
Examples of how to Determine the
Specifications of Control Systems

Joey W Coleman and Cliff B Jones

School of Computing Science
University of Newcastle upon Tyne

NE1 7RU, UK
email: {j.w.coleman,cliff.jones}@ncl.ac.uk

Abstract. Creating the specification of a system by focusing primarily
on the detailed properties of the digital controller can lead to complex
descriptions that have no coherence. An argument put forward in a re-
cent paper by Hayes, Jackson, and Jones gives reasons to focus first on
the wider environment in which the system will reside. This paper infor-
mally explores two examples so as to illustrate this approach to system
specification.

1 Overview of approach

The general idea of the “Hayes/Jackson/Jones” approach [HJJ03] is simple: for
many technical systems it is easier to derive their specification from one of a wider
system in which physical phenomena are measurable. Even though the computer
cannot affect the physical world directly, it is still worthwhile to start with the
wider system. The message can be stated negatively: don’t jump into specifying
the digital system in isolation. If one starts by recording the requirements of
the wider (physical) system, the specification of the technical components can
then be derived from that of the overall system; assumptions about the physical
components are recorded as rely-conditions for the technical components.

In order to be able to write the necessary specifications, some technical work
derived from earlier publications of Hayes, Jackson and Jones has to be brought
together. The process of deriving the specification of the software system involves
recording assumptions about the non-software components. These assumptions
are recorded as rely conditions because we know how to reason about them
from earlier work on concurrency (e.g. [Jon81,Jon83,Jon96]). In most cases, we
need to reason about the continuous behaviour of physical variables like al-
titude: earlier work by Hayes (and his PhD student Mahony) provides suitable
notation [MH91]. The emphasis on “problem frames” comes from Jackson’s pub-
lications [Jac00].

A trivial example of the HJJ approach is a computer-controlled temperature
system: one should not start by specifying the digital controller; an initial speci-
fication in terms of the actual temperature should be written; in order to derive
the specification of the control system, one needs to record assumptions (rely-
conditions) about the accuracy of sensors; there will also be assumptions about



Interface to

the Physical

World

Digital

System

}Rely

Conditions

Fig. 1. Bridging from the physical world to a digital control system

the fact that setting digital switches results in a change in temperature. Once
the specification of the control system has been determined, its design and code
can be created as a separate exercise. At all stages — but particularly before
deployment — someone has to make the decision that the rely conditions are
in accordance with the available equipment. Figure 1 gives an abstract view of
the HJJ approach. The referenced [HJJ03] outlines this procedure for a “sluice
gate” controller. The analysis includes looking at tolerating faults by describing
weaker guarantees in the presence of weaker rely conditions.

Notice that it is not necessary to build a complete model of the physical
components like motors, sensors and relays: only to record assumptions. But
even in the simple sluice gate example of [HJJ03], it becomes clear that choosing
the perimeter of the system is a crucial question: one can consider the physical
phenomena to be controlled as the height of the gate, or the amount of water
flowing; or the humidity of the soil; or even the farm profits. Each such scope
results in different sorts of rely-conditions.

2 Pushing out the boundaries of the system

2.1 The gas-burner

The need to start the specification phase without considering the digital system
can be illustrated by examining the gas-burner example used in [HRR91]. The
(interesting) physical components of the gas-burner system are:

– a processor to run the control software
– a heat request interface
– a flame sensor
– a gas valve
– an ignition transformer

The requirements, taken verbatim from [HRR91], are:

1. In order to ensure safety the gas concentration in the environment must at
all time be kept below a certain threshold



2. The gas-burner should burn when heat request is on, provided the gas ignites
and burns without faults

3. The gas-burner should not burn when heat request is off

And three assumptions, also verbatim from [HRR91], are given:

1. When no gas is released, the flame is extinguished after at most 0.1 seconds
2. Gas cannot ignite unless the ignition transformer is operating
3. The gas concentration will stay below the critical threshold if gas never leaks

for more than 4 seconds in any period of at most 30 seconds

These requirements and assumptions, on their own, give a very sparse de-
scription of what the system is supposed to be doing. Moreover, the description
hides a number of assumptions which could, on the one hand, make deployment
dangerous and, on the other hand, make the specification arbitrary. The refer-
enced paper gives the first step in formalising requirements as constructing a
formal model, and defines five state variables in the digital system. They are
Heatreq, Flame, Gas, Ignition, and Conc. The first four are boolean-valued,
and the final one is a real-valued percentage.

