

Exception Handling in Coordination-based

Mobile Environments

Alexei Iliasov
University of Newcastle upon Tyne

Newcastle upon Tyne, UK
Alexei.Iliasov@ncl.ac.uk

Alexander Romanovsky
University of Newcastle upon Tyne

Newcastle upon Tyne, UK
Alexander.Romanovsky@ncl.ac.uk

Abstract

Mobile agent systems have many attractive features
including asynchrony, openness, dynamicity and
anonymity, which makes them indispensable in
designing complex modern applications that involve
moving devices, human participants and software. To be
comprehensive this list should include fault tolerance,
yet as our analysis shows, this property is,
unfortunately, often overlooked by middleware
designers. A few existing solutions for fault tolerant
mobile agents are developed mainly for tolerating
hardware faults without providing any general support
for application-specific recovery. In this paper we
describe a novel exception handling model that allows
application-specific recovery in coordination-based
systems consisting of mobile agents. The proposed
mechanism is general enough to be used in both loosely-
and tightly-coupled communication models. The general
ideas behind the mechanism are applied in the context
of the Lime middleware.

1. Introduction

With recent innovations in mobile computing devices,
there is a demand to develop and use a new kind of
software that supports mobility and, by doing this,
brings new features to end users. Along with new
capabilities, mobility gives rise to a number of
difficulties that never emerged in conventional
programming. One of them is that an ordinary exception
handling mechanism does not fit in with mobile
coordination environments. Our analysis shows that the
existing middleware solutions for mobile software do
not address this problem adequately. This paper
introduces a novel mechanism for exception delivery
from one mobile communicating agent to another. The
proposed mechanism is powerful enough to deal with
both stationary and mobile agents without imposing any
additional restrictions on their behaviour.

One of the most common coordination environments,
Linda [1] is a set of language-independent coordination
primitives that can be used for communication between
and coordination of several independent pieces of
software. Thanks to its language neutrality, Linda is
quite popular and many programming languages have
implementations of its coordination primitives. First
used for parallel programming, it later became a core
component of many mobile software systems because it
fits in nicely with the main characteristics of the mobile
systems: openness, dynamicity and loose coordination.
Linda coordination primitives allow processes to put
tuples in a tuple space shared by these processes, get
them out and test for them. A tuple is a vector of typed
data values, some of which can be empty, in which case
they match any value of a given type. Certain
operations, like ‘get’ and ‘test’, can be blocking. This
provides effective inter-process coordination; other
kinds of coordination primitives, like semaphores or
mutexes, can be simulated with the Linda primitives in a
straightforward way.
Lime [2] is a Linda-based coordination system
specifically designed for mobile applications. It supports
both physical mobility, such as a device with a running
application travelling along with its user across network
boundaries, and logical mobility, when a software
application changes its hosting environment and
resumes execution in a new one. To do that, Lime
employs a distributed tuple space. Each agent has its
own persistent tuple space that physically or logically
moves with it. When an agent is in a location where
there are other agents or where there is a network
connectivity to other Lime hosts, a new shared tuple
space can be created, thus allowing agents to
communicate. If connection is lost or some agents leave,
parts of the shared tuple space became inaccessible.
Lime middleware, implemented in Java, hides all the
details and complexities of distributed tuple space and
allows agents to treat it as normal tuple space using
conventional Linda operations. However, it is possible
to have a fine-grained control over the distributed tuple

