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Abstract 
 
Mobile agent systems have many attractive features 
including asynchrony, openness, dynamicity and 
anonymity, which makes them indispensable in 
designing complex modern applications that involve 
moving devices, human participants and software. To be 
comprehensive this list should include fault tolerance, 
yet as our analysis shows, this property is, 
unfortunately, often overlooked by middleware 
designers. A few existing solutions for fault tolerant 
mobile agents are developed mainly for tolerating 
hardware faults without providing any general support 
for application-specific recovery. In this paper we 
describe a novel exception handling model that allows 
application-specific recovery in coordination-based 
systems consisting of mobile agents. The proposed 
mechanism is general enough to be used in both loosely- 
and tightly-coupled communication models. The general 
ideas behind the mechanism are applied in the context 
of the Lime middleware. 
 
 
1.  Introduction 
 
With recent innovations in mobile computing devices, 
there is a demand to develop and use a new kind of 
software that supports mobility and, by doing this, 
brings new features to end users. Along with new 
capabilities, mobility gives rise to a number of 
difficulties that never emerged in conventional 
programming. One of them is that an ordinary exception 
handling mechanism does not fit in with mobile 
coordination environments. Our analysis shows that the 
existing middleware solutions for mobile software do 
not address this problem adequately. This paper 
introduces a novel mechanism for exception delivery 
from one mobile communicating agent to another. The 
proposed mechanism is powerful enough to deal with 
both stationary and mobile agents without imposing any 
additional restrictions on their behaviour. 

One of the most common coordination environments, 
Linda [1] is a set of language-independent coordination 
primitives that can be used for communication between 
and coordination of several independent pieces of 
software. Thanks to its language neutrality, Linda is 
quite popular and many programming languages have 
implementations of its coordination primitives. First 
used for parallel programming, it later became a core 
component of many mobile software systems because it 
fits in nicely with the main characteristics of the mobile 
systems: openness, dynamicity and loose coordination. 
Linda coordination primitives allow processes to put 
tuples in a tuple space shared by these processes, get 
them out and test for them. A tuple is a vector of typed 
data values, some of which can be empty, in which case 
they match any value of a given type. Certain 
operations, like ‘get’ and ‘test’, can be blocking. This 
provides effective inter-process coordination; other 
kinds of coordination primitives, like semaphores or 
mutexes, can be simulated with the Linda primitives in a 
straightforward way. 
Lime [2] is a Linda-based coordination system 
specifically designed for mobile applications. It supports 
both physical mobility, such as a device with a running 
application travelling along with its user across network 
boundaries, and logical mobility, when a software 
application changes its hosting environment and 
resumes execution in a new one. To do that, Lime 
employs a distributed tuple space. Each agent has its 
own persistent tuple space that physically or logically 
moves with it. When an agent is in a location where 
there are other agents or where there is a network 
connectivity to other Lime hosts, a new shared tuple 
space can be created, thus allowing agents to 
communicate. If connection is lost or some agents leave, 
parts of the shared tuple space became inaccessible. 
Lime middleware, implemented in Java, hides all the 
details and complexities of distributed tuple space and 
allows agents to treat it as normal tuple space using 
conventional Linda operations. However, it is possible 
to have a fine-grained control over the distributed tuple 

 



  

 

