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Abstract. Usually complex systems are controlled by an operator co-operating 
with a computer-based controller. The controlling software runs in continuous 
interaction with the operator and constantly reacts on operator’s interruptions by 
dynamically adapting system behaviour. Simultaneously it catches the exceptions 
signalling about errors in the system components and performs error recovery. 
Since interruptions are asynchronous signals they might concurrently co-exist and 
conflict with exceptions. To ensure dependability of a dynamically adaptable 
system, we propose a formal approach for resolving conflicts and designing robust 
interruption and exception handlers. We present a formal specification pattern for 
designing components of layered control systems that contain interruption and 
exception handlers as an intrinsic part of the specification. We demonstrate how to 
develop a layered control system by recursive application of this pattern. 

1 Introduction 

In this paper we propose a formal approach to the development of dependable control 
systems. Control systems are the typical examples of reactive systems. Often they run in 
a constant interaction not only with the controlled physical application but also the 
operator. The operator participates in providing the control over an application by 
placing requests to execute certain services and often intervening in the service 
provision. As a response to the operator’s intervention, the controller should adapt the 
behaviour of the system accordingly. The task of ensuring dependability of dynamically 
adaptable systems is two-fold: on the one hand, we should design the controller to be 
flexible enough to allow the operator’s intervention; on the other hand, the controller 
should prevent potentially dangerous interventions in its service provision. 

Design of dependable control systems usually spans over several engineering 
domains. Traditionally abstraction, modularisation and layered architecture are 
recognized to be effective ways to manage system complexity [14].  Though the 
components at each architectural layer are susceptible to specific kinds of faults, the 
mechanism of exception raising and handling can be used for error detection and 
recovery at each architectural layer.  

However, since exceptions and interruptions are asynchronous signals, several 
exceptions and interruptions might occur simultaneously. Incorrect resolution of such 
conflicting situations might seriously jeopardize system dependability. In this paper we 
formally analyse the relationships between interruptions and exceptions and propose 
formal guidelines for designing robust interruption and exception handling. Moreover, 
we propose a formal approach to the development of reactive fault tolerant control 
systems in a layered manner. 



Our approach is based on stepwise refinement of a formal system model in the B 
Method [1,2,15]. While developing a system by refinement, we start from an abstract 
specification and step by step incorporate implementation details into it until executable 
code is obtained. In this paper we propose a general pattern for specification and 
refinement of reactive layered systems in B. Our pattern contains exception and 
interruption handlers as an intrinsic part of the specification. We start from the 
specification of the system behaviour on the upper architectural layer and unfold layers 
by a recursive instantiation of the proposed specification pattern. Since our approach 
addresses the dependability aspects already in the early stages of system development, 
we argue that it has potential to enhance system dependability. 

We proceed as follows: in Section 2 we discuss propagation of exceptions and 
interruptions in the layered control systems. In Section 3 we present a formal basis for 
designing interruption and exception handlers. In Section 4 we demonstrate our approach 
to formal development of fault tolerant reactive systems that contain interruption and 
exception handlers as an intrinsic part of their specifications. In Section 5 we summarize 
the proposed approach, discuss its possible extensions and overview the related work.   

2 Exceptions and Interruptions in a Layered Architecture 

Control systems. In this paper we focus on modelling dependable control systems. A 
general structure of a control system is given in Fig.1. A plant is a physical entity whose 
operation is being monitored and controlled by a computer-based controller. Often 
control over an application is provided in co-operation of computer with an operator – a 
human (or sometimes another computer-based system) participating in operating the 
system. The controller monitors plant’s behaviour via the sensors and affects it via the 
actuators as shown in Fig. 1. 

Fig.1 General structure of a control system  
Layered architecture. Usually development of a control system spans over several 
engineering domains, such as mechanical engineering, software engineering, human-
computer interface etc. It is widely recognized that a layered architecture is preferable in 
designing such complex systems since it allows the developers to map real-world 
domains into software layers [14]. The lowest layer confines real-time subsystems which 
directly communicate with sensors and actuators – the electro-mechanical devices used 
to monitor and control the plant. These subsystems cyclically execute the standard 
control loop consisting of reading the sensors, and assigning the new states to the 
actuators. The layer above contains the components that encapsulate the detailed 
behaviour of the lowest level subsystems by providing abstract interfaces to them. The 
component server (often called the service director) is on the highest level of hierarchy. 
It serves as an interface between the operator and the components.  

