—

B

Information Society
Technologies

Project IST-511599
RODIN

“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable D34 (D7.4)

Assessment Report 3
Editor: Pete White (Praxis High Integrity Systems)
Public Document

26th October 2007

http://RODIN.cs.ncl.ac.uk/

Page 1 of 137

http://rodin.cs.ncl.ac.uk/

Contributors:

Jean-Raymond Abrial (Swiss Federal Institute of Technology, Zurich, Switzerland),
Budi Arief (University of Newcastle upon Tyne, UK),

Michael Butler (University of Southampton, UK),

Joey Coleman (University of Newcastle upon Tyne, UK),

Alexei Iliasov (University of Newcastle upon Tyne, UK),

lan Johnson (ATEC, UK),

Cliff Jones (University of Newcastle upon Tyne, UK),

Victor Khomenko (University of Newcastle upon Tyne, UK),
Maciej Koutny (University of Newcastle upon Tyne, UK),

Linas Laibinis (Abo Akademi University, Finland).

Sari Leppdnen (Nokia, Finland),

Thierry Lecomte (ClearSy, France),

Michael Leuschel (Heinrich-Heine-Universitdt Diisseldorf),

lan Oliver (Nokia, Finland),

Rozilawati Razali (University of Southampton, UK),

Abdolbaghi Rezazadeh (University of Southampton, UK),
Alexander Romanovsky (University of Newcastle upon Tyne, UK),
Colin Snook (University of Southampton, UK),

Elena Troubitsyna (Abo Akademi University, Finland),

Laurent Voisin (Swiss Federal Institute of Technology, Zurich, Switzerland),
Jon Warwick (University of Newcastle upon Tyne, UK).

Page 2 of 137

REVISION HISTORY

Version | Status Date Notes
0.1 Draft 02/06/05 First draft for internal comments (year 1)
0.2 Draft 18/07/05 Complete draft ready for external review (year 1)
1.0 Definitive | 26/08/05 Definitive issue following external review (year 1)
1.1 Draft 28/09/06 Draft for internal comments (year 2)
1.2 Draft 29/09/06 Draft for external comments (year 2)
2.0 Definitive | 02/10/06 Definitive issue following external review (year 2)
2.1 Draft 22/08/07 Draft for internal comments (year 3)
2.2 Draft 5/9/2007 Draft for internal comments (year 3)
2.3 Draft 6/9/2007 Draft for internal comments (year 3)
2.4 Draft 17/9/2007 | Draft for internal review (year 3)
2.5 Draft 20/9/2007 | Dratft for internal review (year 3)
2.6 Draft 2/10/2007 | Draft for internal review (year 3)
2.7 Draft 4/10/2007 | Draft for internal review (year 3)
2.8 Draft 8/10/2007 | First complete draft for internal review (year 3)
2.9 Draft 9/10/2007 | Includes review comments from C Jones
3.0 Definitive | 26/10/2007 | Definitive issue following Rodin exec review
ANTICIPATED CHANGES
None.

Page 3 of 137

TABLE OF CONTENTS

Section I INTrOAUCION......c..ciiiiiiiiiieieeiereeeee ettt s 5
1.1 Background..........cocuvieiiiiieie e e 5
1.2 N Te0] oL OO P RO SOROUSORUPRRRRPRN 5
1.3 PUIPOSE ..ottt et e e e e et e e et e e e anaeee s 5
1.4 STIUCTUTE ...ttt st ettt et s e e e 6

Section 2 AsSeSSMENt APPIOACKHeiiiiuiieiiiieiiiieeiee ettt e e e e sereeeareeeeeeeeaeees 7
2.1 RODIN ODbBJECHIVES.....eeeuvieiieeiieiieeieesieeeteesiieeteesetesteesstesseessaesseesseassseensnesnseens 7
2.2 Response to Year Two Project Report..........oovieeiieeiiieeiieeeeeeeeeee e 7
23 MeasuremMeENt CTITETIA.eeruieetieriieeiierieeiteesiteeteesteeebeesereebeesaaeenseessneesaesnseens 9
2.4 F N 0] 5] 0T o] s DS PRUPPR 10

Section 3 Overall Assessment RESUILS..........coeoviiiiiiiiieiieiiieeeee e 12
3.1 OVETVIEW .ttt ettt ettt ettt e bt e e ab e e bt e st e e nbeeenbeenbeesatean 12
3.2 Overall Results SUMMATYcccoooviiiiiiiniiiiieieeeee e 13
33 Summary of Quantitative Metrics ASSESSMENLt..........ceevvvreervieeririeeniieeevee e 15
3.4 Assessment OVErview CONCIUSIONScc..ieruiiriieriieeiieiie e eiie et siee e 18

Section 4 Methodology ASSESSMENLceecuiieiiiieeeiieeeieeeeieeesteeerreeeereeereeesaeeesareeeens 21
4.1 INEEOAUCTION ...ttt st 21
4.2 The (generic) Event-B methodologyccoevvvvieeiiiiiiiieieeeeeeee e 21
4.3 Case Study Feedbackccciiiieiiiiiiiiieeeee e 22

Section 5 Case Study ASSESSIMENLScccuviieruireeiiieeeitieerieeesieeesreeesreeesereeessreesssseessseeesnnes 23
5.1 CS1 — Formal Approaches to Protocol Engineering...........ccocceveevuerveneeniennnene 23
5.2 CS2 — Engine Failure Managementcccveeeiieeniieeniie e 32
53 CS3 — Formal Techniques within an MDA ConteXt..........ccccceevveeeieenueeeeeennens 55
5.4 CS4 — CDIS Air Traffic Display Information System...........cccceeevveerveeennneennne. 61
5.5 CS5 — Ambient Campus ASSESSIMENL.........ccuvierrierreeriieniieeiienreenieesaeesieesreenenes 71

Section 6 Open Tool Kernel ASSESSMENL.........cccuvieeiiiieiiieeiiieerieeeriee e eire e eeevee s 82
6.1 INEEOAUCTION ...ttt 82
6.2 CUITENE STATUS.....ceieiiiiiiie ettt et st 82
6.3 Progress since Year 2 ASSESSMENL.........ccveevierieriiieniieeiieniieeieenieeeveeaeesereeeees 82
6.4 Interaction with Plug-in Developerscceevuvieeiieeniee e 83
6.5 KEINEL MELIICS ..ottt ettt 83
6.6 CONCIUSION ..ottt ettt et et be e et eeaeeas 89

Section 7 PIug-in ASSESSIMENLSccuieruieriieiiieiieetieeiieeieesteeteeeieeereeseaeenbeesseesnseenseesnseas 90
7.1 Mobility plug-in (Mobile B Systems)........cccceevvieeriiiiiiieeiieeieeceeecee e 90
7.2 ProB model checking and animationceccueevuienieeniieniieniecieeee e 99
7.3 Brama ..o s 110
T4 UMLAB et 117
7.5 B2RODIN ..ottt sttt ettt sttt 126

SeCtion 8 RETEIENCESc.viviieiieiiiitieieeerte et 132

Page 4 of 137

SECTION1 INTRODUCTION

1.1 Background

This document presents the results of the technical review and assessment conducted at
the end of the three-year RODIN project. This document is a RODIN project deliverable.

The assessment was carried out according to the Procedure for Technical Review and
Assessment [6], which established the metrics for RODIN, based on the contributions of
goals and criteria from each RODIN partner. This procedure [6] was revised and
improved in the light of experience gained from production of the first version of this
report at M12 (Deliverable: D14 [11]).

1.2 Scope

The scope of this deliverable is focussed on the five case studies under work package 1
(WP1), the open source formal methods tool kernel developed for work package 3 (WP3)
and the plug-ins developed as part of work package 4 (WP4).

The methodology, which has been developed under work package 2 (WP2), is also
briefly summarised in Section 4. However, as noted in the Procedure for Technical
Review and Assessment [6] and supported by comments at last year’s review [2], an
effective assessment of the methodology will need to focus on more qualitative than
quantitative measures. This qualitative summary is already covered in the following
project reports, and is therefore not repeated in this report.

e D27 [19] describes how “patterns” and “templates” have been applied by the case
studies in order to tailor the methodology to each specific case study’s needs.

e D28 [20] provides a qualitative assessment of the methodology as a result of the
case study feedback.

e D29 [21] provides more in-depth feedback on the effectiveness of the Methodology
as a result of the case studies.

We do not consider WP5 (dissemination) or WP6 (project management) since these work

packages do not contribute directly to the measurable RODIN objectives. We do not
define metrics to apply to WP7 itself.

1.3 Purpose
This document provides a view of the progress of the RODIN project in meeting its

objectives and vision. It highlights the accomplishments of each work package during
the project’s lifetime.

Page 5 of 137

1.4 Structure

Section 2 of this document discusses the assessment approach used for generating the
metrics. Section 3 presents the overall assessment results of the RODIN project at month
M36. Section 4 briefly discusses the feedback from WP2, the methodology part of the
project.

The document then provides the detailed quantitative feedback, with qualitative evidence
and supporting information, from:

e FEach Case study, WP1 — Section 5,
e The tool kernel, WP3 — Section 6,
e Each tool Plug-Ins, WP4 — Section 7.

Finally, Section 8 contains the references used within this document.

Page 6 of 137

2.1

SECTION 2 ASSESSMENT APPROACH

RODIN Objectives

To conduct the assessment the projects main objective must first be revisited. RODIN’s
objective is described in Section 2 of the Description of Work (DoW) [1]:

“The overall objective of the RODIN project is the creation of a methodology and
supporting open tool platform for the cost effective rigorous development of dependable
complex software systems and services.”

The Description of Work [1] identifies the following four specific measurable objectives:

Ol

02

03

04

A collection of reusable development templates (models, architectures, proofs,
components, etc.) produced by the case studies. The goals of the cases studies
will be defined in detail by month 6. Initial and intermediate results will be
available by months 12 and 24, while a final set of development templates will
be available by month 36 of the project.

A set of guidelines on a systems approach to the rigorous development of
complex systems, including design abstractions for fault tolerance and guidelines
on model mapping, architectural design and model decomposition. Initial and
intermediate guidelines will be available by months 12 and 24, with the final
versions by month 36.

An open tool kernel supporting extensibility of the underlying formalism and
integration of tool plug-ins. Open specification of the kernel will be made
publicly available by month 12 of the project. Prototypes of the basic tools will
be available by month 18. Full working versions will be available by month 30,
with final versions being ready by month 36.

A collection of plug-in tools for model construction, model simulation, model
checking, verification, testing and code generation. Open specification of the
plug in tools will be made publicly available by month 12 of the project.
Prototype versions of the plug-in tools will be available by month 18, while final
versions will be available by month 36.

Section 2.3 describes how each of these objectives has been assessed,

2.2

Response to Year Two Project Report

The Year Two Project Review [1] identified the following potential sources of risk,
which needed to be addressed during Year Three:

e the integration of platform kernel and plug-ins, in particular with respect to the

combined use of several plug-ins;

e the independence of the methodology work from the platform development and

case studies, which should in fact be driving the research in the methodology;

Page 7 of 137

e the dissemination to external users.

The above risks have all been addressed by the project and the mitigations are described
in the associated Work Package deliverables. The issue of integration is also covered in
this report as follows:

e (Case studies have specifically assessed the following objectives, which are
focussed on the integration of platform kernel and plug-ins:

a Checking the scaleability of the system as its functionality is extended.

b Checking the impact of legacy (sub) systems.