Nothing in that specification constrains the use of those variables, and their
relationship to the physical system is left undefined. These relationships are crit-
ical: should those variables be used as sensors, so that their value is relied upon
to reflect the physical world, or are they used as a channel to send commands
to the physical components of the system?

The Heatreq and Flame variables appear to be inputs — Heatreq is the
input that tells the gas-burner to turn on, and Flame appears to be tied to
the flame sensor component in the physical system. The Conc variable, used to
denote the relative gas concentration around the burner, is most likely a “ghost”
variable, as the physical system has no sensor to measure gas concentration.
The Gas and Ignition variables must then be outputs from the system, used to
control the gas valve and ignition transformer respectively.

2.2 Extending the system boundaries

What is the actual purpose of the gas-burner? The specification as developed
gives the impression that the purpose is to burn gas — when the Heatreq signal
is on — given certain time-related constraints.

Moving the boundary outwards from that, one could say that a more accurate
description of the purpose of the gas-burner is to burn gas safely. The adjective
“safely” is used informally here and simply means that no explosions occur and
nobody is asphyxiated or intoxicated from high concentrations of gas in the
environment.

Pushing the boundary of the system out further, the purpose of the gas-
burner is probably to generate heat. Perhaps this is obvious; after all, one of
the signals in the referenced model is called Heatreq. However, that merely
prompts us to ask about the precise relationship between the Heatreq signal
and the operation of the gas-burner. Even at this level we do not know what it
is that we are trying to heat, that is, what the use of the gas-burner is.



2.3 Back to the example

One of the first things to do is look at the real requirements of the system. If we
take the purpose of the system as simply to generate heat, we can quickly come
up with some general requirements.

The machine’s behaviour, during “normal” operation, would have require-
ments like:

– If Heatreq signal comes on at some point in time means that the gas-burner
will start to generate heat soon after.

– When the gas-burner is generating heat the Heatreq signal must be on and
must have come on in the relatively recent past.

– When the Heatreq signal turns off then the gas-burner will stop generating
heat soon after.

These requirements would be based on assumptions like:

– A flame in the gas burner generates heat.
– The presence of gas and a spark will cause a flame.
– Gas is present if the gas valve is turned on.
– The ignition transformer generates sparks.
– The gas-burner can sense the state of the Heatreq signal in a timely manner.

The assumptions tend to be very simple, but each can be easily formalized if
necessary. Note that the sample requirements here are not intended to cover
unusual situation — they are intended for a perfect environment.

The requirements for the machine when faced with an imperfect environment
could include:

– The machine does not cause explosions.
– The machine does not cause toxic concentrations of gas in the environment.

This requirement forces us to consider assumptions like:

– A large concentration of gas can cause an explosion.
– Small concentrations of gas can not cause an explosion.
– The environment cannot change in such a way so that the maximum safe

concentration of gas is less than some specific amount.
– The concentration of gas in the environment increases when the gas is on

without a flame.
– The concentration of gas in the environment cannot increase when the gas

is off.
– The environment causes concentrations of gas to dissipate over time.
– The machine will only have to deal with a single type of gas.
– The characteristics of the gas — volatility, ignition temperature, etc. — are

constant during operation.
– The ignition transformer is the only source of sparks.
– There is no other source of gas in the environment other than the gas-burner.



– The environment does not actively inhibit gas-burning, but it is possible for
the environment to extinguish the flame even while the gas is on.

– The gas valve cannot fail to close.
– It is also assumed that the rate of flow of gas is constant, or has a constant

maximum. This is dependent on nozzle size, gas pressure and so on.

All of these assumptions are important, though this is not intended to be an
exhaustive list. While many may seem trivial, violating any of them can cause a
situation where the machine cannot meet its guarantee-conditions, and thus —
potentially fatally — fail to meet the requirements.

From all of the requirements and assumptions above we can consider the
behaviour of our machine. The observable behaviour is given through the use of
guarantee-conditions, i.e.:

– The ignition transformer generates a spark after gas is turned on.
– The time between turning the gas on and the ignition transformer gener-

ating a spark is much less than the amount of time it would take for the
concentration of gas in the environment to exceed a certain threshold.

– If the gas fails to ignite then the gas will be turned off, and will not be turned
back on for a period of time.