There are several ways in which the operator can interact with the system. Normally 
s/he places the requests to execute certain services. A service is an encapsulation of a set 
of operations to be executed by the components. Upon receiving a request to execute a 
service, the component server at first translates (decomposes) the service into the 
corresponding sequence of operations. Then it initiates and monitors the execution of 
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operations by placing corresponding requests on the components. In their turns, the 
requested components further decompose these operations into the lower level 
operations. These operations are to be executed by real-time subsystems at the lowest 
layer of hierarchy. Upon completion of each operation, the requested subsystem notifies 
the requesting component about success of the execution. The component continues to 
place the requests on the subsystems until completion of the requested operation. Then it 
ceases its autonomous functioning and notifies the component server about success of 
the execution. The behaviour of the components follows the same general pattern: the 
component is initially “dormant” but becomes active upon receiving a request to execute 
a certain operation. In the active mode the component autonomously executes a 
operation until completion. Then it returns the acknowledgement to the requesting 
component and becomes inactive again. The communication between components can 
be graphically represented as shown in Fig.2. 

 

 
Fig.2. Architecture of a layered system 
 
Exceptions. While describing the communication between the layers of a control 
system, we assumed so far that the system is fault-free, i.e., after receiving a request to 
execute an operation, the component eventually successfully completes it. However, 
occurrence of errors might prevent a component from providing a required operation 
correctly. Hence, while designing a controller, we should specify means for tolerating 
fault of various natures. In this paper we focus on hardware faults and human errors. 

The main goal of introducing fault tolerance is to design a system in such a way that 
that faults of components do not result in system failure [3,4,11]. A fault of a component 
manifests itself as an error [3]. Upon detection of an error, error recovery should be 
performed. Error recovery is an attempt to restore a fault-free system state or at least 
preclude system failure. Hence components of fault tolerant controllers should be able to 
detect the errors and notify the requesting component, so that error recovery can be 
initiated. This behaviour is achieved via the mechanism of exception raising and 
handling [5]. Observe that for each component (except the lowest level subsystems) we 
can identify two classes of exceptions: 

1. generated exceptions: the exceptions raised by the component itself upon 
detection of an error, 

2. propagated exceptions: the exceptions raised at the lower layer but propagated 
to the component for handling. 

The generated exceptions are propagated upwards (to the requesting component) for 
handling. Usually the component that has raised an exception ceases its autonomous 
functioning. Such a behaviour models the fact that the component is unable to handle the 
erroneous situation. With each component we associate a class of errors from which the 
component attempts to recover by itself. If the component receives a propagated 
exception signalling about error from this class, then it initiates error recovery by 
requesting certain lower layer operations. Otherwise the component propagates the 
exception further up in the hierarchy.  Hence  certain  errors  will  be  propagated  to  the 
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Fig.3. Exceptions in a layered architecture 

operator, so s/he could initiate manual error recovery. This behaviour is graphically 
represented in Fig.3. 

Interruptions. While discussing service provision in a layered architecture we assumed 
that the system accepts the operator’s request to execute a certain service after it has 
completed execution of a previous service, i.e., in an idle state. However, often the 
operator needs to intervene in the service execution. For instance, s/he might change 
“on-the-fly” the parameters of the currently executing service or cancel it, suspend and 
resume service provision etc. Such interventions are usually called interruptions.  
Observe that a request to execute a service can also be seen as the special case of 
interruption. 

Interruptions are dual to exceptions. They arrive from the uppermost architectural 
layers and are “propagated” downwards, to the currently active layer. Upon receiving an 
interruption, the currently active component takes appropriate actions required to handle 
it. The component can either 

- change the local state to adjust the execution and then resume its work, or 
- generate the requests to execute certain lower-layer subservices (which might be seen 
as a special case of error recovery), or  
- “realize” that the interruption should be handled on a higher layer of hierarchy. Then 
it would generate the corresponding exception, which is then propagated upwards. 

The behaviour of the system while handling interruption is graphically represented in 
Fig.4. 

While designing dependable systems, we need to analyse the impact of interruptions 
and exceptions on system dependability. In the next section we will address this issue in 
details. 

3 Formal Analysis of Interruption and Exception Handling 

Ensuring dependability of the systems, which can adapt their behaviour in response to 
operator’s interruptions, is a complex task. It involves establishing a proper balance 
between system flexibility and dependability. For instance, if the behaviour of the 
autopilot deems to be faulty, the controlling software of an aircraft should allow the pilot 
to interrupt the autopilot and resume manual control; on the other hand, software  should  
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Fig.4. Interruptions in a layered architecture 

disallow the pilot to interrupt automatic control in a potentially dangerous way. Next we 
consider a formal basis for designing dependable reactive systems. 
 
Preventing incorrect interventions. At first we observe that the interface of the system 
is the medium via which the operator requests and interrupts services. Hence design of 
the system interface should obey the principles of designing human-computer interfaces 
for error prevention (the study of those is outside of the scope of this paper). Usually the 
resulting system interface is dynamic, i.e., the set of the requests and interruptions which 
the system accepts from the operator varies depending on the internal system state. 

