
Formal Development of Reactive Fault Tolerant Systems

Linas Laibinis and Elena Troubitsyna

Åbo Akademi, Department of Computer Science,
Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

(Linas.Laibinis, Elena.Troubitsyna)@abo.fi

Abstract. Usually complex systems are controlled by an operator co-operating
with a computer-based controller. The controlling software runs in continuous
interaction with the operator and constantly reacts on operator’s interruptions by
dynamically adapting system behaviour. Simultaneously it catches the exceptions
signalling about errors in the system components and performs error recovery.
Since interruptions are asynchronous signals they might concurrently co-exist and
conflict with exceptions. To ensure dependability of a dynamically adaptable
system, we propose a formal approach for resolving conflicts and designing robust
interruption and exception handlers. We present a formal specification pattern for
designing components of layered control systems that contain interruption and
exception handlers as an intrinsic part of the specification. We demonstrate how to
develop a layered control system by recursive application of this pattern.

1 Introduction

In this paper we propose a formal approach to the development of dependable control
systems. Control systems are the typical examples of reactive systems. Often they run in
a constant interaction not only with the controlled physical application but also the
operator. The operator participates in providing the control over an application by
placing requests to execute certain services and often intervening in the service
provision. As a response to the operator’s intervention, the controller should adapt the
behaviour of the system accordingly. The task of ensuring dependability of dynamically
adaptable systems is two-fold: on the one hand, we should design the controller to be
flexible enough to allow the operator’s intervention; on the other hand, the controller
should prevent potentially dangerous interventions in its service provision.

Design of dependable control systems usually spans over several engineering
domains. Traditionally abstraction, modularisation and layered architecture are
recognized to be effective ways to manage system complexity [14]. Though the
components at each architectural layer are susceptible to specific kinds of faults, the
mechanism of exception raising and handling can be used for error detection and
recovery at each architectural layer.

However, since exceptions and interruptions are asynchronous signals, several
exceptions and interruptions might occur simultaneously. Incorrect resolution of such
conflicting situations might seriously jeopardize system dependability. In this paper we
formally analyse the relationships between interruptions and exceptions and propose
formal guidelines for designing robust interruption and exception handling. Moreover,
we propose a formal approach to the development of reactive fault tolerant control
systems in a layered manner.

Our approach is based on stepwise refinement of a formal system model in the B
Method [1,2,15]. While developing a system by refinement, we start from an abstract
specification and step by step incorporate implementation details into it until executable
code is obtained. In this paper we propose a general pattern for specification and
refinement of reactive layered systems in B. Our pattern contains exception and
interruption handlers as an intrinsic part of the specification. We start from the
specification of the system behaviour on the upper architectural layer and unfold layers
by a recursive instantiation of the proposed specification pattern. Since our approach
addresses the dependability aspects already in the early stages of system development,
we argue that it has potential to enhance system dependability.

We proceed as follows: in Section 2 we discuss propagation of exceptions and
interruptions in the layered control systems. In Section 3 we present a formal basis for
designing interruption and exception handlers. In Section 4 we demonstrate our approach
to formal development of fault tolerant reactive systems that contain interruption and
exception handlers as an intrinsic part of their specifications. In Section 5 we summarize
the proposed approach, discuss its possible extensions and overview the related work.

2 Exceptions and Interruptions in a Layered Architecture

Control systems. In this paper we focus on modelling dependable control systems. A
general structure of a control system is given in Fig.1. A plant is a physical entity whose
operation is being monitored and controlled by a computer-based controller. Often
control over an application is provided in co-operation of computer with an operator – a
human (or sometimes another computer-based system) participating in operating the
system. The controller monitors plant’s behaviour via the sensors and affects it via the
actuators as shown in Fig. 1.

Fig.1 General structure of a control system
Layered architecture. Usually development of a control system spans over several
engineering domains, such as mechanical engineering, software engineering, human-
computer interface etc. It is widely recognized that a layered architecture is preferable in
designing such complex systems since it allows the developers to map real-world
domains into software layers [14]. The lowest layer confines real-time subsystems which
directly communicate with sensors and actuators – the electro-mechanical devices used
to monitor and control the plant. These subsystems cyclically execute the standard
control loop consisting of reading the sensors, and assigning the new states to the
actuators. The layer above contains the components that encapsulate the detailed
behaviour of the lowest level subsystems by providing abstract interfaces to them. The
component server (often called the service director) is on the highest level of hierarchy.
It serves as an interface between the operator and the components.

There are several ways in which the operator can interact with the system. Normally
s/he places the requests to execute certain services. A service is an encapsulation of a set
of operations to be executed by the components. Upon receiving a request to execute a
service, the component server at first translates (decomposes) the service into the
corresponding sequence of operations. Then it initiates and monitors the execution of

Controller
Sensors

Actuators
Plant

operations by placing corresponding requests on the components. In their turns, the
requested components further decompose these operations into the lower level
operations. These operations are to be executed by real-time subsystems at the lowest
layer of hierarchy. Upon completion of each operation, the requested subsystem notifies
the requesting component about success of the execution. The component continues to
place the requests on the subsystems until completion of the requested operation. Then it
ceases its autonomous functioning and notifies the component server about success of
the execution. The behaviour of the components follows the same general pattern: the
component is initially “dormant” but becomes active upon receiving a request to execute
a certain operation. In the active mode the component autonomously executes a
operation until completion. Then it returns the acknowledgement to the requesting
component and becomes inactive again. The communication between components can
be graphically represented as shown in Fig.2.

