
A Demonstration of Specifying

and Synthesising Hardware using

B and Bluespec

Ian Oliver
Nokia Research Centre

Itämerenkatu 11-13
00180 Helsinki,Finland
ian.oliver@nokia.com

Abstract

Hardware development is complex and the cost of er-
rors extremely high. The use of specification and ver-
ification technologies is critical to managing the cor-
rectness and complexity of the systems being devel-
oped. Bluespec is a declarative hardware description
language (HDL) that solves a number of the problems
associated with translating a specification to a synthe-
sisable form for hardware implementation. Combining
Bluespec development with formal specification with B
offers a sophisticated verification environment with the
associated reduction in development errors.

1 Introduction

It is well known that with the increasing cost of sys-
tem development, complexity and the need to ensure
that the systems produced are ‘bug free’ more sophis-
ticated and declarative development methods are re-
quired. Declarative here meaning the ability to con-
centrate on the domain or problem space of the system
without reference to the implementation, execution se-
mantics and the associated architectural pollution that
comes from making design and implementation deci-
sions in the specification.

Specification languages such as B [1], Z [18], Alloy [17]
etc and accompanying methods such as the B-Method
(in the case of B) have been successfully used in indus-
try for a number of years with successes primarily in the
safety-critical software domain. Attempts have been
made to use these languages for hardware descriptions
but with varying degrees of success [12, 19, 15, 9, 4]1.

Hardware is different from software in a number of fun-
damental ways and thus poses problems that are not

1Also refer to http://download.gna.org/brillant/docs/B-
Bibliography/Bmethod-hardware bib.html for a more complete
bibliography regarding B and hardware development

experienced in the software domain. For example, the
notion of a variable in software often becomes a wire in
hardware with very different semantics. Hardware, at
least synchronous anyway, has the notion of a clock and
overall hardware has implicit parallelism: a function in
a piece of software takes input values and then com-
putes one instruction at a time through a number of
intermediate values the output value, whereas in hard-
ware the input and output values are directly related
in terms of time.

The use of formal specification in hardware develop-
ment is well known and its necessity comes from the
costs associated with hardware failures and bugs. The
ability to construct a correct and validated specifica-
tion long before the RTL description stage allows more
freedom in architectural choices and more importantly
the removal of certain classes of errors [10] from the
design thus reducing the amount of non-exhaustive,
complex and expensive simulation of RTL descriptions.
One of the major problems with simulation and testing
is that they are by their very nature non-exhaustive.
Although systems with apparent large state spaces can
be model checked [5], the tractable size of state space
is insignificant to the whole [8]. Finding the interesting
states to model check might also be impossible.

In this paper we describe the B specification language
and the Bluespec hardware description language which
together offer the possibility of solving the mix of
declarative, abstract specifications with the efficient
synthesis of hardware [14].

2 The Languages

We describe the two languages briefly by the use of a
simple ‘lift controller’ specification in B and its possible
translation or implementation in Bluespec. Figure 1
shows a pictorial representation of the system which
consists of up and down buttons, a display showing
the current floor and a mechanism for moving the lift
between floors.

Floor 0..10

Controller

09

Availability

Down

Floor Number

selection buttons
availability

Up

Stopped

Figure 1: Simple Lift Controller

We specify a number of safety constraints on the sys-
tem:

1

• While moving the lift must not be ‘available’

• The lift can not move outside its designated floor
range

2.1 B

B is a formal language based on algebraic specification
and designed for modularity, refinement and eventual
mapping to code. It is supported by a method called
the B-Method and a variety of tool sets providing the-
orem proving2, model checking and animation [11]3

A specification consists of a number of related B ma-
chines which describe the system in a structured man-
ner. Each machine consists of a number of variables
describing the state space which values are modified
through the application of operations and constrained
through the use of an invariant.

1 MACHINE liftP
2 CONSTANTS topFloor
3 PROPERTIES topFloor = 10
4 SETS
5 MOTORSTATUS = UP, DOWN, STOPPED ;
6 LIFTSTATUS = AVAILABLE, NOTAVAILABLE
7 VARIABLES
8 currentPosition, requestedPosition,
9 availability, activity

The invariant constrains the state space through typing
(lines 1..4 below), and by expressing safety properties
(lines 5..14) such as the nonavailability of the control
during movements (lines 13 and 14).