space. Agents may choose a tuple space of a particular
agent as a source or destination for Linda operations.
In addition to all kinds of faults found in sequential and
concurrent systems, mobile agents are susceptible to a
number of unique faults and situations due to mobility,
openness and asynchronous communication. Fault
tolerance mechanisms can be created at different levels
– that of hardware, the operating system, middleware or
application. There are several schemes that focus on
tolerating hardware and communication faults. Certain
failures, such as connectivity loss, can be tolerated by
moving transaction participants onto a single reliable
host [3].
A few existing solutions for fault tolerant mobile
systems do not provide any general support for
structuring application-specific recovery. Thus, the
guardian model presented in [4] introduces a global
exception handling facility shared by several processes.
It ensures required synchronization and exception
resolution for tightly cooperating processes, like atomic
action participants. It is unclear, however, if nesting of
guardians is possible. A form of software redundancy,
the shadow agent, can be used to tolerate unanticipated
software and hardware faults [5]. One of the important
issues involved in exception handling in agents is
separation of normal and abnormal activity. Paper [6]
presents a solution whereby recovery actions are
contained in a separate meta-agent. Meta-agents can be
updated during agent life and can handle exceptions for
migrating agents. Mobile agent middleware systems
have been developed since early 90s. Some of them use
their own programming languages, others rely on
existing ones. Interpreted and scripting languages can be
successfully employed for simple code migration; for
example, the D’Agents system [7] implements strong
migration based on the TCL scripting language. Most of
the recent mobile agent middleware projects are based
on Java, which already has some basic notions of
mobility and is platform-neutral [2] [8] [9]. There are a
great number of other mobile agents and libraries that
support mobile agent infrastructure (for example, there
are links to well over 50 systems in [10]).
In this paper we introduce an exception handling
support for mobile agent systems. We show how
exceptions can be raised and propagated between
agents, and how to decide on the agent and the handling
method to deal with a particular exception.

2. Motivations and Requirements

Developing general mechanisms that would combine the
Linda-based mobility with exception handling smoothly
is a big challenge. The two key features of mobile
agents are asynchronous communication and agent
anonymity. This is what makes mobile agents such a
flexible and powerful software paradigm. However,
many traditional fault tolerance and exception handling
schemes are not applicable in such environments. For
example, transactions involve tightly-coupled,
frequently-synchronized parties. Their implementation
for mobile agents would result in execessively
restrictive agent behaviour patterns. In our work on
developing exception handling mechanisms for mobile
coordination-based systems we start from the premise
that the interference of such mechanisms with the
programming and behavior patterns should be
minimized, with no restrictions imposed on mobility,
anonymity or the communication model. At the same
time, these mechanisms must ensure consistent and
reliable handling of all exceptions to allow systems to
ensure the required service. Exception handling
mechanisms should provide a clear separation of system
normal and abnormal behaviour, simple means for
exception propagation and for finding the appropriate
handler.
We use Lime middleware as a basis for our experiments;
our view on the architecture of mobile agent software is
different, however, from that suggested by Lime (see
Section 6 for an explanation).
All the possibilities for handling thrown exceptions need
to be employed. Even if for some reason we cannot
deliver the exception to the destination agent at this
particular moment, the exception must be either
redirected to the next location where the destination
agent might have moved, or handled by a local entity.
This entity could be another agent or a specialized
process left by the original agent to handle exceptions.
In either case, we have to guarantee that the exception is
eventually processed and appropriate recovery actions
are taken. Since the mobile agent environment is highly
dynamic and new configurations can be easily
established over time, the configuration of the
corresponding exception handling rules should be
dynamic as well.

Unlike the conventional exception handling mechanisms
(e.g. found in object-oriented languages), where we
protect parts of the code with guards for exceptions, in
the coordination environment we protect tuples emitted
by agents. The conventional exception handling is used
inside agents to recover from internal agent errors. Since
agents may produce tuples that require different
recovery actions, we should be able to separate recovery
actions in several exception handling units. In addition,
agents should be able to structure recovery actions from
most general to more specific. This means that we need
a provision for nesting handling scopes. If an exception
is not handled within the current scope, the
responsibility for exception handling is propagated to a
higher level, i.e. more general, scope.
One non-trivial case is when an exception is thrown for
an agent which has already migrated. As said above, our
aim is to guarantee that any exception is eventually
handled. For this purpose our scheme allows redirecting
exception to a remote host and handling it by a different
agent or by a special handler code left by the agent
before migrating. Redirection means sending and
reraising the exception in a different location. The
exception may pass through several locations before it
reaches the agent, which makes it necessary to employ
some mechanism to preclude loops and excessively long
travel paths. Handling delegation can be used if there is
a friendly agent that can perform exception handling
when the original agent is not present in the location.
Such friendly agent may be just a spawned version of
the original agent or a dedicated stationary agent that
handles exceptions for a whole class of mobile agents.
Overall, the general strategy is to be adaptable and
provide agent developers with a good range of error
recovery solutions to choose from. All these methods
will need to complement each other to achieve our
ultimate goal – a guaranteed and predictable exception
handling.
The requirements of reliability and predictable system
behaviour during exception handling exclude the usage
of federated tuples spaces. The approach that we
adopted is based on a stationary and persistent tuple
space provided by a location (see Section 6 for an
explanation). By using a stationary tuple space we
achieve full control over the communications happening
in the space and can guarantee certain features important
for the exception handling mechanism without

