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Abstract. Telecommunicating systems should have a high degree of availabil-
ity, i.e., high probability of correct and timely provision of requested services.
To achieve this, correctness of software for such systems should be ensured.
Application of formal methods helps us to gain confidence in building correct
software. However, to be used in practice, the formal methods should be well
integrated into existing development process. In this paper we propose a formal
model-driven approach to development of communicating systems. Essentially
our approach formalizes Lyra — a top-down service-oriented method for devel-
opment of communicating systems. Lyra is based on transformation and de-
composition of models expressed in UML2. We formalize Lyra in the B
Method by proposing a set of formal specification and refinement patterns re-
flecting the essential models and transformations of Lyra. The proposed ap-
proach is illustrated by a case study.

1 Introduction

Modern telecommunicating systems are usually distributed software-intensive sys-
tems providing a large variety of services to their users. Development of software for
such systems is inherently complex and error prone. However, software failures might
lead to unavailability or incorrect provision of system services, which in turn could
incur significant financial losses. Hence it is important to guarantee correctness of
software for telecommunicating systems.

Formal methods have been traditionally used for reasoning about software correct-
ness. However they are yet insufficiently well integrated into current development
practice. Unlike formal methods, Unified Modelling Language (UML) [10] has a
lower degree of rigor for reasoning about software correctness but is widely accepted
in industry. UML is a general purpose modelling language and, to be used effectively,
should be tailored to the specific application domain.

Nokia Research Center has developed the design method Lyra [8] — a UML-based
service-oriented method specific to the domain of communicating systems and com-



munication protocols. The design flow of Lyra is based on concepts of decomposition
and preservation of the externally observable behaviour. The system behaviour is
modularised and organized into hierarchical layers according to the external commu-
nication and related interfaces. It allows the designers to derive the distributed net-
work architecture from the functional system requirements via a number of model
transformations.

From the beginning Lyra has been developed in such a way that it would be possi-
ble to bring formal methods (such as program refinement, model checking, model-
based testing etc.) into more extensive industrial use. A formalisation of the Lyra
development would allow us to ensure correctness of system design via automatic and
formally verified construction. The achievement of such a formalisation would be
considered as significant added value for industry.

In this paper we propose a set of formal specification and refinement patterns re-
flecting the essential models and transformations of Lyra. Our approach is based on
stepwise refinement of a formal system model in the B Method [1,13] — a formal
framework with automatic tool support. While developing a system by refinement, we
start from an abstract specification and gradually incorporate implementation details
into it until executable code is obtained. While formalizing Lyra, we single out a ge-
neric concept of a communicating service component and propose patterns for speci-
fying and refining it. In the refinement process the service component is decomposed
into a set of service components of smaller granularity specified according to the pro-
posed pattern. Moreover, we demonstrate that the process of distributing service com-
ponents between different network elements can also be captured by the notion of
refinement. The proposed formal specification and development patterns establish a
background for automatic generation of formal specifications from UML models and
expressing model transformations as refinement steps. Via automation of the UML-
based Lyra design flow we aim at smooth incorporation of formal methods into exist-
ing development practice. The proposed approach is illustrated by a case study — de-
velopment of a 3GPP positioning system [15,16].

2 Lyra: Service-Based Development of Communicating Systems

Overview of Lyra. Lyra [8] is a model-driven and component-based design method
for the development of communicating systems and communication protocols. It has
been developed in the Nokia Research Center by integrating the best practices and
design patterns established in the area of communicating systems. The method covers
all industrial specification and design phases from prestandardisation to final imple-
mentation. It has been successfully applied in large-scale UML2-based industrial
software development, e.g., for specification of architecture for several network com-
ponents, standardisation of 3GPP protocols, implementation of several network proto-
cols etc.

Lyra has four main phases: Service Specification, Service Decomposition, Service
Distribution and Service Implementation. The Service Specification phase focuses on
defining services provided by the system and their users. The goal of this phase is to



define the externally observable behaviour of the system level services via deriving
logical user interfaces. In the Service Decomposition phase the abstract model pro-
duced at the previous stage is decomposed in a stepwise and top-down fashion into a
set of service components and logical interfaces between them. The result of this
phase is the logical architecture of the service implementations. In the Service Distri-
bution phase, the logical architecture of services is distributed over a given platform
architecture. Finally, in the Service Implementation phase, the structural elements are
adjusted and integrated into the target environment, low-level implementation details
are added and platform-specific code is generated. Next we discuss Lyra in more
detail with an example.