1 INVARIANT
2 currentPosition : INTEGER &
3 requestedPosition : INTEGER &
4 availability : LIFTSTATUS &
5 activity : MOTORSTATUS &
6 ((activity = UP) =>
7 (currentPosition <= requestedPosition)) &
8 ((activity = DOWN) =>
9 (currentPosition >= requestedPosition)) &

10 currentPosition >= 0 &
11 currentPosition <= topFloor &
12 requestedPosition >= 0 &
13 currentPosition <= topFloor &
14 ((activity = UP)=>(availability = NOTAVAILABLE)) &
15 ((activity = DOWN)=>(availability = NOTAVAILABLE))

A B machine must always be initialised through an
Initialisation clause which here states that the lift is
available, stopped and on floor 0. This must be consis-
tent with the invariant.

1 INITIALISATION
2 currentPosition := 0 ||
3 requestedPosition := 0 ||
4 availability := AVAILABLE ||
5 activity := STOPPED

Operations are specified in terms of a guard (actually a
precondition) and action; if the guard resolves to true
then the operation may take place. If the operation is
performed then the actions are performed in parallel as
an atomic unit. The proof obligations for an operation
ensure that the resultant state of an operation conforms

2AtelierB (ClearSy), B-Toolkit (B-Core)
3ProB (M.Leuchel, University of Düsseldorf, Germany)

to the invariant; thus after any operation the system
will always be in a consistent state with respect to the
invariant.

1 OPERATIONS
2 stoplift =
3 PRE
4 currentPosition = requestedPosition &
5 not(activity = STOPPED)
6 THEN
7 activity := STOPPED || availability := AVAILABLE
8 END ;

The above operation can only be fired when the current
position of the lift is the same as that of the requested
position and the activity of the lift is not stopped. If
this operation fires under these conditions then the ac-
tivity of the lift will be stopped and it made available.
This is guaranteed through the verification process (ie:
theorem proving) to be consistent with the invariant of
the lift system.

The specification/development flow continues from the
specification of a machine through its decompositions
and their refinements; B has a strong notion of refine-
ment which guarantees that all machines and their re-
finements are behaviourally consistent with each other.

2.2 Bluespec

Bluespec (Bluespec System Verilog)4 is a rule based,
declarative hardware specification language based on
term rewriting. It is supported by a compiler that is
capable of scheduling the set of rules without explic-
itly specified execution order. The compiler checks for
shared variable update, calculates the execution order
and guarantees synthesisable SystemVerilog. A large
set of libraries for common hardware structures such
as registers, FIFOs and other structures is provided.

A description written in Bluespec is divided into two
parts: interface and module. Many modules can im-
plement an interface and this is analogous to VHDL’s
entity-architecture concept. Each method described in
the interface must be implemented in a module; by
methods external entities may communicate with the
module.

1 interface ILift;
2 method Action request(Int#(8) f);
3 endinterface
4
5 module lift(ILift);
6 method Action request(Int#(8) f)
7 if (activity == Stopped);
8 requestedPosition <= f;
9 if (f != currentPosition)

10 activity <= Moving;
11 endmethod
12 endmodule

Bluespec supports through libraries a number of ba-
sic types such as Integer (of varying widths), Boolean,
Queues (FIFO etc) and so on. Structures with unions
and intersections can also be specified, though it is im-
possible to have recursive types (eg: linked list style

4www.bluespec.com

2

structures). Below we see the definition of two regis-
ters, one containing 8 bit integers and the other some
user defined type:

1 Reg#(Int#(8)) currentPosition <- mkReg(0);
2 Reg#(MotorStatus) activity <- mkReg(Stopped);

Line 1 above is read: the location with name
currentPosition supports the register interface with
parameterised type 8-bit integer. currentPosition is
bound to an instance of a module implementing that
interface called mkReg with initial/reset value of 0.

As can be seen above we may have enumeration types
sets of default operations (usually just equality) and
bit representation also provided if necessary through
the use of the deriving statement:

1 typedef enum Up, Down, Stopped
2 MotorStatus deriving(Bits,Eq);

The key structure in Bluespec is that of the rule. These
are used to capture the internal workings of the hard-
ware being described. The difference between a method
and a rule is that a method is either used for querying
or for setting the state of the system.