compromising any characteristics of mobile agent
systems.
The requirements for exception handling in mobile
coordination systems can be summarised as follows:
1. Exceptions should be raised and handled

asynchronously.
2. Agent anonymity must be preserved.
3. There should be no restrictions imposed on the

agent behavior or its internal activity.
4. The exception handling mechanism should be

flexible enough to support migrating agents.
5. It should be effective for both loosely- and tightly-

coupled communication patterns.

3. Exception Handling Model

Our model uses tuple space (TS) exceptions to provide
support for exception handling in Linda-based
communication middleware. The main functionality of
this scheme is to allow exception propagation between
mobile agents communicating via tuple spaces. It is
quite obvious that sometimes agents will be unable to
recover from the exceptions caused by bad data in the
read tuple. The most natural thing for the agent in this
situation is to abort the current session and delegate
handling to the original producer of the trouble data.
Our solution tries to deliver such ability to agents
though asynchronous communication presents a serious
obstacle. However with some help from the agents our
exception handling mechanism can reliably deliver
exceptions even across several locations.
Agents communicate by anonymously placing and
reading tuples from a tuple space (Figure 1). Read (i.e.
get) and write (i.e. put) operations may be separated by
a large time gap.

Figure 1. Linda agents communicate by
exchanging tuples of data using a

shared tuple space

producer consumer

shared tuple space

Tuple
put get

When an exception happens in the consumer the
producer may have already migrated, switched to
another activity, etc. In spite of this the recover actions
on the consumer side may require sending an exception
to the producer (Figure 2) and that is exactly what our
proposed mechanism provides.
The transportation medium for the TS exception is a
tuple space. To make the proposed EH mechanism
universal and portable we only use commonly available
features. In the most mobile agent systems the tuple
space is the only inter-agent communication channel and
thus the only way to pass exceptions.

Figure 2. A mechanism to propagate exceptions
between agents

However, we require that communication middleware
implement strong logical separation of the normal and
exceptional tuples, for example, by using a dedicated
tuple space for exceptions. A special system service –
the tuple space exceptions agent (TSE agent) – is
responsible for processing and routing the exceptional
tuples. We want to make exception routing independent
from the agent activity, locality, connectivity and even
existence (agents may cease to exist before a thrown
exception is handled). It is also a security measure as we
need to hide information that refers to the producer of a
particular tuple. The TSE agent finds a handling rule for
the thrown TS exception and routes it to some location
or an agent that will perform the actual handling.
Routing of exceptions is made on the basis of agent-
specific information. The TSE agent gets this
information from the tuples of a special kind, called
tuple space traps (TS traps).
Agents interested in handling TS exceptions can
produce these tuples with a help from the underlying
middleware. TS traps can be updated or removed at any
time thus enabling dynamic exception handling patterns.
TS traps are organized in hierarchical structure; this

allows agents to associate a set of reactions contained in
TS trap with a set a tuples or regions of a program. The
later is especially important for building gateway
between TS exceptions and conventional exception
handling mechanism. Unlike normal tuples, TS
exceptions are always addressed. In general, they may
reach multiple destinations.
Our Lime-based implementation uses a system tuple
space to store TS traps and process TS exceptions. In
Lime, normal tuple spaces, associated with agents,
migrate along with their agents. System tuple space is
associated with Lime server and is always stationary. It
is imperative to process TS exceptions and store TS
traps in a host-stationary tuple space.
The TS traps are attached using the normal method
calls. Thus the creation and the structure of TS traps can
be defined dynamically, as required by the state of the
agent or by the configuration of a multi-agent system.
Two TS operations (Figure 3) are provided: inX() – any
read operation, outX() – any write operation. The TS
exceptions are propagated in the following basic steps:
1. Consumer throws TS exception thus creating a

proto exception (EP in circle on the Figure 3) in the
local system tuple space. It contains the EHTag
field from the original troubling tuple.