Fig.2. Architecture of a layered system

Exceptions. While describing the communication between the layers of a control
system, we assumed so far that the system is fault-free, i.e., after receiving a request to
execute an operation, the component eventually successfully completes it. However,
occurrence of errors might prevent a component from providing a required operation
correctly. Hence, while designing a controller, we should specify means for tolerating
fault of various natures. In this paper we focus on hardware faults and human errors.

The main goal of introducing fault tolerance is to design a system in such a way that
that faults of components do not result in system failure [3,4,11]. A fault of a component
manifests itself as an error [3]. Upon detection of an error, error recovery should be
performed. Error recovery is an attempt to restore a fault-free system state or at least
preclude system failure. Hence components of fault tolerant controllers should be able to
detect the errors and notify the requesting component, so that error recovery can be
initiated. This behaviour is achieved via the mechanism of exception raising and
handling [5]. Observe that for each component (except the lowest level subsystems) we
can identify two classes of exceptions:

1. generated exceptions: the exceptions raised by the component itself upon
detection of an error,

2. propagated exceptions: the exceptions raised at the lower layer but propagated
to the component for handling.

The generated exceptions are propagated upwards (to the requesting component) for
handling. Usually the component that has raised an exception ceases its autonomous
functioning. Such a behaviour models the fact that the component is unable to handle the
erroneous situation. With each component we associate a class of errors from which the
component attempts to recover by itself. If the component receives a propagated
exception signalling about error from this class, then it initiates error recovery by
requesting certain lower layer operations. Otherwise the component propagates the
exception further up in the hierarchy. Hence certain errors will be propagated to the

 Op.1.1 Op1.2 Op1.M
Operation1 Operation2 OperationN

OpN.1 OpN.M

Service
Request to
execute service

Request to
execute Operation1

Request to
execute Op1.1

Acknowlegement

.

.

…
...

… …

Fig.3. Exceptions in a layered architecture

operator, so s/he could initiate manual error recovery. This behaviour is graphically
represented in Fig.3.

Interruptions. While discussing service provision in a layered architecture we assumed
that the system accepts the operator’s request to execute a certain service after it has
completed execution of a previous service, i.e., in an idle state. However, often the
operator needs to intervene in the service execution. For instance, s/he might change
“on-the-fly” the parameters of the currently executing service or cancel it, suspend and
resume service provision etc. Such interventions are usually called interruptions.
Observe that a request to execute a service can also be seen as the special case of
interruption.

Interruptions are dual to exceptions. They arrive from the uppermost architectural
layers and are “propagated” downwards, to the currently active layer. Upon receiving an
interruption, the currently active component takes appropriate actions required to handle
it. The component can either

- change the local state to adjust the execution and then resume its work, or
- generate the requests to execute certain lower-layer subservices (which might be seen
as a special case of error recovery), or
- “realize” that the interruption should be handled on a higher layer of hierarchy. Then
it would generate the corresponding exception, which is then propagated upwards.

The behaviour of the system while handling interruption is graphically represented in
Fig.4.

While designing dependable systems, we need to analyse the impact of interruptions
and exceptions on system dependability. In the next section we will address this issue in
details.

3 Formal Analysis of Interruption and Exception Handling

Ensuring dependability of the systems, which can adapt their behaviour in response to
operator’s interruptions, is a complex task. It involves establishing a proper balance
between system flexibility and dependability. For instance, if the behaviour of the
autopilot deems to be faulty, the controlling software of an aircraft should allow the pilot
to interrupt the autopilot and resume manual control; on the other hand, software should

.

.

Operator's request to
execute service

Request to
execute Operation1

Request to
execute Op1.1 exception Request to

execute OpR1.1 Acknowledgement

normal control automatic error recovery normal control

Successful error recovery from current layer

.

.

Operator's request to
execute service

Request
to execute
Operation1

Request to
execute Op1.1 exception Request to

execute OpR1.1
normal control automatic error recovery

 Exception propagation

exception
exception

Operator's request
to execute service
for error recovery

manual error recovery

exception Request
to execute
OperationR1

Fig.4. Interruptions in a layered architecture

disallow the pilot to interrupt automatic control in a potentially dangerous way. Next we
consider a formal basis for designing dependable reactive systems.

Preventing incorrect interventions. At first we observe that the interface of the system
is the medium via which the operator requests and interrupts services. Hence design of
the system interface should obey the principles of designing human-computer interfaces
for error prevention (the study of those is outside of the scope of this paper). Usually the
resulting system interface is dynamic, i.e., the set of the requests and interruptions which
the system accepts from the operator varies depending on the internal system state.

