
Parallel LTL-X Model Checking of High-Level

Petri Nets Based on Unfoldings
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Abstract. We present an unfolding-based approach to LTL-X model-
checking of high-level Petri nets. It is based on the method proposed by
Esparza and Heljanko for low-level nets [4, 5] and a state of the art paral-
lel high-level net unfolder described in [15, 13]. We present experimental
results comparing our approach to the one of [4, 5] and the model-checker
Spin [12].

1 Introduction

The main drawback of model-checking (see, e.g., [2]) is that it suffers from the
state space explosion problem. That is, even a relatively small system specifica-
tion can (and often does) yield a very large state space. To alleviate this problem,
a number of techniques have been proposed. They can roughly be classified as
aiming at an implicit compact representation of the full state space of a reactive
concurrent system, or at an explicit generation of a reduced (though sufficient
for a given verification task) representation (e.g., abstraction and partial order

reduction techniques [2]). Among them, a prominent technique is McMillan’s
(finite prefixes of) Petri net unfoldings (see, e.g., [6, 16, 13, 17]). It relies on the
partial order view of concurrent computation, and represents system states im-
plicitly, using an acyclic net. More precisely, given a Petri net Σ, the unfolding
technique aims at building a labelled acyclic net UnfΣ (a prefix ) satisfying two
key properties [6, 16, 13]:

– Completeness. Each reachable marking of Σ is represented by at least one
‘witness’, i.e., a marking of UnfΣ reachable from its initial marking. Similarly,
for each possible firing of a transition at any reachable state of Σ there is a
suitable ‘witness’ event in UnfΣ .

– Finiteness. The prefix is finite and thus can be used as an input to model-
checking algorithms, e.g., those searching for deadlocks.

A finite complete prefix satisfying these two properties can be used for model-
checking as a condensed (symbolic) representation of the state space of a system.



Indeed, it turns out that often such prefixes are exponentially smaller than the
corresponding reachability graphs, especially if the system at hand exhibits a lot
of concurrency. At least, they are never larger than the reachability graphs [6,
16, 13].

The unfolding techniques and algorithms described in [6–8, 10, 13, 14, 16–18,
20] help to alleviate the state space explosion problem when model-checking
low-level Petri nets. Moreover, the construction of the prefix can be efficiently
parallelised [11, 13]. However, the applicability of these techniques is restricted
by the fact that low-level Petri nets are a very low-level formalism, and thus in-
convenient for practical modelling. Therefore, it is highly desirable to generalise
this technique to more expressive formalisms, such as high-level (or ‘coloured’)
Petri nets. This formalism allows one to model in quite a natural way many con-
structs of high-level specification languages used to describe concurrent systems
(see, e.g., [1]). Though it is possible to translate a high-level net into a low-level
one and then unfold the latter, it is often the case that the intermediate low-level
net is exponentially larger than the resulting prefix. Moreover, such a translation
often completely destroys the structure present in the original model. In [15, 13],
an approach allowing one to build a prefix directly from a high-level net, thus
avoiding a potentially expensive translation into a low-level net, was described.
Experiments demonstrated that this method is often superior to the traditional
one, involving the explicit construction of an intermediate low-level net.

Petri net unfolding prefixes have been used for verification of simple safety
properties, such as deadlock freeness, mutual exclusion and various kinds of
reachability analysis [10, 13, 17, 18]. (The LTL model checking algorithm pro-
posed in [22] is quite complicated and a corrected version of the approach re-
quires memory exponential in the size of the prefix in the worst case [4, 5].)
Recent work [4, 5, 8] suggested a method for checking LTL-X properties of low-
level Petri nets. It uses a particular non-standard way of synchronising a Petri
net with a Büchi automaton, which preserves as much concurrency as possible,
in order to avoid a blow up in the size of the resulting prefix.

In this paper, we build on the ideas of [4, 5, 11, 13, 15] and propose a paral-
lel algorithm for verification of LTL-X properties based on high-level Petri net
unfoldings. To our knowledge, no such an algorithm existed before.