2. When a proto exception appears, the Guard agent
wakes up and consumes it. Then it finds out how
and where to propagate the exception using a set of
rules given in the TS trap that is pointed by the
EHTag field in the proto exception.

3. If the exception is to be delivered to the producer it
is placed into the system tuple space as a final
exception (EF in circle on the Figure 3).

4. When exceptions appears, the producer agent may
react asynchronously (using reactions), poll at some
points for a presence of the TS exceptions or abort
the current blocking Linda operation to handle the
exception.

The guard agent is a service running on each server that
hosts tuple space. It runs in its own thread and has a
number of privileges like access to hidden fields and TS
traps. Guard uses the EHtag field of the proto exception
to locate the first TS trap tuple that will be used for
handling the current TS exception. To throw a TS
exception agent must supply a tuple produced by
another agent as the source of the EHTag value. A proto
exception is a tuple of a special structure located in the

Exception caused by
the tuple data

producer consume

shared tuple space

Tuple
put get

?
Exception must be
propagated into the

tuple producer

Figure 3. A tuple space exception mechanism for Lime

system tuple space of the current host. The guard agent
uses traps as the rule set for propagating exception
thrown for a particular agent. Eventually the proto
becomes a final exception. The final exception is a tuple
in the system tuple space created by the Guard agent as
an indication of an exception raised by some other
agent. It is up to the agent to consume and to handle this
exception. However, the middleware implementation
can make this obligatory. Proto and final exception
tuples are invisible to the normal agents; they cannot be
directly produced or read by them with the normal Linda
operations.
The TS trap rules are organized into a tree-like hierarchy
where more general rules are placed on the upper-tree
nodes. This tree can be associated with nesting of the
exception handling contexts scopes in the agent code,
though it is not strictly required. Pointers to traps are
contained in all tuples produced by a given agent. A
tuple may bring pointers to different traps, depending
upon the context of the tuple creation. An important
implication of this scheme is that it is impossible to raise
a TS exception without first having read a tuple of the
destination agent.
To read someone’s tuple agent has to know its structure.
Thus, only agents that communicate with each other can
send TS exceptions. Normally agents throw TS
exceptions as a reaction to a particular tuple produced
by another agent. But the identity of the agent that
produced that tuples remains hidden for them. Only the
Guard agent possesses information that points out at the
owner of the tuple. This is one of the reasons why
processing of the TS exceptions is done at the system
level. TS trap is very powerful and general construct.
The next section discusses the exception handling rules
that can be used in a trap.

4. Java/Lime based implementation1

The API of the tuple space exceptions (TSE) can be
divided into three sections: operations for throwing,
checking and waiting for TSE, operations for setting up
the TSE traps in the server and private tuple spaces and
semantically extended Linda operations. There is one
method for throwing TS exception and it takes two
arguments – the trouble tuple and the exception to be
thrown.
There are three ways for TS exceptions to manifest
themselves. Agents may poll for any pending TS
exception, for example at the end of some
communication operation. If there is at least one
unhandled TS exception this Java method is completed
with an appropriate Java exception. In addition to
polling, agents may wait for TS exception to appear, this
may be useful in particular situations, for example when
TS exception handling is asynchronously executed by a
separate thread. And finally, special versions of
blocking Linda operations will return when a TS
exception appears. This allows synchronous exception
handling, when handling rules can be attached to the
section that produces bad tuples.
TS traps are a serialization of the LimeEHTuple class
instances. They are placed in the system tuple space and
control the TS exception propagation for the particular
agent. The class contains various methods for
associating reactions with exceptions. Exceptions must

1 The full code of our implementation can be downloaded from

http://www.cs.ncl.ac.uk/~alexander.romanovsky/home.formal/limeh
.zip. The complete description of the API and Lime extended
operations can be found in Exception Handling in Coordination-
based Mobile Environments, Iliasov, A., Romanovsky, A. School
of Computing Science, University of Newcastle, CS-TR 878, 2004.