¢ Checking the scaleability of the system with respect to the size and complexity
of the models.

d Checking the sensitivity of the methodology to changing requirements with
respect to the models.

e FEach plug-in has assessed platform integration.

In addition the following specific points were made in relation to WP 7, evaluation and
assessment:

1 There are inconsistencies between the year one [11] and year two [16] reports (in
what was evaluated and how it was evaluated) that make it difficult to judge
progress. Similarly, there are inconsistencies within the year two report: subjective
evaluation with only vague/generic justification, combined with lack of cohesion
between the evaluations of the separate case studies, leads one to question the value
of the measurement criteria and the grades awarded.

2 In the assessment for the final year, the reviewers need to be able to see answers to
the following questions with respect to the case studies and associated tasks and
their role in assessing the RODIN system:

a What was done? ¢ How was it done?
b Why was it done? d Was it successful?

3 The assessment in years one and two focussed on assessing each tool against a set
of common criteria. This would not be an acceptable way of assessing progress in
year three. Furthermore, in years one and two many of the grades were awarded
based on qualitative statements without any quantitative evidence. This will not be
acceptable in the report in year three where it is clear that the case studies could
have easily collected the necessary hard data.

4 To conclude, the criteria for the final evaluation and assessment are inherently
different and much more global than those set up at the beginning in D14 [11].
There seems no definition of the final criteria so far. Such criteria will certainly be
less of scientific nature than of practical nature, i.e. from the point of view of the
software engineers that are external to RODIN and potentially going to adopt it and
to include it in their development process. This should be the point of view that
drives the evaluation and assessment, and therefore the whole project, in year three.

Page 8 of 137

To address these points, this report:

e Keeps the same sub-sections and topics as in Assessment Report Two, with
additional sub-sections to address work package specific issues.

e Presents progress in a tabular form.
e FEach work package progress report now provides:

o A justification for each evaluation grade;

o A sub-section, which addresses work package specific evidence of quality or
effectiveness. This enables evidence of success that may not fit into the
generic structure to be presented.

o A sub-section, which reports on each of the tools used. This indicates how it
was used and what feedback was provided to the tool developers. Similarly,
each tool developer work package reports on the feedback it received from
the case studies, and how it was able to make use of that feedback.

2.3 Measurement Criteria

The Procedures for Technical Review and Assessment [6] identified quantitative
measurement criteria to be applied when assessing RODIN work packages 1 (case
studies), 3 (Kernel) and 4 (Plug-ins).

Each of the case studies has provided quantitative feedback on these criteria to assess the
extent to which Objective O3 (Kernel assessment) and O4 (Plug-Ins assessment) have
been addressed (see section 2.1 above).

Objective O1 concerns the collection of a set of re-usable templates and patterns, which
tailor the method and tools to the specific needs of each project. Objective O2 concerns
the provision of a methodology, which can be supported effectively by the toolset, and
lends itself to adaptation to address each project’s specific constraint. Case study
feedback against these objectives has been extremely positive, however the feedback has
inevitably been centred on specific case study issues. As a consequence, the evidence of
patterns and templates, which were adopted for each case study, provides the only
quantitative measure of these objectives.

The Procedures for Technical Review and Assessment [6] defines the following generally
desirable properties, which are applicable to software development methods and tools.
For our quantitative assessment, each property has been assessed to identify both the
presence and quality achieved during the study.

e Usability (U): methods, tools and templates should be as easy to use as possible,

and be as generic as feasible in order to be applicable to other problems and other
application domains.

Page 9 of 137

e Cost-Effectiveness (C): compared to existing tools and methods, those developed
for RODIN are competitive with respect to the amount of computing and manual
analysis needed for a given benefit.

e Openness (0): ability of other researchers and commercial companies to apply the
tools and techniques from RODIN in their own domains, without onerous
intellectual property constraints.

e Extensibility (X): the methods, tools and templates should admit extension so that
other researchers and commercial companies can make their own changes to the
items to make them more useful in their developments.

e Soundness (S): the methods and tools used should be as correct as possible, and
this correctness should be justifiable. The case study requirements and
specifications should be consistent and coherent. The case study implementations
should be correct with respect to their specifications and requirements.

2.4 Approach

The assessment was conducted using a set of questions relevant to each of the work
packages. These questions were listed in the Procedure for Technical Review and
Assessment [6] and updated as a result of year one review and year one experience. The
questions vary for each WP1 case study. A single set of questions was used for the
assessment of the open source tool kernel (WP3) and the various plug-ins in (WP4).

Each question has codes attached, which link them back to the measurement criteria in
Section 2.3. These codes are listed in brackets next to each question, e.g. (C, S) or (S, X).

The following products were assessed:

Case study 1: Formal Approaches to Protocol Engineering
Case study 2: Engine Failure Management System Assessment
Case study 3: Formal Techniques within an MDA Context
Case study 4: CDIS Air Traffic Display Information System
Case study 5: Ambient Campus Assessment

Open source tool kernel

Plug-in: Mobility model checker

Plug-in: ProB model checking and animation tool

Plug-in: Brama

Plug-in: UML-B

Plug-In: B2ZRODIN

For each product, there is an associated producer and a reviewer; the former was
responsible for carrying out a self-assessment and the latter for providing an independent
view of its validity. The appointment of independent reviewers is a change to the original
assessment process based on experience from the first year of RODIN. Reviewers were
chosen with appropriate knowledge of the area in which the product was applicable, but
with no link with the producers.

Page 10 of 137

The review process conducted was as follows:

1 The producer and the reviewer agreed the criteria, making use of the generic
criteria defined in Procedures for Technical Review and Assessment [6]. Where
necessary customised criteria were also agreed which were better suited to the
current state of the products being assessed.

2 The producer self-assessed his/her work based on the generic/customised criteria.
The output from this process was a written assessment report for each item of work.

3 The reviewer then carried out a sufficiently independent assessment to validate the
self-assessment and added their findings to the written self-assessment.

4 Praxis collated the validated written assessments into this overall assessment report,
D34.

The producers and reviewers were asked to provide answers to their corresponding set of
questions. These answers consisted of two parts:

1 Numeric Grade between 0 and 5. The following interpretation was used for each of
the grades:

[0] - Failure (Total failure)

[1] - Weak (Unsatisfactory)

[2] - Average (Acceptable but with room for improvement)
[3] - Good (As good as, up to an expected standard)

[4] - Very Good (Better than existing)

[5] - Excellent (Satisfaction in every respect)

[N/A] - Not applicable

N/A is intended for use where it is too early to form a judgement; e.g. progress has
been made on a component but it is not yet in a state where the measurement

criteria can appropriately be applied.

2 A written justification giving the rationale for the chosen grade together with any
guidance on how to interpret the answer.

Section 3 below summarises the responses received and relates them to the overall
project objectives.

Page 11 of 137

SECTION3 OVERALL ASSESSMENT RESULTS

3.1 Overview

To facilitate comparison with previous assessment reports, each of the following sections
adopts the structure proposed in the assessment procedure report [6].

Section 4 provides a summary of the qualitative feedback from the Methodology.

Section 5 through to Section 7 provide more detailed responses to the assessment
questionnaire for each of the reviewed areas. The progress reports in this document
provide only a very brief summary of each RODIN constituent activity. Further detail
can be found in the other respective year three deliverables [18,19,20,21].

As a result of the case studies, we have achieved good coverage of the overall project
objectives, c.f. §2.1. The preliminary report on methodology [9] provided a sound set of
guidelines for the rigorous development of complex system (objective 2) at the end of
year one. The case studies have subsequently adapted these guidelines to meet their
specific project needs.

Table 1 provides a summary of the scope of assessment covered by each case study
report in Section 5.

CSs1 CS2 CS3 CS4 CS5
Formal FMS MDA CDIS Ambient
PE Campus
O1: Templates and patterns v v v v v
provided
03: RODIN Kernel assessed v v v v
04: Plug-Ins Assessed
Mobility checker v
ProB v v v v v
Brama v
UML-B v v v v
B2RODIN v v v
Integration Assessed v v v v

Table 1: Summary of coverage of RODIN objectives by each case study

Page 12 of 137

3.2 Overall Results Summary

A summary of the quantitative results of our assessments is given in Section 3.3 below.
Table 2 summarises the qualitative results from each product of the RODIN project.

Area

Achievements

Methodology (Section
4)

The methodology reports [9,15] have delivered a
comprehensive set of generic guidelines, which have been
applied successfully across all RODIN case studies.

CS 1(§5.1)

The case study has demonstrated the feasibility of integrating
formal methods into an existing industrial software
development process. The automatic refinement from
Lyra/UML-2 models into the formal framework added
significant value to Nokia process.

CS 2 (§5.2)

Two prototype products have been developed, a Failure
management system and a production acceptance test system.

In both cases UML has been integrated with Event-B.

This case study has made the widest use of RODIN plug-ins.
ATEC conclude that the major benefit of the method and
toolset is through requirement refinement, rather than
specification translation into implementation. At times the
toolset currently lacks the maturity to support certain
application types.

CS 3 (§5.3)

The case study has focussed on the integration of the RODIN
methods and tools with the OMG Model Driven Architecture
(MDA) framework. Latterly the focus has been on the
validation of the RODIN platform, tools and methods.

UML-B and ProB have been used extensively.

It concludes that the RODIN toolset has made use of Event-B
possible, with ProB plug-in adding value in the validation of
models. However, certain aspects of Event-B are too
strict/abstract for use by a team, which is inexperienced in
formal techniques.

CS 4 (§5.4)

The CDIS case study has concentrated on assessing the
RODIN platform against alternative tools and methods.

The original VDM CDIS models have now been ported to the
RODIN platform

It concludes that RODIN is more productive and easier to use
than other similar tools such as B4free and AtelierB.
Furthermore, the methodology’s modular approach to system

modelling, using fewer constructs than standard B, should
simplify deployment.

Page 13 of 137

Area

Achievements

CS 5 (§5.5)

Case study five has developed a novel approach for modelling
and verifying the correctness of complex mobile agent
systems, which could not be captured by any existing
languages. Throughout the RODIN project, three ambient
campus scenarios have been developed using this Context-
Aware Mobile Agents (CAMA) framework.

The major achievement in year three was the development of
a single hybrid (Event-B together with a process algebra with
mobility characteristics) high-level programming notation that
is capable of capturing both the behavioural and functional
model of agents.

Kernel (Section 6)

A public version of the Event-B RODIN open tools kernel has
been successfully delivered. Feedback from the case studies
has been a major influence on the final product.

The case studies and plug-in providers report that the tool is
easy to use, scaleable, and easily extended.

Mobility Checker (§7.1)

The mobility checker plug-in has been properly integrated into
the RODIN platform and supports the automatic verification
of mobile agent systems.

It has been used extensively by case study five.

ProB (§7.2)

The ProB plug-in has been widely used across the project (see
Table 1 for details) with very positive results.

A number of case studies continued to use the pre-RODIN
version of the tool, as the Eclipse plug-in doesn’t currently
supports all features.

Brama (§7.3)

The Brama plug-in has been used by case study two, and
provides a useful animation capability, which supports model
validation.

During year three the plug-in was improved and fully
integrated into the RODIN platform.

UML-B (§7.4)

During year three the UML-B plug-in was redesigned via an
independent meta-model. As a consequence it has now been
used by most case studies (see Table 1 for details).

The results of the study indicate that integration between the
tools is very good, and UML-B is significantly quicker to
understand and modify than Event-B.

Page 14 of 137

Area Achievements

B2RODIN (§7.5) The B2RODIN has been used by three case studies (see Table
1 for details). During year three the plug-in was improved and
fully integrated into the RODIN platform.