Assume that I = {I1, I2,.. IM} is a complete set of interruptions and requests which the
operator can send to the system via its interface. We define the function

blocking: I � PI,

which for each interruption Ij, j:1..M, returns a subset of interruptions or requests which
can be next accepted by the system. For instance, if the operator has sent the interruption
“Pause” then only the interruptions “Continue” and “Abort” can be accepted next. Let
us observe that some interruptions or requests are non-blocking (blocking(Ik)=I, for
some k), i.e., they do not disable other interruptions. The function blocking explicitly
defines how to dynamically adapt the system interface to enforce the correct operator’s
behavior.

In this paper for the sake of simplicity we defined the function blocking in a static,
i.e., independent of the system state way. The function blocking_dyn

blocking_dyn: (I,�) � PI,

where � is the system state (e.g., the set of system variables), modifies blocking by
taking into account the current system state while defining the subset of requests and
interruptions that can be accepted next.

Next we study how the controller should prevent the incorrect intervention into its
service provision. We define the relationships between interruptions and the controller’s
operations. Namely, for each operation of the controller, we identify the subset of
interruptions which must be immediately handled and the subset of interruptions

.

.

Operator's request to
execute service

Request to
execute Operation1

Request to
execute Op1.1

Interruption to be handled on the upper layer
Interruption

interruption
handling

exception

excep-
tion

Request to
execute OperationI1

Request to
execute OpI1.1

Operator's request to
execute service

Request to
execute Operation1

Request to
execute SubOp1.1

Interruption to be handled locally
Interruption

interruption

acknow-
ledgement

Operator's request
to execute service

Request to
execute SubOpI1.1

interruption

Interruption to be handled by
requesting lower layer operations

handling of which should be postponed until execution of the current operation is
completed.

Assume that C is a component in our layered architecture. Assume also that OpC =
{OpC1, OpC2, …OpCN} is a set of operations provided by C and I is a set of interruptions
and requests accepted by the overall system. For each operation in OpC, we analyse the
consequences of interrupting its execution by each of the interruption from I. As a result
of such analysis, we define a function

atomicC : OpC x I � Bool

such that, for any i: 1..N and j: 1..M, atomicC(OpCi, Ij) is FALSE if interruption Ij

received during the execution of OpCi should be handled immediately, and TRUE if
handling of Ij should be postponed until completion of OpCi. In the latter case the
operation OPCi is atomic, i.e., uninterruptible by the interruption I.

Since interruptions are asynchronous events and sometimes interruption handling is
postponed, the interruptions can be queued for handling. Let us consider the following
situation: after unsuccessful attempts to recover from error by sending certain
interruption, the operator decides to cancel the execution of the current service. If the
interruptions are handled in the “first-in-first-out” order, then the service will be
cancelled only after all previous interruptions are handled, i.e., with a delay. This might
be undesirable or even dangerous. Hence we need to distinguish between the levels of
criticality of different interruptions, for instance, to ensure that, if an interruption is an
attempt to preclude a dangerous system failure, it is handled with the highest priority.

We define the function
I_EVAL: I � NAT

which assigns priorities to interruptions and requests. The greater the value of
I_EVAL(Ij), where j:1..M, the higher degree of priority of handling the interruption Ij.
While designing the system, we ensure that the interruptions are handled according to
the priority assigned by I_EVAL.

Interruptions versus exceptions. Above we analysed the principles of interruption
handling. However, our analysis would be incomplete if we omit consideration of the
relationship between interruptions and exceptions. Indeed, since interruptions are
asynchronous events, they might co-exist and “collide” with exceptions, e.g., when an
interruption is caught simultaneously with the exception indicating an erroneous
situation. Dealing with concurrent arrival of several signals from different sources has
been recognized as a serious problem that has not received sufficient attention [4].
Incorrect handling of these signals might lead to the unexpected system behaviour and,
as a consequence, can seriously jeopardize system dependability. To resolve such
potentially dangerous situations, handling of simultaneous signals should be designed in
a structured and rigorous way.

Let C be a component on a certain layer of our layered architecture. Let EXC_C =
{Exc1, Exc2, …ExcN} be a set of exceptions that can be propagated to C from the lower
layer components. We define the function

E_EVALC : EXC_C � NAT

which assigns a certain criticality level to each exception which component receives. By
defining E_EVALC for each component of our system we assign a certain priority to
each exception to be handled by the system.

Let us consider now an active component C, which has currently caught the exception
Exc1 and interruptions I1, I2, I3 such that I_EVAL(I1) > I_EVAL(I2) > I_EVAL(I3). Then

• if the interruption I1 is more critical than the exception, i.e., I_EVAL(I1) �
E_EVALC(Exc1) then the next signal to be handled is the interruption I1,

• if the exception is more critical than the interruptions, i.e., E_EVALC(Exc1) >
I_EVAL(I1) then the next signal to be handled is the exception Exc1.

Upon completion of handling the most critical signal, the caught signals are evaluated
in the same way. Then the decision which signal should be handled next is made again.

Observe that the functions E_EVALC and I_EVAL can be extended in a similar way as
the function blocking. This would allow the systems to take into account its current state
while making the decision about criticality of exceptions and interruptions.