producer
consumer

shared tuple space

Tuple

invisible EHTag

Guard

EPEF

stationary tuple space
throwTSException(…) TS traps

 ine(..),
rde(..)

checkTSException(..)
waitTSException(..)

http://www.cs.ncl.ac.uk/~alexander.romanovsky/home.formal/limeh.zip
http://www.cs.ncl.ac.uk/~alexander.romanovsky/home.formal/limeh.zip

be subclasses of the TSException class which extends
the standard Java Exception class. There are following
exception handling methods:
• throw – deliver exception to the agent;
• relay – propagate exception to a different location;
• abort – leave the current scope;
• delegate to an agent.
Operation relay assumes that a communication channel
exists between the locations. This channel does not have
to be a tuple-space based and is totally hidden from
agents. For more explanations on our locations-based
approach see Section 6.

Figure 4. RELAY reaction allows a TS
exception to trave between several
locations treach a migrated agent

When action abort is set the higher-level (more general)
trap is used to handle the current exception. If there is
no upper-level trap the system middleware attempts to
report this situation to both the sending and destination
agents.
In addition, actions can be concatenated and executed
conditionally.
With such flexible reactions, the TS traps constitute a
quite powerful instrument for implementing almost any
exception handling strategy. Using action concatenation,
several agents may cooperatively recover from an
exception. This is an essential feature for implementing
transactions in mobile environment. The conditional
action allows agents to decide on the way in which TS
exception handling will go depending upon the current
state of the environment. For example, an agent can
handle all exceptions itself, however when it moves
away exceptions are handled by a dedicated process or

another agent. As soon as it returns back into the
location, it starts receiving the exceptions again.

Figure 5. a) an exception is automatically

propagated in a group of agents participating in a
transaction using action concatenation; b) TS trap
chooses where to send exception depending upon
some external condition, such as agent’s locality

5. Case study

In this case study several agents play a simple word
game. They use tuple space exceptions to clearly
separate the normal and exceptional control flows. The
game starts when two agents willing to play this game
(and knowing how to do this) meet at the same tuple
space. They do some kind of a handshake, learn each
other names and start playing. The idea of the game is
the following – one of the players says a name of a city
and another must answer with another city name
beginning on the last letter of the first one. The agent
will lose if it is unable to find an appropriate answer.
Agents may not answer with a word that was already
used in this game. Below is a short transcript of a game
between two agents – Alice and Bob:

Alice - Hello, Bob
Bob - Hello, Alice
Alice - 'Warsaw'
Bob - 'Washington'
Alice - 'Nantes'

Writing such an agent may look trivial at the first
glance. However, a more thorough consideration reveals
several interesting details. Since agents are developed
independently, there is a real competition and output of

Location A Location B

TS trap

Agent

TS trap

TS trap

Location C

TS trap

Agent Handler
b)

Agent A

TS exception

TS trap (B) TS trap (C)

Agent B Agent C

a)

TS trap (A)

a game is unknown. Agents may try some tricks like
giving the same word twice or fabricating illegal words
from a random selection of letters. They should also
expect the same from their counterparts and take
measures to detect invalid words. We will consider two
configurations of mutually mistrusting agents playing
this game and see how the tuple space exceptions can
help to build them.
In Case 1 two agents play against each other, trying to
win using all the means they have and also trying to
detect any illegal words produced by their counterparts.
In Case 2 we add another agent that serves as a judge
that checks all the words and may stop the game if one
of the agents cheats. In the third case study we add
mobility. The whole activity of the three agents can
migrate into a new location. This process is made in
several steps and is initiated by one of the agents.

Case 1. Two agents, B(ob) and A(lice), are playing
against each other. They use the TS exceptions to
indicate various abnormal situations such as an illegal
city name, inability to find an answer and so on. This
configuration is shown on Figure 6.