The plug-in is reported as providing a robust means of
transferring AtelierB models, which conform to the Event-B
language, onto the RODIN platform.

Table 2: Qualitative summary of results from each RODIN product

3.3 Summary of Quantitative Metrics Assessment

The following charts summarise the quantitative results, which are derived from the more
detailed summaries in Section 5 through to Section 7.

Each assessment score, 0 to 5 and not applicable (N/A), was allocated against the case
study, kernel, and plug-ins used by the case study as appropriate.

Figure 1 shows the number of times each assessment score was achieved. Figure 2
shows, for each of the assessment criteria: Usability (U), Cost-effectiveness (C),
Openness (O), Extensibility (X) and Soundness (S), the percentage of the results that
were assessed with a particular score.

Figure 3 and Figure 4 show the distribution of scores allocated to each case study and
kernel/ plug-in respectively.

Finally Table 3 summarises the case study responses to the integration criteria (c.f. §2.2),
which were established at the end of year two.

100 38 90
90 - 80

70
60 -
50 A

40 - 27
30 ~

20 A 11 8
10 - 2
0 | | 1 .

Excellent Very Good Good Average Weak Failed Not
applicable

Figure 1: Chart showing distribution of assessment scores

Page 15 of 137

Distribution of Score by Criteria

n 9 o 9 n o n o v 9

4444444444
,,,,,,,,,

S Qv e e oS 9

44444444444
,,,,,,,,,,

,,,,,,,,,,
o/OOO T2 gggggges
< on I = =]

o~ = S

S
ooooooooooo
0000000000

Figure 2: Chart showing distribution of scores across assessment criteria

UML-B B2RODIN

Brama

B

Pro
Figure 3: Chart showing distribution of assessment scores across case studies

Page 16 of 137

Distribution of Score by Case Study

100%

80% -

60% -

40% -

20%

5.0
Not
- 4.5 applicable
L 40 Failed
L 35 Weak
- 3.0 Average
23 Good
- 2.0
Very Good
- 1.5
1.0 I Excellent
- 0.5 Average
0% ‘ ‘ 0.0 Score

CS1: Lyra CS2: Engine CS3: Nokia CS4: CDIS CS5: Ambient

Failure Mgt MDA

Campus

Figure 4: Chart showing distribution of assessment scores across platform

Score
Integration criteria Case Study 3 4 5
a) scaleability as functionality extended CS1 v
CS2 v
CS4 v
CS5
Count of scores awarded — a) 2 2
b) impact of legacy (sub) systems CS2 v
CSs v
Count of scores awarded — b) 2
¢) scaleability w.r.t. model size and complexity CSl1 v
Cs4 v
Count of scores awarded — c) 1 1
d) sensitivity to changing requirements CS4 v
Count of scores awarded — d))i
Count of scores awarded 4 4 1

Table 3: Integration assessment scores for each Case Study

Page 17 of 137

3.4 Assessment overview conclusions

In this final year of the project, a summary of the extent to which each objective has been
achieved is presented below:

Ol The case studies (WP1) should provide a collection of reusable development
templates (models, architectures, proofs, components, etc.).

This objective has been achieved, with case studies 1, 2, 4 and 5 all delivering
useful results, and in particular all case studies have provided a set of patterns and
templates for future use. See §5.3 below for details regarding case study three.

A brief qualitative assessment of the project’s performance against this objective is
provided in Section 4. Further detail is available in the Final report on Case study
development, D26 [18], and the Case study demonstrators deliverable, D27 [19].

Case Study Templates and patterns developed

CS1: Formal PE Lyra UML2 profile.
Structural consistency guarantees among Lyra phases.

Patterns enabling verification of Lyra decomposition
phases.

Lyra fault-tolerance templates.
Scenario-based Lyra model testing.
Automated Lyra system design flow.

CS2: FMS Verification and Validation methodology, covering
animation validation, model validation, model
verification, animation verification and interactive proof.

Generic problem domains in UML.

CS3: MDA Formal transformation of platform independent models
(PIM) to platform specific models (PSM).

Use Case / SDL development.
Requirements change addressing fault tolerance.

CS4: CDIS New Event-B method.
Support for structured data.
Event splitting and refinement.
Productivity improvements.

Page 18 of 137

02

O3

Case Study Templates and patterns developed

CS5: Ambient Campus Context-Aware Mobile Agents (CAMA) framework,
comprising: fundamental abstractions and property
verification support.

Methodologies and frameworks to support mobile agent
systems (MAS), which include a number of refinement
patterns.

Table 4: Reusable patterns and templates delivered by each case study

The Methodology (WP2) should provide a set of guidelines on a systems approach
to the rigorous development of complex systems, including design abstractions for
fault tolerance and guidelines on model mapping, architectural design and model
decomposition.

The year one methodology report, D9 [9] provided a comprehensive set of generic
guidelines, which were applicable to the RODIN case studies. J-R. Abrial’s new
book, “Modelling in Event-B: System and Software Design” (see §4.2 below for
more detail) forms the major input to the generic RODIN methodology. This has
been used extensively on all case studies, with the example proofs being checked
by the RODIN tools.

This work was further enhanced by the year two methodology report [15], which
addressed a number of key outstanding issues.

Feedback from the case studies on the applicability and effectiveness of the
methodology has been very positive. As a consequence, we claim that this
objective has also been achieved.

Again, a brief qualitative assessment of the project’s performance against this
objective is provided in Section 4. Further detail is available in the report on
assessment of tools and methods, D28 [20], and the final methodology report, D29
[21].

The Tool Kernel (WP3) should deliver an open platform, which supports
extensibility of the underlying formalism via integrated tool plug-ins.

The evidence from the case studies clearly demonstrates that this objective has been
achieved. [Each Case study has made extensive use of the Tool kernel with
favourable assessment scores, particularly with regard to its usability, extensibility
and cost-effectiveness. The kernel platform supports plug-in development very
effectively. As a consequence five plug-ins have been actively used on the RODIN
case studies.

Page 19 of 137

The quantitative assessment results presented in Figure 1 indicate that the platform
is better than existing platforms to support formal specifications.

04 WP 4 should deliver a collection of kernel plug-in tools for model construction,
model simulation, model checking, verification, testing and code generation.

The five plug-ins, which have been actively used by the case studies, address:

e Model construction: UML-B, B2ZRODIN

e Model simulation: Brama

e Model checking: B2RODIN, ProB, mobility checker
e Validation and testing: Brama, ProB

Thus all aspects of this objective, with the exception of code generation, have been
addressed.

Figure 4 summarises the effectiveness of the RODIN plug-ins, and again
demonstrates that the platform and tools provide better support for formal
specifications than existing platforms.

Evidence from the case studies gives a clear indication that the approach is capable of
delivering real benefit for industrial scale software developments.

Figure 2 clearly illustrates the positive assessment feedback received on the project,
showing that for all the assessed criteria, 55% returns indicated that the RODIN provides
an improved support environment for formal software development (score 4 or 5). There
were no significant points where the assessment was “weak” or “average”. Only eight
areas were assessed as “failed”; all were related to the level of integrity and verification
applied to plug-ins.

Furthermore, the integration assessment results (c.f. Table 3) indicate that the platform is

capable of extension to support other key aspects of a large-scale formal system
specification.

Page 20 of 137

SECTION4 METHODOLOGY ASSESSMENT

4.1 Introduction

Earlier work package reports, D9 [9] and D19 [15], have examined progress in each of
the case studies in relation to the RODIN methodology. This has led to questions and/or
discussions about the use of aspects of the proposed methods within RODIN.

As a result of this work, we have concluded that any successful formal method will
always need to be integrated into the methods of industrial user organisation. As such
deployment of the method is critical to the success of a formal methods project.

For the RODIN project, we now have a core RODIN method, which has its manifestation
in five different deployments, as described in Sections 5.1 to 5.5.

4.2 The (generic) Event-B methodology

As reported in the Final report on Methodology (D29) [21], Jean-Raymond Abrial is
close to finishing “Modelling in Event-B: System and Software Design”. This new book
summarises the development method for Event-B and contains fully worked examples
whose proofs have been constructed and/or checked with the RODIN tools.

The emphasis throughout the book (and all RODIN methods) is on “correctness by
construction”, (CxC). In summary, the overall plan of CxC is to begin with an abstract
model and to introduce design decisions as refinements. At each stage of refinement, one
proves that the previous specification will be met if the subsequent ones are fulfilled.

Abrial’s book contains eloquent advice on:

e abstraction and refinement and the layering of design decisions;

e the structuring of requirements;

e proving properties of (abstract) models as a way of increasing confidence that the
delivered system will meet the expectations of its commissioners and/or users.
Here the RODIN tools provide added value by also offering links to simulation.

The major technical innovation in moving from B to Event-B is the introduction of
guarded events. These can present “deadlocks” and appropriate proof obligations have to
be discharged to establish that this is not the case. The RODIN platform and tools
provide enormous help to the user of Event-B.

The wide range of examples in Abrial’s new book makes it easier to relate the method to
new application areas. There are also chapters on formal development of “sequential

99 ¢

programs”, “concurrent programs’ and “electronic circuits”.

Page 21 of 137

Overall, the feedback from the case studies on the usefulness and general applicability of
this generic method has been extremely positive.

4.3 Case Study Feedback

As noted in §4.1, any successful formal method needs to be integrated into the methods
of its industrial users. The RODIN project specifically aimed to face this issue by
undertaking five separate case studies, each with different characteristics. For further
details see the Final report on Methodology (D29) [21].

Case study one’s investigation into the use of RODIN in “protocol engineering” has paid
particular attention to the integration of RODIN with the Lyra method.

Case study two’s work on engine failure management, addressed use of the method by
staff with limited formal methods experience. Part of this work has examined use of the
method during the verification and validation project lifecycle stages.

Case study three examined the use of the method by a major industrial partner, Nokia,
and how formal techniques fit with Model Driven Architecture.

Case study four, CDIS, was able to compare the results of using the RODIN method with
the formal methodology, VDM [89], which was adopted by Praxis at the outset of this
implementation in 1992. Although the resultant model presented in Event-B is both
much clearer and more tractable, we do not claim that the entire difference is down to the
RODIN language and methods. It is always possible to improve on a formal model; in
this case the improvement has been dramatic by clever factoring of ideas.

Finally case study five attempts to address issues concerned with ambient systems. Here
the main faults, which need to be tolerated, are concerned with transmission
errors/failures. This work has led to the use of “patterns” to reduce the level of formal
proof necessary for each new application.

We therefore feel that the RODIN project demonstrates that the generic method is both
capable of supporting a wide range of industrial strength projects, and can be adapted via
re-usable patterns and templates to integrate with existing methods in an industrial
context.

Page 22 of 137

SECTION S CASE STUDY ASSESSMENTS

5.1 CS1 - Formal Approaches to Protocol Engineering

5.1.1 Introduction

The case study investigates the use of formal methods (in particular, refinement and
model checking and model-based testing techniques) for industrial-scale development of
telecommunication systems and communication protocols. The work of the case study
focuses on formalisation and validation of the Lyra design method, an industrial-strength
domain specific design method example, developed at the Nokia Research Center.

One of the main objectives of the case study is to integrate formal methods into the
existing development process at Nokia through automation of the refinement steps in the
design flow. This has been achieved through automatic translation of Lyra/UML-2
models into the formal framework. The process includes:

¢ Automated refinement with in-built correctness and consistency checking, and
e Enhancement of the models with automatically generated fault-tolerance behaviour.