Assume that  I = {I1, I2,.. IM} is a complete set of interruptions and requests which the 
operator can send to the system via its interface. We define the function   

blocking: I � PI, 

which for each interruption Ij, j:1..M,  returns a subset of interruptions or requests which 
can be next accepted by the system. For instance, if the operator has sent the interruption 
“Pause” then only the interruptions “Continue” and “Abort” can be accepted next. Let 
us observe that some interruptions or requests are non-blocking (blocking(Ik)=I, for 
some k ), i.e., they do not disable other interruptions. The function blocking explicitly 
defines how to dynamically adapt the system interface to enforce the correct operator’s 
behavior.  

In this paper for the sake of simplicity we defined the function blocking in a static, 
i.e., independent of the system state way. The function blocking_dyn  

blocking_dyn: (I,�) � PI, 

where � is the system state (e.g., the set of system variables), modifies blocking by 
taking into account the current system state while defining the subset of requests and 
interruptions that can be accepted next. 

Next we study how the controller should prevent the incorrect intervention into its 
service provision. We define the relationships between interruptions and the controller’s 
operations. Namely, for each operation of the controller, we identify the subset of 
interruptions which must be immediately handled and the subset of interruptions 
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handling of which should be postponed until execution of the current operation is 
completed. 

Assume that C is a component in our layered architecture. Assume also that OpC = 
{OpC1, OpC2, …OpCN} is a set of operations provided by C and I is a set of interruptions 
and requests accepted by the overall system. For each operation in OpC, we analyse the 
consequences of interrupting its execution by each of the interruption from I. As a result 
of such analysis, we define a function  

atomicC : OpC x I � Bool  

such that, for any i: 1..N and j: 1..M, atomicC(OpCi, Ij) is FALSE if interruption Ij 

received during the execution of OpCi should be handled immediately, and TRUE if 
handling of Ij should be postponed until completion of OpCi. In the latter case the 
operation OPCi is atomic, i.e., uninterruptible by the interruption I.  

Since interruptions are asynchronous events and sometimes interruption handling is 
postponed, the interruptions can be queued for handling. Let us consider the following 
situation: after unsuccessful attempts to recover from error by sending certain 
interruption, the operator decides to cancel the execution of the current service. If the 
interruptions are handled in the “first-in-first-out” order, then the service will be 
cancelled only after all previous interruptions are handled, i.e., with a delay. This might 
be undesirable or even dangerous. Hence we need to distinguish between the levels of 
criticality of different interruptions, for instance, to ensure that, if an interruption is an 
attempt to preclude a dangerous system failure, it is handled with the highest priority.  

We define the function  
I_EVAL: I � NAT 

which assigns priorities to  interruptions and requests. The greater the value of 
I_EVAL(Ij),  where j:1..M, the higher degree of priority of handling the interruption Ij. 
While designing the system, we ensure that the interruptions are handled according to 
the priority assigned by I_EVAL. 
 
Interruptions versus exceptions. Above we analysed the principles of interruption 
handling. However, our analysis would be incomplete if we omit consideration of the 
relationship between interruptions and exceptions. Indeed, since interruptions are 
asynchronous events, they might co-exist and “collide” with exceptions, e.g., when an 
interruption is caught simultaneously with the exception indicating an erroneous 
situation. Dealing with concurrent arrival of several signals from different sources has 
been recognized as a serious problem that has not received sufficient attention [4]. 
Incorrect handling of these signals might lead to the unexpected system behaviour and, 
as a consequence, can seriously jeopardize system dependability. To resolve such 
potentially dangerous situations, handling of simultaneous signals should be designed in 
a structured and rigorous way.  

Let C be a component on a certain layer of our layered architecture. Let EXC_C = 
{Exc1, Exc2, …ExcN}  be a set of exceptions that can be propagated to C from the lower 
layer components. We define the function  

E_EVALC : EXC_C � NAT 

which assigns a certain criticality level to each exception which component receives. By 
defining E_EVALC for each component of our system we assign a certain priority to 
each exception to be handled by the system.  



Let us consider now an active component C, which has currently caught the exception 
Exc1 and interruptions I1, I2, I3  such that I_EVAL(I1)  > I_EVAL(I2) > I_EVAL(I3). Then  

• if the interruption I1 is more critical than the exception, i.e., I_EVAL(I1) � 
E_EVALC(Exc1) then the next signal to be handled is the interruption I1,  

• if the exception is more critical than the interruptions, i.e., E_EVALC(Exc1) > 
I_EVAL(I1) then the next signal to be handled is the exception Exc1.  