Figure 6. Two agents playing word game

with TS exceptions

A typical work cycle for these agents without TS
exceptions is the following:
repeat {
 take tuple with a city name, in()
 find an answer
 put the answer in the TS, out()
}

The major problem of the algorithm above is that a
deadlock will happen eventually. This may happen if
one of the agents is unable to find an answer or just
wants to quit the game and thus a tuple expected by its
partner never appears in the tuple space. Active polling
for a matching tuple or using timeouts is a poor solution
here, which also brings many complications to initially

very straightforward scheme. Tuple space exceptions
help us to solve this problem gracefully:
create and activate TS trap for general
recovery actions
try {
 repeat {
 create TS trap for recovery without
 stopping the game
 try {
 take tuple with a city name,
 InTuple = ine()
 } catch(TS.. e) {
 handle the exceptions from
 which we can recover without
 ending the game
 } catch(TSException e) {
 abort the current scope with
 an unhandled TS exception
 say to the peer that game is aborted
 if (InTuple != null)
 throwTSException(InTuple,
 new TSBreakException());
 throw;
 } catch(...)
 Handle other non-TS exceptions
 }
 find an answer
 put the answer in the TS, out()
 }
} catch(...) {
 handle other TS and normal exceptions
}

Blocking read operation in() was replaced with ine()
which may be interrupted by a TS exception. This
allows synchronous reaction to abnormal situations
without active polling. There are two levels of TS
exceptions handling. The outer one provides general
recovery actions for exceptions like connection loss,
problems in middleware, serious error in the peer agent
and so on. Upon recovery from these exceptions, the
agent is expected to return to the initial state to later start
another game. The purpose of the inner handling
sections is to recover from the less serious exceptions
without ending the game. Some examples of such
exceptions are the refusal of the last word, request to
restart the game or may be proposal of a draw.

Case 2. New agent J watches agents A and B playing
and prevents invalid answers. A and B now use non-
destructive operation rde() to retrieve words from the
tuple space to guarantee that J can check all the words in
background, J is also responsible for deletion of
outdated tuples.

A B

TS exceptions
Normal tuples

Figure 7. Two agents play while the third one
forces them to obey the game rules

J sends an exception to one or both sides if it detects
situation when one of agents cheats or breaks game
rules. The flow of normal data and exceptions in this
configuration is presented on the Figure 7.
Code for A and B is almost the same except for: ine() is
replaced with rde() and inner try-catch block is extended
to catch exceptions sent by agent J. The pseudo code for
J is as follows:
create and activate TS trap for general
recovery actions
try {
 repeat {
 learn player names
 create and activate TS trap for
 recovery without stopping the game
 try {
 read next word tuple,
 InTuple = rde()
 remove previous word tuple, if any
 } catch(TS.. e) {
 handle the exceptions from agents like
 game abort, connection lost and other
 situations.
 } catch(TSException e) {
 abort the current scope with an
 unhandled TS exception and break
 association with other agents
 } catch(..) {
 handle other non-TS exceptions
 }
 check the word against the
 spell-checker database and if this
 word was already used in the game
 if word is invalid stop the game,
 send WinnerTSException to the winner
 and BadWordTSException to the agent
 that emitted the wrong word.
 }
 remove trap
} catch(..) {
 handle other TS and normal exceptions
}

J iteratively checks tuples placed by agents A and B
using its own internal algorithm. Before the game starts
agents must agree upon the same instance of J agent.
There may be a number of various J agents
implementation in the same tuple space and each with
its own rules and capabilities of judging the game. J
agent never produces any tuples itself; it can only send
TS exceptions to the playing parties to indicate various
game situations.
A transcript of the actual game between the agents is
given below. Note that J has changed the game result by
denying one of the words, which it believes was
incorrect. It has happened after one of the sides had
already given up on that incorrect word.

Alice - Hello, Bob
Bob - Hello, Alice
Alice - I will start the game
Bob - Hi, Jack
Alice - Hi, Jack
Jack - Hi, Bob
Jack - Hi, Alice
Jack - See two players playing - Bob and Alice
Alice - 'Nante'
Jack - Word 'Nante' is ok
Bob - 'Ekatirenburg'
Alice - I give up!
Jack - Word 'Ekatirenburg' is invalid
Bob - Nice, I am the winner
Bob - BadWordTSException: Ekatirenburg
Bob – Hmm, my word 'Ekatirenburg' is invalid
Alice – Bob cheated, I won!