Rules take the form of a guard and action; when the
guard is true then the rule can (or does) fire and the ac-
tions inside the rule are performed. Each rule is atomic
and all items in the action body are performed in par-
allel; expressions are normally expanded out to some
combinational logic structure.

1 rule stoplift
2 (currentPosition == requestedPosition &&
3 activity != Stopped);
4
5 activity <= Stopped;
6 availability <= Available ;
7 endrule

The above rule stoplift corresponds to the B stoplift
operation shown earlier and is read: stoplift fires when
the guard that the current position is the same as the
requested position and activity is not Stopped, then
activity is assigned the value Stopped and in parallel
availability assigned the value Available.

Execution of an individual rule is atomic and is always
completed in a single clock cycle - this is the basic term
rewriting semantics of Bluespec. There are of course
pragmatic concerns regarding how much logic can be
fitted into a single clock cycle and this must be taken
into consideration when synthesising - future versions
of the compiler will perform analysis automatically for
this and similar conditions.

The semantics of Bluespec is then further refined with
the addition of a scheduler which states: all the rules
that can fire, will fire in parallel on the same rising
clock edge. This leads to the situation that if any wires
or structures such as registers are updated then the
updates must be mutually exclusive. If two rules are
not mutually exclusive then the compiler will flag this

as a warning and select one rule to fire over the other,
that is a default priority mechanism exists.

The rules under the above conditions have a total order
of priority such that if two rules conflict due to register
writes or preconditions then one rule takes precedence
over the other to conform to the term rewriting seman-
tics. The priority of rules can be customised if needed.

3 Syntactic Mapping B to Blue-

spec

The structure of a Bluespec description is in the form of
an interface declaration and module declaration which
implements an interface. All Bluespec methods must
be declared in the interface and implemented in the
module. Many modules may implement the same in-
terface. We take the approach that a method is derived
from an operation that is used to communicate with
the environment and a rule for any operation which
modifies the internal state. We can demonstrate the
concrete syntactic mapping given the following B op-
erations:

1 moveDown =
2 PRE
3 activity = DOWN &
4 currentPosition > requestedPosition &
5 currentPosition > 0
6 THEN
7 currentPosition := currentPosition - 1
8 END ;
9

10 request(ff) =
11 PRE
12 ff : INTEGER &
13 ff >= 0 & ff <= topFloor &
14 not(ff = currentPosition) &
15 availability = AVAILABLE
16 THEN
17 requestedPosition := ff ||
18 availability := NOTAVAILABLE
19 END
20
21 av <-- is_available =
22 BEGIN
23 av := availability
24 END ;

we infer the following by mapping the B precondition
and action to their respective places as rules and meth-
ods in a Bluespec module declaration:

1 rule moveDown(activity == Down &&
2 currentPosition > requestedPosition &&
3 currentPosition > 0);
4 currentPosition <= currentPosition - 1;
5 endrule
6
7 method Action request(Int#(8) ff)
8 if (availability == Available);
9 if ((ff >= 0) && (ff<=topFloor) &&

10 (ff!=currentPosition) &&
11 (availability == Available))
12 begin
13 requestedPosition <= ff;
14 availability <= NotAvailable ;
15 end
16 endmethod
17
18 method LiftStatus is_available;
19 return availability;
20 endmethod

There is a syntactic issue regarding the guards in that
parameters to a method (or rule) can not be referred

3

to in the guard, hence the slightly odd looking if state-
ments - the first of which is the method’s guard - above.
Typing predicates (ff : INTEGER) in B are sup-
ported in the parameter definition: Int#(8)ff .

For these examples we simply map B’s integer to an 8
bit integer register and enumerated set similarly. More
complex typing is possible but we do not cover these
here in this demonstration.

The actual interface and module appear as below, we
have used ellipses to denote where additional code will
lie. Any type definitions relating to enumerations are
declared before the interface:

1 typedef enum { Up, Down, Stopped }
2 MotorStatus deriving(Bits,Eq);
3 typedef enum { Available, NotAvailable }
4 LiftStatus deriving(Bits,Eq);
5
6 interface ILiftP;
7 method Action request(Int#(8) f);
8 method LiftStatus is_available;
9 ...