Nokia perceive the major criteria for evaluating the success of RODIN to be:

e The degree of automation achieved. This indicates the applicability and usability of
the enhanced development process in an industrial setting.

e The enhanced development flow. This provides added value to the industrial
system and product development process.

The objectives of the case study (from the Description of Work [1]) are to:

a Investigate the benefits of using refinement approach versus algorithmic
verification to verify system decomposition and composition.

b Investigate model reduction techniques and proof methods for data abstractions and
the use of model checking to verify correctness of system components.

¢ Investigate applicability of formal reasoning techniques about fault tolerance in this
application area.

d Validate top-down and bottom-up formal techniques and supporting tools.

5.1.2 Current Status
Year Achievement Objective Papers
1 Traceable requirements document for the positioning c), d) [4]
system case study, suggested by NOKIA
1 Specification and refinement patterns reflecting a), d) [25]
essential Lyra models and transformations
2 Modelling fault tolerance mechanisms in formalised a), c), d) [26]

Lyra-B models

Page 23 of 137

Year Achievement Objective Papers
2-3 Developed methodology for wverification of the a),d) [24]
consistency of provided Lyra/UML2 models
2-3 Developed methodology for model-based testing of a),b), c) [23]
Lyra models and transformations
3 Extension of the developed specification and refinement a), c), d) [27]
patterns (with incorporated fault tolerance mechanisms)
to model parallel execution of services
3 A prototype of model-based testing plug-in a), b), d)
3 Automatic support for translation of Lyra/UML2 models b), d)

into Lyra-B models, creating automatic system design
flow

Table 5: Case Study 1 - Annual achievements against objectives (c.f. §5.1.1 above)

5.1.3

Progress since Year 2 Assessment

In the final year of the RODIN project our work on the case study has progressed in four
dimensions.

1

In the work related to formalisation and the theoretical basis for automated
refinement, the Lyra specification and refinement patterns, including the
incorporated fault tolerance mechanisms, have been extended to cover modelling of
services executing in parallel.

To adjust the theoretical approach into an industrial-scale development framework
and to allow MDA-like model transformations to implement automated refinement,
the existing Lyra/UML2 profile has been enhanced further to include all definitions
and constraints related to the developed refinement patterns.

For the model-based testing of Lyra models and model transformations, a
methodology and a plug-in prototype has been developed.

To implement the developed approach with the RODIN tool platform and
demonstrate the enhanced development process in practice, and also to address the
Year 2 reviewer recommendations [1], the Integration Plan for CS1 has been
developed.

This has resulted in the development of an automated tool chain for Lyra-B.
Mapping of Lyra/UML2 models into UML/B concepts together with consistency
checking of structure and behaviour is now supported by the RODIN tool platform.
The generated B models and their implementations will be used as the input for the
model-based testing plug-in.

Furthermore, the generated models describing the “basic valid behaviour” are used
as a basis for implementing the “correct-by-construction” design paradigm, i.e.
enhancing them with fault tolerant and parallel behaviour.

Page 24 of 137

5.1.4 Contribution to the Development of Platform and Plug-ins

RODIN Platform

The RODIN platform has been used for the formal development and verification of
essential Lyra models and transformations. The following assessment is based on the few
months’ experience with platform version 0.7.4.

Event-B view: The interface is nicely structured and easy to use. The different windows
are well thought out and provide a good overview of projects. The wizards for adding
events etc. can be very useful when making big additions at the same time. Buttons for
adding and removing are also very useful when editing the machines. However, it is a bit
strange that not all operations have buttons. For instance, adding witnesses or refine
events, as well as removing events has to be done via the right-click menu. Overall, most
of the things you need are in plain sight and easy to find.

Prover view: Again, this provides a nicely structured, easily understood and navigated
view. The automatic prover handles many trivial proof obligations. However, many
recurring, simple proof obligations seem to be quite troublesome and often require
manual proving. For example, proving that a set is not empty is usually a major problem.
On making a small change to an invariant, you also get a huge number of broken proofs
that have to be dismissed manually, even though the automatic prover should have been
able to check through these on its own much quicker. Fairly often the automatic prover
takes a wrong turn at the very first node, resulting in a very hard proven tree, while even
the p0 predicate prover would have been able to prove the initial proof obligation.

Features: RODIN is an open platform only having the core functionality; the plug-ins
should take care of the rest. Still there is a feeling that some features like animation
should be available when you want to test your machine.

General With some experience with B and Eclipse it’s easy to get started with RODIN.
A few hours of testing features and generally getting to know where to find the things
you need is all that’s needed to get a decent start. An easily available Event-B language
manual would improve usability. This would help awareness of Event-B specifics, e.g.,
there is no point in trying to make a sequence, or that a carrier set can’t be empty.

This case study has reported that a major problem with the version of the RODIN
platform used is the lack of redundancy in handling the files where the machines are
saved. In particular, on several occasions when RODIN hung or crashed while building a
project, the entire project was ruined (with no way to import data). Unless RODIN
terminates properly, the workspace cannot be reused until the Eclipse metadata is deleted.
(It should be noted that this problem has not been reported on other case studies.)

The error messages from syntactical errors are in most cases very unclear and hard to

understand. The guard or action, which caused the error, is identified; no further
assistance is provided.

Page 25 of 137

RODIN seems to run a considerable number of provers, some of which may not be
required, when building a project; this causes building to take a long time. A facility is
required to suspend proof until the user decides the model is ready.

ProB Plug-In
The ProB plug-in is used in combination with the model-based testing plug-in.

The RODIN ProB plug-in has proved to be very useful for animating Event-B
specifications. The graphical user interface of ProB plug-in is quite intuitive and user
friendly. It is easy to animate and generate execution traces of Event-B specifications.
However, there are still a few bugs in the prototype version, which does not fully support
the Event-B language.

We have used the ProB plug-in in the context of developing the model based testing
(MBT) plug-in. The MBT plug-in uses the ProB engine to generate execution traces.
ProB is easy to configure and use as an independent plug-in for the RODIN platform.
However, the plug-in to plug-in interaction is not well defined. There was very little
support available for such a purpose. The lack of documentation and unavailable
application programming interface (API) is also a major concern.

UML-B Plug-In

The UML-B plug-in is used for translating Lyra/UML2 models into the corresponding B
specifications.

Once the platform was installed, installing the UML-B plug-in was straightforward.
UML-B appears as a separate perspective in the Eclipse environment. Similarly, as in
modelling in the RODIN platform, a project in UML-B has the corresponding nature,
which makes it easy to distinguish between the other types of projects (e.g. Event-B).

Modelling in UML-B was less intuitive at the beginning, despite the solid knowledge of
UML. The main difficulty in modelling in UML-B was caused by a quite rigid design
flow supported by the modelling tool. Namely, the design should start with a package
diagram, then we should attach appropriate class diagrams to these packages, and then,
possibly, we could attach a state chart to classes. When the flow deviates from the
required flow, the tool exhibits some unexpected behaviour. However, a manual would
help avoid situations like this. In response to our comments, the tool has since been
modified to enforce this design flow.

Another difficulty was typing attributes of classes in class diagram. It was less clear
immediately how to (and if it is possible) introduce new types, different from those
already pre-specified. Creating a state chart was intuitive enough; however, we would
expect more support for state chart refinement. There are some features that are more
difficult to understand (e.g. different types of treatment of states), especially for novices.

Page 26 of 137

Our work on the case study resulted in few requested features. UML-B support of
refinement was the most important in the list of these requests. We needed support for
refinement of states on a state chart, but also of refinement of classes in a class diagram.

Overall, the tool became more mature during the case study development, and most
importantly, more stable. With a proper guidebook, it can be adopted quite fast and used
in developments. However, we believe that it is necessary to have prior knowledge of
Event-B in order to undertake successful developments in UML-B, although the Event-B
seems almost transparent.

5.1.5 Contribution to the Integration Objectives

a) Checking the scaleability of the system as its functionality is extended

CS1 has used the new RODIN toolset (the platform, and the UML-B and the Pro-B plug-
ins) for automated Lyra/UML2-to-B model transformations and for generation of
automatically refined models, which are “correct-by-construction”. The experiments
have not indicated any scaleability concerns related to the RODIN platform. Integration
of the model-based plug-in tool, developed in CSI1, has shown that it could be quite
difficult to implement interactions between separately developed plug-ins. In particular,
the model-based testing plug-in depends on outputs (execution traces) produced by the
ProB plug-in. However, missing API and appropriate documentation makes it really
difficult to establish the connection between the plug-ins.

Grade: [3]

¢) Checking the scaleability of the system with respect to the size and complexity of
the models

Most of the developed formal B models are in the form of specification and refinement
patterns that can be instantiated easily during the “correct-by-construction” development
process. We expect this to increase their scaleability. The instantiation and managing
large data sets causes some concern.

CS1 uses a set of Lyra/lUML2 models for the Position Calculation System and PCAP
(Position Calculation Application Protocol) to trial and evaluate the feasibility,
applicability and scaleability of the developed approach. These models are representative
examples of the size and complexity of the models produced in an industrial development
process by a system designer or a small team of designers. In CS1 the RODIN tools have
been applied for models of this size and complexity. The experiments show that the
RODIN platform performs well at this level.

The Lyra method focuses on the description of system structure and behaviour. Data
(included mainly in the message parameters) has been encapsulated into abstract data
structures. The underlying idea is to use different tools and methods, specific for data
handling, in this area. Data handling has been left as a minor issue in CS1; only the data,
which directly affects the system behaviour, has been treated in more detail in the

Page 27 of 137

formalization. Therefore, scaleability of the RODIN platform in instantiation and
managing large data sets has been outside the scope of CS1.

CS1 has not addressed the scaleability of the RODIN platform in a distributed
development environment (geographical distribution, large collections of separately
developed system parts). In supporting a compositional development concept in industry,
scaleability of the design tools and approaches at the module/component level is regarded
as the primary goal. Module/component integration, both regarding the system
composition and the tool environment, are separate concerns that need to be addressed
separately.

Grade: [4]

5.1.6 Case Study Specific Metrics

1 How well do the developed concepts, methods, and tools fit with the existing
development framework? (U)

The goal of this metric is to assess seamless integration of formal methods and
tools to existing industrial development process. To realize this, an invisible link
between the existing development framework and the RODIN platform should be
provided. The created link should provide an engineering environment easy-to-use
for “non-formalists”.

The target has been to:

¢ link the first three (out of four) Lyra phases into the RODIN platform, and

e link the Lyra method with the model-based testing methods and tools in the
RODIN platform.

e To develop a small prototype for automated model transformations as a
proof-of-concept for the automated “correct-by-construction”.

These experiences and trials provide information for estimating the feasibility and
applicability (w.r.t. competences, resources, etc.) of the approach in an industrial
context.

During the RODIN project, the following methods and tools were developed to
integrate RODIN and Lyra/UML?2 approaches:

Lyra/UML2 and B profiles and meta-models,
tools for transforming UML2 models into B,
Lyra B specifications and refinement patterns,
Model-based testing (MBT) plug-in.

Currently, and mainly as a result of work done during year two of the project, those
three phases, namely Service Specification, Service Decomposition and Service

Page 28 of 137

Distribution are linked to RODIN platform. This allows the use of RODIN tools
and methods in a more rigorous development flow without significant competence
renewal. UML2 models from these Lyra phases are translated (using ATL, or ATL
- U2B combination) into the corresponding B models. The translation process is
based on the use of meta-models, which allows flexible enhancements to the
methodological framework later on. During the translation the syntactic
consistency of input models is checked. Currently the linking only works in one
direction, so that Lyra UML models and other required design information are used
as inputs for the RODIN model transformations. Therefore, the design errors
discovered with the RODIN platform cannot be traced back to UML2 models.
Traceability was not included in RODIN targets, but should be considered as a
research item for future actions. The tool chain and conceptual work flow for
automated model transformations will be demonstrated with a small prototype
implementation.