Upon completion of handling the most critical signal, the caught signals are evaluated 
in the same way. Then the decision which signal should be handled next is made again.  

Observe that the functions E_EVALC and I_EVAL can be extended in a similar way as 
the function blocking. This would allow the systems to take into account its current state 
while making the decision about criticality of exceptions and interruptions.  
 
Interruption and exception propagation. Let us now discuss the design of interruption 
and exception handlers. We identify three classes of interruptions:  

- the interruptions, whose handling can be done locally, i.e., by changing local 
variables of the currently active component, 

- those, whose handling requires to invoke the lower layer operations, and   
- those, whose handling is possible only on some higher layer (the received 

interruption is converted into an exception to be propagated upward). 

The identified classes are disjoint. The proposed classification is complete in a sense that 
it defines all possible types of system responses on interruptions.  

We define the function (for each component C)  

I_STATUS_C: I  � {Local, Down, Up} 

which, for any interruption, defines the type of the required handling. 
In the similar way we define the types of exceptions as exceptions signalling about  

- successful termination of requested service, 
- recoverable error, or  
- unrecoverable error. 

The corresponding function (for each component C) 

E_STATUS_C: EXC_C � {Ok, Recov,Unrecov} 

defines the type of each exception and acknowledgement.  If the acknowledgement 
notifies about successful termination then the normal control flow continues. If the 
exception signals about recoverable error then error recovery from the current layer is 
attempted. Otherwise, the exception is propagated upward in the hierarchy.   

In the latter case, we need to define the rules for converting unrecoverable propagated 
exceptions and interruptions into generated exceptions of the current component. After 
conversion, the corresponding exception of the current component is raised and 
propagated up. For every pair of components (Ci,Cj) such that Ci is a requesting 
component (client) and Cj is a requested component from the lower layer, we define the 
function 

E_ CONVij: EXC_Ci � EXCg_ Cj 

where EXC_Ci is the set of propagated and EXCg_Cj is the set of generated exceptions of 
the corresponding components. The function E_ CONVij converts propagated exceptions 
of Ci into generated exceptions of Cj.  



In a similar way, we design interruption handling converting the received interruption 
into an exception to be propagated upwards. For every component C, we define the 
function  

I_CONV: I � EXC_Cg 

Let us observe that our exception handling has hierarchical structure:  while designing 
exception handling we follow the principle “the more critical an error is, the higher the 
layer that should handle its exception”.  This principle should be utilized while defining 
the functions E_EVALC (for each component C) and I_EVAL.  

In this section we formalized the principles of designing interruption and exception 
handling in a layered architecture. In the next section we present our approach to 
specification and refinement of dependable reactive systems. 

4. Specification and Refinement of Reactive Fault Tolerant Systems 

It is widely accepted that high degree of dependability of the system can only be 
achieved if dependability consideration starts from the early stages of system 
development [11,17]. We demonstrate how to specify layered control systems in such a 
way that mechanisms for interruption and exception handling become an intrinsic part of 
their specification. We start by a brief introduction into the B Method – our formal 
development framework.  
 
The B Method. The B Method [1,15] (further referred to as B) is an approach for the 
industrial development of highly dependable software. The method has been 
successfully used in the development of several complex real-life applications [13]. The 
tool support available for B provides us with the assistance for the entire development 
process. For instance, Atelier B [16], one of the tools supporting the B Method, has 
facilities for automatic verification and code generation as well as documentation, 
project management and prototyping.  The high degree of automation in verifying 
correctness improves scalability of B, speeds up development and, also, requires less 
mathematical training from the users.  

The development methodology adopted by B is based on stepwise refinement [1]. 
While developing a system by refinement, we start from an abstract formal specification 
and transform it into an implementable program by a number of correctness preserving 
steps, called refinements. A formal specification is a mathematical model of the required 
behaviour of a (part of) system. In B a specification is represented by a set of modules, 
called Abstract Machines. An abstract machine encapsulates state and operations of the 
specification and as a concept is similar to module or package. 

Each machine is uniquely identified by its name. The state variables of the machine 
are declared in the VARIABLES clause and initialized in the INITIALISATION clause. 
The variables in B are strongly typed by constraining predicates of the INVARIANT 
clause. All types in B  are  represented  by  non-empty  sets. We can also define local 
types as deferred sets. In this case we just introduce a new name for a type, postponing 
actual definition until some later development stage. 

The operations of the machine are defined in the OPERATIONS clause. There are 
two standard ways to describe an operation in B: either by the preconditioned operation 
PRE cond THEN body END or the guarded operation SELECT cond THEN body 
END. Here cond is a state predicate, and body is a B statement. If cond is satisfied, the 



behaviour of both the precondition operation and the guarded operation corresponds to 
the execution of their bodies. However, if cond is false, then the precondition operation 
leads to a crash (i.e., unpredictable or even non-terminating behaviour) of the system, 
while the behaviour of the guarded operation is immaterial since it will be not executed. 
The preconditioned operations are used to describe operations that will be implemented 
as procedures modelling requests. The guarded operations are used to specify event-
based systems and will model autonomous behaviour. 