Interruption and exception propagation. Let us now discuss the design of interruption
and exception handlers. We identify three classes of interruptions:

- the interruptions, whose handling can be done locally, i.e., by changing local
variables of the currently active component,

- those, whose handling requires to invoke the lower layer operations, and
- those, whose handling is possible only on some higher layer (the received

interruption is converted into an exception to be propagated upward).

The identified classes are disjoint. The proposed classification is complete in a sense that
it defines all possible types of system responses on interruptions.

We define the function (for each component C)

I_STATUS_C: I � {Local, Down, Up}

which, for any interruption, defines the type of the required handling.
In the similar way we define the types of exceptions as exceptions signalling about

- successful termination of requested service,
- recoverable error, or
- unrecoverable error.

The corresponding function (for each component C)

E_STATUS_C: EXC_C � {Ok, Recov,Unrecov}

defines the type of each exception and acknowledgement. If the acknowledgement
notifies about successful termination then the normal control flow continues. If the
exception signals about recoverable error then error recovery from the current layer is
attempted. Otherwise, the exception is propagated upward in the hierarchy.

In the latter case, we need to define the rules for converting unrecoverable propagated
exceptions and interruptions into generated exceptions of the current component. After
conversion, the corresponding exception of the current component is raised and
propagated up. For every pair of components (Ci,Cj) such that Ci is a requesting
component (client) and Cj is a requested component from the lower layer, we define the
function

E_ CONVij: EXC_Ci � EXCg_ Cj

where EXC_Ci is the set of propagated and EXCg_Cj is the set of generated exceptions of
the corresponding components. The function E_ CONVij converts propagated exceptions
of Ci into generated exceptions of Cj.

In a similar way, we design interruption handling converting the received interruption
into an exception to be propagated upwards. For every component C, we define the
function

I_CONV: I � EXC_Cg

Let us observe that our exception handling has hierarchical structure: while designing
exception handling we follow the principle “the more critical an error is, the higher the
layer that should handle its exception”. This principle should be utilized while defining
the functions E_EVALC (for each component C) and I_EVAL.

In this section we formalized the principles of designing interruption and exception
handling in a layered architecture. In the next section we present our approach to
specification and refinement of dependable reactive systems.

4. Specification and Refinement of Reactive Fault Tolerant Systems

It is widely accepted that high degree of dependability of the system can only be
achieved if dependability consideration starts from the early stages of system
development [11,17]. We demonstrate how to specify layered control systems in such a
way that mechanisms for interruption and exception handling become an intrinsic part of
their specification. We start by a brief introduction into the B Method – our formal
development framework.

The B Method. The B Method [1,15] (further referred to as B) is an approach for the
industrial development of highly dependable software. The method has been
successfully used in the development of several complex real-life applications [13]. The
tool support available for B provides us with the assistance for the entire development
process. For instance, Atelier B [16], one of the tools supporting the B Method, has
facilities for automatic verification and code generation as well as documentation,
project management and prototyping. The high degree of automation in verifying
correctness improves scalability of B, speeds up development and, also, requires less
mathematical training from the users.

The development methodology adopted by B is based on stepwise refinement [1].
While developing a system by refinement, we start from an abstract formal specification
and transform it into an implementable program by a number of correctness preserving
steps, called refinements. A formal specification is a mathematical model of the required
behaviour of a (part of) system. In B a specification is represented by a set of modules,
called Abstract Machines. An abstract machine encapsulates state and operations of the
specification and as a concept is similar to module or package.

Each machine is uniquely identified by its name. The state variables of the machine
are declared in the VARIABLES clause and initialized in the INITIALISATION clause.
The variables in B are strongly typed by constraining predicates of the INVARIANT
clause. All types in B are represented by non-empty sets. We can also define local
types as deferred sets. In this case we just introduce a new name for a type, postponing
actual definition until some later development stage.

The operations of the machine are defined in the OPERATIONS clause. There are
two standard ways to describe an operation in B: either by the preconditioned operation
PRE cond THEN body END or the guarded operation SELECT cond THEN body
END. Here cond is a state predicate, and body is a B statement. If cond is satisfied, the

behaviour of both the precondition operation and the guarded operation corresponds to
the execution of their bodies. However, if cond is false, then the precondition operation
leads to a crash (i.e., unpredictable or even non-terminating behaviour) of the system,
while the behaviour of the guarded operation is immaterial since it will be not executed.
The preconditioned operations are used to describe operations that will be implemented
as procedures modelling requests. The guarded operations are used to specify event-
based systems and will model autonomous behaviour.

B statements that we are using to describe a state change in operations have the
following syntax:

 S == x := e | IF cond THEN S1 ELSE S2 END | S1 ; S2 |
 x :: T | S1 || S2 | ANY z WHERE cond THEN S END | ...

The first three constructs – assignment, conditional statement and sequential
composition (used only in refinements) have the standard meaning. The remaining
constructs allow us to model nondeterministic or parallel behaviour in a specification.
Usually they are not implementable so they have to be refined (replaced) with executable
constructs at some point of program development. The detailed description of the B
statements can be found elsewhere [1,15].

