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Abstract. The composite structure diagram and related notions have
been introduced into UML2.0 to supplement already existing artifacts
such as classes. However the usage of these constructs by engineers
and/or modellers is not always in the spirit of inventors of these con-
structs. A number of additional interpretations develop which are not
always consistent with the intended usage of the structure nor with the
language itself. Understanding these additional usages assists in under-
standing areas of ambiguity, extension, inconsistency and the future de-
velopment of the language.

1 Introduction

The composite structure diagram’s and related structures’ uses and semantics
are well described in [1–3] while the notions of composition are adequately de-
scribed in [4, 5]. Its function is to extend the modelling capabilities of the UML
beyond that of classes and their relationships and is primarily aimed to assist the
modelling of the internal structures of classes with a more well defined notion of
decomposition. Similar notions exist in methods such as ROOM [6] (capsules)
and languages such as SDL [7] and SysML [8] for example.

As tools become more UML compliant and support more UML constructs, en-
gineers and/or modellers start to use these additional constructs. The effect of
this is that the semantics of these constructs is often learnt through an implicit
process based around the name of the construct and what the tool appears to
allow; the semantics are often based on the engineer’s expectations and per-

ceived meaning [9] rather than on the actual, intended semantics. This we term
as implicit profiling of the UML; engineers or modellers tend to invent their own
subtle variations on the semantics (and syntax) of the UML during their work.

In this paper we discuss the nature and experience of the use of the composite
structure diagram as introduced into the Unified Modelling Language version
2.0 [10]. The usages described here are based upon primarily the engineer’s
expectations and usages and so do not necessarily conform to the original, in-
tended meanings. As additional interpretations have emerged, we have at times



attempted to standardise these so that the diagram is used in a clear and con-
sistent manner.

It is important to recognise and understand how constructs such as the composite
structure are being used in reality and how close (or far) these usages are from
or to the inventors’ aims. If these facts are understood then the development
of languages such as the UML becomes more relevant to the current practise.
We have collected this body of results over a number of years of working with
internal consulting projects utilising the UML and its various profiles within
Nokia [11–13]. The range of projects has been from enterprise database systems
to embedded, real-time components.

2 Classes and Composite Structures

In this section we outline the relationship between classes and composite struc-
tures. This is made in a similar way to that seen in [14] with their description
of diagram reconstruction between the class, sequence and state diagrams.

In all of these cases we assume the composite structure diagram to be complete
in that it shows all the information and the class diagram to be the smallest
class structure that admits the given composite structure (cf: [15]).

2.1 Basic Structures and Relationships

In figure 1 we see the trivial situation where a trivial composite structure diagram
consistent of a context A implies the existence of class A. All diagrams of this
nature in this document have the composite structure diagram on the left and
the implies class structure on the right.

A

A=>

Fig. 1. Trivial Case

The case in figure 2 denotes the situation where the composite structure of A
contains a number of B parts. This implies existence of classes A and B with some
kind of relationship. Once a relationship is instantiated then the two objects may
communicate by calling each other’s operations.
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Fig. 2. Simple Composite Structure

In this case, the part with type B denoted by the solid rectangle is part of A’s
composition, thus the relationship between classes A and B must be a compo-
sition (black diamond in the class diagram). The choice of black diagram or a
composition relationship is made because of the strong(er) semantics for this
concept and that parts [16] are unsharable and lifetime owned by the parent
object.

The composite structure must conform to the constraints set out in the class
model of the description. The properties of the composite structure are a refine-
ment (in the mathematical sense) [17] of the properties described in the class
diagram, or in other words, the state space admitted by the composite structure
is smaller than or equal to the state space admitted by the class diagram.

It is stated that the part(s) B are named s:B which states that the parts are
referenced through a relationship B and that the number of parts (p..q) must be
within the multiplicity bounds stated in the class diagram for this role, ie: m..n,
the following invariant holds:

m..n v p..q ⇒

(0 ≤ p ≤ q ∧ q > 0) ∧ (0 ≤ m ≤ n ∧ n > 0) ∧

(p ≤ m) ∧ (q ≤ n)

Note that the naming of the part (in figure 2’s composite structure diagram)
implicitly denotes a connection while in other more complex cases (as we shall
see) the connection must be explicitly drawn.

Composite structure diagrams can also imply ‘normal’ relationships using the
dashed rectangle notation denoting a referenced object as can be seen in figure
3.In figure 4 we can see a more complex example of this involving a collaboration
between a number of objects.