B statements that we are using to describe a state change in operations have the 
following syntax: 

    S   ==   x := e  |  IF  cond  THEN  S1  ELSE  S2  END | S1 ; S2  | 
                 x :: T   |  S1 || S2 |  ANY  z  WHERE  cond  THEN  S  END   |   ... 

The first three constructs – assignment, conditional statement and sequential 
composition (used only in refinements) have the standard meaning. The remaining 
constructs allow us to model nondeterministic or parallel behaviour in a specification. 
Usually they are not implementable so they have to be refined (replaced) with executable 
constructs at some point of program development. The detailed description of the B 
statements can be found elsewhere [1,15]. 

The B method provides us with mechanisms for structuring the system architecture by 
modularization. The modules (machines) can be composed by means of several 
mechanisms providing different forms of encapsulation. For instance, if the machine C 
INCLUDES the machine D then all variables and operations of D are visible in C. 
However, to guarantee internal consistency (and hence independent verification and 
reuse) of D, the machine C can change the variables of D only via the operations of D. In 
addition, the invariant properties of D are included into the invariant of C. To make the 
operations of D available through the interface of C, we should list then in the 
PROMOTE clause of C. If D promotes all its operations to C then C is an extension of 
D which can be specified by the EXTENDS mechanism. 

 
Refinement and layered architecture. Refinement is a technique to incorporate 
implementation details into a specification. In general, the refinement process can be 
seen as a way to reduce nondeterminism of the abstract specification, to replace the 
abstract mathematical data structures by the data structures implementable on a 
computer and to introduce underspecified design decisions. In the Abstract Machine 
Notation (AMN), the results of the intermediate development stages – the refinement 
machines – have essentially the same structure as the more abstract specifications. In 
addition, they explicitly state which specifications they refine. 

Each refinement step should be formally verified by discharging (proving) certain 
proof obligations. Since verification of refinement is done by proofs rather than state 
exploration, the stepwise refinement technique is free of the state explosion problem and 
hence is well suited for the development of complex systems. In this paper we 
demonstrate how refinement facilitates development of systems structured in a layered 
manner. 

Let us observe that the schematic representation of communication between the 
components of a layered system represented in Fig.2 can also be seen as the scheme of 
atomicity refinement. Indeed, each layer decomposes a higher layer operation into a set 
of operations of smaller granularity. The decomposition continues iteratively until the 
lowest layer is reached. At this layer the operations are considered to be not further 
decomposable. From the architectural perspective, an abstract specification is a “folded” 
representation of the system structure. The system behaviour is specified in terms of 



Interface 

FTComponent FTComponentR 

SubCompnent SubcomponentR 

Interruptions Subsubcomp_1 Subsubcomp_N 

 INCLUDES 

INCLUDES INCLUDES 
   EXTENDS 

     refines 

refines 

... 

 
  INCLUDES 

large atomic services at the component server layer. Each refinement step adds (or 
“unfolds”) an architectural layer in the downward direction. Large atomic services are 
decomposed into operations of smaller granularity. Refinement process continues until 
the whole architectural hierarchy is built.  We argue that the refinement process 
conducted in such a way allows us to obtain a realistic model of fault tolerant reactive 
systems. Indeed, by iterative refinement of atomicity we eventually arrive at modelling 
exceptions and interruptions arriving practically at any instance of time, i.e., before and 
after execution of each operation of the finest granularity. The proposed refinement 
process is illustrated in Fig.5, where we outline the development pattern instantiated to a 
three-layered system. 

 

Fig.5. Refinement process                                                   Fig.6. Abstract specification 
 
Abstract specification in B. The initial abstract specification consists of three machines 
(see Fig.6). The machine Interface models the interface of the system. The machine 
Interruptions describes the data structure representing the interruptions. The machine 
Component contains the abstract specification of component server, i.e., it models 
services which the system provides for the operator as well as interruption and exception 
handling on the component server layer. The interactions of the operator with the 
interface result in invocations of the operations of FTDAComponent. Hence Interface 
INCLUDES FTDAComponent. 

Each refinement step leads to creating components at the lower layer by including 
their specifications into the refinement of the corresponding components at the previous 
layer. Observe, that in the abstract specification the operator activates a component 
server by placing a request to execute a service. At the next refinement step we refine the 
specification of the component server to model placing requests on the lower layer 
component and introduce the specification of the lower layer component together with 
interruption and exception handling performed by it. Since the behaviour of the 
components on each layer follows the same pattern, the refinement process is essentially 
the recursive instantiation of the abstract specification pattern. Next we present the 
specification on the machines defining specification patterns in details. 