The B method provides us with mechanisms for structuring the system architecture by
modularization. The modules (machines) can be composed by means of several
mechanisms providing different forms of encapsulation. For instance, if the machine C
INCLUDES the machine D then all variables and operations of D are visible in C.
However, to guarantee internal consistency (and hence independent verification and
reuse) of D, the machine C can change the variables of D only via the operations of D. In
addition, the invariant properties of D are included into the invariant of C. To make the
operations of D available through the interface of C, we should list then in the
PROMOTE clause of C. If D promotes all its operations to C then C is an extension of
D which can be specified by the EXTENDS mechanism.

Refinement and layered architecture. Refinement is a technique to incorporate
implementation details into a specification. In general, the refinement process can be
seen as a way to reduce nondeterminism of the abstract specification, to replace the
abstract mathematical data structures by the data structures implementable on a
computer and to introduce underspecified design decisions. In the Abstract Machine
Notation (AMN), the results of the intermediate development stages – the refinement
machines – have essentially the same structure as the more abstract specifications. In
addition, they explicitly state which specifications they refine.

Each refinement step should be formally verified by discharging (proving) certain
proof obligations. Since verification of refinement is done by proofs rather than state
exploration, the stepwise refinement technique is free of the state explosion problem and
hence is well suited for the development of complex systems. In this paper we
demonstrate how refinement facilitates development of systems structured in a layered
manner.

Let us observe that the schematic representation of communication between the
components of a layered system represented in Fig.2 can also be seen as the scheme of
atomicity refinement. Indeed, each layer decomposes a higher layer operation into a set
of operations of smaller granularity. The decomposition continues iteratively until the
lowest layer is reached. At this layer the operations are considered to be not further
decomposable. From the architectural perspective, an abstract specification is a “folded”
representation of the system structure. The system behaviour is specified in terms of

Interface

FTComponent FTComponentR

SubCompnent SubcomponentR

Interruptions Subsubcomp_1 Subsubcomp_N

 INCLUDES

INCLUDES INCLUDES
 EXTENDS

 refines

refines

...

 INCLUDES

large atomic services at the component server layer. Each refinement step adds (or
“unfolds”) an architectural layer in the downward direction. Large atomic services are
decomposed into operations of smaller granularity. Refinement process continues until
the whole architectural hierarchy is built. We argue that the refinement process
conducted in such a way allows us to obtain a realistic model of fault tolerant reactive
systems. Indeed, by iterative refinement of atomicity we eventually arrive at modelling
exceptions and interruptions arriving practically at any instance of time, i.e., before and
after execution of each operation of the finest granularity. The proposed refinement
process is illustrated in Fig.5, where we outline the development pattern instantiated to a
three-layered system.

Fig.5. Refinement process Fig.6. Abstract specification

Abstract specification in B. The initial abstract specification consists of three machines
(see Fig.6). The machine Interface models the interface of the system. The machine
Interruptions describes the data structure representing the interruptions. The machine
Component contains the abstract specification of component server, i.e., it models
services which the system provides for the operator as well as interruption and exception
handling on the component server layer. The interactions of the operator with the
interface result in invocations of the operations of FTDAComponent. Hence Interface
INCLUDES FTDAComponent.

Each refinement step leads to creating components at the lower layer by including
their specifications into the refinement of the corresponding components at the previous
layer. Observe, that in the abstract specification the operator activates a component
server by placing a request to execute a service. At the next refinement step we refine the
specification of the component server to model placing requests on the lower layer
component and introduce the specification of the lower layer component together with
interruption and exception handling performed by it. Since the behaviour of the
components on each layer follows the same pattern, the refinement process is essentially
the recursive instantiation of the abstract specification pattern. Next we present the
specification on the machines defining specification patterns in details.

The specification of Interruptions contains the data structure modelling interruptions
and the operations for manipulating them. The operation add_interruption inserts arriving
interruptions in the sequence Inter modelling a list of interruptions to be handled. The
list Inter is sorted according to the criticality assigned to interruptions by the function
I_EVAL and the operation add_interruptions preserves this order. The handled
interruptions are removed from the list via the operation remove_interruption. In
addition, remove_interruption removes interruptions that have become redundant or
irrelevant after handling the last interruption.

MACHINE Interface

MACHINE FTDAComponent

MACHINE Interruptions

<<includes>>

<<extends>>

Specifies interractions
with the operator

Specifies functionality of component
together with interruption and

exception handling

Specifies list of interruptions
and operations for manipulating it

The machine Interface given below

defines how the system interacts with its environment, i.e., it models the service requests
and interruptions. The operation request models placing a request to execute a certain
service. The request can be placed only when the system is in the idle state, i.e., the
previous request has already been completed or cancelled. The interactions are modelled
by the operations with corresponding names. Unlike requests, interruptions can arrive at
any time. However, an acceptance of the new interruption depends on the previously
arrived interruption as defined in Section 3 by the function blocking. The preconditions
of interruption_1…interruption_N check whether the previously arrived interruption,
current, blocks the newly arrived interruption. If the interruption is accepted then the
arriving interruption is added to the list of interruptions to be handled and the value of
current is updated.