space. Agents may choose a tuple space of a particular 
agent as a source or destination for Linda operations.  
In addition to all kinds of faults found in sequential and 
concurrent systems, mobile agents are susceptible to a 
number of unique faults and situations due to mobility, 
openness and asynchronous communication. Fault 
tolerance mechanisms can be created at different levels 
– that of hardware, the operating system, middleware or 
application. There are several schemes that focus on 
tolerating hardware and communication faults. Certain 
failures, such as connectivity loss, can be tolerated by 
moving transaction participants onto a single reliable 
host [3]. 
A few existing solutions for fault tolerant mobile 
systems do not provide any general support for 
structuring application-specific recovery. Thus, the 
guardian model presented in [4] introduces a global 
exception handling facility shared by several processes. 
It ensures required synchronization and exception 
resolution for tightly cooperating processes, like atomic 
action participants. It is unclear, however, if nesting of 
guardians is possible. A form of software redundancy, 
the shadow agent,  can be used to tolerate unanticipated 
software and hardware faults [5]. One of the important 
issues involved in exception handling in agents is 
separation of normal and abnormal activity. Paper [6] 
presents a solution whereby recovery actions are 
contained in a separate meta-agent. Meta-agents can be 
updated during agent life and can handle exceptions for 
migrating agents. Mobile agent middleware systems 
have been developed since early 90s. Some of them use 
their own programming languages, others rely on 
existing ones. Interpreted and scripting languages can be 
successfully employed for simple code migration; for 
example, the D’Agents system [7] implements strong 
migration based on the TCL scripting language. Most of 
the recent mobile agent middleware projects are based 
on Java, which already has some basic notions of 
mobility and is platform-neutral [2] [8] [9].  There are a 
great number of other mobile agents and libraries that 
support mobile agent infrastructure (for example, there 
are links to well over 50 systems in [10]).  
In this paper we introduce an exception handling 
support for mobile agent systems. We show how 
exceptions can be raised and propagated between 
agents, and how to decide on the agent and the handling 
method to deal with a particular exception.  

 
2.  Motivations and Requirements 
 
Developing general mechanisms that would combine the 
Linda-based mobility with exception handling smoothly 
is a big challenge. The two key features of mobile 
agents are asynchronous communication and agent 
anonymity. This is what makes mobile agents such a 
flexible and powerful software paradigm. However, 
many traditional fault tolerance and exception handling 
schemes are not applicable in such environments. For 
example, transactions involve tightly-coupled, 
frequently-synchronized parties. Their implementation 
for mobile agents would result in execessively 
restrictive agent behaviour patterns. In our work on 
developing exception handling mechanisms for mobile 
coordination-based systems we start from the premise 
that the interference of such mechanisms with the 
programming and behavior patterns should be 
minimized, with no restrictions imposed on mobility, 
anonymity or the communication model. At the same 
time, these mechanisms must ensure consistent and 
reliable handling of all exceptions to allow systems to 
ensure the required service. Exception handling 
mechanisms should provide a clear separation of system 
normal and abnormal behaviour, simple means for 
exception propagation and for finding the appropriate 
handler. 
We use Lime middleware as a basis for our experiments; 
our view on the architecture of mobile agent software is 
different, however, from that suggested by Lime (see 
Section 6 for an explanation). 
All the possibilities for handling thrown exceptions need 
to be employed. Even if for some reason we cannot 
deliver the exception to the destination agent at this 
particular moment, the exception must be either 
redirected to the next location where the destination 
agent might have moved, or handled by a local entity. 
This entity could be another agent or a specialized 
process left by the original agent to handle exceptions. 
In either case, we have to guarantee that the exception is 
eventually processed and appropriate recovery actions 
are taken. Since the mobile agent environment is highly 
dynamic and new configurations can be easily 
established over time, the configuration of the 
corresponding exception handling rules should be 
dynamic as well. 



   

 