The specification of Interruptions contains the data structure modelling interruptions 
and the operations for manipulating them. The operation add_interruption inserts arriving 
interruptions in the sequence Inter modelling a list of interruptions to be handled. The 
list Inter is sorted according to the criticality assigned to interruptions by the function 
I_EVAL and the operation add_interruptions preserves this order. The handled 
interruptions  are  removed  from  the  list  via   the   operation   remove_interruption.   In 
addition, remove_interruption removes interruptions that have become redundant or 
irrelevant after handling the last interruption. 
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The machine Interface given below  

 
defines how the system interacts with its environment, i.e., it models the service requests 
and interruptions. The operation request models placing a request to execute a certain 
service. The request can be placed only when the system is in the idle state, i.e., the 
previous request has already been completed or cancelled. The interactions are modelled 
by the operations with corresponding names. Unlike requests, interruptions can arrive at 
any time. However, an acceptance of the new interruption depends on the previously 
arrived interruption as defined in Section 3 by the function blocking. The preconditions 
of interruption_1…interruption_N check whether the previously arrived interruption, 
current, blocks the newly arrived interruption. If the interruption is accepted then the 
arriving interruption is added to the list of interruptions to be handled and the value of 
current is updated. 

The behaviour of fault tolerant dynamically adaptable component is abstractly 
specified by the machine FTDAComponent presented in Fig.7. 

The generated and propagated exceptions are modelled by the variables exc and exc2 
respectively. We abstract away from the implementation details of exceptions by 
choosing deferred sets EXC and EXC2 as the types for exc and exc2. The currently 
handled interruption is stored in the variable last_int. The local state of the component is 
modelled by the variable state.  

Each phase of execution is specified by the corresponding operation. The value of the 
variable flag indicates the current phase.  

MACHINE  Interruptions 
SETS INTERRUPTIONS 
VARIABLES Inter 
INVARIANT  Inter : seq(INTERRUPTIONS) &  interruptions are sorted by their criticality 
INITIALISATION Inter := [ ] 

    OPERATIONS 
  add_interruption (inter)=  PRE inter is valid THEN  
       add inter to Inter and ensure that interruptions remain sorted by criticality  END; 
  
   remove_interruption (inter) =  PRE Inter is not empty THEN  
      remove inter and irrelevant interruptions from Inter  END 

    END 

MACHINE  Interface 
INCLUDES ServiceComponent 
VARIABLES current 
INVARIANT  current: INTERRUPTIONS  
INITIALISATION current:= No_int 
 
OPERATIONS 
  request (request_parameters) = PRE flag=stopped  THEN activate Component  END; 
 
    interruption_1 =  PRE interruption_1 is allowed THEN  
      add_interruption(interruption_name1)  || current:= interruption_name1  END; 
 
    interruption_N =  PRE interruption_nameN is allowed THEN 
      add_interruption(interruption_nameN) ||  current:= interruption_nameN  END; 
 
    abort = BEGIN add_interruption(Abort) || current := Abort END 

  END 
 



Fig.7 Specification of  FTDAComponent 

 
The operation start models placing a request to execute a service on the service 

component. It sets the initial state according to the input parameters of the request. The 

MACHINE  FTDAComponent 
EXTENDS  Interruptions 
VARIABLES  flag, atomic_flag, exc, exc2, state, last_int 
INVARIANT 
  flag : {Executing,Handling,Recovering, Pausing,Stopping,Stopped} & 
  exc : EXC  &  exc2 : EXC2  &  state : STATE  &  atomic_flag : BOOL  &  last_int : Interruptions & 
  properties of exceptions, interruptions and phases  
… 
OPERATIONS 
start(a_flag,cmd) = 
  PRE component is idle  
  THEN 
    IF the requested command cmd is valid  
    THEN  Initiate execution  
         Check a_flag and function atomic and decide whether execution of cmd can be interrupted 
          by assigning the corresponding value to atomic_flag 
         Start execution (flag := Executing) 
    ELSE Raise exception And stop component (flag := Stopping) END 
  END; 
 
execute = 
  SELECT flag = Executing THEN 
    IF component generated exception because execution of cmd is unsafe or it completed cmd  
      THEN stop component (flag := Stopping) 
      ELSE Invoke lower layer operations and catch exc2 and start handling (flag := Handling) 
      END END; 
 
i_handle =  

SELECT flag = Handling & 
       Current service is not atomic and criticality of interruption is greater than criticality of  
       exception (I_EVAL(first(Inter)) >  E_EVAL2(exc2)) or arrived interruption is Abort 
      THEN 
      IF current interruption is Abort  
      THEN stop component and propagate exception 