Lyra by example. We model part of a Third Generation Partnership Project (3GPP)
positioning system [15,16]. The positioning system provides positioning services to
calculate the physical location of a given item of user equipment (UE) in a mobile
network. We focus on Position Calculation Application Part (PCAP) — a part of the
positioning system allowing communication in a 3GPP network. PCAP manages the
communication between the Radio Network Controller (RNC) and the Stand-alone
Assisted Global Positioning System Serving Mobile Location Centre (SAS) network
elements. The functional requirements for the RNC-SAS communication have been
specified in [15,16].

The Service Specification phase starts from creating a domain model of the system.
It describes the system with the included system-level services and different types of
external users. Each association connecting an external user and a system level service
corresponds to a logical interface. For the system and the system level services we
define active classes, while for each type of an external user we define the correspond-
ing external class. The relationships between the system level services and their users
become candidates for PSAPs — Provided Service Access Points of the system level
services. The logical interfaces are attached to the classes with ports. The domain
model for the Positioning system and its service PositionCalculation is shown in
Fig.1a and PSAP of the Positioning system — I User PSAP is shown in Fig.1b. The
UML2 interfaces I ToPositioning and I _FromPostioning define the signals and signal
parameters of /_user PSAP.

A valid execution order of signals on PSAP can be specified by the corresponding
use case and sequence diagrams. For the Positioning system, the use case diagram
would merely depict splitting the PositionCalculation use case into two main use
cases: successful and unsuccessful. The sequence diagrams would draft the communi-
cation in each use case. (We omit presentation of these diagrams for brevity). Finally,
we formally describe the communication between a system level service and its user(s)
in the PSAPCommunication state machine as illustrated in Fig.lc. The positioning
request pc_req received from the user is always replied: with the signal pc_cnf'in case
of success, and with the signal pc_fail cnf otherwise.

To implement its own services, the system usually uses external entities. For in-
stance, to provide the PositionCalculation service, the positioning system should first
request Radio Network Database (DB) for an approximate position of User Equipment
(UE). The information obtained from DB is used to contact UE and request it to emit a
radio signal. At the same time, the Reference Local Measurement Unit (Refer-



enceLMU) is requested to emit a radio signal. The strengths of radio signals obtained
from UE and ReferenceL MU are used to calculate the exact position of UE. The calcu-
lation is done by the Algorithm service provider (4/gorithm), which provides the user
with the final estimation of the UE location. Let us observe that services provided by
the external entities partition execution of the PositionCalculation service into the
corresponding stages. In the next phase of the Lyra development — Service Decompo-
sition — we focus on specifying service execution according to the identified stages.
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Fig.1a. Domain model Fig.1b PSAP of Positioning Fig.1c State diagram

In the Service Decomposition phase, we introduce the external service providers
into the domain model constructed previously, as shown in Fig 2a. The model includes
the external service providers DB, UE, ReferenceLMU and Algorithm, which are then
defined as external classes. For each association between a system level service and
the corresponding external class we define a logical interface. The logical interfaces
are attached to the corresponding classes via ports called USAPs — Used Sevice Access
Points, as presented in Fig.2b.

To specify the required stages of service implementation, we decompose the behav-
iour of the main use cases accordingly. For instance, the successful calculation of a
UE position can be decomposed as shown in Fig.2c. The sequence diagrams (omitted
here) are created to model signalling scenarios for each stage of service implementa-
tion. Observe that the behaviour is modularised according to the related service access
points — PSAPs and USAPs. Moreover, the functional architecture is defined in terms
of service components, which encapsulate the functionalities related to a single execu-
tion stage or other logical piece of functionality.
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Fig.2e. ServiceDirector: PSAP communication and execution control

In Fig.2d we present the architecture diagram of the Positioning system. Here Ser-
viceDirector plays two roles: it manages the execution control in the system and han-
dles the communication on the PSAP. The behaviour of ServiceDirector is presented
in Fig.2e. The top-most state machine specifies the communication on PSAP, while
the state submachine Serving specifies a valid execution flow of the position calcula-
tion. The substates of Serving encapsulate the stage-specific behaviour and can
be represented as the corresponding submachines. In their turns, these machines
(omitted here) include specifications of the specific PSAP-USAP communications.