Model-based testing is not yet fully linked. Currently, the theoretical basis for
model-based testing of Lyra B models has been developed. Implementation
options for Lyra — MBT linkage to the RODIN platform either by using the ProB
plug-in tool or an external model-checker tool have been examined.

Based on the experiences in successfully trialing this fully automated approach, the
anticipated need for competence renewal inside the company is minimal. Also, the
threshold for adapting the “invisible” formal methods framework into production
level system development processes should be low.

The target in trialing and demonstrating the integration of formal methods and tools
to existing industrial development processes and prevailing practices has been well
achieved and exceeded in certain areas. On the other hand, the progress in the
MBT side has not met the target level.

Grade: [4]

2 How much support does the RODIN approach provide for a more rigorous
development process? Specifically, how many new tasks in the development
process can be tackled using the methods developed in RODIN? (C)

The goal of this metric is to evaluate large-scale applicability of the RODIN
methods and tools in an industrial development process, in order to provide
significant amount of added value to the whole industrial development in terms of
improved quality and R&D efficiency.

During the RODIN project, the following methods have been developed to achieve
this goal:

e the constraints for checking inter- and intra-consistency of provided Lyra
UML models,

Page 29 of 137

e B-Lyra specification patterns, enhanced to include fault tolerance
mechanisms,

e tool support to ensure consistency and verify correctness of development
steps.

The target is to provide support for more rigorous development in the first three
Lyra phases (out of four). The tools and methods in the RODIN platform should be
used to assist and automate the more rigorous system development flow. RODIN
work, including concept definitions and more detailed specifications for later
implementations, should give reference for estimating the anticipated quality
improvement and workload reduction.

The behavioural consistency of the refinement steps is validated using the RODIN
platform. The consistency checks are based on meta-models and specifications for
refinement patterns, including fault-tolerant behaviour. Consistency checks cover
both the refinement steps between the first three Lyra phases (inter-consistency
rules) and between the modelling concepts inside a certain Lyra phase (intra-
consistency). The refinement patterns provide a basis for automating the industrial
engineering workflow producing designs ‘“correct-by-construction”. Fault-
tolerance mechanisms (in combination with service decomposition and distribution)
are automatically incorporated into the refinement process. Fault-tolerant
behaviour has not been considered much in the original version of the Lyra method
nor in the UML models given as input for the RODIN work initially. This part of
the RODIN work enhances significantly the original method description.

Based on the interviews with industrial engineers, their estimation is that the
productivity could be increased four-fold by launching this kind of an automated
and more rigorous workflow. Also, correct-by-construction designs would reduce
significantly the need for testing, which currently constitutes approx. 70% of the
development time.

The target for this task has been well met. Although the handling of user data was
included in the original goals, this is a challenging research item of its own; it has
left for future development.

Grade: [4]

3 How much support does RODIN provide for automation of the development
process? Specifically, how many new tasks in the development process can be
tackled using the methods developed in RODIN? (C, X)

The goal of this metric is to assess the automation of a “correct-by-construction”
design approach in an industrial development process. How much quality is
increased due to ensuring correctness by design? How much R&D productivity is
enhanced through:

Page 30 of 137

e reduced overall work effort in an industrial development process
(automation),

¢ reduced need for testing due to design-time validation,

e direct use of design models in testing, e.g. model-based testing and automated
test case generation.

Automation of model transformations (Lyra UML models to B or UML-B) with
the ATL tool has been automated at the required level — a small prototype
implementation will be demonstrated. The refinement process verifying the
behavioural consistency between the Lyra phases is fully automatic. However, it is
based on using specification and refinement patterns, and indicates the future need
for additional support for model instantiation. For MBT some initial simple
examples exist for test generation using ProB plug-in.

This task overlaps with the previous tasks. The level of automation achieved in
these proof-of-concept trials and planned as near-future research items confirm the
estimations for R&D productivity increases that we have presented in the
evaluation statements of the previous tasks.

Grade: [4]

5.1.7 Conclusion

Our evaluation has shown that the work on the case study has progressed according to the
initial plan and achieved the expected objectives. The achieved results allow integration
of formal methods into the existing development process at Nokia through automation of
the refinement steps in the design flow and automatic translation of Lyra/UML-2 models
into the formal framework. Nokia considers the achievement of such automation as
having added significant value to industrial system development.

Page 31 of 137

5.2 CS2 - Engine Failure Management

5.2.1 Introduction

The engine failure management system provides a protective wrapper to the Engine
control subsystem, protecting it from failures in its system inputs and so enhancing the
dependability of the control system. It detects failures, and then manages these failures in
order to provide the control subsystem with an acceptable input or graceful degradation
of behaviour. (Deliverable D2 [3] and the initial RODIN presentation provide a more
detailed definition.)

Additionally, during RODIN year three, ATEC undertook a further production
acceptance test case study (PAT) as part of this work. The PAT case study is described
in the deliverable D26 [18] as part of case study 2. PAT provides a configurable system
of test specifications for the production hardware of the engine controller.

The objectives of the case study (from the Description of Work [1]) are to:

a Investigate the use of formal methods on engine failure management applications.

b Investigate methods of using formal methods efficiently via reuse.

¢ Investigate methods for specifying a generic software support package for engine
failure management applications.

d Produce prototype products that could be used to support the development of a
software support package for engine failure management.

e Investigate benefits of integrating UML and B.

5.2.2 Current Status

Year Achievement Objective Papers Contributor

1 Initial failure management behavioural a) [28] Soton,
model ATEC,

1 Traceable requirement specification of a) ATEC
FMS

1 Generic model and methodology for a),b),c) [29,30] Soton,
developing domain models ATEC

1 AA development of behavioural model ~ a), b) [31] AA
using classical refinement

2 Generic model development a),b),c) [30] Soton

Features and develop Context manager
to handle instantiations

2 Independent Pilot study investigation a), e) [30] ATEC
assessing methodology and evaluating
technology
2/3 AA further work to convert to event B a),d),e) [33] AA

and UML-B and provide guidelines

Page 32 of 137

Year Achievement Objective Papers Contributor

3 Behavioural modelling of generic model a), b),c), [36,79] Soton

d), e)
3 PAT case applying RODIN related b), ¢), d), ATEC
technology on legacy system for a e)

commercial customer

Table 6: Case Study 2 - Annual achievements against objectives (c.f. §5.2.1 above)

5.2.3 Progress since Year 2 Assessment

Failure Management System (FMS) developed by Southampton University (Soton)
and Abo Akademi University (AA)

Work has advanced from the static model, which was developed during years one and
two, to a dynamic failure management system. The current model is a generic failure
management system, which is re-usable and extensible. Re-usability is demonstrated by
the integration of more specific contributions by AA in section 3.2 of the final delivery
report D26 [18].

Further contributions made by Abo Akademi (AA) and Soton can be summarised as:

Transfer of pilot study failure management system onto RODIN platform (Soton)
Generic failure management system (Soton)

Dynamic features of failure management system (Soton, AA)

Development of failure management system using refinement (Soton, AA)
Translation of parts of AA’s classical B models into UML-B (Soton)

Integration of AA and Soton ideas (Soton, AA).

S

In year three, the focus of the development of FMS was on producing the dynamic part of
the existing static model. The model was kept generic and abstract, such that it can be
refined later into different more specific applications of FMS — thus enabling re-use. The
model is mainly built — using UML-B — out of components with associations and object
constraints, using an object-oriented development approach. The generic model can be
seen as the composition of a number of functional features — detection, confirmation,
condition and action — which can be adapted in further refinements.

The FMS case study has seen progress through the academic partners’ development of
their models using the new RODIN tools.

The formal, classical refinement development of the FMS can be enhanced by the use of
UML, in particular, a subset of UML called UML-B [32]. The result of integrating this
formal refinement approach into the UML-based development of the FMS is a set of
UML-B models distributed through phases of the development process [33]. Each
development phase corresponds to a refinement step. It is characterized by a set of
UML-B models (class and state chart diagrams) representing the main structural and
behavioural aspects of the FMS at the corresponding level of abstraction. To automate

Page 33 of 137

the process of obtaining a formal specification from UML-B models, we use the U2B
tool [34], which translates the UML-B models into Event-B. We use the automated
Event-B tool support for verifying correctness of our development. The results showed
that we were able to prove the correctness of models significantly faster, with higher
percentage of automatic proofs than in our previous classical refinement development
[35].

The new RODIN tools were used for the validation and verification of the UML-B
model. Both the classical ProB model-checker and the RODIN ProB plug-in animator
were used to validate the model; the RODIN prover supported model verification.

Production Acceptance Testing (PAT) undertaken by AT Engine Controls (ATEC)

Although ATEC has needed to divert some work from the FMS case study, they have
utilised RODIN technology for a new situation, a semi automatic Production Acceptance
Test system (PAT). The PAT system tests the hardware platform and in-situ software
(which includes an FMS system) for manufactured production units. The requirement
and a more detailed description of its development are described in the main report D26
[18].

The challenge was to utilise the RODIN technology to develop a real implementation for
a customer operating under commercial timescales. This has been achieved through the
development of a static UML-B structural model of the system. This model was used to
drive a configurable specification that interfaces with a target system, which uses some
existing code. The development environment used the Eclipse and EMF environment
shared by RODIN. The new RODIN tools were exercised in some simple modelling of
legacy in the domain.

5.2.4 Contribution to the Development of Platform and Plug-ins

Feedback on the Platform and Plug-ins has been given in presentations and directly to
developers. Bug tracking and forum websites were also made available.

RODIN Platform

In both cases models have been entered via the UML-B Plug-In, which uses the Event-B
platform. Verification of the behavioural models was undertaken on this platform using
the platform’s static checker and prover.

ATEC perspective (Year 3)

Installation

ATEC initially found the installation of the Platform and Plug-Ins required some
knowledge of the Eclipse environment and familiarity with update sites. Initially this was

not very intuitive. However, the use of automatic update sites, made later installations
much easier. It would be useful to have a more documentation about manual procedures,

Page 34 of 137

which could be followed for installation to the platform, when there are difficulties with
automatic updating or further procedures have to be followed. A proposed CD
containing a complete installation should resolve any difficulties for the novice.

Long-term support of the installation is a significant issue for the future since ATEC
needs to support some products over long life spans, e.g. 10 years or more.

A concern is that future changes in the platform may make models developed on older
platform configurations obsolete. Backwards compatibility of the platform for its models
and availability of previous platform releases is an issue, which needs to be addressed for
any long-term adoption of the technology.

Navigation

The platform is windows intensive and encourages the use of larger displays. The
navigation around the platform is menu driven but locating information was not always
intuitive. New users may benefit from examples for navigating between different
perspectives. Once familiar with the platform, this was not such a problem. However
swapping between different perspectives normally required some window adjustment.

PAT Case Study Feedback

The UML-B plug-in supported the entry of the PAT partial specification. The Event-B
translation of the partial specification in UML-B allowed the UML-B model to be
viewed from the Event-B perspective of the platform, which was significant for viewing
the full textual translation (via pretty print) and providing the facility to check and prove
the partial specification model. The reactive nature of the prover was useful in
identifying problems as they occurred, allowing them to be addressed early. Initially
much of the model was entered using the UML-B interface, rather than using an
incremental approach. This meant that several line items required proof obligations.
However the ability to add and verify functionality gradually is not diminished, as it was
useful to identify problems caused by small model changes. The order that the proof
obligations were resolved did not appear to impact proof. The model was checked and
animated using the ProB plug-in.