 ELSE determine the class of interruption (using I_STATUS) and handle accordingly  
       END 
       Remove handled interruption from the list and update last_int   END; 
 
e_handle = 
  SELECT flag = Handling &  
       Current service is atomic and  the arrived interruption is not Abort, or  
       no interruptions has arrived, or criticality of exception is greater than interruption  
       (I_EVAL(first(Inter)) < E_EVAL2(exc2)) 
    THEN Classify exceptions according to E_STATUS and handle accordingly END; 
 
pause =  
  SELECT flag = Pausing AND Newly arrived interruption is Continue or Abort 
    THEN Remove handled interruption And Check system state after pausing  
        Start handling (i.e., flag := Handling) END; 
 
recover =  
  SELECT flag = Recovering THEN Perform error recovery and catch lower layer exception END; 
 
stop = 
  SELECT flag = Stopping THEN Cease component’s functioning  (flag:= Stopped) END 
END 



execution of the service is modelled by the operation execute. In the initial specification 
we model the effect of executing the lower layer command by receiving a propagated 
exception and updating the local state. 

We assume that the interruption Abort should be handled regardless of the atomicity 
of the service though in certain systems it might be treated in the same way as other 
interruptions. Hence the operation i_handle becomes enabled either if the interruption 
Abort has arrived or the current service is non-atomic and the criticality of the caught 
interruption is higher than the criticality of the caught exception. The interruption 
handling proceeds according to the type of interruption to be handled – we discuss it in 
the details later.  

The operation e_handle becomes enabled after the lower layer has completed its 
execution and the current interruption has a lower priority than the propagated exception 
or the current service is marked as atomic. The task of e_handle is to classify the 
propagated exception exc2 and perform handling accordingly. 

The operation recover is similar to the operation execute in the sense that the lower 
layer is called: the state of the component is changed and a new propagated exception is 
received. The purpose of operation recover is to abstractly model the effect of error 
recovery. After recover, either e_handle or i_handle becomes enabled, which again 
evaluates the propagated exception and the current interruption and directs the control 
flow accordingly.   

Finally, the operation stop becomes enabled in two cases: when an unrecoverable 
error has occurred, or the execution of the request is completed.  

The behaviour of the component can be graphically represented as shown in Fig.8. 
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Fig.8. Behaviour of fault tolerant reactive component 
 
The proposed specification can be used to abstractly specify components at each layer 
except the lowest one. Each component at the lowest layer has only one type of 
exceptions – the generated exceptions. Hence the specification facilities for exception 
handling are redundant at this layer. Moreover, the operations to be executed at the 
lowest layer are not decomposed any further and hence can be specified as the atomic 
preconditioned operations.  

Let us observe that while describing the behaviour of the component we single out 
handling of the interruption “Pause” because its handling is merely a suspension of 
autonomous component functioning. 

 
Interruption and exception handlers. Now we discuss in detail the specifications of 
interruption and exception handlers.  The interruption handler – the operation i_handle – 
described below analyses the interruption to be handled – first(Inter) – and chooses the 
corresponding interruption handling.  



i_handle =  
  SELECT  
    flag = Handling & (atomic_flag=FALSE & size(Inter)>0 & 
    I_EVAL(first(Inter)) >= E_EVAL2(exc2,state)) or  first(Inter) = Abort 
  THEN 
    IF first(Inter)=Abort 
    THEN raise(Abort_exc) || flag := Stopping 
    ELSEIF first(Inter) = Pause THEN flag := Pausing 
    ELSIF I_STATUS(first(Inter))=Local THEN state :: STATE 
    ELSIF I_STATUS(first(Inter))=Up THEN raise(I_CONV((first(Inter)))) || flag := Stopping 
    ELSE  flag := Recovering 
    END || 
    last_int := first(Inter) ||  remove_interruption 
  END; 

In case the interruption is Abort the component is stopped and exception stopping the 
requesting component is propagated upward in the hierarchy until all activated 
components are stopped. If the interruption to be handled is Pause then the component 
suspends its functioning and enters the Pausing phase. Handling of the interruption 
requiring the local state update is modelled by the update of the local state. The 
component remains in the phase Handling and continues to analyse the caught signals. If 
the interruption requires handling to be performed on the higher layers of hierarchy then 
the component is stopped and the corresponding exception (obtained by using the 
function I_CONV) is raised. Otherwise the interruption handling is performed by 
requesting the operations from the lower layers, which is modelled in the operation 
recover. 