This configuration of playing with a third party turned
out to be rather effective and simple to implement.
Without the TS exceptions, agents would have to
actively poll for various kinds of tuples and watch for a
large number of abnormal situations along with the main
activity. With the TS exceptions, the agent code is well
structured and highly adaptable to different kinds of
communication patterns.

Case 3. The previous case study is modified so that
agent B at some random moment can change its
location. By default this would cause TSBreakException
in agents A and J. However, just before the migration,
agent B throws a parameterized extension of exception
TSBreakException with the parameter describing the
destination location to A and J to indicate that it is
leaving. Agents A and J migrate to that location,
reestablish a shared tuple space, make a new handshake
and continue the game from the point where it was
interrupted. We can also consider a situation when one

A B

J

of the agents, say J, cannot migrate, because of binding
to a local resource, such as spelling dictionary. To
handle this situation A and B attach additional TS trap
that will relay TS exceptions to a remote location. The
locations involved must be connected via LAN or
Internet for TS exceptions relay to work. It is J’s
responsibility to inform its peers about the problem with
migration. It does this by sending a TS exception to A
and B that is automatically routed to a remote location
(see Figure 8). This exception makes A and B to look
for a new judge locally and if there is none they have to
stop the game. If a new judge agent is found, the game
will continue from the point where it was left before the
migration.

Figure 8. TS exceptions () are routed
by the Guard to the location 2 to reach

the migrated agents

6. Discussion and Conclusions

6.1. Location-based middleware
Mobile agent middleware systems are often symmetric
in a sense that each system participant roughly carries
the same middleware implementation. Agents can
dynamically and autonomously form new groups and
communicate. However in this paper we explore an
asymmetric approach in which different parts of the
system carry different basic functionality. One particular
example of such view is a location-based scheme. In this
model locations provide services to the agents, such as
connectivity and coordination space. Agents are not able
to communicate with each other without a location
support. The choice of the scheme is supported by our
analysis that shows that the majority of the mobility
applications assume that agents meet in physical or
logical locations providing a set of designated services
to them.
Let us sum up the pros and cons of these two
approaches. In the symmetric scheme agents are

autonomous as they carry with them everything they
need to establish an ad-hoc network. There is no single
failure point since a failed agent does not affect the rest
of the agents. Disadvantages are the direct consequence
of the advantages. Running the same middleware
version on a powerful desktop and on a PDA does not
seem to be an efficient solution. It is quite natural to
expect that more powerful nodes would provide services
to less capable. In addition, the full agent autonomy is
still not well supported by the current technology. For
example, application of the ad-hoc model is often
reduced to peer-to-peer communications as there is no
standard WiFi ad-hoc mode routing capability in the
consumer PDAs.
The asymmetric scheme is closer to the traditional
service provision architectures. It can support large-
scale mobile agent networks in a very predictable and
reliable manner. It makes better use of the available
resources since most of the operations are executed
locally. Moreover the location-based architecture
eliminates needs for employing complex distributed
algorithms or any kind of remote access. This allows us
to guarantee atomicity of certain operations without
sacrificing performance and usability. This scheme also
provides a natural way of introducing context-aware
computing by defining location as a context. The main
disadvantage of the location-based scheme is that an
additional infrastructure is always required to support
mobile agent collaboration.

6.2. Conclusions
The proposed mechanism brings full-fledged exception
handling support into mobile agent applications. The
mechanism is asynchronous; it preserves agent
anonymity and can be easily incorporated into almost
any coordination-based mobile agent middleware. This
type of handling exceptions fits well into the main
characteristics of the pervasive systems, open and
dynamic by their nature as it does not impose any
restrictions on asynchrony and dynamicity of agents.
Our Lime-based implementation does not consume any
CPU ticks when there are no exceptions raised.
This mechanism by itself does not always guarantee
exception delivery. We believe that this is an
unavoidable consequence of the asynchronous
communication style of agents. Instead of imposing
excessive restrictions on the agent activities we offer a
rich exception propagation mechanism that, if supported

A

B

J1

A

B J2

Location 1 Location 2

by a proper agent programming, can deliver exceptions
to agents in almost any abnormal situation when
handling is required.
We do realize that many related problems were not
covered in this work, including garbage collection, agent
naming, security problems, etc. We will address some of
them in our future work
Our main plans for future work include design of a
scheme for deriving and using agent interfaces. These
interfaces will ensure agent compatibility at a number of
levels, from compatible tuple structure to common
semantics of thrown exceptions. We plan to develop a
support for scoping and nesting tuple spaces, and to
combine it with exception propagation by assigning
tuple space traps to particular scopes. There is also a
need to design a common multi-party communication
schemes with exceptions, examples of which are atomic
actions, voting, multicast and broadcast algorithms. The
main theme of our future work is developing a formal
design methodology for fault tolerant coordination-
based applications. Among many other benefits and
improvements this will allow us to verify that for any
specific application all TS exceptions are delivered.