Unlike the conventional exception handling mechanisms 
(e.g. found in object-oriented languages), where we 
protect parts of the code with guards for exceptions, in 
the coordination environment we protect tuples emitted 
by agents. The conventional exception handling is used 
inside agents to recover from internal agent errors. Since 
agents may produce tuples that require different 
recovery actions, we should be able to separate recovery 
actions in several exception handling units. In addition, 
agents should be able to structure recovery actions from 
most general to more specific. This means that we need 
a provision for nesting handling scopes. If an exception 
is not handled within the current scope, the 
responsibility for exception handling is propagated to a 
higher level, i.e. more general, scope.  
One non-trivial case is when an exception is thrown for 
an agent which has already migrated. As said above, our 
aim is to guarantee that any exception is eventually 
handled. For this purpose our scheme allows redirecting 
exception to a remote host and handling it by a different 
agent or by a special handler code left by the agent 
before migrating. Redirection means sending and 
reraising the exception in a different location. The 
exception may pass through several locations before it 
reaches the agent, which makes it necessary to employ 
some mechanism to preclude loops and excessively long 
travel paths. Handling delegation can be used if there is 
a friendly agent that can perform exception handling 
when the original agent is not present in the location. 
Such friendly agent may be just a spawned version of 
the original agent or a dedicated stationary agent that 
handles exceptions for a whole class of mobile agents. 
Overall, the general strategy is to be adaptable and 
provide agent developers with a good range of error 
recovery solutions to choose from. All these methods 
will need to complement each other to achieve our 
ultimate goal – a guaranteed and predictable exception 
handling.  
The requirements of reliability and predictable system 
behaviour during exception handling exclude the usage 
of federated tuples spaces. The approach that we 
adopted is based on a stationary and persistent tuple 
space provided by a location (see Section 6 for an 
explanation). By using a stationary tuple space we 
achieve full control over the communications happening 
in the space and can guarantee certain features important 
for the exception handling mechanism without 

compromising any characteristics of mobile agent 
systems. 
The requirements for exception handling in mobile 
coordination systems can be summarised as follows: 
1. Exceptions should be raised and handled 

asynchronously. 
2. Agent anonymity must be preserved. 
3. There should be no restrictions imposed on the 

agent behavior or its internal activity. 
4. The exception handling mechanism should be 

flexible enough to support migrating agents. 
5. It should be effective for both loosely- and tightly-

coupled communication patterns. 
 
3.  Exception Handling Model 
 
Our model uses tuple space (TS) exceptions to provide 
support for exception handling in Linda-based 
communication middleware. The main functionality of 
this scheme is to allow exception propagation between 
mobile agents communicating via tuple spaces. It is 
quite obvious that sometimes agents will be unable to 
recover from the exceptions caused by bad data in the 
read tuple. The most natural thing for the agent in this 
situation is to abort the current session and delegate 
handling to the original producer of the trouble data. 
Our solution tries to deliver such ability to agents 
though asynchronous communication presents a serious 
obstacle. However with some help from the agents our 
exception handling mechanism can reliably deliver 
exceptions even across several locations.  
Agents communicate by anonymously placing and 
reading tuples from a tuple space (Figure 1). Read (i.e. 
get) and write (i.e. put) operations may be separated by 
a large time gap.  
 

 
 

Figure 1. Linda agents communicate by 
exchanging tuples of data using a  

shared tuple space  
 

producer consumer

shared tuple space 

Tuple 
put get



  

 

When an exception happens in the consumer the 
producer may have already migrated, switched to 
another activity, etc. In spite of this the recover actions 
on the consumer side may require sending an exception 
to the producer (Figure 2) and that is exactly what our 
proposed mechanism provides.  
The transportation medium for the TS exception is a 
tuple space. To make the proposed EH mechanism 
universal and portable we only use commonly available 
features. In the most mobile agent systems the tuple 
space is the only inter-agent communication channel and 
thus the only way to pass exceptions. 
 