The modular system model produced at the Service Decomposition phase allows
us to analyse various distribution models. In the next phase — Service Distribution —
the service components are distributed over a given network architecture. The signal-
ling network protocols are used for communication between the service components in
distant network elements.

In Fig.3a we illustrate the physical structure of the distributed positioning system.
Here Positioning RND and Positioning SAS represent network elements in a UMTS
network. The Protocol Data Unit (PDU) interface /upc is used in communication be-
tween the network elements. We map the functional architecture to the given physical
structure by including the service components into the network elements. The func-
tional architecture of the SAS network element is illustrated in Fig 3b. The functional-
ity of ServiceDirector specified at the Service Decomposition phase is now decom-
posed and distributed over the given network. ServiceDirector SAS handles the PDU
interface towards the RNC network element and controls the execution flow of the
positioning calculation process in the SAS network element.

Finally, at the Service Implementation phase we specify how the virtual PDU
communication between entities in different network nodes is realized using the under-
lying transport services. We also implement data encoding and decoding, routing of



messages and dynamic process management. The detailed discussion of this stage can
be found elsewhere [8, 15, 16].

In the next section we give a brief introduction into our formal framework — the B
Method, which we will use to formalize the development flow described above.

Architecture Diagram active <<Servi2eSDis(ribu!ion>> class

Positioning_S:

aDirector : ServiceDirector_SAS

Iupe,
|_SASToRNC]
[le———>]
|_RNCT0SASTiupe
I_Algorithm

_Lmi

g
L}

Architecture Diagram 1 LUser  active <<ServiceDistribution>> class Positioring

I_bB

I_UE

vy

I_FromAigorithmHandler

|

|_ToAlgorithmHandler

1_positioning
anAlgo : AlgoHandlef
L_Algorithm

I_Algorithm
I_ToAlgorithm

LmeLMUHand\erI
|_ToLMUHandler,
I_positioning

q my
aLMU : LMUHandler |_TolMU

| —> |_User

o DB ~ | _sasTeRNG LT 9
me : Positioning_RN sas : Positioning_S.

DT |_RNCToSAS [lupe

U L upg] | Aigorithm T |_Algorithm)

>
I_FromLMU

Fig.3b. Architecture of Positioning SAS

I_FromAlgorithm

Fig.3a. Architecture of service

3 Modelling in the B Method

The B Method: background. The B Method [1] (further referred to as B) is an ap-
proach for the industrial development of highly dependable software. The method has
been successfully used in the development of several complex real-life applications
[4,9]. The tool support available for B provides us with the assistance for the entire
development process. For instance, Atelier B [13], one of the tools supporting the B
Method, has facilities for automatic verification and code generation as well as docu-
mentation, project management and prototyping. The high degree of automation in
verifying correctness improves scalability of B, speeds up development and, also,
requires less mathematical training from the users.

The development methodology adopted by B is based on stepwise refinement [1].
While developing a system by refinement, we start from an abstract formal specifica-
tion and transform it into an implementable program by a number of correctness pre-
serving steps, called refinements. A formal specification is a mathematical model of
the required behaviour of a system, or a part of a system.

The B method provides us with mechanisms for structuring the system architecture
by modularisation. A module is represented as an abstract machine. An abstract ma-
chine encapsulates state (a set of program variables) and operations of the specifica-
tion. The abstract machines can be composed by means of several mechanisms provid-
ing different forms of encapsulation. For instance, if the machine C INCLUDES the
machine D then all variables and operations of D are visible in C. However, to guaran-
tee internal consistency (and hence independent verification and reuse) of D, the ma-
chine C can change the variables of D only via the operations of D.

Each abstract machine is uniquely identified by its name. The state variables of the
machine are declared in the VARIABLES clause and initialised in the INITIALISATION
clause. The variables in B are strongly typed by constraining predicates of the
INVARIANT clause. All types in B are represented by non-empty sets.

The operations of the machine are defined in the OPERATIONS clause. The opera-
tions in B can be described as guarded statements of the form SELECT cond THEN



body END. Here cond is a state predicate, and body is a B statement. If cond is satis-
fied, the behaviour of the guarded operations corresponds to the execution of their
bodies. However, if cond is false, then execution of the corresponding operation is
suspended, i.e., the operation is in waiting mode until cond becomes true. Such B
operations are suitable for specifying system reactions on events, i.e., for modelling
common reactive systems.