The PAT generic editor did not directly involve the RODIN platform but used its
underlying technology; this study forms the basis of future research work for UML-B
development in the Platform (see comments on UML-B below).

University of Southampton perspective (Year 3)
The RODIN platform is an excellent toolset for specifying critical systems and verifying
their correctness; however, due to the complex layout of the platform it is very hard to

navigate all the menus and buttons. The platform is based on too many wizards, which
eventually confuse and take time.

Page 35 of 137

The following bug report and feature requests are of note:
e Bug Report #1724770 - axioms entered in constant wizard not displayed

The wizard view does not show straight away, whether a variable or axiom has
been added successfully. Thus for some time, when adding a constant and an
axiom using the constant wizard, the fact that an axiom was dropped and
disappeared from the model was not revealed. Fewer wizards would make the
platform more usable and less cluttered.

e Feature Request #1777260 - Propagation of changes

The RODIN platform does not seem to allow for late model changes. If a change is
made to the abstract model, or a low-level refinement, these changes have to be
made manually to all subsequent refinements. This is especially time-consuming if
new events are added or a type change made. Changes made to more abstract
refinements should thus be propagated automatically to subsequent refinements.

e Feature Request #1779420 — Error Messages

In the event of errors, RODIN generates error messages and warnings. Sometimes
these error messages are hard to understand and not very meaningful. However
with some experience it will be easier to interpret them and understand their cause.

RODIN Prover
The proving capabilities of the RODIN platform are very useful, and greatly reduce the

effort required for at least some POs that are proved automatically. In comparison with
B4Free, these would need manual proof, which is tedious.

The interactive prover interface is set up to provide useful information about the PO,
which makes it easier to discharge the PO. Hypotheses can simply be added or ignored
and automatic rewriting can be applied for some constructs.

Plug-in Integration

Plug-ins are integrated into the RODIN platform using perspectives, which is very useful,
because the user can easily switch between them. The plug-ins used in case study two
are evaluated below.

Abo perspective (Year 3)

Launching the application was easy. A very basic tutorial accompanying the tool

provides significant help. However, that is the point at which help stopped. There was
no available manual on how to access certain tool features or how to proceed with

Page 36 of 137

specification and proving. Recently, a manual has been included in the tool distribution,
and this should help its dissemination.

Without the guide, the tool was explored intuitively. This is one of the tool’s strengths.
Indeed, we found the tool interface reasonably intuitive. Available wizards for creating
events, adding variables and invariants give very good guidelines for creating
specifications. This, however, is only because we are familiar with the concepts and have
experience of other B tools. The main difference is in the organization of a project, i.e.,
specifications, which adheres to Eclipse standards. Moreover, type checking of
specifications is performed each time a project is saved, instead of launching the type
checker individually. However, reported error messages are not always clear and
understandable. Sometimes they may be very obscure and confusing. Having the list of
possible error messages with some guidelines would be extremely helpful.

Each time the project is saved, not only is type checking performed but proof obligations
are also generated and discharged automatically if possible. This really saves time
compared with AtelierB. The RODIN platform enabled more proof obligations to be
discharged automatically, compared with AtelierB, for the same development, i.e., based
on the same specifications. However, when it comes to proving the remaining proofs, not
everything is as intuitive. Here, there would be real benefit from a detailed proving
manual, although the initial guidebook provides a partial explanation.

Having previously used AtelierB Event-Based modelling, translating them into Event-B
was fast and intuitive. We noticed few differences and difficulties. For instance, the
elements of an enumerated set, i.e., constants, are not distinguished and this has to be
done manually. Regarding proof, it is less easy to understand the best approach to case
analysis, suggesting a witness for existential proofs, the types of provers to use and when.

Overall, the tool is quite stable, with no unwanted behaviour (e.g. system crash). The
acceptance period was rather short. However, initially it would probably be faster if there
were a nice, small guide-example for practice.

ProB Plug-In

The pre RODIN ProB plug-in was used in the FMS case study in year two and the
RODIN version in the final year. The RODIN version was also used on the PAT case
study during year three.

The Plug-in was used on the Dual Case sensor model in the year two pilot study by
ATEC [14,16].

The following observations were made.
e Useful tool and intuitive

e Could be improved by:
a enhanced animation to highlight what has changed from each event

Page 37 of 137

b improved refinement checking
¢ integrating with same platform as Prover.

In response a RODIN plug-in was integrated onto the same platform as the Prover

ATEC perspective (Year 3)

ATEC applied the ProB Plug-in on PAT later than Southampton (see below).
Consequently, they did not experience the same syntax. The points were reported:

¢ Installation on the RODIN platform is not fully automatic as it required additional
installation of some objects.

e The ProB integration onto the same platform as other tools was an improvement,
however its selection and use on this platform could be clearer.

e Documentation describing the use of the ProB on the RODIN platform needs to
reflect this

e The partial specification model of the PAT was successfully verified using the
ProB disprover and animator.

e Not all ProB features have been accommodated on the new platform, notably the
model checker. Also the animator did not show a history of its execution. The tool
needs to export to classical B to use this feature.

e The disprover gives acceptance of proof if it cannot find any counter examples.
This could be misleading where a small state space limit may give acceptance but a
larger state space may find a counter example.

e Overall the ProB tool is very useful for the industrial novice. However it needs all
the features of the pre RODIN tool to be included on the RODIN platform.

University of Southampton perspective (Year 3)

The ProB plug-in is one of the most used tools of the RODIN platform. It is extremely
useful to animate a model to check whether the implementation matches the required
functionality. It is very important to animate the model, as this is the only way to make
sure that the model performs the way it should. ProB can also be used to aid discharging
POs by animating the model with the goal of the PO in mind.

In the early stages, there were slight problems with differences in supported syntax,
where some syntax, which was allowed in RODIN, was not yet recognised by the ProB
plug-in. This did not hinder model animation, as it was always possible to rewrite the
unacceptable statement. Furthermore, these errors were reported to the developers, who
addressed them instantly and provided an updated plug-in.

An earlier version of the ProB plug-in used a view to switch to the ProB plug-in. This

was improved and a ProB Perspective was made available. In this way, the user can now
switch to the ProB animator more easily.

Page 38 of 137

The following feature request is of note:
e Feature Request #1777267 — Model Checking

A desirable ProB feature is the model-checking capability of classical ProB.
Currently, the ProB plug-in can only be used to animate the model — for more
advanced model checking functionality, the model has to be exported as a B
machine and can then be animated using the standalone ProB tool.

Brama

The University of Southampton assessed this Plug-in.

University of Southampton perspective (Year 3)

The Brama plug-in was not used for the development of FMS due to the lack of detailed
documentation and restricted time. The animation part of the tool was, however used on
small models, where it was quite successful. A Flash animation was not constructed, as it
requires background knowledge of Flash animation creation.

UML-B Plug-In

The pre RODIN UML-B plug-in and its related method have been assessed in the FMS
models years one and two. The RODIN plug-in was available in year three and was used
in the FMS and PAT case studies.

Feedback from first year

e Use of the uB action and constraint language requires detailed understanding of the
translation into B, which depends on details such as multiplicities in associations.

¢ Graphical feedback to indicate inconsistencies in model.

e The requirement to handle data instantiation of generic models.

Response

e uB has been improved such that it is more intuitive from a UML-B modelling
perspective.

e Some graphical visualisation of errors has been added.

e New requirements manager tool was developed (later versions referred to as a
Context manager plug-in).

Feedback from second year

¢ Pilot study identified need for stronger guidelines for novice to refine models.

Page 39 of 137

e UML vs. B investigation/justification by industrial user identified potential
improvements in UML-B by adopting some UML constructs, e.g. sequence
diagrams, Case diagrams.

Response

e Guidelines for refinement patterns developed by AA.
¢ Investigation and development into UML extension of UML-B

ATEC Perspective (Year 3)

e FEasy installation

e Relatively easy to use but insufficiently mature for large development. This is
largely due to minor bugs and some significant workaround, e.g. refinement of
classes not possible.

e Several bugs found have been reported in SourceForge.

e Documentation would also from having examples that could be imported to assist
novice learning.

e The most useful improvements in RODIN UML-B, over pre RODIN, were
visibility in error marking and the use of contexts.

e Context views found useful for partitioning (c.f. metric 6, §5.2.6 below)

e Further enhancements have been identified, mainly through the development of the
generic editor on the PAT case (c.f. metric 6, §5.2.6 below).

University of Southampton perspective (Year 3)

UML-B was used in the FMS case. However, at some stages, in the development only
Event-B was used because of the rapid changes made to the UML-B plug-in. This made
the development very hard because some older versions of the model could not be
imported into the newer versions. Due to the immaturity of the tool, a lot of bugs were
present, of which major ones were reported (see D26 [18]). This all contributed to delay
the development of the UML-B FMS. Once a more stable version of UML-B was
available, the Event-B model was translated into UML-B; only minor problems then had
to be overcome.

The following feature requests and error report are of note:

e Feature Request #1777265 - comment on specific variable (etc) in UML-B

The ability to comment on specific variables, axioms, invariants etc, especially if
hidden from the actual UML-B diagram, would be extremely useful. These
comments could be inserted in the properties tab (as in Event-B), and then added to
the pretty print.

e Feature Request #1777262 - State machine transition naming

Page 40 of 137

At the moment it is not possible to create a state machine that has two transitions
with the same name. This, however, would be very useful so that the developer can
represent a disjunction within the guard of an event.

e Feature Request #1777268 - refinement by state machine

Some events might be specified as events of a class. It may be that at a later
refinement stage, these events would be more suitable to be refined using a state
machine. Currently this is not possible, and as a solution, the complete event has to
be moved into the state machine. This is very time-consuming and error prone.

e Feature Request # 1779366 — UML-B integrated roundtrip engineering

A highly desirable capability of UML-B for productive working, which should be
addressed in the next round of UML-B development, is integrated round-trip
engineering. Currently, when saving a UML-B model, the user must switch to the
RODIN/Event-B perspective to analyse the model. Once he has identified
consequent changes, he must return to UML-B to perform that change. For
industrial-strength productive usability, the RODIN platform and Event-B language
should act as far as possible as a “black box” analysis engine for the UML-B
modelling activity, and its workings should only be visible through the UML-B
interface. Specifically:

o Errors and warnings from RODIN syntax/type analysis should be presented
on the appropriate UML-B diagrams.

o Similarly for proof obligations and animation interactions (state variable
values, enabled operations).

e UG Forge Error Report #58

UML-B currently lacks support for refinement. The model-to-be-refined has to be
copied and pasted within the . UML-B file and then renamed. The refines events
and seen contexts etc. have to be set manually. These missing features are already
addressed and automatically undertaken within RODIN, and would be a very useful
feature to include in UML-B. The problem associated with the lack of refinement
support by UML-B is that the instance context also gets copied when copying the
machine in the . UML-B file.

Abo perspective (Year 3)

Abo have reported that their experience of using UML-B on case study two introduced
no additional points to those already reported on case study one, see §5.1.4 above.

B2RODIN

ATEC applied this plug-in on its Dual Case sensor model during year three, as reported
in D26 [18].