The behaviour of fault tolerant dynamically adaptable component is abstractly
specified by the machine FTDAComponent presented in Fig.7.

The generated and propagated exceptions are modelled by the variables exc and exc2
respectively. We abstract away from the implementation details of exceptions by
choosing deferred sets EXC and EXC2 as the types for exc and exc2. The currently
handled interruption is stored in the variable last_int. The local state of the component is
modelled by the variable state.

Each phase of execution is specified by the corresponding operation. The value of the
variable flag indicates the current phase.

MACHINE Interruptions
SETS INTERRUPTIONS
VARIABLES Inter
INVARIANT Inter : seq(INTERRUPTIONS) & interruptions are sorted by their criticality
INITIALISATION Inter := []

 OPERATIONS
 add_interruption (inter)= PRE inter is valid THEN
 add inter to Inter and ensure that interruptions remain sorted by criticality END;

 remove_interruption (inter) = PRE Inter is not empty THEN
 remove inter and irrelevant interruptions from Inter END

 END

MACHINE Interface
INCLUDES ServiceComponent
VARIABLES current
INVARIANT current: INTERRUPTIONS
INITIALISATION current:= No_int

OPERATIONS
 request (request_parameters) = PRE flag=stopped THEN activate Component END;

 interruption_1 = PRE interruption_1 is allowed THEN
 add_interruption(interruption_name1) || current:= interruption_name1 END;

 interruption_N = PRE interruption_nameN is allowed THEN
 add_interruption(interruption_nameN) || current:= interruption_nameN END;

 abort = BEGIN add_interruption(Abort) || current := Abort END

 END

Fig.7 Specification of FTDAComponent

The operation start models placing a request to execute a service on the service

component. It sets the initial state according to the input parameters of the request. The

MACHINE FTDAComponent
EXTENDS Interruptions
VARIABLES flag, atomic_flag, exc, exc2, state, last_int
INVARIANT
 flag : {Executing,Handling,Recovering, Pausing,Stopping,Stopped} &
 exc : EXC & exc2 : EXC2 & state : STATE & atomic_flag : BOOL & last_int : Interruptions &
 properties of exceptions, interruptions and phases
…
OPERATIONS
start(a_flag,cmd) =
 PRE component is idle
 THEN
 IF the requested command cmd is valid
 THEN Initiate execution
 Check a_flag and function atomic and decide whether execution of cmd can be interrupted
 by assigning the corresponding value to atomic_flag
 Start execution (flag := Executing)
 ELSE Raise exception And stop component (flag := Stopping) END
 END;

execute =
 SELECT flag = Executing THEN
 IF component generated exception because execution of cmd is unsafe or it completed cmd
 THEN stop component (flag := Stopping)
 ELSE Invoke lower layer operations and catch exc2 and start handling (flag := Handling)
 END END;

i_handle =

SELECT flag = Handling &
 Current service is not atomic and criticality of interruption is greater than criticality of
 exception (I_EVAL(first(Inter)) > E_EVAL2(exc2)) or arrived interruption is Abort
 THEN
 IF current interruption is Abort
 THEN stop component and propagate exception

 ELSE determine the class of interruption (using I_STATUS) and handle accordingly
 END
 Remove handled interruption from the list and update last_int END;

e_handle =
 SELECT flag = Handling &
 Current service is atomic and the arrived interruption is not Abort, or
 no interruptions has arrived, or criticality of exception is greater than interruption
 (I_EVAL(first(Inter)) < E_EVAL2(exc2))
 THEN Classify exceptions according to E_STATUS and handle accordingly END;

pause =
 SELECT flag = Pausing AND Newly arrived interruption is Continue or Abort
 THEN Remove handled interruption And Check system state after pausing
 Start handling (i.e., flag := Handling) END;

recover =
 SELECT flag = Recovering THEN Perform error recovery and catch lower layer exception END;

stop =
 SELECT flag = Stopping THEN Cease component’s functioning (flag:= Stopped) END
END

execution of the service is modelled by the operation execute. In the initial specification
we model the effect of executing the lower layer command by receiving a propagated
exception and updating the local state.

We assume that the interruption Abort should be handled regardless of the atomicity
of the service though in certain systems it might be treated in the same way as other
interruptions. Hence the operation i_handle becomes enabled either if the interruption
Abort has arrived or the current service is non-atomic and the criticality of the caught
interruption is higher than the criticality of the caught exception. The interruption
handling proceeds according to the type of interruption to be handled – we discuss it in
the details later.

The operation e_handle becomes enabled after the lower layer has completed its
execution and the current interruption has a lower priority than the propagated exception
or the current service is marked as atomic. The task of e_handle is to classify the
propagated exception exc2 and perform handling accordingly.

The operation recover is similar to the operation execute in the sense that the lower
layer is called: the state of the component is changed and a new propagated exception is
received. The purpose of operation recover is to abstractly model the effect of error
recovery. After recover, either e_handle or i_handle becomes enabled, which again
evaluates the propagated exception and the current interruption and directs the control
flow accordingly.