B statements that we are using to describe a state change in operations have the fol-
lowing syntax:

S == x:=e | IF cond THEN S1 ELSE S2 END |S1;S2 | x:T |
S1]|S2 | ANY z WHERE cond THEN S END

The first three constructs — assignment, the conditional statement and sequential com-
position have the standard meaning. The remaining constructs allow us to model non-
deterministic or parallel behaviour in a specification. For example, x :: T denotes a
nondeterministic assignment where any value from set T can be assigned to variable x.
Usually such statements are not implementable so they have to be refined (replaced)
with executable constructs at some point of program development. The detailed de-
scription of the B statements can be found elsewhere [1].

To illustrate basic principles of modelling in B, next we present our approach to
formal specification of a service component.

Modelling a Service Component in B. Above we have described a service compo-
nent as a coherent piece of functionality that provides its services to a service con-
sumer via PSAP(s). We used this term to refer to external service providers introduced
at the Service Decomposition phase. However, the notion of a service component can
be generalized to represent service providers at the different levels of abstraction.
Indeed, even the entire Positioning system can be seen as the service component pro-
viding the Position Calculation service. On the other hand, peer proxies introduced at
the lowest level of abstraction can also be seen as the service components providing
the physical data transfer services. Therefore, the notion of a service component is
central to the entire Lyra development process.

A service component has two essential parts: functional and communicational. The
functional part is a “mission” of a service component, i.e., the service(s) which it is
capable of executing. The communicational part is an interface via which the service
component receives requests to execute the service(s) and sends the results of service
execution.

Usually execution of a service involves certain computations. We call the B repre-
sentation of this part of service component an Abstract CAlculating Machine (ACAM).
The communicational part is correspondingly called Abstract Communicating Ma-
chine (ACM), while the entire B model of a service component is called Abstract
Communicating Component (ACC). The abstract machine ACC below presents the
proposed pattern for specifying a service component in B.

In our specification we abstract away from the details of computations required to
execute a service. Our specification of ACAM is merely a statement non-
deterministically generating results of the service execution in case of success or fail-



ure. The communication with a service component is conducted via two channels —
inp_chan and out_chan — shared between the service component and the service con-
sumer. While specifying a service component, we adopt a systemic approach, i.e.,
model the service component together with the relevant part of its environment, the
service consumer. Namely, we model how the service consumer places requests to
execute a service in the operation env_req and reads the results of the service execu-
tion in the operation env_resp.

The operations read and write are internal to the service component. The service
component reads the requests to execute a service from inp_chan as defined in the
operation read. As a result of the execution of read, the request is stored into the in-
ternal data buffer input, so it can be used by 4CAM while performing the required
computing. Symmetrically the operation write models placing the results of computa-
tions performed by ACAM into the output channel, so it can be read by the service
consumer. We reserve the abstract constants INPUT_NIL and OUT_NIL to model the
absence of data, i.e., the empty channel. The operations discussed above model
the communicational (4CM) part of ACC.

MACHINE ACC
VARIABLES inp_chan, input, out_chan, output
INVARIANT

inp_chan : INPUT_DATA & input : INPUT_DATA &
out_chan : OUT_DATA & output: OUT_DATA

INITIALISATION
inp_chan, input := INPUT_NIL, INPUT_NIL ||
out_chan, output := OUT_NIL, OUT_NIL

OPERATIONS
ACM ACAM
env_req =
SELECT inp_chan = INPUT_NIL THEN calculate =
inp_chan :: INPUT_DATA - {INPUT_NIL} SELECT not(input = INPUT_NIL) &
END; (output = OUT_NIL)
read = THEN
SELECT not(inp_chan = INPUT_NIL) & CHOICE
(input = INPUT_NIL) THEN output ::
input,inp_chan := inp_chan,INPUT_NIL OUT_DATA - {OUT_NIL,OUT_FAIL}
END; OR
) output := OUT_FAIL
write = END ”
SELECT not(output = OUT_NIL) & input := INPUT_NIL
(out_chan = OUT_NIL) THEN END: -
out_chan,output := output,OUT_NIL '
END; END
env_read =
SELECT not(out_chan = OUT_NIL)
THEN
out_chan := QUT_NIL
END

We argue that the machine ACC can be seen as a specification pattern which can be
instantiated by supplying the details specific to a service component under construc-
tion. For instance, the ACM part of ACC models data transfer to and from the service



component very abstractly. While developing a realistic service component, this part
can be instantiated with real data structures and the corresponding protocols for trans-
ferring them.