Page 41 of 137

ATEC Perspective (Year 3)

e FEasy installation.

e Good documentation with example.

e Easily converted documentation example.

e Unsuccessful conversion of dual case as some pre-formatting was required, e.g.
dual case conversion of some classic B features (e.g. definitions, use of pre
conditions) had to be reworked into Event-B format.

e The error detection was adequate and usefully supported further by Event-B static
checker.

e Likely use will be to convert large-scale classic B to Event-B system on RODIN
platform. Guidelines to support pre-formatting of Classic B file would be useful,
e.g. what will not convert (e.g. definitions and recommended workaround in each
case)?

5.2.5 Contribution to the Integration Objectives

a) Checking the scaleability of the system as its functionality is extended

Feedback on the new RODIN toolset has been received from Southampton, Abo (FMS
model) and ATEC (PAT development). No partner has indicated scaleability as a
significant issue with the integrated toolset.

However it has already been stated that:

e Navigation is more difficult as windows platforms are extended.

e Maintenance of old models could become a problem as platform functionality is
added since there will be an increased risk that upgrades may not be backward
compatible with older versions of the tool.

Managing scaleability in the models

The UML-B methodology used in all the models addresses scaleability as it encourages
O-O design concepts, such as classes, which naturally lend themselves to large-scale
instantiations. RODIN event refinement also allows the specification of alternative
development paths, e.g. the refinement of machine2 as either machine3a or machine3b.
This will facilitate the production of behavioural model variants, thus supporting
generic/product-line working.

FMS models

Managing scaleability has been addressed principally in the case study by the
development of the generic model (c.f. §5 of D26 [18]), where the configuration of the
model was intended to cater for FMS variants.

Page 42 of 137

The development of the generic FMS model in year one identified issues concerned with
large data set model instantiations and managing dynamic behavioural changes through
features. This resulted in the development of a requirement manager tool (later referred
to as the context manager) in year two and some exploration of feature development.
The context manger was not applied to the year three generic model development, as it
needed further modification to maintain compatibility with the UML-B developments.

The less-generic Abo model also addresses scaleability by adopting UML-B classes to
handle collections of sensors and by refining classes to develop behaviour.

In contrast one aim of the ATEC pilot study in year two was to explore basic
development techniques for a fairly concrete dual sensor system with the view either to
integrate its functionality in the scaleable generic model or to extend its scaleability
through UML-B development. This was not undertaken in the final year due to ATEC’s
focus on the PAT case study.

PAT case study

The PAT structural model has been derived from domain analysis. Its O-O design lends
itself to scaleable data centric configurability.

The model was used to generate automatically the generic editor, which illustrates the
extensibility of the approach to requirements scaleability.

The model domain elements were also used to guide the structural development of the
interpreter, which was implemented along more traditional methods. (The intention to
model all the behaviour of the interpreter and then translate this to an implementation was
considered too risky given the project team’s experience).

The development of the generic system delayed large-scale data entry until the model
was considered stable. This resulted in delays to the verification of the interpreter by
traditional methods.

Grade: [4]

b) Checking the impact of legacy (sub) systems

The PAT system has had to consider legacy issues due to:

e The need to re-use existing application functionality, including low-level
application code such as communication drivers, menus and error handling.
e The application of a legacy compiler to support legacy code.

The development is described in D26 [18] and is commented on below.

Page 43 of 137

The implementation showed that reuse of legacy code could be integrated with new
design requirements. However in practice this involved extensive rewriting of existing
code, as the new requirement was better understood and a more generic implementation
was needed. The UML model, which was used to generate the generic editor and guide
the structural development of the interpreter, was useful in defining the generic design
requirement. The interpreter needed to use some legacy code and the intention was to
model fully the interpreter functionality, but this was not achieved. Instead some partial
specification modelling was provided to examine the impact of legacy functionality on
the new requirement. A simple functional model of a test element was specified and its
dependency on legacy code was introduced. The behaviour of the legacy code was
introduced only where it impacted the new requirement. Further refinements introduced
other dependant behaviour. The model, though trivial, illustrates the impact of the legacy
behaviour and how it can be incorporated into the requirement. The intent was to use the
specification to isolate and replace legacy code as required for future maintenance.

The RODIN platform was used to develop the partial specification. The UML-B plug-in
was useful in specifying partial behaviour as it provided a good visual representation of
the legacy system. The use of contexts was also used to isolate the legacy structural
items, which helps in maintaining legacy code. The animation of the specification using
ProB helped to illustrate this behaviour to other users.

The target implementation needed an existing compiler, which it proved impractical to
integrate into the Eclipse platform. However the use of an alternative compiler installed
on Eclipse assisted development by providing a more effective interactive development
environment. The implementation code was imported from the old compiler, modified
and compiled in the newer environment, then imported into the older compiler for final
translation. Having two platforms for the development only caused a minor hindrance.

In conclusion the impact of legacy systems can be applied in modelling partial behaviour
to assist new development requirements analysis. However the formal translation of the
full requirement involving the legacy system, from a model into an implementation,
requires significant experience. The legacy development environment, i.e. compiler, is
old and inappropriate for integration into the Eclipse platform. Thus the design requires
porting to a standalone platform, which could create potential translation problems.

Grade: [3]

5.2.6 Case Study Specific Metrics
These metrics principally address ATEC’s assessment of the usability of the technology.
1 Evaluate the reduction of cost of development in future products. (U, C)

Criteria Rationale: development efficiency makes the technology commercially
attractive to the industrial user. This assessment is based on the hypothesis that:

Page 44 of 137

UML-B will support the specification of generic products that can be efficiently
configured for different specific applications products.

ATEC is interested in the costs of using the technology throughout a project
lifecycle. This evaluation has involved an exploratory investigation into workflow
and the associated learning costs.

Justification of grading:
Learning

e The cost of learning and applying the methods requires strong guidance for
novice industrialists (c.f. §5.2.4, Assessment Report 2 [16]).

e The RODIN toolset was relatively easy to use and was applied by the
industrialist to the PAT model. However, lack of experience in the methods
limited a novice’s progress. More behavioural examples in event UML-B
would have benefited a novice’s understanding of the notation.

e The academic experience of learning and using the tools on the FMS are
reported below. However, in both cases the academics had previous
experience, which was beneficial in adopting the toolset. This has been
considered in ATEC’s evaluation of the training and investment required.

Abo perspective

Abo already had a level of experience using several related tools and
methodologies prior to RODIN. They are:

e experienced in the B Method, and the corresponding AtelierB and B
toolkit modelling and verification tools;

o familiar with Event-Based modelling;

o proficient in UML and the underlying concepts of O-O design.

This prior knowledge of specific methods and associated tools had a large
impact on our understanding and acceptance of the tools developed within
RODIN, in particular the RODIN platform and the UML-B plug-in.

University of Southampton perspective

The RODIN platform and plug-ins are easily understandable with previous
knowledge of B, UML and the ProB tool. The transfer from B to Event-B is
straightforward, as it appears a simplification of B. The disadvantage of Event-
B is that it does not contain all data structures that might be needed —should a
new data structure be needed, it has to be modelled using functions and other
available features. UML models can be constructed in the usual and familiar
way and B annotations can be made to the diagrams. It takes some time to
remember some of the modelling rules dictated by the UML-B approach, e.g.

Page 45 of 137

the UML-B view must be used to make changes to Event-B, otherwise changes
will be overwritten. The ProB animator is straightforward to use and should be
self-explanatory even for someone without previous knowledge of ProB.

Potential Workflow improvement

The impact of modelling on workflow was assessed largely in year two; in year
three the impact on legacy systems (c.f. §5.2.5 above) was considered. The new
toolset’s contribution to improvement in the modelling process was undertaken in
year three and has been reported in the platform and tool evaluation sections (c.f.
§5.2.4 above).

e Modelling assists requirement analysis, which reduces the risk of late changes
due to the wrong requirements being met. Although the approach can be
adapted, it can prove inflexible at times. However, modelling takes more
time at this stage than traditional methods of requirement analysis (c.f. §5.2.4,
Assessment Report 2 [16]).

e Modelling enables the intended requirements to be translated into design and
implementation accurately with minimum errors. This can result in reduced
verification time and provide a reference to assist the efficiency of other
workflow processes e.g. testing, documentation and certification (c.f. §5.2.4,
Assessment Report 2 [16]).

e Modelling doesn’t increase significantly the burden on other workflow
processes such as maintenance and testing (c.f. §5.2.4, Assessment Report 2
[16]).

e Limited use of the technology can applied to the development of legacy
products (c.f. §5.2.5 above, PAT partial specification).

e The UML-B toolset could provide more efficient modelling once it is robust
enough for industrial use.

e The use of UML-B to express modelling behaviour was shown to have
benefits over the more textual approach used in the Dual case sensor of year
two. Significantly the partial PAT model could be expressed better visually
and more efficiently using state machines. Furthermore the use of contexts
enabled easier structuring of design so that a mapping between the
functionality and its static structure was visible.

Reusability and configurability of models

e The generic model was not developed sufficiently to verify different engine
variants configurations. However the work demonstrates this is achievable.

e The generic PAT case study editor successfully provided a configurable
package for real system test specification variants.

e Not all FMS models included all the behavioural functionality identified in
the traceable requirements deliverable D4 [4]. However we have illustrated
how this can be achieved.

Page 46 of 137

e The final FMS models have demonstrated that the domain aims of genericity
and reusability have been met.

Grade: [4]
2 Evaluate the impact on maintaining current quality levels. (U, S)
Overview
Criteria Rationale: This assessment is based on the hypothesis that:
The use of the UML—B method will result in high quality products.

Thus, UML-B and the RODIN methodology should prevent errors from being
introduced and detect errors early to promote their removal.

ATEC has considered how effective the methods are at detecting and avoiding
errors from year two. This was reviewed in year three.

Grade Justification:

e ATEC explored the flexibility of formal models when developing prototype
requirements in year two. They found the formal approach restricted rapid
development but could be adopted.

e The strong process used to translate requirements into design helps avoid
errors. However it requires guidance during the refinement process.

e The RODIN methods, tools and processes do not address non-functional
requirements.

Year 3

e The UML-B method enabled formality to be expressed at a higher level;
consequently the novice could avoid errors. In the PAT model the dot
notation was used in the diagrams rather than the lower level syntax. The
automatic generation of Event-B from the classes also reduced errors. The
partial model translated into Event-B and proved by automatic proofs, further
illustrated the effectiveness of error avoidance through design translation.

e Error detection in the application model has been assisted by the functional
visualisation. In the PAT model it was useful for the legacy read behaviour
to be expressed visually as two events (read and abort) on a state diagram as
this highlights the source of this behaviour in this case of a legacy read (c.f.
§3.2 of D26 [18]).

e The new UML-B plug-in provides error marking in its diagrams for syntax
errors. This was useful in identifying incomplete model requirement
(currently only errors which violate the UML-B abstract syntax are checked,
further work is required to implement other syntax errors).

Page 47 of 137

Grade: [3]

3 Evaluate whether the improvement of ease of certification has been achieved (U, S)
Overview
Criteria Rationale: The method may facilitate a means of producing documentary
evidence for certification, such as that required in EUROCAE ED-12. This would
lead to greater acceptability of the methods by the industrial user.
During year two ATEC considered how the methods contribute to certification

standards and how the products are suitable for independent verification (c.f.
§5.2.4, Assessment Report 2 [16]).

Table 7 summarises the year two investigations. The v'/% column indicates
whether the RODIN method and platform helps (¥) or hinders (%) certification.