Acknowledgments. This work is supported by the IST
RODIN Project and by the School of Computing
Science at the University of Newcastle upon Tyne (UK).
A. Iliasov is partially support by the ORS award (UK).

References

[1] D. Gelernter. “Generative Communication in Linda”. ACM
Computing Surveys, 7(1): 80-112, 1985.

[2] G. P. Picco, A. L. Murphy, G.-C. Roman. “Lime: Linda
Meets Mobility”. Proc of the 21st Int. Conference on Software
Engineering (ICSE'99), Los Angeles (USA), May 1999.
[3] A. I. T. Rowstron. “Mobile Co-ordination: Providing Fault
Tolerance in Tuple Space Based Co-ordination Languages”.
Proc of the 3rd Int. Conference on Coordination Languages
and Models. 1999, pp. 196–210.
[4] A. Tripathi, R. Miller. “Exception handling in agent-
oriented systems”. Proc. of the 21st IEEE Symposium on
Reliable Distributed Systems (SRDS'02), 2002. pp. 304-315.
[5] S. Pears, J. Xu, C. Boldyreff. “Mobile Agent Fault
Tolerance for Information Retrieval Applications: An
Exception Handling Approach”. Proc. of the 6th Int.
Symposium on Autonomous Decentralized Systems
(ISADS'03), 2003.
[6] G. Di Marzo, A. Romanovsky. “Designing Fault-Tolerant
Mobile Systems”. In N. Guelfi, E. Astesiano, G. Reggio (Eds.).
Scientific Engineering for Distributed Java Applications Int.
Workshop, FIDJI 2002, Luxembourg, LNCS 2604. 2003, pp.
185-201.
[7] R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, D. Rus.
“D'Agents: Applications and Performance of a Mobile-Agent
System”. Software - Practice and Experience, 32(6):543-573,
May, 2002.
[8] R. de Nicola, G. L. Ferrari, R. Pugliese. “KLAIM: A
Kernel Language for Agents Interaction and Mobility”. IEEE
Trans. on Soft. Eng. 24(5): 315-330, 1998.
[9] C. Bryce, C. Razafimahefa, M. Pawlak. “Lana: An
Approach to Programming Autonomous Systems”. Proc. of
the 16th European Conference on Object-Oriented
Programming, ECOOP'02, 2002.
[10] “The Mobile Agent List” reinsburgstrasse.dyndns.org
/mal/preview/preview.html.

http://portal.acm.org/results.cfm?query=author%3AP437906&querydisp=author%3AAntony%20I%2E%20T%2E%20Rowstron&coll=GUIDE&dl=ACM&CFID=30189227&CFTOKEN=44032995
http://portal.acm.org/results.cfm?query=author%3AP16520&querydisp=author%3AAnand%20%20Tripathi&coll=GUIDE&dl=GUIDE&CFID=30054866&CFTOKEN=14115781
http://portal.acm.org/results.cfm?query=author%3AP245857&querydisp=author%3ARobert%20%20Miller&coll=GUIDE&dl=GUIDE&CFID=30054866&CFTOKEN=14115781
http://csdl.computer.org/comp/proceedings/srds/2002/1659/00/1659toc.htm
http://csdl.computer.org/comp/proceedings/srds/2002/1659/00/1659toc.htm
http://csdl.computer.org/comp/proceedings/isads/2003/1876/00/1876toc.htm
http://csdl.computer.org/comp/proceedings/isads/2003/1876/00/1876toc.htm
http://csdl.computer.org/comp/proceedings/isads/2003/1876/00/1876toc.htm