10 endinterface
11
12 (* synthesize *)
13 module liftP(ILiftP);
14 ...
15 endmodule

3.1 Type and Variable Defintions

We can now generalise this to the abstract syntax:
enumerated types are always mapped at bit structures
with the equality operated defined:

SETS
S = E

as: typedef enum E S deriving(Bits,Eq)

Variables are mapped from three B constructs:

V ARIABLE
V

INV ARIANT
V : T

INITIALISATION
V := E

as: I(T) V <- M(E)

where I is an interface definition that supports the
given type T and M is a module that conforms to the
interface. Typically we map variables to registers (al-
though wires could be an optimisation) and types such
as integer to some suitable range, eg: 8, 16 or 32 bits.
Only the typing of the variable defined in the invariant
is required to be mapped. It is possible to map fur-
ther conditions from the invariant through the use of
Bluespec assertion statements, we have not extensively
addressed or investigated this at this time.

3.2 Operations

There are three basic kinds of mapping for B opera-
tions to Bluespec depending on whether these oper-
ations update the system, query it or attempt to do
both. A further subclassification of this depends upon
whether the operation is to be made available through
the system’s interface or not. The table below provides
an overview of the mappings:
Parameter Update Return Mapping

No No No n/a

No No Yes method

No Yes No rule or method

No Yes Yes method ActionValue

Yes No No n/a

Yes No Yes method

Yes Yes No method Action

Yes Yes Yes method ActionValue

Operations which change the state of the system,
ie: those which input data into the system through
parameters, are as follows:

N(S) =
PRE P
THEN Q

is mapped in the interface as:

method Action N(S);

and in the module as, where P also contains typing
statements for the parameters in S.

method Action N(S) if (P);
Q

endmethod

If there are additional conditions in P that fur-
ther restrict the parameters then these must be placed
in the body of the rule as Bluespec does not allow
certain parameter constructs in the method guard.
In these cases the parts of P (ie: Ps)which guard the
operation based upon parameter values is mapped:

method Action N(S) if (P);
if (Ps) then Q

endmethod

Operations which just query the state of the sys-
tem and do not change anything are mapped similarly:

R ← N(S) =
PRE P
THEN Q

as before P includes typing statements for S, and Q
assigns values to and gives a type the variables in R.
In the interface this is mapped as:

4

method T N(S);

and in the module as:

method T N(S) if (P);
return Q;

endmethod

Actions that return values as well as updating
the state are mapped similarly to query operations but
take the additional construction ActionValue which
states this fact explicitly:

method ActionValue#(T) N(S) if (P);
U;
return Q;

endmethod

where U are the state updating statement and Q
is the return assignment.

Operations which contribute to the update of the
state but are not accessed from outside the system
are mapped as rules; these are generally identified
as operations which do not take parameters; these
operations never produce return values:

N =
PRE P
THEN Q

is mapped as follows but in the module defini-
tion only - not in the interface:

rule N(P);
Q;

endmethod

It is always possible that operations without pa-
rameters or return values which change the state of
the system are not rule but methods. In our experience
this occurs rarely but can be taken care of by explicitly
stating in the mapping that this particular operation
is mapped as a method. However we generally enforce
that parameter- and return-less operations are always
mapped as rules in any accompanying development
method

3.3 Types

Concentrating more on the types available, Bluespec
provides a rich environment for types which also in-
cludes a number of the SystemVerilog types. We briefly
mentioned integers and their default mapping to inte-
ger registers.

B provides boolean and various forms of integer as ba-
sic types and richer structures via sets, records and tu-
ples. These can be supported in Bluespec via typedef

and struct constructs and tuples via Tuple#(T1,T2).
Structures such as union types would have to be cus-
tom architected. Sets and strings can be supported by
the use of Bluespec’s vectors and lists. Functions which
define relationships can be supported by vectors of tu-
ples of the domain and range types. Many of the de-
cisions regarding the mapping of types is made during
the architecting process from B to Bluespec, although
as described above some classifications can be made as
defaults.

Generally B’s Boolean type maps to Bluespec’s
Boolean type, while integers are by default mapped to
a suitable bit width in Bluespec. By default we tend
to map to 32 bit signed Integers to conform to the Ate-
lierB theorem prover’s interpretation of Integer.

4 Semantic Mapping Issues

Both B and Bluespec are based upon action system se-
mantics which are an extension of Dijkstra’s guarded
commands [6]. B uses atomic, interleaving actions;
Bluespec is similar but with clock-scheduling and rule
priority. Bluespec’s term rewriting aspect is similar to
that of B and is adequate for many functional correct-
ness properties.