No Description Consideration v/x
1 Traceability between system “Information is traceable if the origin x
requirements and software of its components can be
requirements should be provided to determined.” this assists verification
enable verification of the complete processes of review and analysis for
implementation of the system requirement coverage.
requirements and give visibility to B refinement models do not label
the derived requirements explicitly the introduction of
Note system requirements allocated requirements and their development.
to software include functional, This may hinder the analysis and
performance and safety related assurance of a model as it would:
requirements. These requirements a compromise tracing to and from
are considered high level. Some the system requirements.
derived requirements are regarded as b e visibility of derived
high level though not directly COMPIOmIse VfISI ! fty 1 Vs
traceable to the system requirement. requirements for safcty analysis.
A solution may be to explore ways
(c.f. §5.5 [88]) .
to tag model development against
requirements in order to generate
traceability matrixes.
2 Compliance of safety requirement. By adopting invariants that reflect v
system safety constraints, confidence
is increased that the model is
complete and its implementation will
conform. This should assist
certification.
3 The software architecture and low The refinement process and checking v

level requirements are developed
from the high level requirements.

mechanism, which controls
permissible changes, aids
development of compatible low-level

Page 48 of 137

No Description Consideration v/x
The goal is to avoid errors during the requirements. Identification of data
development process. invariants with refinement proof by
(c.f. §4.4,5.2[88]) the tools may also support the

verification of this requirement.
4 Traceability between the low-level The guideline distinguishes design x
requirements and high level requirements from high-level
requirements should be provided to requirements in its analysis to allow
give visibility to the derived for separate review and analysis
requirements and the architectural activities. This distinction is less
design decisions made during the clear using B model refinement,
software design process and allow where it seems that high-level
verification of the complete requirements modelling and design
implementation of the high level are closely bound.
requirements. The tracing of high-level
Note low-level requirement refer requirements to the design is
here to design requirements from compromised, as requirements are
which source code can be produced not tagged in the model.
(c.f. §5.5 [88]).
5 Test cases are required to Conventionally requirements v
demonstrate compatibility of the compatibility and test coverage is
system with requirements and only intended to be applicable to
provide assurance of requirement testing of the target code and is not
coverage (c.f. §6.2 [88]). concerned with modelling.
However demonstration of test case
completeness will be easier if the B
refinement model can demonstrate
requirements coverage and the
resulting implementation can be
shown not to introduce incomplete,
or unintended requirements.
Mapping of requirements with
animation test cases using ProB
should help to give this assurance.
6 Dead code should be removed (c.f. Although the guideline requires v
§6.4 [88]). structural coverage analysis to be
applied to the source code, the
identification of dead model code
would provide assurance in the
source code and assist certification.
The tracing of model detail to
requirements would assist this.
7 Deactivated code is allowed but Though not identified in the pilot x

needs to be verified and shown not to
be executed inadvertently (c.f. §6.4

[88]).

study model the generic FMS model
could generate deactivated code.

This would be where a configuration
did not require instantiation of all the

Page 49 of 137

No Description Consideration v/x

generic model behaviour.

8 Qualification for tools is required UML-B will not need to be verified x
when the output generated by the as its output will be verified during
tool is not verified. The objective of model verification. The requirement
qualification is to provide confidence manager may need verification
that the tool is at least equivalent to depending on how the requirements
the processes it is eliminating or are verified in the model verification.
reducing (c.f. §12.2.4 [88]). E.g. what ensures that the

instantiation is as intended?

The verification tools ProB and
B4free will need qualification if their
verification results are to be relied
on.

The onus appears to be on the tool
user to gain qualification agreement.
A formal methods novice may not

find this easy.
9 User modifiability- What ensures The FMS generic model may need to x
that a designated non-modifiable show how its behaviour remains
component of the software is protected when a user can instantiate
protected from unintended the model.
modification? This may be achievable by only
(c.f. §5.2.3 [88]). allowing instantiation through a

specific interface.

Table 7: Year Two Assessment Overview

Year three did not investigate certification issues further. The grading is derived
from the following summary justification.

Justification:

e C(Certification can still be applied
e Slightly more effort may be required

Grade: [3]
4 Evaluate the reduction of cost of late requirement changes (U, C, S)
Overview
Criteria Rationale: Typically the cost (impact) of incorporating late requirements

change is expensive. Thus, any cost reduction in this area, which results from using
the RODIN method and tools, will provide real benefits.

Page 50 of 137

ATEC has considered how the methods contribute to early wvalidation of
requirements (reducing the likelihood of late change), understanding design, as well
as managing the impact of late changes. The industry often needs to support long
maturity cycles of products (over 10 years) so long term maintenance has also been
considered.

Justification:

e Early requirement validation is possible (c.f. §5.2.4, Assessment Report 2
[16]).

e Change can be accommodated relatively easily if the model is designed well
(c.f. §5.2.4, Assessment Report 2 [16]).

e The three-year FMS models successfully introduced some detailed
functionality into each model, i.e. a confirmation mechanism without the
need to change the static design.

e The PAT generic model easily configured test variants. However the
development of the structural model did impose delays to development and
the interpreter code needed rewriting. This implies that large structural
changes to the model from new requirements could have a potentially
significant impact on maintenance.

e The PAT legacy modelling is expected to assist future development.

e [ong-term maintenance is a concern where backward compatibility of the
RODIN platform with its plug-ins needs to be assured .

Grade: [3]
5 Evaluate whether improvement of portability has been achieved (U, X)
Overview
Criteria Rationale: The evaluation of portability has been assessed in terms of
MDA (model driven architecture) concepts. This assessment is based on the
hypothesis that:
The use of the UML—B method will result in platform independent models and
facilitate the transformation to different platform specific models thus improving

portability.

ATEC has considered how the methods contribute to developing a platform
independent model and platform specific model.

Grade Justification:

¢ Pilot study successfully developed a platform specific model for dual sensors
(c.f. §5.2.4, Assessment Report 2 [16]).

Page 51 of 137

e The final FMS generic model does not yet contain all the functionality of the
case. However the functionality introduced is generic and thus some form of
platform independence has been achieved. The transference to a platform
specific model, i.e. the generation of a variant, has not yet been achieved.

e The PAT model generic editor provides a platform independent model.

e The Abo FMS model provides a template pattern that can be reused in the
FMS environment, i.e. it is portable to some degree. However when the
pattern was applied to the PAT case, it was shown to be less appropriate as
the pattern didn’t focus on the main functionality of the case study.

Grade: [3]
6 Evaluate the improvement to the UML—B method (U, C)
Overview

This evaluation is based on the extent to which the UML-B method and its
development have assisted model development through reusability and validation.

FMS models

UML-B influenced the development of the generic FMS models by dictating an
object-oriented modelling approach from the outset. Initially the context diagram,
gave structure to the model, which enabled its behaviour to be defined.

Object-orientation was natural for FMS; its structure consists of components,
relations and instances that have different behaviours.

The UML-B modelling approach encouraged development of re-usable models.
The instance context can be replaced easily. The behavioural model, which
consists of several refinements, can be reused by adding further refinements, thus
extending the functionality of the abstract model, or by feature replacement.

The new RODIN UML-B plug-in extended the FMS modelling capability in year
three, as its new features, e.g. contexts and hierarchical state machines, allowed
behaviour to be expressed more clearly. Model translation on the RODIN platform
has enabled the powerful verification capability to be used for model proving.

In contrast to the generic FMS model, the Abo model development began as a
classic B design and was modified to UML-B, which made the visualisation of the
design more understandable. The immaturity of the early RODIN UML-B plug-in
hindered its model development in year three.

The integration of specific behaviour from the Abo model into the generic model

took place later in year three using the new UML-B tool (though some
workarounds were required to cater for current tool bugs).

Page 52 of 137

Unfortunately ATEC had insufficient time to apply the new UML-B plug-in to
FMS.

However in assessing the final FMS development, undertaken by University of
Southampton and Abo, ATEC believes that UML-B is more readily understood
than classical B.

E.g.:

e The UML-B package diagram shows graphically the contexts to machines
relationships, which is much clearer than textual naming conventions.

e The context diagram visualisation of static structure dependencies is clearer.

e Contexts allow design layering. This eases maintenance. In year three the
application of UML-B illustrated how the context data could be layered, for
example model primitives were separated from the rest of the static data.
Similarly the test environment, such as ProB, can be isolated from the design.

e State machine representations provide a clearer representation of state.

However the FMS models developed did not manage to address all the
functionality of the requirement specification, which was disappointing. The
logistics of tool feature availability and the general difficulty of domain modelling
contributed to this shortfall in functionality rather than the modelling language.

UML-B’s model verification and validation capability was improved by its
translation into Event-B. This allowed use of the powerful RODIN platform
provers. However, the UML-B (diagrams) notation’s error marking of incorrect
syntax is limited.

PAT Case Study

The new UML-B plug-in was successfully applied to a partial specification of the
PAT case study. ATEC viewed this as a success, since it enhanced the
understanding of the legacy behaviour, which is beneficial for future maintenance
and development of the interpreter. The RODIN platform provers and ProB
provided a sound verification and validation of the model.

Future enhancement

Although the PAT generic editor was created with UML and used EMF, its
verification would have been strengthened by the adoption of UML-B, which
would have allowed formal verification to be investigated. However this was
impossible as UML-B lacked a number of key features. This use of UML-B, and
its application using EMF technology, forms the basis of future development
research of UML-B on the RODIN platform. The case studies also highlighted
features, such as multiple inheritance and classes as a collection available in UML,
which are currently deficient in UML-B (c.f. UML-B, §5.2.4 above).

Page 53 of 137

Grade Justification:

e Year two concluded that benefits were to be gained from choosing UML-B
over UML and B approaches (c.f. §5.2.4, Assessment Report 2 [16]).

e Year three indicated potential benefits from using new UML-B on FM and
PAT case studies, but the maturity of the tool hindered progress

Grade: [3]

5.2.7 Conclusion

The FMS case study has created several models and in the year three provided some
integration of this work. Whilst all of the requirements specification [19] was not
addressed they illustrate that the domain aims can be satisfied using this approach.

Industrial acceptance of the technology is seen in the value of model development in the
workflow process. The early expectation of the case study, to develop the FMS model
translation into an implemented system (concept to grave), was not realised due to lack of
experience and pursuit of other evaluation aims. However ATEC feel, while this
experience is being gained, it has found the current practical use of modelling with
RODIN is through requirement exploration guiding development rather than its direct
translation into implementation.

In conclusion the case study has successfully applied RODIN methods and tools to both
cases and generated several domain models (e.g. generic FMS) and guidelines for
working (Abo template).

The new toolset has been relatively easy to use once familiar with the methodology.
However, in some cases the tools still lack the maturity in features or development to be
used commercially or for some types of application. The bugs and feature requests have
been stored in SourceForge.

Page 54 of 137

5.3 CS3 - Formal Techniques within an MDA Context

5.3.1 Introduction

This case study is concerned with the formalisation of various subsets of the MITA
platform [42] (developed in Nokia within the NoTA — Network on Terminal Architecture
project), including the formalisation of the infrastructure and development of techniques
to allow MDA to be used more formally.

The objectives of this case study (from the Description of Work [1]) are to:

a Investigate how formal techniques fit into the Model Driven Architecture (OMG
MDA) framework as “MDA Mappings”.

b Investigate which techniques are applicable at which stages of platform
independence and platform specific models.

¢ Investigate how to integrate and compare the verification and validation results
from the various levels of abstraction.

d Investigate methodological issues relating to formal model development with an
emphasis of refinement and retrenchment.

5.3.2 Current Status

The primary driver within Nokia for this case study