A B

A

s:B
p..q

m..n

s=>

Fig. 3. Referenced Part



Similarly to the case in figure 2 the nature of the relationship in the class needs
to be considered. We suggest as can be seen in figure 3 that a connection to a
referenced part implies a normal association or relationship in the class model.
This is the weakest possible interpretation of this kind of connection. The use of
aggregation or white diagram we are against due to its weak semantics; of course
the modeller is free to use this. Similarly, directionality of the relationship can
not be inferred, unless one explicitly restricts the ability of parts to call the
parent.

A

s:B
p..q

t:C
h..i

j..k

A B
m..n

s

C D

e..fc..d h..it uvu v:D

=>

Fig. 4. Complex Structure

The multiplicities of the parts and their relationships in the composite structure
is restricted that if a relationship is denoted in the composite structure then it
must exist at the class level. In figure 5 we can see a simple composite structure
where part s:B has a multiplicity of 1..2 and part t:C has a fixed multiplicity of
2.

A

t:Cs:B
1..2 2

Fig. 5. Multiplicities and Relationships

When this composite structure is instantiated we obtain two possible collabo-
rations of objects as shown in figure 6. The patterns for this can be seen in
[18].

We have not discussed the effects of generalisation and specialisation here as we
have just wished to show the minimum implied class structure. Of course the
presence of other classes in a given generalisation/specialisation hierarchy does
introduce more possibilities with the mappings. We do not discuss these here
but refer the reader to [19].
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Fig. 6. Possible Instantiations

2.2 Port Based Connections

The connection between parts in a composite structure need not be restricted to
being instances of relationships in the class diagram. A connection may also be
made between port artifacts in which case the connection is used for send and
receiving signals via these ports.

Figure 7 shows the trivial case where the composite structure diagram contains
a port, while is thus also implied in the class model.

A

A

p
p

=>

Fig. 7. Trivial Case with Port

A connection between ports, which we term ‘wire’, states that the ports can
communicate; a signal sent from one port is directed along the wire to the re-
ceiving port and nowhere else. This is analogous to an operation call over a
normal connection. Figure 8 shows this situation.

Two ports can only be (sensibly) connected if their interfaces match. While we
have not drawn the required and provided interface graphical icons we can state
that ports q and r have compatible interfaces; however this only provides the
weakest of possibilities as we can not reason effectively about the actual interface
specifications themselves nor the relationships between the interfaces in terms
of potential generalisations/specialisation. If ports q and r were not connected
then we would not be able to infer any details about their interfaces and possible
or otherwise compatibility.
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Fig. 8. Two Wired Ports

If in figure 8 port p has been connected to, say, port r, then we can guess that
p’s visibility is internal or private to class A and thus only visible to the ports of
the composed parts. But, this fact is not guaranteed so we can not reasonably
infer and properties regarding visibility: in this case port p on A is by default
public and visible to both internal parts and external objects.

It is worth detailing the meaning of compatible interfaces further. Let us assume
that in the example in figure 8 the interface situation is described as in the class
diagram in figure 9.

I

J

J

I

B C

K

L

p

q

r

Fig. 9. Various Interface Combinations

Two ports can sensibly communicate signals defined in the required interface
to the provided interface, if these interfaces are compatible. In figure 9 this is
possible in both directions for ports p and q as each either requires or provides
interfaces I and J.

A connection between, say, ports p and r for example would not be sensible -
no messages would be understood and thus no meaningful communication may
take place as neither the provided nor required interfaces match. In this case,
drawing a connection between these ports on the composite structure diagram
would be a violation of the typing constraints defined in this class diagram. If
either K or L we related to I and J via generalisation or specialisation then
some from of communication is possible. The introduction of the possibilities of
generalisation and specialisation further complicate the matters with regards to
the possible interpretations and permutations of interface combinations.



3 Usage of Composite Structures

In our work we have identified a number of common ways of utilising the com-
posite structure diagrams in conjunction with the class diagram for describing
various systems. While the UML2.0 Superstructure document describes the syn-
tax and provides some informal semantics we have found it necessary to either
enhance these descriptions and in some cases extend the meaning in order so that
this particular UML artifact is used consistently and effectively. In this section
we describe the uses of composite structure diagrams and their interpretations:

– Architecture Specification
– Scenario Descriptions
– Modes
– Operation Effects

3.1 Architecture Specification

In a number of tools, for example, Borland’s Together Architect, the composite
structure is used to describe the configuration of a class and associated parts.
For example, figure 10 shows a composite structure diagram viewing a model.
This model contains two classes A and B, where class A has three parts (named
Part1, Part2 and Part3). The composite structure diagram shows class A’s parts
in completeness.