Among others, there would also be guarantee-conditions that covered the specific
relationship between the Heatreq signal and the actions of the gas-burner.

To put the structure of the overall system into perspective it is useful to create
a problem diagram of the sort described in Jackson’s book [Jac00]. The diagram
then acts as an aid when identifying the assumptions and possible sources of
interference about which the specification needs to be concerned. Figure 2 gives
a possible problem diagram from the gas-burner.

The “Control Machine” domain is the digital system whose specification we
want to determine and the “Gas-Burner” domain is the physical gas-burner. The
“Environment” domain represents the environment in which the gas-burner is
placed. The oval labelled “Requirements” shows the relationship between the
three domains it connects and shows that the behaviour of the gas-burner is
what is being constrained.

The last domain, “Control Signals”, was left aside as its presence while work-
ing on the diagram highlighted an important omission from the original descrip-
tion in [HRR91]: precisely what is controlling the Heatreq signal? Even more
than just that single example, the diagram also makes the possibility of change in
the environment more explicit and shows — by omission — that it is strictly not
possible for the machine to inspect the concentration of gas in the environment.
The combination of rely-conditions and problem diagrams provide a very good
means of identifying the properties — assumed or otherwise — of the overall
system.

The problem diagram has the useful effect of giving a visual representation of
the possible sources of interference that need to be recorded by rely-conditions.
Every variable shared between domains in the diagram will, at the very least,



a: Heatreq

b: Ignition

Control

Machine

Control Signals

Gas-Burner

Environment

Requirements

a

b

c c

d

a

d

c: Concentration

d: Gas, Flame

Fig. 2. Problem diagram for the gas-burner

need a rely-condition that describes the behaviour we assume it will have. Fur-
thermore, we will also need a rely-condition for every situation where two (or
more) variables have some relationship in their values.

Assumptions like the characteristics of the gas and nozzle — volatility, rate of
flow, and so on — can be coded as rely-conditions fairly directly. This can even
allow for some of the rely-conditions to be derived more-or-less automatically,
rather than written down without any context.

The rely-conditions and the properties of the overall system are used to justify
the set of guarantee-conditions that fulfill the requirements. The combination
of rely- and guarantee-conditions, matched against the requirements, form the
basis on which the user makes the decision as to whether or not the machine’s
behaviour is suitable.

Despite the linear presentation here, the construction of requirements, rely-
and guarantee-conditions, problem diagrams, and the identification of assump-
tions is not done in a linear fashion. All of these specific tools should be used to
influence the others.

3 Avoiding confusion between assumptions and
requirements

The message of the general method (Section 1) as exemplified by the previous
section applies to all examples: clarify the requirement in the real world before
trying to specify the software which sits within the system. This process naturally
identifies assumptions about the physical components which can be recorded (as
in [HJJ03]) as rely-conditions.

As an indication that there is another danger of focussing too early on the
computer system, we identify some reservations about one of the many specifi-
cations of the “Production Cell” example. This interesting problem is explored
using many different approaches in [LL95]. The specification which we investigate
is [MC94] (which is the journal version the paper by MacDonald and Carrington
in [LL95]).



For the purposes of this workshop version of the paper, we assume that the
reader is familiar with the overall problem.1

3.1 Normal operation

– Section 2 of [MC94] contains an argument for the assumption that the Feed
Belt can contain only one metal block at a time (and a discussion of how
changing this assumption would change the model). This is not presented as
an assumption in the description; it becomes hidden in the state abstraction
for Component Loaded.

– There are several places (e.g. Sections 3, 4.1, 4.2, 5.1 of [MC94]) where
assumptions are made on the initial state of the system.

– A specific concern about Z is that it does not specifically identify pre-
conditions of operations; this raises the question whether this decision con-
tributes to the confusions (e.g. Section 3.2 of [MC94])

– It can be concluded from the specifications of Extend and Retract (in Sec-
tion 4.1 of [MC94]) that these operations are not allowed to change load pos
or unload pos but it is unclear whether this is an assumption on the equip-
ment or a requirement on the code.

– Similarly, the specifications of Load and Unload (in Section 4.1 of [MC94])
indicate in their predicates that these operations are only allowed in certain
positions; in this case (unlike the previous one) it might well be a requirement
on the code.

– Section 4.3 of [MC94] has requirements about not rotating the robot if either
arm is extended but it is left to guesswork as to whether this is an assumption
on the equipment or a requirement on the code.