 
 

Figure 2. A mechanism to propagate exceptions 
between agents 

 
However, we require that communication middleware 
implement strong logical separation of the normal and 
exceptional tuples, for example, by using a dedicated 
tuple space for exceptions. A special system service – 
the tuple space exceptions agent (TSE agent) – is 
responsible for processing and routing the exceptional 
tuples. We want to make exception routing independent 
from the agent activity, locality, connectivity and even 
existence (agents may cease to exist before a thrown 
exception is handled). It is also a security measure as we 
need to hide information that refers to the producer of a 
particular tuple. The TSE agent finds a handling rule for 
the thrown TS exception and routes it to some location 
or an agent that will perform the actual handling. 
Routing of exceptions is made on the basis of agent-
specific information. The TSE agent gets this 
information from the tuples of a special kind, called 
tuple space traps (TS traps).  
Agents interested in handling TS exceptions can 
produce these tuples with a help from the underlying 
middleware. TS traps can be updated or removed at any 
time thus enabling dynamic exception handling patterns. 
TS traps are organized in hierarchical structure; this 

allows agents to associate a set of reactions contained in 
TS trap with a set a tuples or regions of a program. The 
later is especially important for building gateway 
between TS exceptions and conventional exception 
handling mechanism. Unlike normal tuples, TS 
exceptions are always addressed. In general, they may 
reach multiple destinations.  
Our Lime-based implementation uses a system tuple 
space to store TS traps and process TS exceptions. In 
Lime, normal tuple spaces, associated with agents, 
migrate along with their agents. System tuple space is 
associated with Lime server and is always stationary. It 
is imperative to process TS exceptions and store TS 
traps in a host-stationary tuple space.  
The TS traps are attached using the normal method 
calls. Thus the creation and the structure of TS traps can 
be defined dynamically, as required by the state of the 
agent or by the configuration of a multi-agent system. 
Two TS operations (Figure 3) are provided: inX() – any 
read operation, outX() – any write operation. The TS 
exceptions are propagated in the following basic steps: 
1. Consumer throws TS exception thus creating a 

proto exception (EP in circle on the Figure 3) in the 
local system tuple space. It contains the EHTag 
field from the original troubling tuple. 

2. When a proto exception appears, the Guard agent 
wakes up and consumes it. Then it finds out how 
and where to propagate the exception using a set of 
rules given in the TS trap that is pointed by the 
EHTag field in the proto exception. 

3. If the exception is to be delivered to the producer it 
is placed into the system tuple space as a final 
exception (EF in circle on the Figure 3). 

4. When exceptions appears, the producer agent may 
react asynchronously (using reactions), poll at some 
points for a presence of the TS exceptions or abort 
the current blocking Linda operation to handle the 
exception.  

 
The guard agent is a service running on each server that 
hosts tuple space. It runs in its own thread and has a 
number of privileges like access to hidden fields and TS 
traps. Guard uses the EHtag field of the proto exception 
to locate the first TS trap tuple that will be used for 
handling the current TS exception. To throw a TS 
exception agent must supply a tuple produced by 
another agent as the source of the EHTag value. A proto 
exception is a tuple of a special structure located in the 

Exception caused by 
the tuple data 

producer consume

shared tuple space

Tuple 
put get

? 
Exception must be 
propagated into the 

tuple producer 



 
Figure 3. A tuple space exception mechanism for Lime 

 
system tuple space of the current host. The guard agent 
uses traps as the rule set for propagating exception 
thrown for a particular agent. Eventually the proto 
becomes a final exception. The final exception is a tuple 
in the system tuple space created by the Guard agent as 
an indication of an exception raised by some other 
agent. It is up to the agent to consume and to handle this 
exception. However, the middleware implementation 
can make this obligatory. Proto and final exception 
tuples are invisible to the normal agents; they cannot be 
directly produced or read by them with the normal Linda 
operations. 
The TS trap rules are organized into a tree-like hierarchy 
where more general rules are placed on the upper-tree 
nodes. This tree can be associated with nesting of the 
exception handling contexts scopes in the agent code, 
though it is not strictly required. Pointers to traps are 
contained in all tuples produced by a given agent. A 
tuple may bring pointers to different traps, depending 
upon the context of the tuple creation. An important 
implication of this scheme is that it is impossible to raise 
a TS exception without first having read a tuple of the 
destination agent.  
To read someone’s tuple agent has to know its structure. 
Thus, only agents that communicate with each other can 
send TS exceptions. Normally agents throw TS 
exceptions as a reaction to a particular tuple produced 
by another agent. But the identity of the agent that 
produced that tuples remains hidden for them. Only the 
Guard agent possesses information that points out at the 
owner of the tuple. This is one of the reasons why 
processing of the TS exceptions is done at the system 
level. TS trap is very powerful and general construct. 
The next section discusses the exception handling rules 
that can be used in a trap.  