2 Basic Notions

We use M-nets [1] as the main high-level Petri net model, as we believe that
it is general enough to cover many other existing relevant formalisms. The full
description of M-nets can be found in [1]; here we give only an informal introduc-
tion, omitting those details which are not directly needed for the purposes of this
paper. In particular, [1] devotes a lot of attention to the composition rules for
M-nets, which are relevant only at the construction stage of an M-net, but not
for model-checking an already constructed one. We assume the reader is familiar
with the standard notions of the Petri nets theory, such as places, transitions,



arcs, presets and postsets of places and transitions, marking of a Petri net, the
enabledness and firing of a transition and marking reachability (see, e.g., [6]).

2.1 High-level Petri nets

Let Tok be a (finite or infinite) set of elements (or ‘colours’) and VAR be a set
of variable names, such that Tok ∩VAR = ∅. An M-net is a Petri net such that:

– Each of its places has a type, which is a subset of Tok and indicates the
colours this place can contain. We assume that the types of all places are
finite.1 Valid markings of an M-net can be obtained by placing in each of its
places a (possibly empty) multiset of tokens consistent with the type of the
place.

– Each transition is labelled by a guard, which is a well-formed Boolean ex-
pression over Tok ∪ VAR.

– Each arc is labelled with a multiset of variables from VAR.

For a transition t, we will denote by VAR(t) the set of variables which appear
in its guard and its incident arcs.2

The enabling and firing rules of M-nets are as follows: when tokens flow along
the incoming arcs of a transition t, they become bound to variables labelling
those arcs, forming a (partial) mapping σ : VAR(t) → Tok . If this mapping can
be extended to a total mapping σ′ (such an extension can be non-unique) in such
a way that the guard of t evaluates to true and the values of the variables on
the outgoing arcs are consistent with the types of the places these arcs point to,
then t is called enabled and σ′ is called a firing mode of t. An enabled transition
can fire, consuming the tokens from its preset and producing tokens in places
in its postset, in accordance with the values of the variables on the appropriate
arcs given by σ′.

As an example, consider the M-net system shown in Figure 1(a). At the

initial marking, t1 can fire with the firing modes σ′ df

= {v1 7→ 1, v2 7→ 2, v3 7→ 1}

or σ′′ df

= {v1 7→ 1, v2 7→ 2, v3 7→ 2}, consuming the tokens from p1 and p2 and
producing respectively the token 1 or 2 in p3.

2.2 Translation into low-level nets

For each M-net system it is possible to build an ‘equivalent’ low-level one (the
construction is given in [1, 15, 13]). Such a transformation is called ‘unfolding’
in [1], but since we use this term in a different meaning, we adopt the term
‘expansion’ instead. One can show that the reachability graphs generated by an
M-net and its expansion are isomorphic, i.e., the expansion faithfully models
the original M-net. This means that LTL properties of high-level nets can be

1 In general, allowing infinite types yields a Turing-powerful model. Nevertheless, this
restriction can be omitted in certain important cases [13, 15].

2 If some variable appears in the guard of t but not on its incident arcs, it must be
explicitly given a finite type.
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Fig. 1. An M-net system (a) and its unfolding (b).

verified by building its expansion. However, the disadvantage of this transfor-
mation is that it typically yields a very large net. Moreover, the resulting Petri
net is often unnecessarily large, in the sense that it contains many unreachable
places and many dead transitions. This is so because the place types are usually
overapproximations, and the transitions of the original M-net system may have
many firing modes, only few of which are realised when executing the M-net from
its initial marking. Therefore, though the M-net expansion is a neat theoretical
construction, it is often impractical.

2.3 Petri net unfoldings

The finite complete prefix of a low-level Petri net Σ is a finite acyclic net which
implicitly represents all the reachable states of Σ together with transitions en-
abled at those states. Intuitively, it can be obtained through unfolding Σ, by
successive firings of transition, under the following assumptions: (a) for each
new firing a fresh transition (called an event) is generated; (b) for each newly
produced token a fresh place (called a condition) is generated. The unfolding is
infinite whenever Σ has at least one infinite run; however, if Σ has finitely many
reachable states then the unfolding eventually starts to repeat itself and can be
truncated without loss of information, yielding a finite and complete prefix.