The specification of exception handler e_handle is done in the similar style – the 
function E_STATUS is used to define the type of exception handling required. If the 
exception signals about normal termination, then the component continues to execute the 
requested service, i.e., enters the phase Executing. If the exception signals about 
recoverable error, then the error recovery is attempted from the operation recover by 
executing lower layer operations. Otherwise the component is stopped, the exception is 
converted using the function E_CONV2 and propagated upward. 
e_handle = 
  SELECT flag = Handling & (atomic_flag=TRUE or  
    size(Inter)=0 or I_Crit(first(Inter)) < E_Crit2(exc2,state)) 
  THEN 
    IF E_STATUS(exc2) = Ok THEN flag := Executing 
    ELSIF E_STATUS(exc2) = Recov THEN flag := Recovering 
    ELSE raise(E_CONV2(exc2)) || flag := Stopping END  
 END; 

The refinement process follows the graphical representation given in Fig.5. We refine 
the abstract specification FTDAComponent by introducing the activation of the lower 
layer components into the operation execute. Since the refinement step introduces an 
abstract specification of the lower layer component the refined specification 
FTDAComponentR also contains more detailed representation of the error recovery and 
interruption handling procedures. The specification of the lower layer components has 
the form of FTDAComponent. By recursively applying the same specification and 
refinement pattern, we eventually arrive at the complete specification of the layered 
system. At the final refinement step all remaining unimplementable mathematical 
structures are replaced by the corresponding constructs of the targeted programming 
language and code is generated. Therefore, the result of our refinement process is 
implementation of a fault tolerant reactive control system.   



Due to a lack of space we have omitted a description of the case study which has 
validated the proposed approach. Its detailed description can be found in the 
accompanying technical report [9]. 

5. Conclusions 

In this paper we proposed a formal approach to the development of reactive fault 
tolerant control systems. We created a generic pattern for modelling such systems. The 
proposed approach is based on recursive application and instantiation of the pattern via 
refinement. It can be summarized as follows: 
1. Specify the external interface of the system which includes requests to execute 

services and interruptions. Instantiate a general model to reflect interruptions, 
particular to the services under construction.  

2. Define the functions for evaluating criticality of exceptions and interruptions, 
conversion rules and atomicity indicators of the operations. Specify functionality of 
the component server together with fault tolerance mechanisms modelled as 
exception handling. Incorporate the interruption handler. Use the defined functions to 
design interruption and exception handlers. 

3. Instantiate the specification pattern to model components on the lower layer of 
hierarchy. Refine the component server by introducing invocation of operations of 
these components. Verify correctness of the transformation by proofs.  

4. Repeat step 3 until the lowest layer of hierarchy is reached.   
The use of automatic tool supporting the B Method significantly simplified the 

required verification process. The proofs were generated automatically and majority of 
then was also proved automatically by the tool.  

In [8] the formal semantics is given to services and layered architectures. However, 
the proposed formalization leaves the problem of interruption and exception handling 
aside. 

Representation of exception handling in the development process has been addressed 
by Ferreira et al. [6]. They consider UML-supported development of component-based 
system and demonstrate how to integrate reasoning about exception handling in the 
development process.  In our approach we integrate exception handling in the formal 
development process and also formalize the relationships between interruptions and 
exceptions.  

The idea of reasoning about fault tolerance in the refinement process has also been 
explored by Joseph and Liu [12]. They specified a fault intolerant system in a temporal 
logic framework and demonstrated how to transform it into a fault tolerant system by 
refinement. However, they analyse a “flat” system structure. The advantage of our 
approach is possibility to introduce hierarchy (layers) and describe different exceptions 
and recovery actions for different layers.  

Reasoning about fault tolerance in B has also been explored by Lano et. al [10]. 
However, they focused on structuring B specifications to model a certain mechanism for 
damage confinement rather than exception handling mechanisms. 

Arora and Kulkarni [7] have done the extensive research on establishing correctness 
of adding the fault tolerance mechanisms to fault intolerant systems. Correctness proof 
of such an extended system is based on soundness of their algorithm working with the 
next-state (transition) relation. In our approach we start with an abstract specification of 
a system and develop a fault tolerant system by refinement, incorporating the fault 



tolerance mechanisms on the way. Correctness of our transformation is guaranteed by 
soundness of the B method. Moreover, an automatic tool support available for our 
approach facilitates verification of correctness.  

We argue that generality of the proposed approach and availability of the automatic 
tool support makes our approach scalable to the complex real-life applications. In the 
future we are planning to overcome the current limitations of the approach such as a 
simplistic representation of exceptions and state-insensitive handling of exceptions and 
interruptions. To achieve this, we are going to strengthen the proposed approach by 
introducing more sophisticated models of exceptions and interruptions. Moreover, it 
would be interesting to extend the proposed approach to incorporate reasoning about 
parallelism.  
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