4.  Java/Lime based implementation1 

 
The API of the tuple space exceptions (TSE) can be 
divided into three sections: operations for throwing, 
checking and waiting for TSE, operations for setting up 
the TSE traps in the server and private tuple spaces and 
semantically extended Linda operations. There is one 
method for throwing TS exception and it takes two 
arguments – the trouble tuple and the exception to be 
thrown.  
There are three ways for TS exceptions to manifest 
themselves. Agents may poll for any pending TS 
exception, for example at the end of some 
communication operation. If there is at least one 
unhandled TS exception this Java method is completed 
with an appropriate Java exception. In addition to 
polling, agents may wait for TS exception to appear, this 
may be useful in particular situations, for example when 
TS exception handling is asynchronously executed by a 
separate thread. And finally, special versions of 
blocking Linda operations will return when a TS 
exception appears. This allows synchronous exception 
handling, when handling rules can be attached to the 
section that produces bad tuples.  
TS traps are a serialization of the LimeEHTuple class 
instances. They are placed in the system tuple space and 
control the TS exception propagation for the particular 
agent. The class contains various methods for 
associating reactions with exceptions. Exceptions must 
                                                 
1 The full code of our implementation can be downloaded from 

http://www.cs.ncl.ac.uk/~alexander.romanovsky/home.formal/limeh
.zip. The complete description of the API and Lime extended 
operations can be found in Exception Handling in Coordination-
based Mobile Environments,  Iliasov, A., Romanovsky, A. School 
of Computing Science, University of Newcastle, CS-TR 878, 2004. 
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be subclasses of the TSException class which extends 
the standard Java Exception class. There are following 
exception handling methods: 
• throw – deliver exception to the agent; 
• relay – propagate exception to a different location;  
• abort – leave the current scope;  
• delegate to an agent. 
Operation relay assumes that a communication channel 
exists between the locations. This channel does not have 
to be a tuple-space based and is totally hidden from 
agents. For more explanations on our locations-based 
approach see Section 6. 
 

 
 

Figure 4. RELAY reaction allows a TS  
exception to trave between several  
locations treach a migrated agent 

 
When action abort is set the higher-level (more general) 
trap is used to handle the current exception. If there is 
no upper-level trap the system middleware attempts to 
report this situation to both the sending and destination 
agents. 
In addition, actions can be concatenated and executed 
conditionally.  
With such flexible reactions, the TS traps constitute a 
quite powerful instrument for implementing almost any 
exception handling strategy. Using action concatenation, 
several agents may cooperatively recover from an 
exception. This is an essential feature for implementing 
transactions in mobile environment. The conditional 
action allows agents to decide on the way in which TS 
exception handling will go depending upon the current 
state of the environment. For example, an agent can 
handle all exceptions itself, however when it moves 
away exceptions are handled by a dedicated process or 

another agent. As soon as it returns back into the 
location, it starts receiving the exceptions again. 
 