Clock scheduling of rule introduces timing properties
and picks a deterministic route through the transitions
described by the term rewriting. This guarantees that
the system always reaches the states predicted by the
term rewriting rules but may never visit some states
allowed by this.

These can be summarised such that in B, one picks
any enabled action and executes its body (this guar-
antees atomicity), while in Bluespec one executes any
enabled rules atomically. This is further refined under
scheduling: wait for a given clock event such as a rising
clock edge and then execute the enabled set of rules.
In practise a program in Bluespec will only ‘visit’ a
subset of the states that a B specification can due to
Bluespec’s scheduler picking certain rules to fire rather
than potentially any at random. Of course there are
pragmatic conditions which again limit this such as the
amount of hardware logic that can be reasonably fit-
ted into a clock period, resource limitations such as the
readability of registers and energy consumption.

Any given specification in B can be mapped to Blue-
spec but the scheduling policy and variable conflict
rules will require additional guarding of the rules and
methods in the Bluespec. There are three possibilities
for refining the B specification to construct a ’correctly
functioning´ Bluespec program:

• Change of rule priorities

• Splitting of rules

• Constraining rules

5

Of these, the first is a modification to the architecting
process that generates the Bluespec, the others can be
made inside the B specification itself.

Often just changing the rule priorities inside the Blue-
spec has an effect. Bluespec calculates the rule priori-
ties from the syntactical ordering of the rules in Blue-
spec program. If these rules can be reordered then
sometimes the conflicts are removed.

Splitting the rules in the specification is made to lever-
age more parallelism in the Bluespec. The sometimes
has the effect of making the scheduling easier such that
one rule may be split such that the preconditions are
much simpler and are more focussed to the actual ac-
tions inside the rule - that is there is less potential
conflict between the precondition and the mechanics of
the actions themselves. When using this ‘pattern’ it
often becomes clearer which parts of a rule are caus-
ing conflicts and thus isolating scheduling problems is
much easier.

Further constraining the rules by adding additional
precondition statements basically restricts the firing of
the rules such that the scheduling is more deterministic
and fixed. This may also be accomplished by the ad-
dition of additional variables which effectively encode
the behaviour of the scheduler.

When these changes are made to the B specification
we can under some circumstances use the refinement
mechanism in B directly [2] to ensure that the modified
B specification still adheres to the desired behaviour
encoded in the most ‘abstract’ B machine. However,
perculiarities in B and the semantics of refinement, es-
pecially in the latter cases of splitting of rules and en-
coding the scheduler through additional variables may
cause problems with abstract forms of the additional
rules and variables being required to be declared in the
most abstract versions of the specification [16]. Typ-
ically one might have to introduce operations of the
form:

op = BEGIN skip END

to the abstract specifications and variables declared but
without use inside the specification. These have no real
effect other than to clutter the specification somewhat.

5 Development Flow and Exam-

ple Synthesis

The development flow of B is based around a top-down,
strict refinement approach. Using this approach means
that all the modelling is performed using B and a code-
generator makes the mapping to Bluespec automati-
cally. However like any model based approach the pro-
cess of architecting one model to another is complex
and as we have shown already in some cases the map-
ping of types in one language to another depends very

much upon the development context. It may be possi-
ble using more sophisticated analysis, model checking
and refuters (such as Alloy) to analyse the range of
some variables so that the smallest representation in
terms of bits is made in the architecting process.

Development proceeds as per defined in the B-Method
where an abstract specification is made and this is
translated to Bluespec according to some defined ar-
chitectural rules from the verified B specification. Two
possibilities exist here, firstly that of following the tra-
ditional B refinement step where the specification is
made more concrete and refinement proved between
this more concrete specification and the more abstract,
or, application of one of the patterns given earlier to
solve a scheduling problem reported by the Bluespec
compiler. This continues until we reach a suitable level
of specification where the Bluespec is in a form that
makes synthesis practical and sensible. This of course
may occur on the first step of specification, but this
depends upon the specification style used - certainly
this is true if one adopts a more ‘operational’ style of
writing specifications.