In the next section we demonstrate how Lyra development flow can be formalized
as refinement and decomposition of an abstract communicating component (ACC).

4 Formal Service-Oriented Development

As described in Section 2, usually a service component is represented as an active
class with the PSAP(s) attached to it via the port(s). The state diagram depicts the
signalling scenario on PSAP including the signals from and to the external class mod-
elling the service consumer. Essentially these diagrams suffice to specify the service
component according to the ACC pattern proposed in Section 3. The general principle
of translation is shown in Fig.4.
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Fig.4. Translating UML2 model into the ACC pattern

The UML2 description of PSAP of the service component SC is translated into the
communicational (ACM) part of the machine ACC_SC specifying SC according to the
ACC pattern. The functional (ACAM) part of ACC_SC instantiates the non-
deterministic assignment of ACC by the data types specific to the modelled service
component. These translations formalize the Service Specification phase of Lyra.

In the next phase of Lyra development — Service Decomposition — we decompose
the service provided by the service component into a number of stages (subservices).
The service component can execute certain subservices itself as well as request the
external service components to do it. At the Service Decomposition phase two major
transformations are performed:

1. the service execution is decomposed into a number of stages (or subservices).
2. communication with the external entities executing these subservices is intro-
duced via USAPs.
Each transformation corresponds to a separate refinement step in our approach.

According to Lyra, the flow of the service execution is orchestrated by Service
Director (often called a Mediator). It implements the behaviour of PSAP of the ser-
vice component as specified earlier, as well as co-ordinates the execution by enquiring
the required subservices from the external entities according to the execution flow.



Assume that the service component SC specified by the machine ACC_SC at the
Service Specification phase is providing the service S which is decomposed into the
subservices SI, S2, and S3. Moreover, let assume that the state machine of Service
Director defines the desired order of execution: first S7, then S2 and finally S3. The
UML2 representation of this is given in Fig.5, in which we also demonstrate that such
decomposition can be represented as a refinement of our abstract pattern ACC instan-
tiated to model SC.

This decomposition step focuses on refinement of the functional (4CAM) part of
ACC. As in ACAM, in the refinement of it - ACAM - the operation calculate puts the
results of service execution on the output channel. However, calculate is now pre-
ceded by the operation director, which models Service Director orchestrating the
stages of execution. We introduce the variables S1_data, S2_data and
S3_data to model the results of execution of the corresponding stages. The operation
director specifies the desired execution flow by assigning corresponding values to the
variable curr_service. In general, execution of any stage of service can fail. In its turn,
this might lead to failure of the entire service provision. In this paper, due to the lack
of space, we omit the presentation of failures of service provision and error recovery
while specifying Service Director. The detailed description of this can be found in the
accompanying technical report [5].

To derive the pattern for translating UML2 diagrams modelling the functional ar-
chitecture and the platform-distributed service architecture at these two phases, we
should consider two general cases:

1. The service director of SC is “centralized”, i.e., it resides on a single network
element.

2. The service director of SC is “distributed”, i.e., different parts of the execution
flow are orchestrated by distinct service directors residing on different network
elements. The service directors communicate with each other while passing the
control over the corresponding parts of the flow.

In both cases the model of the initial service component SC looks as shown in Fig.6.
The service distribution architecture diagram for the first case is given in Fig.7.

It is easy to observe that the service component SC plays a role of the service con-
sumer for the service components SC/, SC2 and SC3. We specify the service compo-
nents SCI, SC2 and SC3 as the separate machines ACC_SC1, ACC_SC2, ACC_SC3
according to the proposed pattern ACC, as depicted in Fig.8. The process of translat-
ing their UML2 models into B is similar to specifying SC at the Service Specification
phase. The communicational (ACM) parts of the included machines specify their
PSAPs. To ensure the match between the corresponding USAPs of SC and PSAPs of
the external service components, we derive USAPs of SC from PSAPs of SC/, SC2
and SC3.

Besides defining separate machines to model the external service components, in
this refinement step we also define the mechanisms for communicating with them. We
refine the operation director to specify the communication on USAPs. Namely, we
replace the nondeterministic assignments modelling stages of the service execution by
the corresponding signalling scenario: at the proper point of the execution flow,
director requests a desired service by writing into the input channel of the cor-
responding included machine, e.g., SC1_write_ichan, and later reads the produced
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REFINEMENT ACC_R1_SC
REFINES ACC_SC
VARIABLES

curr_service, handling_flag
INVARIANT

curr_service : {SD, S1, S2,S3, CALC} &
handling_flag : BOOL & ...

