engineering of Fault-Tolerant Systems 
(REFT 2005), Newcastle Upon Tyne, UK 2005, pp. 129-140. 

65. On Using the CAMA Framework for Developing Open Mobile Fault Tolerant 
Agent Systems, B. Arief, A. Iliasov, and A. Romanovsky.  Proceedings of 
SELMAS 2006 workshop at ICSE 2006, Shanghai, China 2006, pp. 29-36. 

66. A Framework for Open Distributed System Design, A. Iliasov, A. Romanovsky, 
B. Arief, L. Laibinis, and E. Troubitsyna.  Proceedings of Computer Software 
and Applications Conference (COMPSAC 07), Volume II - Workshop Papers, 
1st IEEE International Workshop on Software Patterns (SPAC 2007), Beijing, 
China, IEEE Computer Society, Conference Publishing Services, 27 July 2007, 
pp. 658-668. 

67. On Developing Open Mobile Fault Tolerant Agent Systems, B. Arief, A. Iliasov 
and A. Romanovsky.  Software Engineering for Multi-Agent Systems V, LNCS 
4408, R. Choren, A. Garcia, H. Giese, H.-f. Leung, C. Lucena and 
A. Romanovsky, Eds., Springer, 2007, pp. 21-40. 

68. Rigorous Development of Ambient Campus Applications that can recover from 
Errors, B. Arief, A. Iliasov, and A. Romanovsky.  Proceedings of Workshop on 
Methods, Models and Tools for Fault-Tolerance (MeMoT 2007), at the 
International Conference on Integrated Formal Methods 2007 (IFM 2007), 
Oxford, UK, 3 July 2007, pp. 103-110. 

69. On Rigorous Design and Implementation of Fault Tolerant Ambient Systems, 
A. Iliasov, A. Romanovsky, B. Arief, L. Laibinis, and E. Troubitsyna.  
Proceedings of 10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC07), Santorini Island, 
Greece, 7-9 May 2007, pp. 141-145. 

70. Refinement patterns for rapid development of dependable systems, A. Iliasov.  
Proceedings of Engineering Fault Tolerant Systems Workshop (at ESEC/FSE), 
Croatia, ACM, 4 September 2007. 

71. Finer Plugin Introduction. 
[Online: http://www.iliasov.org/FinerPlugin.html (last accessed 15 Aug 2007).] 

72. Smartdust.  Online at http://en.wikipedia.org/wiki/Smartdust (last accessed 14 
August 2007). 

73. Model-Based Testing using Scenarios and Event-B Refinements, Q. A. Malik, 
J. Lilius, and L. Laibinis.  Proceedings of Workshop on Methods, Models and 
Tools for Fault-Tolerance (MeMoT 2007), at the International Conference on 
Integrated Formal Methods 2007 (IFM 2007), Oxford, UK, 3 July 2007, pp. 59-
69. 

74. ISTAG Scenarios for Ambient Intelligence in 2010.  [Online: 
ftp://ftp.cordis.europa.eu/pub/ist/docs/istagscenarios2010.pdf (last accessed 15 
August 2007)]. 

Page 136 of 137  



Page 137 of 137  

75. BE4: The B Extensible Eclipse Editing Environment, J. Bendisposto, 
M. Leuschel, Published B2007: Formal Specification and Development in B, 7th 
International Conference of B Users, Besançon, France, January 17-19, 2007.  
Proceedings, 2007, Nr. 4355, pp. 270-273, LNCS, Springer Berlin / Heidelberg, 
ISSN:0302-9743, ISBN: 978-3-540-687. 

76. A Generic Flash-based Animation Engine for ProB, J. Bendisposto, 
M. Leuschel, Published B2007: Formal Specification and Development in B, 7th 
International Conference of B Users, Besançon, France, January 17-19, 2007.  
Proceedings, 2007, Nr. 4355, pp. 266-269, LNCS, Springer Berlin / Heidelberg, 
ISSN:0302-9743, ISBN: 978-3-540-687. 

77. Debugging Event-B Models using the ProB Disprover Plug-in, O. Ligot, 
J. Bendisposto, and M. Leuschel.  Proceedings AFADL'07, June 2007. 

78. Case study of a complete reactive system in {Event-B}: A Mechanical Press 
Controller, J-R. Abrial.  Proceedings ZB 2005.  [Online: 
http://www.zb2005.org/] 

79. Rigorous engineering of product-line requirements: a case study in failure 
management, C. Snook, M. Poppleton, I. Johnson.  To appear in Information and 
Software Technology, Elsevier, 2007 

80. ISO 9126-1, Software Engineering, Product Quality - Part I: Quality Model.  
International Organisation for Standardisation, 2001. 

81. Experimental Comparison of the Comprehensibility of a UML-based Formal 
Specification versus a Textual One, R. Razali, C.F. Snook, M.R. Poppleton, 
P.W.  Garratt, R.J Walters.  11th International Conference on Evaluation and 
Assessment in Software Engineering (EASE), 2007, pp. 1-11. 

82. Multimedia Learning, R.E. Mayer.  Cambridge University Press, 2001. 
83. Teaching readers about the structure of scientific text, L.K.  Cook, R.E. Mayer.  

Journal of Educational Psychology, Vol.80, 1988, pp. 448-456. 
84. Taxonomy of Educational Objectives: The Classification of Educational Goals: 

Handbook I: Cognitive Domain.  B.S. Bloom (Ed.), Longmans, New York, 
1956. 

85. Basics of Qualitative Research: Techniques and Procedures for Developing 
Grounded Theory, A.L. Strauss, J. Corbin.  2nd Edition, Thousand Oaks, 
California, 1998. 

86. Usability Assessment of a UML-based Formal Modelling Method, R. Razali, 
C.F. Snook, M.R. Poppleton, P.W. Garratt.  19th Annual Psychology of 
Programming Workshop (PPIG), 2007, pp. 56-71. 

87. Comprehensibility of UML–B: A series of controlled experiments, R. Razali, 
C.F. Snook, M.R. Poppleton, P.W. Garratt.  Technical Report, DSSE, University 
of Southampton, [Online: http://eprints.ecs.soto.ac.uk/14426] (2007). 

88. Software Considerations in Airborne systems and equipment Certification.  DO–
178B/ED–12B, RTCA/EUROCAE. 

89. Systematic Software Development using VDM, C.B. Jones.  Prentice Hall 
International, second edition, 1990. 

http://www.zb2005.org/}.}
http://eprints.ecs.soto.ac.uk/14426

	Year