One can show that the number of events in the complete prefix can never
exceed the number of reachable states of Σ, for a precise statement see [6, 13, 16].
However, complete prefixes are often exponentially smaller than the correspond-
ing reachability graphs, especially for highly concurrent Petri nets, because they
represent concurrency directly rather than by multidimensional ‘diamonds’ as
it is done in reachability graphs. For example, if the original Petri net consists
of 100 transitions which can fire once in parallel, the reachability graph will be
a 100-dimensional hypercube with 2100 nodes, whereas the complete prefix will
coincide with the net itself.

In [13, 15] unfoldings of high-level Petri nets were defined, and the parallel
unfolding algorithm proposed in [11, 13] was generalised to high-level nets. It
turns out that the unfolding of a high-level net is isomorphic to the unfolding of



its low-level expansion. (However, it can be constructed directly from the high-
level net, without building this expansion.) Thus this approach is conservative in
the sense that all the verification tools using traditional unfoldings as input can
be reused with high-level ones. Figure 1(b) shows a finite and complete prefix of
the M-net in Figure 1(a), coinciding with the finite and complete prefix of the
expansion.

3 An Unfolding Approach to LTL-X Model-Checking

In [4, 5], an approach for unfolding based LTL-X model-checking of safe low-
level Petri nets was proposed. It makes use of the automata-theoretic approach
to model-checking [21]. A synchronised net system is constructed as the product
of the original net system and a Büchi automaton accepting the negation of
the property to be checked. Then the model-checking problem is reduced to the
problem of detecting illegal ω-traces and illegal livelocks in the synchronised net
system. Both problems are solved by exploiting finite complete prefixes of the
unfolded synchronised net system. The main advantage of this approach over
Wallner’s [22] is its efficiency. Wallner first calculates a complete finite prefix
and then constructs a graph, but the definition of the graph is non-trivial, and
the graph grows exponentially in the size of the prefix [4, 5]. The approach of
Esparza and Heljanko [4, 5] avoids the construction of the graph, but builds a
larger prefix.

In this paper we follow the approach of [4, 5], but we are using strictly safe

M-nets (i.e., ones which cannot put more than one token in a place) instead of
safe low-level Petri nets. We will explain our approach by means of the example
shown in Figure 2(a) (and in the following denoted by Υ ). It is an M-net model of
a buffer which can store at most 2 items (in places p2 and p4). To distinguish these
two items they are represented by coloured tokens 0 and 1. The M-net contains
4 places and 3 transitions whereas its expanded low-level net contains 8 places
and 8 transitions. One can see that if this example is scaled then its expansion
grows exponentially in the size of the buffer and the cardinalities of place types,
e.g., if the places have types {0..150} then the expansion contains 604 places and
23103 transitions, whereas the prefix of such an M-net has just 10 conditions
and 7 events (in this particular example place types do not influence the size of
the prefix). Thus the prefix is often much smaller than the low-level expansion
because the latter can contain many dead transitions and unreachable places
which disappear in the prefix. Furthermore, for larger systems the expansion
cannot be constructed within a reasonable time. The main advantage of our
approach over the one of [4, 5] is that we unfold the M-net directly and do not
have to build its expansion.

Let us assume that we want to check the property ϕ
df

= 32(p2 6= 0),
i.e., “eventually the item 0 is never stored in the buffer cell p2 again.” First
of all, we have to construct a Büchi automaton accepting ¬ϕ. This means that
the property ϕ is violated by a system run in which ¬(p2 6= 0) is true over and
over again. The corresponding Büchi automaton A¬ϕ is shown in Figure 2(b).
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Fig. 2. M-net Υ : buffer of capacity 2 (a), Büchi automaton A¬ϕ constructed for the

property ϕ
df

= 32(p2 6= 0) (b), the M-net corresponding to A¬ϕ (c), and the product
net Υ¬ϕ (d).

We identify it with an M-net system (also denoted by A¬ϕ) which has a place
for each state q of the automaton, with only the initial state q0 having a token.
(The type of all its places is {•}.) For each transition (q, x, q′) of A¬ϕ the M-net
has a transition (q, x, q′), where q and q′ are the input and output places of the
transition, and x is its guard. This M-net is shown in Figure 2(c), and in the
following its places and transitions are called Büchi places and Büchi transitions,
respectively.