Finally, the operation stop becomes enabled in two cases: when an unrecoverable
error has occurred, or the execution of the request is completed.

The behaviour of the component can be graphically represented as shown in Fig.8.

Start
valid
parameters Executing

lower layer
service
executed

Handling Recovering

lower layer
service
executed

successful
termination
of lower layer
service

recoverable
propagated
exceptionbad

para-
meters
(raised
exception)

exception
was raised
or service
was
completed unrecoverable

propagated
exception or
recovery failedStopping

Stopped

service component stops, returning control to the higher layer

.

Pausing

pause continue

Fig.8. Behaviour of fault tolerant reactive component

The proposed specification can be used to abstractly specify components at each layer
except the lowest one. Each component at the lowest layer has only one type of
exceptions – the generated exceptions. Hence the specification facilities for exception
handling are redundant at this layer. Moreover, the operations to be executed at the
lowest layer are not decomposed any further and hence can be specified as the atomic
preconditioned operations.

Let us observe that while describing the behaviour of the component we single out
handling of the interruption “Pause” because its handling is merely a suspension of
autonomous component functioning.

Interruption and exception handlers. Now we discuss in detail the specifications of
interruption and exception handlers. The interruption handler – the operation i_handle –
described below analyses the interruption to be handled – first(Inter) – and chooses the
corresponding interruption handling.

i_handle =
 SELECT
 flag = Handling & (atomic_flag=FALSE & size(Inter)>0 &
 I_EVAL(first(Inter)) >= E_EVAL2(exc2,state)) or first(Inter) = Abort
 THEN
 IF first(Inter)=Abort
 THEN raise(Abort_exc) || flag := Stopping
 ELSEIF first(Inter) = Pause THEN flag := Pausing
 ELSIF I_STATUS(first(Inter))=Local THEN state :: STATE
 ELSIF I_STATUS(first(Inter))=Up THEN raise(I_CONV((first(Inter)))) || flag := Stopping
 ELSE flag := Recovering
 END ||
 last_int := first(Inter) || remove_interruption
 END;

In case the interruption is Abort the component is stopped and exception stopping the
requesting component is propagated upward in the hierarchy until all activated
components are stopped. If the interruption to be handled is Pause then the component
suspends its functioning and enters the Pausing phase. Handling of the interruption
requiring the local state update is modelled by the update of the local state. The
component remains in the phase Handling and continues to analyse the caught signals. If
the interruption requires handling to be performed on the higher layers of hierarchy then
the component is stopped and the corresponding exception (obtained by using the
function I_CONV) is raised. Otherwise the interruption handling is performed by
requesting the operations from the lower layers, which is modelled in the operation
recover.

The specification of exception handler e_handle is done in the similar style – the
function E_STATUS is used to define the type of exception handling required. If the
exception signals about normal termination, then the component continues to execute the
requested service, i.e., enters the phase Executing. If the exception signals about
recoverable error, then the error recovery is attempted from the operation recover by
executing lower layer operations. Otherwise the component is stopped, the exception is
converted using the function E_CONV2 and propagated upward.
e_handle =
 SELECT flag = Handling & (atomic_flag=TRUE or
 size(Inter)=0 or I_Crit(first(Inter)) < E_Crit2(exc2,state))
 THEN
 IF E_STATUS(exc2) = Ok THEN flag := Executing
 ELSIF E_STATUS(exc2) = Recov THEN flag := Recovering
 ELSE raise(E_CONV2(exc2)) || flag := Stopping END
 END;

The refinement process follows the graphical representation given in Fig.5. We refine
the abstract specification FTDAComponent by introducing the activation of the lower
layer components into the operation execute. Since the refinement step introduces an
abstract specification of the lower layer component the refined specification
FTDAComponentR also contains more detailed representation of the error recovery and
interruption handling procedures. The specification of the lower layer components has
the form of FTDAComponent. By recursively applying the same specification and
refinement pattern, we eventually arrive at the complete specification of the layered
system. At the final refinement step all remaining unimplementable mathematical
structures are replaced by the corresponding constructs of the targeted programming
language and code is generated. Therefore, the result of our refinement process is
implementation of a fault tolerant reactive control system.

Due to a lack of space we have omitted a description of the case study which has
validated the proposed approach. Its detailed description can be found in the
accompanying technical report [9].

5. Conclusions

In this paper we proposed a formal approach to the development of reactive fault
tolerant control systems. We created a generic pattern for modelling such systems. The
proposed approach is based on recursive application and instantiation of the pattern via
refinement. It can be summarized as follows:
1. Specify the external interface of the system which includes requests to execute

services and interruptions. Instantiate a general model to reflect interruptions,
particular to the services under construction.

2. Define the functions for evaluating criticality of exceptions and interruptions,
conversion rules and atomicity indicators of the operations. Specify functionality of
the component server together with fault tolerance mechanisms modelled as
exception handling. Incorporate the interruption handler. Use the defined functions to
design interruption and exception handlers.