         

    
Figure 5. a) an exception is automatically 

propagated in a group of agents  participating in a 
transaction using action concatenation;  b) TS trap 
chooses where to send exception depending upon 
some external condition, such as agent’s locality 

 
5. Case study 
 
In this case study several agents play a simple word 
game. They use tuple space exceptions to clearly 
separate the normal and exceptional control flows. The 
game starts when two agents willing to play this game 
(and knowing how to do this) meet at the same tuple 
space. They do some kind of a handshake, learn each 
other names and start playing. The idea of the game is 
the following – one of the players says a name of a city 
and another must answer with another city name 
beginning on the last letter of the first one. The agent 
will lose if it is unable to find an appropriate answer. 
Agents may not answer with a word that was already 
used in this game. Below is a short transcript of a game 
between two agents – Alice and Bob:  

Alice - Hello, Bob 
Bob - Hello, Alice 
Alice - 'Warsaw' 
Bob - 'Washington' 
Alice - 'Nantes' 

Writing such an agent may look trivial at the first 
glance. However, a more thorough consideration reveals 
several interesting details. Since agents are developed 
independently, there is a real competition and output of 
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a game is unknown. Agents may try some tricks like 
giving the same word twice or fabricating illegal words 
from a random selection of letters. They should also 
expect the same from their counterparts and take 
measures to detect invalid words. We will consider two 
configurations of mutually mistrusting agents playing 
this game and see how the tuple space exceptions can 
help to build them.  
In Case 1 two agents play against each other, trying to 
win using all the means they have and also trying to 
detect any illegal words produced by their counterparts. 
In Case 2 we add another agent that serves as a judge 
that checks all the words and may stop the game if one 
of the agents cheats. In the third case study we add 
mobility. The whole activity of the three agents can 
migrate into a new location. This process is made in 
several steps and is initiated by one of the agents.  
 
Case 1. Two agents, B(ob) and A(lice), are playing 
against each other. They use the TS exceptions to 
indicate various abnormal situations such as an illegal 
city name, inability to find an answer and so on. This 
configuration is shown on Figure 6.  
 

 
Figure 6. Two agents playing word game  

with TS exceptions 
 

A typical work cycle for these agents without TS 
exceptions is the following: 
repeat { 
 take tuple with a city name, in() 
 find an answer 
 put the answer in the TS, out() 
} 

The major problem of the algorithm above is that a 
deadlock will happen eventually. This may happen if 
one of the agents is unable to find an answer or just 
wants to quit the game and thus a tuple expected by its 
partner never appears in the tuple space. Active polling 
for a matching tuple or using timeouts is a poor solution 
here, which also brings many complications to initially 

very straightforward scheme. Tuple space exceptions 
help us to solve this problem gracefully: 
create and activate TS trap for general 
recovery actions  
try { 
 repeat { 
 create TS trap for recovery without 
 stopping the game 
  try { 
   take tuple with a city name,  
   InTuple = ine() 
  } catch(TS.. e) { 
   handle the exceptions from 
   which we can recover without 
   ending the game 
  } catch(TSException e) {  
   abort the current scope with 
   an unhandled TS exception 
   say to the peer that game is aborted 
   if (InTuple != null)  
    throwTSException(InTuple,  
      new TSBreakException()); 
   throw; 
  } catch(...)  
    Handle other non-TS exceptions 
  } 
  find an answer 
  put the answer in the TS, out() 
 } 
} catch(...) {  
 handle other TS and normal exceptions  
} 

Blocking read operation in() was replaced with ine() 
which may be interrupted by a TS exception. This 
allows synchronous reaction to abnormal situations 
without active polling. There are two levels of TS 
exceptions handling. The outer one provides general 
recovery actions for exceptions like connection loss, 
problems in middleware, serious error in the peer agent 
and so on. Upon recovery from these exceptions, the 
agent is expected to return to the initial state to later start 
another game. The purpose of the inner handling 
sections is to recover from the less serious exceptions 
without ending the game. Some examples of such 
exceptions are the refusal of the last word, request to 
restart the game or may be proposal of a draw. 
 
Case 2. New agent J watches agents A and B playing 
and prevents invalid answers. A and B now use non-
destructive operation rde() to retrieve words from the 
tuple space to guarantee that J can check all the words in 
background, J is also responsible for deletion of 
outdated tuples.  