INITIALISATION
curr_service, handling_flag := SD,FALSE || ...

OPERATIONS
ACM...

ACAM®

S1 = SELECT curr_service = S1
THEN handling_flag := TRUE

END;
S2= ..
S3=..
director =

SELECT handling_flag = TRUE THEN
IF curr_service = SD THEN
curr_service := S1
ELSIF curr_service = S1 THEN
S1_data :: S1_DATA-{S1_NIL};
curr_service := S2
ELSIF curr_service = S2 ...
ELSIF curr_service = S3
THEN ...
curr_service := CALC
END ||
handling_flag := FALSE
END;

calculate =
SELECT (curr_service=CALC) & ...
THEN
output,input := OUT_data,INPUT_NIL ||
curr_service := SD
END;

END

Fig.5. Service decomposition and refinement
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REFINEMENT ACC_R2_SC

REFINES ACC_R1_SC MACHINE ACC_SC1
INCLUDES
ACC_SC1, ACC_SC2, ACC_SC3 ACM of ACC_SC1
ACM of ACC_SC SC1_write_ichan(SC1inp) ...
SC1read...
ACAM’ SC1out<- SC1_read_ochan...
director = SC1write...
SELECT handling_flag = TRUE
THEN ACAM of ACC_SC1
IF curr_service = SD calculate ...
THEN

curr_service := S1
ELSIF curr_service = S1
THEN

MACHINE ACC_SC2

SC1_write_ichan(input); ACM of ACC_SC2
S1_data <- SC1_read_ochan 5 SC2_write_ichan(SC2inp) ...
ELSIF curr_service = S2 ... \\; SC2read...
ELSIF curr_service = S3 ... SC2out<- SC2_read_ochan...
END || SC2write...
handling_flag := FALSE
END; ACAM of ACC_SC2
calculate =... calculate ...
END

Fig.8. Refinement at Service Decomposition and Service Distribution phases

results from the output channel of this machine, e.g., SC1_read_ochan. Graphically
this arrangement is depicted in Fig.9.

Modelling case (2) of the distributed service director is more complex. Let assume
that the execution flow of the service component SC is orchestrated by two service
directors: the ServiceDirectorl, which handles the communication on PSAP of SC and
communicates with SCI, and ServiceDirector2, which orchestrates the execution of
the SC2 and SC3 services. The architecture diagram depicting the overall arrangement
is shown in Fig.10.
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ACM_sc1 ACM_sC2 ACM_SC3
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Fig.9. Architecture of formal specification Fig.10. Architecture diagram (case 2)

] |_SDir1-SDir2

External service consumer

The service execution proceeds according to the following scenario: via PSAP of
SC ServiceDirector] receives the request to provide the service S. Upon this, via
USAP of SC, it requests the component SC/ to provide the service Si. After the result
of S1 is obtained, ServiceDirectorl requests Service Director? to execute the rest of
the service and return the result back. In its turn, ServiceDirector2 at first requests
SC2 to provide the service S2 and then SC3 to provide service S3. Upon receiving the



result from S3, it forwards it to ServiceDirector 1. Finally, Service Directorl returns to
the service consumer the result of the entire service S via PSAP of SC.

This complex behaviour can be captured in a number of refinement steps. At first,
we observe that ServiceDirector2, co-ordinating execution of S2 and S3, can be mod-
elled as a “large” service component SC2-SC3 which provides the services S2 and S3.
Let us note that the execution flow in SC2-SC3 is orchestrated by the “centralized”
service director ServiceDirector2. We use this observation in our next refinement step.
Namely we refine the B machine modelling SC by including into it the machines mod-
elling the service components SC/ and SC2-SC3 and introducing the required com-
municating mechanisms. In our consequent refinement step we focus on decomposi-
tion of SC2-SC3. The decomposition is performed according to the proposed scheme:
we introduce the specification of ServiceDirector? and decompose the functional
(ACAM) part of SC2-SC3. Finally, we single out separate service components SC2 and
SC3 as before and refine ServiceDirector2 to model communication with them. The
final architecture of formal specification is shown in Fig.11. We omit the presentation
of the detailed formal specifications — they are again obtained by the recursive appli-
cation of the proposed specification and refinement patterns.