Fig. 10. Example Tool Implementation of a Composite Structure Diagram

This is per the UML2.0 semantics and each composite structure diagram acts as
a view [20] onto the internal structure - the parts - of a given class; this view may

omit entities that are inside the given class. The issue here is that the composite



structure diagrams do not stand alone as being artifacts of the model and that
the diagram does not necessarily show a complete view of the internal structure -
this is something that is often misunderstood and not just with these particular
diagrams but also with the class diagram.

For the practitioner, a common interpretation of a composite structure diagram,
as currently implemented in the UML2.0, is that it describes the system as a
whole or the ‘architecture of the system.’ A note must be made about the defi-
nition of ‘architecture’: while definitions do exist [21], it is often unclear to the
practitioner (and sometimes even to the persons developing the methods) what
architecture really is. Suffice, we often find that the term is misapplied to mean
a top-down, functional decomposition of objects which omits the architectural
definition or development step that requires human imagination and inventive-
ness to adhere to design requirements in favour of a mechanical process of simple
decompositions.

This usage is often in conjunction with the concept of a ‘system’ class much
in the same was as a top-capsule is used in ROOM or as the block interaction
diagram is used in SDL. Almost invariably in these cases the class diagram (if
ever expressed) appears as a top-down decomposition structure with an entry or
start point in that system class.

While we have no overall problems with the interpretation, it is often the case
that the composition mechanisms are misused such that they are confused with
the development method. In this case, the system class is decomposed many
times with the behaviour being moved down to the leaf nodes of the decompo-
sition hierarchy. This is identical to the SDL usage where structural blocks are
repeatedly decomposed to form a static hierarchy; SDL only allows behaviour at
the leaf blocks, while the UML allows behaviour at all levels of decomposition.

An example of this is that a top-down, functional decomposition based method
starts with a block with some behaviour and during the process of development,
this behaviour is decomposed down into smaller, functional units. UML’s com-
posite structure mechanism should be used to describe the composition of classes
and their parts while allowing each entity its own internal behaviour regardless
of whether it contains parts which themselves have behaviour. In the UML case,
the action of decomposition in the software process should not be confused with
decomposition of a class into its parts.

3.2 Composite Structures for Describing Scenarios

A second usage of the composite structure is more in line with the UML view.
Here the diagram or diagrams are used to describe the various configurations of
the system. In a process which then is similar to describing scenarios with object



diagrams as a way of requirements elicitations and then reconstructing the class

diagram.

Various composite structures are combined and generalised to produce the class
diagram which admits all the given composite structures as shown in figure 11.
In this figure we can see three scenarios each modelled as a complete composite
structure diagram; from this, one can imply the weakest inferable class structure,
but often one sees an unconstrained class diagram produced instead.

A

=>
CB

D
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u

0..3 1
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1..2 1

s:B

scenario one

A

s:B t:C

A

scenario two

scenario three

}

1..3

0..2 1

B

*
u:D

A
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D

/

implied class structure ‘ unconstrained class structure’

Fig. 11. Scenario Modelling and Class Reconstruction

The interaction between class and composites structure has a subtle effect for the
modeller: it is recommended that multiplicity constraints, the type (aggregation,
relation, composition) and directionality are always denoted on associations be-
tween classes. However this sometimes is difficult to envisage when working from
a class perspective and it requires scenarios to be modelled using object diagrams
and such multiplicity constraints and other properties to be inferred from these
scenarios [22, 23]. This particular way of working can be difficult if not foreign,
especially as the drawing object diagrams are not supported by many tools (we
have used USE for this [24]) and that most OO practitioners are not trained to
utilise object diagrams.

This style of using composite structures is not covered by the UML2.0 but can
be ‘admitted’ by some tools1.

It can now be argued that the UML collaboration artifact fulfils the same purpose
and an example of this can be seen in figure 12 which shows a collaboration
depicting a situation to that seen in the second composite structure diagram
from figure 13.