– Section 4.2 of [MC94] makes statements about “the press must be empty”
without clarifying whose responsibility it is to achieve this situation.

– Similarly for unloading requiring that there is something to unload.
– Section 7 of [MC94] states that “the pre-condition2 ensures there is no col-

lision between the loaded robot and the elevating rotary table”!
– usw. usw.

4 Further work

The most obvious immediate objective is to completely formalise the examples
discussed in this paper in Hayes-Mahoney logic [MH91]. Tackling these and simi-
lar further examples will inevitably refine the method described in [HJJ03]. Less
immediately, further work includes creating a library of examples — including
the two given here — to create a body of work that can serve as a guide to
practitioners. These examples would need to be fully formal, and worked out up
to the point where an implementation would be designed.
1 Very briefly, the system has a press unit to which items are transferred from a belt

by a lifting device.
2 of Move ERT to Loading Position 1



In the longer term, it should be possible to use such a library of examples
to generate a set of “HJJ patterns”, not unlike the design patterns [GHJV95]
currently used by practitioners of object-oriented development. Even if a set of
pattern-like structures cannot be developed, a full set of guidelines for using this
method is required.

The composition of specifications given with this method, in senses of both
subproblems and whole specifications, is a problem that remains to be fully
explored. The task of creating a specification for a machine’s “normal” operation
seems well understood, and creating the specification with weaker rely-conditions
for the “abnormal” machine behaviour is equally straightforward. However, the
problem of combining such specifications is a problem that demands further
study.

The basic ideas involved in the Jones’ rely-conditions, while good at recording
interference, leave gaps when it comes to notions such as ensuring that the system
can make progress. Work such as Stølen’s on wait-conditions [Stø91] addresses
some of these issues, and should be included in this method.

The notation given in Jackson’s [Jac00] for problem diagrams needs extension
to be able to directly record interference notation. The current notation does not
allow for more than a single domain to control a variable. Figure 2 is less detailed
than it might have been because of this.

Acknowledgments
The authors are both supported in their research by EPSRC (UK) funding for
the “Dependability IRC” (DIRC — see www.dirc.org.uk) and by EU-IST STREP
funding for “RODIN” (see rodin.cs.ncl.ac.uk). The many discussions about this
topic with Michael A. Jackson have been a wonderful source of insight into this
material.

References

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[HJJ03] I. J. Hayes, M. A. Jackson, and C. B. Jones. Determining the specification
of a control system from that of its environment. In Keijiro Araki, Stefani
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, volume
2805 of Lecture Notes in Computer Science, pages 154–169. Springer Verlag,
2003.

[HRR91] K. M. Hansen, A. P. Ravn, and H. Rischel. Specifying and verifying require-
ments of real-time systems. In SIGSOFT ’91: Proceedings of the conference
on Software for Critical Systems, pages 44–54, New York, NY, USA, 1991.
ACM Press.

[Jac00] M. A. Jackson. Problem Frames: Analyzing and structuring software devel-
opment problems. Addison-Wesley, 2000.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a
Notion of Interference. PhD thesis, Oxford University, June 1981. Printed
as: Programming Research Group, Technical Monograph 25.



[Jon83] C. B. Jones. Specification and design of (parallel) programs. In Proceedings
of IFIP’83, pages 321–332. North-Holland, 1983.

[Jon96] C. B. Jones. Accommodating interference in the formal design of concurrent
object-based programs. Formal Methods in System Design, 8(2):105–122,
March 1996.

[LL95] C. Lewerentz and T. Lindner, editors. Formal Development of Reactive Sys-
tems - Case Study Production Cell, volume 891 of Lecture Notes in Computer
Science. Springer, 1995.

[MC94] A. MacDonald and D. Carrington. Z specification of the production cell.
Technical Report 94-46, University of Queensland, 1994.

[MH91] B. Mahony and I. J. Hayes. Using continuous real functions to model timed
histories. In P. Bailes, editor, Engineering Safe Software, pages 257–270.
Australian Computer Society, 1991.

[Stø91] K. Stølen. An attempt to reason about shared-state concurrency in the style
of VDM. In VDM ’91: Proceedings of the 4th International Symposium of
VDM Europe on Formal Software Development-Volume I, pages 324–342,
London, UK, 1991. Springer-Verlag.