3. Instantiate the specification pattern to model components on the lower layer of
hierarchy. Refine the component server by introducing invocation of operations of
these components. Verify correctness of the transformation by proofs.

4. Repeat step 3 until the lowest layer of hierarchy is reached.
The use of automatic tool supporting the B Method significantly simplified the

required verification process. The proofs were generated automatically and majority of
then was also proved automatically by the tool.

In [8] the formal semantics is given to services and layered architectures. However,
the proposed formalization leaves the problem of interruption and exception handling
aside.

Representation of exception handling in the development process has been addressed
by Ferreira et al. [6]. They consider UML-supported development of component-based
system and demonstrate how to integrate reasoning about exception handling in the
development process. In our approach we integrate exception handling in the formal
development process and also formalize the relationships between interruptions and
exceptions.

The idea of reasoning about fault tolerance in the refinement process has also been
explored by Joseph and Liu [12]. They specified a fault intolerant system in a temporal
logic framework and demonstrated how to transform it into a fault tolerant system by
refinement. However, they analyse a “flat” system structure. The advantage of our
approach is possibility to introduce hierarchy (layers) and describe different exceptions
and recovery actions for different layers.

Reasoning about fault tolerance in B has also been explored by Lano et. al [10].
However, they focused on structuring B specifications to model a certain mechanism for
damage confinement rather than exception handling mechanisms.

Arora and Kulkarni [7] have done the extensive research on establishing correctness
of adding the fault tolerance mechanisms to fault intolerant systems. Correctness proof
of such an extended system is based on soundness of their algorithm working with the
next-state (transition) relation. In our approach we start with an abstract specification of
a system and develop a fault tolerant system by refinement, incorporating the fault

tolerance mechanisms on the way. Correctness of our transformation is guaranteed by
soundness of the B method. Moreover, an automatic tool support available for our
approach facilitates verification of correctness.

We argue that generality of the proposed approach and availability of the automatic
tool support makes our approach scalable to the complex real-life applications. In the
future we are planning to overcome the current limitations of the approach such as a
simplistic representation of exceptions and state-insensitive handling of exceptions and
interruptions. To achieve this, we are going to strengthen the proposed approach by
introducing more sophisticated models of exceptions and interruptions. Moreover, it
would be interesting to extend the proposed approach to incorporate reasoning about
parallelism.

Acknowledgements The work reported in this paper is financially supported by IST-
511599 EU Project RODIN.

References

1. 1. J.-R. Abrial. The B-Book. Cambridge University Press,1996.
2. J.-R. Abrial. Event Driven Sequential Program Construction. 2000, via

http://www.matisse.qinetiq.com.
3. T.Anderson and P.A. Lee. Fault Tolerance: Principles and Practice. Dependable Computing

and Fault Tolerant Systems, Vol 3. Springer Verlag; 1990.
4. A.Avizienis. Towards Systematic Design of Fault-Tolerant Systems. Computer 30 (4), pp. 51-

58. 1997.
5. F.Cristian. Exception Handling. In T.Anderson (ed.): Dependability of Resilient Computers.

BSP Professional Books, 1989.
6. L.Ferreira, C.Rubira and R. de Lemos. Explicit Representation of Exception Handling in the

Development of Dependable Component-Based Systems. Proceedings of HASE’2001. USA,
October 2001.

7. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. Formal Techniques in
Real-time and Fault-tolerant Systems (FTRTFTS'2000), Pune, India. 2000.

8. M.Broy. Service-Oriented Systems Engineering: Modeling Services and Layered
Architectures. In Proc. Of FORTE 2003, pp. 48-61, Berlin, Germany, September 2003.

9. L.Laibinis and E.Troubitsyna. Formal Service-oriented Development of Fault Tolerant.
TUCS Technical Report 648, 2004. http://www.tucs.fi/publications/insight.php?id=
tLaTr04b&table=techreport

10. K.Lano, D. Clark, K. Androutsopoulos, P. Kan. Invariant-Based Synthesis of Fault-tolerant
Systems. In Proc. of Formal Techniques in Real-Time and Fault-Tolerant Systems. FTRTFT
2000, LNCS vol. 1926, p. 46 -57. India, 2000.

11. J.-C. Laprie. Dependability: Basic Concepts and Terminology. Springer-Verlag, Vienna,
1991.

12. Z. Liu and M. Joseph. Transformations of programs for fault-tolerance, Formal Aspects of
Computing, Vol 4, No. 5, pp. 442-469, 1992.

13. MATISSE Handbook for Correct Systems Construction. 2003. http://www.esil.univ-
mrs.fr/~spc/matisse/Handbook/

14. B.Rubel. Patterns for Generating a Layered Architecture. In J.O. Coplien, D.C. Schmidt
(Eds.). Pattern Languages of Program Design. Addison-Wesley. 1995.

15. S.Schneider. The B Method. An introduction. Palgrave2001.
16. Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 2001. Available at

http://www.atelierb.societe.com/index uk.html.
17. Storey N. Safety-critical computer systems. Addison-Wesley, 1996.