1 It is unfortunate that Visio and Powerpoint are considered modelling tools



Fig. 12. UML Collaboration

But the collaboration, at least to the modeller, does not appear as a diagram in
its own right but as an artifact that requires a diagram - this might explain why
modellers are reluctant to use it.

The other main reason is that the collaboration artifact or element is not read in
the same way as a composite structure diagram, the usage is more akin to that
described in [25]. By ‘read’ here we mean in the semiotic sense [26] such that
persons used to engineering the structure of systems interprets and writes the
descriptions of those systems with the tools (in our case the composite structure
diagram) that they are used to thinking with. Anecdotal evidence suggests that
engineers think of modes as the system comprising of objects in a certain struc-

ture and not as a collaboration of objects, where as the collaboration is used to
describe particular scenarios and not modes of operation. One can also argue
that an additional or yet another UML construct to learn is also complicating
matters.

3.3 Modes of Operation

Similar to describing individual scenarios, the use of composite structure dia-
grams for describing modes of operation of the system is often seen. Consider
the situation as in figure 13 which shows three individual and complete compos-
ite structure diagrams each depicting a mode of operation of some system. This
kind of division of major functionality or behaviour of the system is common in
many real-time systems [27], particularly in our case: digital signal processors.

Here we see three distinct, complete composite structure diagrams which by way
of a tagged value describe modes of the system. Each composite structure dia-
gram here is used as an artifact that completely describes the the configuration
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Fig. 13. Three Modes

of parts of various objects. Each composite structure diagram then describes a
state-space which characterises the structures seen while the system is operating
in that given mode.

State spaces of the modes may overlap, we do not provide any semantics or rules
for this in this paper, although it has been suggested that these overlaps can be
more easily seen in a visual sense from the use of these diagrams. These overlaps
can be used to suggest suitable pre-conditions for actions which are capable of
changing the mode of the system

3.4 Operation Effects

When using the composite structure, one can supply information about the
effect of an operation through the use of a composite structure instantiation and
stereotyped dependency relationship as the example in figure 14 shows.

s:B
1

name = p

A

makeA(p:String)

B

name:String

s *

<<create>>
:A

Fig. 14. Operation Output



The UML states that this kind of construct denotes the constructor for a given
class and the use of the stereotype << create >> semiotically reinforces this no-
tion. There is a very subtle change between the ‘composite structure’-like artifact
in figure 14 and the ‘class’-like structure normally seen in composite structure di-
agrams (see fig.1) in that the output of the operation is an instantiation of some
class; this has caused some confusion when trying to teach these constructs.

It is unclear in the UML specification whether this construct can be read in
a more general way that the structures created are just merely the effects in
terms of structures created of any operation rather than explicit constructor
functions. The example (figs.14 and 15) can be seen describing the SDL notion of
instantiating a process at system initialisation. In similar vein the latter example
(figs.16 and 17) can be seen as describing runtime creation of a process.

Two uses have been found here, the first is that the << create >> stereo-
type means that the operation in question is a constructor function and that
the composite structure instantiation given must have the owning class of that
constructor as its context and that it represents the instantiation of that class
and related parts. The filmstrip (or sequence of object diagrams) in figure 15
demonstrates the use of A::makeA(...) as a constructor function.

:A :B

name="xyz"

s :A :B

name="xyz"

smakeA("xyz") makeA("abc")

:A :Bs

name="abc"

Fig. 15. Filmstrip of Constructor Function Applications

The more general case is where the construct seen in figure 14 is generalised to
show the effect with respect to instantiations of any operation not just construc-
tors. This would extend the idea expressed on §9.3.1 of [10]. Figure 16 shows a
possible syntax for this while figure 17 shows a filmstrip.

Further to this, although we have not explored this in detail yet, it has been
suggested in our work that these kinds of effects could be translated to object
constraint language [28] expressions - the postcondition of actions. This provides
an enabling of design-by-contract ideas [29] within the graphical language alone.