A B 

TS exceptions  
Normal tuples 



  

 

 
 

Figure 7. Two agents play while the third one 
forces them to obey the game rules 

 
J sends an exception to one or both sides if it detects 
situation when one of agents cheats or breaks game 
rules. The flow of normal data and exceptions in this 
configuration is presented on the Figure 7. 
Code for A and B is almost the same except for: ine() is 
replaced with rde() and inner try-catch block is extended 
to catch exceptions sent by agent J. The pseudo code for 
J is as follows: 
create and activate TS trap for general 
recovery actions  
try { 
 repeat { 
  learn player names  
  create and activate TS trap for  
  recovery without stopping the game 
   try { 
    read next word tuple,  
    InTuple = rde() 
    remove previous word tuple, if any 
   } catch(TS.. e) { 
    handle the exceptions from agents like 
    game abort, connection lost and other 
    situations.  
   } catch(TSException e) {  
    abort the current scope with an 
    unhandled TS exception and break 
    association with other agents 
   } catch(..) { 
    handle other non-TS exceptions 
   } 
   check the word against the  
   spell-checker database and if this 
   word was already used in the game 
   if word is invalid stop the game,  
   send WinnerTSException to the winner  
   and BadWordTSException to the agent 
   that emitted the wrong word. 
  } 
  remove trap  
} catch(..) {  
 handle other TS and normal exceptions  
} 

J iteratively checks tuples placed by agents A and B 
using its own internal algorithm. Before the game starts 
agents must agree upon the same instance of J agent. 
There may be a number of various J agents 
implementation in the same tuple space and each with 
its own rules and capabilities of judging the game. J 
agent never produces any tuples itself; it can only send 
TS exceptions to the playing parties to indicate various 
game situations.  
A transcript of the actual game between the agents is 
given below. Note that J has changed the game result by 
denying one of the words, which it believes was 
incorrect. It has happened after one of the sides had 
already given up on that incorrect word. 

Alice - Hello, Bob 
Bob - Hello, Alice 
Alice - I will start the game 
Bob - Hi, Jack 
Alice - Hi, Jack 
Jack - Hi, Bob 
Jack - Hi, Alice 
Jack - See two players playing - Bob and Alice 
Alice - 'Nante' 
Jack - Word 'Nante' is ok 
Bob - 'Ekatirenburg' 
Alice - I give up! 
Jack - Word 'Ekatirenburg' is invalid 
Bob - Nice, I am the winner 
Bob - BadWordTSException: Ekatirenburg 
Bob – Hmm, my word 'Ekatirenburg' is invalid 
Alice – Bob cheated, I won! 

This configuration of playing with a third party turned 
out to be rather effective and simple to implement. 
Without the TS exceptions, agents would have to 
actively poll for various kinds of tuples and watch for a 
large number of abnormal situations along with the main 
activity. With the TS exceptions, the agent code is well 
structured and highly adaptable to different kinds of 
communication patterns.  
 
Case 3. The previous case study is modified so that 
agent B at some random moment can change its 
location. By default this would cause TSBreakException 
in agents A and J. However, just before the migration, 
agent B throws a parameterized extension of exception 
TSBreakException with the parameter describing the 
destination location to A and J to indicate that it is 
leaving. Agents A and J migrate to that location, 
reestablish a shared tuple space, make a new handshake 
and continue the game from the point where it was 
interrupted. We can also consider a situation when one 

A B 

J 



   

 

of the agents, say J, cannot migrate, because of binding 
to a local resource, such as spelling dictionary. To 
handle this situation A and B attach additional TS trap 
that will relay TS exceptions to a remote location. The 
locations involved must be connected via LAN or 
Internet for TS exceptions relay to work. It is J’s 
responsibility to inform its peers about the problem with 
migration. It does this by sending a TS exception to A 
and B that is automatically routed to a remote location 
(see Figure 8). This exception makes A and B to look 
for a new judge locally and if there is none they have to 
stop the game. If a new judge agent is found, the game 
will continue from the point where it was left before the 
migration.  