At the consequent refinement steps we focus on

scz:z;“ﬂgzgz Scz:g;“_";zgs particular service components and refine them

T i (in the way described above) until the desired

ST pomsc1] P o sczscs level of granularity is obtained. Once all external
AoN_sC1 ACM_SC2-563 service components are in place, we can further

” ” decompose their specifications by separating

SC acam_sc their ACM and ACAM parts. Such decomposition
Ace.s¢ will allow us to concentrate on the communica-

Enamll convion consumer tional parts of the components and further refine

Fig.11. Architecture (case 2) them by introc‘iuci‘ng details of the required con-
crete communication protocols.

Discussion. In the proposed approach we have used our B formalisation of Lyra to
verify correctness of the Lyra decomposition and distribution phases. We have done
this by introducing generic patterns for communicating service components and then
associating the Lyra development steps with the corresponding B refinements on these
patterns. In development of real systems we merely have to establish by proof that the
corresponding components in a specific functional or network architecture are valid
instantiations of these patterns. All together this constitutes a basis for automating
industrial design flow of communicating systems.

The decomposition model that we have used for testing our approach is still rela-
tively simple. As a result, all refinement steps were automatically proved by AtelierB
—a tool supporting B. While describing the formalisation of Lyra in B, we considered
only the sequential model of service execution. However, parallel execution of ser-
vices is also a valid interpretation of the considered UML2 models. Currently we are
working on extending our B models to include parallel execution of services. Fur-
thermore, we will incorporate more sophisticated fault tolerance mechanisms (e.g.,
different types of fault recovery procedures) into our models. We foresee that such
extensions will make automatic proof of model refinements more difficult. However,



by developing generic proof strategies, we will try to achieve high degree of automa-
tion in formal verification of our models.

5. Conclusions

In this paper we proposed a formal approach to development of communicating dis-
tributed systems. Our approach formalizes Lyra [8] — the UML2-based design meth-
odology adopted in Nokia. The formalization is done within the B Method [1,13] — a
formal framework supporting system development by stepwise refinement. We de-
rived the B specification and refinement patterns reflecting models and model trans-
formations used in the development flow of Lyra. The proposed approach establishes
a basis for automatic translation of UML2-based development of communicating
systems into the specification and refinement process in B. Such automation would
enable a smooth integration of formal methods into existing development practice.
Since UML is widely accepted in industry, we believe that our approach has a poten-
tial for wide industrial uptake.

Lyra adopts the service-oriented style for development of communicating systems.
We presented the guidelines for deriving B specifications from corresponding UML2
models at each development stage of Lyra and validated the development by the cor-
responding B refinements. The major model transformations aim at service decompo-
sition and distribution over the given platform. The proposed formal model of com-
munication between the distributed service components is generic and can be instanti-
ated by virtually any concrete communication protocol.

The initial formalization of Lyra has been undertaken using model checking tech-
niques [8]. However, since telecommunicating systems tend to be large and data inten-
sive, this formalization was prone to the state explosion problem. Our approach helps
to overcome this limitation.

Development of distributed communicating systems has been a topic of ongoing re-
search over several decades. Our review of related work is confined to the considera-
tion of the recent research conducted within the B Method.

Treharne et al. [14] investigated verification of safety and liveness properties of
communicating components by combining the B Method and the process algebra CSP.
However, they do not consider service decomposition and distribution aspects of
communicating system development.

Bostrom and Walden [2] proposed a formal methodology (based on the B Method)
for developing distributed grid systems. In their approach the B language is extended
with grid-specific features. In their work, the system development is governed by B
refinement. In our approach the system development is guided by the existing devel-
opment practice, so that the refinement process is hidden behind the facade of UML.

There is active research going on translating UML to B [3,6,7,11,12]. Among
these, the most notable is research conducted by Snook and Butler [11] on designing
the method and the U2B tool to support the automatic translation. In our future work
we are planning to integrate our efforts with the U2B developers to achieve the auto-
matic translation of Lyra into B. While doing this, we will focus specifically on trans-



lating models and model transformations used in Lyra to automate formalisation of the
entire UML-based development process in the domain of the communicating distrib-
uted systems. We are already working on creating the Lyra UML2 metamodel, which
will assist us in achieving this goal. Furthermore, we are planning to further enhance
the proposed approach to address issues of fault tolerance, concurrency and integra-
tion of process algebraic approaches to verify the dynamic properties of communica-
tion protocols between network elements.
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