Given a Bluespec program generated from a B spec-
ification we can use existing synthesis tools to pro-
duce RTL and netlists for synthesis. Because we are
working from a verified description this greatly reduces
the development and testing times such that any in-
crease in chip/area size and power consumption is an-
nulled by the reduction in development, testing and
debugging times. In the latter cases we are currently
seeing approximately between -5% and +10% differ-
ences in power consumption and floor area compared
to traditional VHDL based development for our cur-
rent test designs. In the example the B and Bluespec
are 100 lines each, the System Verilog RTL was 287 and
this generated for a Xilinx Spartan FPGA: 48 FMAPS
(24%), 5 HMAPS (5%), totalling 24 CLBs (24%) or
for for an Altera Cyclone FPGA: 23 I/O ATOMs, 54
LUTs (1%), 62 ATOMs (2%) for logic resources, 234
inputs on ATOMs and 10769 nets. Figure 2 shows the
top level circuit from the B-Bluespec development gen-
erated by Synplicity’s SynplifyPro.

5.1 Notes on Automatic Translation

A suitable subset of B has not yet been established at
this moment, although the subset B0 used in the imple-
mentation machines in B is guaranteed to be translat-
able to languages such as C, Ada and Java and this
might provide a suitable starting place. Some con-
structs might be impossible to translate to hardware
without great computational expense, for example re-
cursive and dynamic structures such as linked lists.
One issue is also that the B language is being super-
seded by EventB which has a simpler syntax and se-
mantics and is overall more suitable for the specifica-
tion of hardware based systems. While automating this

6

Figure 2: Top Level Circuit View

process is relatively simple, the move to EventB which
at this point in time does not support all machine re-
lationship constructs has delayed this. However as the
EventB system is based on the Eclipse toolset with all
the integration possibilities this provides then the ab-
sence of an automatic translation from B at this time
is not considered to be a problem.

This of course is a concern to those who desire fully
automatic translation rather than making the transla-
tion manually according to a set of rules: it is certainly
possible that an automatic translation may itself intro-
duce a number of very hard to find errors if too much
trust is placed in the coding of the translation.

One possibility that is being investigated is that of
mapping the Bluespec back to B - this abstraction
process is much simpler than that of mapping B to
Bluespec and provides two possibilities: firstly one can
choose just to write in Bluespec and hide the B al-
together. This has the advantage that it is possibly
more palatable to those who consider formal specifica-
tion languages to be ‘difficult’ in some manner.

The second possibility is to utilise the above Bluespec
to B mapping with the development flow described in
this paper. Through this one can analyse and gain con-
fidence in the mapping (manual or automatic) between
the B and the Bluespec. This is achieved by proving
isomorphism between the B specification and the B ab-
stracted from the Bluespec generated from the original
B. This of course may not be completely trivial and
requires further investigation.

6 Conclusions

The purpose of this paper was to demonstrate that
hardware development via Bluespec is possible using
the B specification language in a much more direct
and natural way than a mapping to VHDL or SystemC
would be [7]. B provides an environment where veri-
fication using theorem proving and validation through
model checking/animation can be performed. The abil-
ity to produce correct software through B is well known
[13], and here we can see that this is also possible with
hardware.

This work is currently being employed and the ap-
proach validated by mapping existing B specifications
of the interconnect layer of the Nokia NoTA hardware
platform. This platform is a Corba/WebServices-like
interconnect system for mobile devices and the IP-
block being created is the mechanism to allow devices
to talk directly with this network.

Traditional development flows first concentrate on sim-
ulation and then later synthesis. Bluespec guarantees
that synthesis is always possible and the use of B en-
sures that the design is always verified at a much earlier
stage than is possible now. This also means that the
verification and validation of the system in inherent in
the design itself - the correct by construction approach
- this reduces by an order of magnitude logic errors.
When the B is mapped to Bluespec we can be sure that
the functional correctness of our system is preserved.

We are currently formalising the translation between B
and Bluespec in the presence of more sophisticated ar-
chitectural constructs: mapping of types to particular
hardware structures and the integration with existing

7

IP blocks.

Additionally we can take into consideration existing
work regarding the manipulation and analysis of ac-
tion systems. One particular piece of work has been
with the addition of fault tolerance patterns to B spec-
ifications [3].

7 Acknowlegements

To Antti Innamaa (Synplicity) for assistance with the
synthesis tools, Rishiyur Nikhil (Bluespec, Inc.) and
Joseph Stoy (MIT) for assistance with the Bluespec
language and semantics. This research is being car-
ried out as part of the EU funded research project:
IST 511599 RODIN (Rigorous Open Development En-
vironment for Complex Systems).