B

name:String

s *

<<create>>

A

makeA(p:String)

makeB(p:String)
name = p

s:B

Fig. 16. General Operation Output

:A :B

name="xyz"

s:A

:Bs

name="abc"

:A :B

name="xyz"

smakeB("xyz") makeB("abc")

Fig. 17. Filmstrip of Operation Applications

4 Potential Solutions

We offer a few potential solutions:

– Best Practise
– Standardisation
– Formal Semantics
– Removal

The cases described in this paper have all been seen in use in the field. It is
obvious in many cases that individual practitioners are ‘inventing’ usages as
needed. While this can be argued that it is in the spirit of UML to do this,
in reality it makes for the situation where a single diagram is read in many,
potentially conflicting ways. The results of this ambiguity are well known - one
only needs to read existing literature on this subject to see the problems. One
way this has manifested itself is through the amount of time lost in engineers
trying to understand and explain each others’ semantics rather than discussing
the design of the system.

Common, coarse grained usages do emerge and these can be standardised through
best practise at project level, not company wide unless the work environment



is small and focused across a number of projects. In the case of earlier versions
of UML and lately UML2.0 we have produced a company-wide standard usage
[30]. However this has concentrated on class, state and sequence diagram ele-
ments rather than the lesser used composite structure. One reason for this is
that engineers often feel compelled to use as much notion as possible without
regard for its purpose and restricting this abundance of choice results is a more
focused usage of allowed notation.

For example, the most useful usage of composite structures we have found is
as restrictions to the class diagram for describing the configuration of objects
during various modes of the system (section 3.3).

Best practise works if the level of description of the practise/usage is precise,
relevant to the job at hand and usually not formal in the mathematical sense.
The problem is that the practise varies between projects and engineers working
on more than one project often have problems adapting to two or more subtly
varying syntaxes and semantics. A cross-company best practise tends to become
too loose in its ideas in order to admit all possible variations.

Standardisation of the usage of composite structure through the OMG, ETSI,
ITU or other standards body has been seen to be difficult with a number of major
approaches being taken: UML-RT, SDL and then a number of minor variants
and additions being proposed. While this would probably be the best route, it is
obvious after nearly six years of UML2.0 standardisation work that a common
agreed, consistently used semantics will probably not emerge.

One argument for the apparent weakness in the semantics of the composite
structure comes from UML’s open and extensible semantics approach. While
we agree that it is in UML’s interests to utilise this idea, it would be better to
insist on a common,core semantics and reading for the language; especially with
lesser understood concepts such as composition. One can compare the semantics
of composite structures with that of classes and note the difference in formality,
see [31] for the latter and [32] for precise UML semantics. Again as with best
practise ideas, the will for a formal semantics for a core of UML while existing
is not being translated into the standard.

Even if a formal semantics is never produced as a part of a final standards doc-
ument it can be argued that the effort of doing so will force the standardisation
bodies to concentrate more on what is being written and described. There is
already a body of results regarding the development of OCL with confirms this
[33, 34]

The final solution, which we have advocated unless the situation demands, is
to use a small subset of the UML as possible: this normally means just class
and sequence diagram in most cases. This approach is favoured by profiles such
as xtUML [35] which takes an extreme position by not using the composite
structure diagram at all and leaves creation, deletion and management of objects



to the relevant operations in the action language. As composite structures are
semantically complex with many different interpretations the best solution is
often just to forbid its usage.

5 Conclusions

It has been the aim of this paper to document some common, in the field, usages
of the composite structure diagram. Overall, we surmise that the composite
structure diagram with its additional capabilities over what has been presented
before (in UML 1.x) and it greater degree of expressiveness over constructs such
as capsules (ROOM) is an important and valued addition to the range of UML
artifacts.

However, its position at this moment in time as a view-like structure rather than
an artifact as the class or collaboration means that it is invariably misunderstood.
We have noticed that engineers with a ROOM or ObjecTime background tend
to use the composite structure as a description of the constructor function of a
class or the starting point for the system as a whole. While those with more of
an SDL or hardware background tend to use it instead of the class diagram for
describing a static collection of components, subsystems or objects.

Many training courses do not cover the composite structures but rather con-
centrate on how to model with use cases and classes or more commonly how
to develop object oriented systems/architecture from just use cases. If composi-
tion is mentioned at all then it is usually with an informal and often misleading
discussion of the black vs white diamond symbols without reference to how com-
positions are actually described.

We would suggest that the composite structure diagram is elevated from its
model viewing role to that of a first class UML modelling artifact with a clear and
precise relationship with other (object and classes) UML elements. This would
allow more accurate modelling of notions such as modes, constructor functions
and so on. To facilitate this we would propose a detailed semiotic analysis of the
notation which would combine what the notation suggests with the background
of the user and thus their ‘preferred reading’ of the notation.
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