 
Figure 8. TS exceptions (   ) are routed  
by the Guard to the location 2 to reach  

the migrated agents 
 
 
6.  Discussion and Conclusions 
 
6.1. Location-based middleware  
Mobile agent middleware systems are often symmetric 
in a sense that each system participant roughly carries 
the same middleware implementation. Agents can 
dynamically and autonomously form new groups and 
communicate.  However in this paper we explore an 
asymmetric approach in which different parts of the 
system carry different basic functionality. One particular 
example of such view is a location-based scheme. In this 
model locations provide services to the agents, such as 
connectivity and coordination space. Agents are not able 
to communicate with each other without a location 
support. The choice of the scheme is supported by our 
analysis that shows that the majority of the mobility 
applications assume that agents meet in physical or 
logical locations providing a set of designated services 
to them.  
Let us sum up the pros and cons of these two 
approaches. In the symmetric scheme agents are 

autonomous as they carry with them everything they 
need to establish an ad-hoc network. There is no single 
failure point since a failed agent does not affect the rest 
of the agents. Disadvantages are the direct consequence 
of the advantages. Running the same middleware 
version on a powerful desktop and on a PDA does not 
seem to be an efficient solution. It is quite natural to 
expect that more powerful nodes would provide services 
to less capable.  In addition, the full agent autonomy is 
still not well supported by the current technology. For 
example, application of the ad-hoc model is often 
reduced to peer-to-peer communications as there is no 
standard WiFi ad-hoc mode routing capability in the 
consumer PDAs.  
The asymmetric scheme is closer to the traditional 
service provision architectures. It can support large-
scale mobile agent networks in a very predictable and 
reliable manner. It makes better use of the available 
resources since most of the operations are executed 
locally. Moreover the location-based architecture 
eliminates needs for employing complex distributed 
algorithms or any kind of remote access. This allows us 
to guarantee atomicity of certain operations without 
sacrificing performance and usability. This scheme also 
provides a natural way of introducing context-aware 
computing by defining location as a context. The main 
disadvantage of the location-based scheme is that an 
additional infrastructure is always required to support 
mobile agent collaboration. 
 
6.2. Conclusions 
The proposed mechanism brings full-fledged exception 
handling support into mobile agent applications. The 
mechanism is asynchronous; it preserves agent 
anonymity and can be easily incorporated into almost 
any coordination-based mobile agent middleware. This 
type of handling exceptions fits well into the main 
characteristics of the pervasive systems, open and 
dynamic by their nature as it does not impose any 
restrictions on asynchrony and dynamicity of agents. 
Our Lime-based implementation does not consume any 
CPU ticks when there are no exceptions raised. 
This mechanism by itself does not always guarantee 
exception delivery. We believe that this is an 
unavoidable consequence of the asynchronous 
communication style of agents. Instead of imposing 
excessive restrictions on the agent activities we offer a 
rich exception propagation mechanism that, if supported 
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by a proper agent programming, can deliver exceptions 
to agents in almost any abnormal situation when 
handling is required.  
We do realize that many related problems were not 
covered in this work, including garbage collection, agent 
naming, security problems, etc. We will address some of 
them in our future work 
Our main plans for future work include design of a 
scheme for deriving and using agent interfaces. These 
interfaces will ensure agent compatibility at a number of 
levels, from compatible tuple structure to common 
semantics of thrown exceptions. We plan to develop a 
support for scoping and nesting tuple spaces, and to 
combine it with exception propagation by assigning 
tuple space traps to particular scopes. There is also a 
need to design a common multi-party communication 
schemes with exceptions, examples of which are atomic 
actions, voting, multicast and broadcast algorithms. The 
main theme of our future work is developing a formal 
design methodology for fault tolerant coordination-
based applications. Among many other benefits and 
improvements this will allow us to verify that for any 
specific application all TS exceptions are delivered. 
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