References

[1] J-R Abrial. The B-Book - Assigning programs to
Meanings. Cambridge University Press, 1995. 0-
521-49619-5.

[2] Ralph Back. Refinement Calculus: a Systematic
Introduction. Springer-Verlag, 1998. 0387984178.

[3] Pontus Boström, Mats Neovius, Ian Oliver, and
Marina Waldén. Formal Transformation of Plat-
form Independent Models into Platform Specific
Models in MDA. Technical Report 759, 2006.

[4] Jean-Louis Boulanger, Ammar Aljer, and Georges
Mariano. B/HDL, an experiment to formalizing
hardware by software formal specifications.. In
EDCC4, Fourth European Dependable Comput-
ing Conference, Parc des Expositions,Toulouse ,
France. October 23-25 2002.

[5] J R Burch, E M Clarke, and K L McMillan. Sym-
bolic Model Checking: 1020 States and Beyond . In-
formation and Computation, 98(2):142–170, June
1992.

[6] E W Dijkstra. A Discipline of Programming .
Prentice-Hall, Englewood Cliffs, N.J., 1976.

[7] Stefan Hallerstede. Parallel Hardware Design in
B . In Didier Bert, Jonathan P. Bowen, S. King,
and M. Waldén, editors, ZB’2003 – Formal Speci-
fication and Development in Z and B , volume 2651
of Lecture Notes in Computer Science (Springer-
Verlag), pages 101–102. Springer, Turku, Finland,
June 2003. ISBN 3-540-40253-5.

[8] John Harrison. Floating-Point Verification. In
John Fitzgerald, Ian J. Hayes, and Andrzej Tar-
lecki, editors, FM 2005: Formal Methods, In-
ternational Symposium of Formal Methods Eu-
rope, Proceedings, volume 3582 of Lecture Notes

in Computer Science, pages 529–532. Springer-
Verlag, 2005.

[9] Boulanger Jean-Louis. BHDL - An example. In
SCI 2004 - The 8th World Multi-Conference on
Systemics, Cybernetics and Informatics, Orlando,
Florida, USA, volume IX, pages 150–155. Interna-
tional Institute of Informatics and Systemics, July
18-21 2004.

[10] M Larsson. An Engineering Approach to Formal
Digital System Design. The Computer Journal,
38(2):101–110, 1995.

[11] Michael Leuschel and Michael Butler. ProB: A
Model Checker for B . In Keijiro Araki, Ste-
fania Gnesi, and Dino Mandrioli, editors, FME
2003: Formal Methods, LNCS 2805, pages 855–
874. Springer-Verlag, 2003. ISBN 3-540-40828-2.

[12] Jean Mermet, editor. UML-B Specification for
Proven Embedded Systems Design. 2004.

[13] Stephanie Motre and Corinne Teri. Using B
Method to Formalize the Java Card Runtime Se-
curity Policy for a Common Criteria Evaluation.

[14] Michael Pellauer, Mieszko Lis, Don Baltus, and
Rishiyur Nikhil. Synthesis of Synchronous As-
sertions with Guarded Atomic Actions. In For-
mal Methods and Models for Codesign (MEM-
OCODE’2005), Verona, Italy, July 11-14 . 2005.

[15] Juha Plosila, Kaisa Sere, and Marina Waldén.
Component-Based Asynchronous Circuit Design
in B . Technical Report 377, Turku Center for
Computer Science, December 1999.

[16] Michael Poppleton and Richard Banach. Control-
ling control systems: an application of evolving re-
trenchment . volume 2272, pages 42–61. Springer-
Verlag Lecture Notes in Computer Science, 2002.
ISBN 3540431667.

[17] The Alloy Project. http://alloy.mit.edu.

[18] J M Spivey. The Z Notation: A Reference Man-
ual . Prentice Hall International Series in Com-
puter Science. Prentice Hall, Hemel Hempstead,
second edition, 1989. editied by C.A.R.Hoare.

[19] Tomi Westerlund and Juha Plosila. Formal Mod-
elling of Synchronous Hardware Components for
System-on-Chip. In International Symposium on
System-on-Chip, pages 116–119. 2005.

8