In the next step a synchronised M-net system Υ¬ϕ is constructed as the prod-
uct of Υ and A¬ϕ. A standard approach would synchronise the system and the
Büchi automaton on all transitions. A drawback of such a synchronisation is that
it completely sequentialises the system. Since a strength of the unfolding tech-
nique is to exploit concurrency, such a product net would not be very suitable for
unfolding based verification techniques. Therefore, we use the synchronisation
construction of [4, 5] generalised to high-level nets. In order to exploit concur-
rency, Υ and A¬ϕ are only synchronised on those transitions of Υ which ‘touch’
the places that appear in the atomic propositions of ϕ. In the following such
transitions are called visible. For our example this means that Υ and A¬ϕ only



synchronise on the visible transitions t1 and t2, because they touch the place p2

which is the only place referred to in ϕ.
The resulting product net Υ¬ϕ is shown in Figure 2(d). Unlabelled arcs denote

that only • can flow along them.

Construction of Υ¬ϕ:

1. Put Υ and A¬ϕ side by side.
2. Connect each Büchi transition with Υ in such a way that it ‘observes’ the

places whose names appear in the guard of the transition. Let (q, x, q′) be
a Büchi transition. For each place p which appears in the guard x add arcs
from p to (q, x, q′) and back; both arcs are labelled with “p”. In our example
this rule only applies to I0 because it is the only Büchi transition whose
guard refers to p2. Therefore I0 and p2 are connected by arcs which are
labelled with p2.

3. Add scheduler places B and S (forming a flip-flop) in such a way that:

– initially A¬ϕ can make a step, and all the visible transitions of Υ are
disabled.

– after a step of A¬ϕ only Υ can make a step.
– after Υ has made a visible step, A¬ϕ can make a step, and until that all

the visible transitions of Υ are disabled.

The intuition behind B and S is that A¬ϕ (respectively, Υ ) can make a step
if there is a token on B (respectively, S). The types of these places are {•}.
B is connected by arcs going from B to every Büchi transition (u0, u1 and
I0), and going from every visible transition (t1 and t2) to B. S is connected
by arcs going from S to every visible transition (t1 and t2), and going from
every Büchi transition (u0, u1 and I0) to S. Only • can flow along the new
arcs. Initially, B contains • and S is empty, which allows A¬ϕ to observe the
initial marking of Υ .

Taking a look at the construction of Υ¬ϕ so far (see Figure 2(d) without
transitions L0, L1, and L2) it is clear that an infinite transition sequence that
touches the accepting Büchi place q1 infinitely often violates the property ϕ

because in this case p2 stores 0 over and over again. To detect such system runs

we introduce the set I
df

= {t | t• contains an accepting place of A¬ϕ} of all the
transitions putting a token into an accepting Büchi place.

Now we claim that an infinite transition sequence of Υ¬ϕ which is fireable
from the initial marking and contains infinitely many occurrences of I-transitions
violates ϕ. In the following such sequences are called illegal ω-traces.

Unfortunately, not every sequence that violates the property ϕ is detected by
illegal ω-traces because we synchronise just on the visible transitions. Consider
a system that contains amongst others a “loop” of invisible transitions. Since
we just synchronise on the visible transitions this “loop” would not take part
in the synchronisation at all. Suppose the system reaches a marking M from
which it is possible to fire a loop of invisible transitions. That is, the system
would fire an infinite sequence of transitions without A¬ϕ being able to observe



it. Thus one can imagine a scenario where ϕ is violated but A¬ϕ cannot detect
this. Therefore, such a situation must be dealt with separately.

Since the firing of invisible transitions cannot change the marking of the
visible places (i.e., those appearing in the atomic propositions of ϕ), as well as
the places of the scheduler and A¬ϕ, we simply have to check for each marking
enabling an infinite sequence of invisible transitions the existence of an accepting
run of A¬ϕ restricted only to those Büchi transitions which are enabled by this
marking. (In such a case ϕ is violated.)

Formally, we augment the product net Υ¬ϕ with a set L of livelock monitors

in such way that a new transition t ∈ L iff there exists a place q in A¬ϕ such that
q ∈ t• and, starting from q, the A¬ϕ accepts an infinite sequence of transitions.
Then the situation described above can be formalised by an illegal livelock, which

is an infinite firing sequence of the form τtστ ′ such that M0
τtσ

−→ M
τ ′

−→, t ∈ L

and τ ′ contains only invisible transitions. A formal description for adding L-
transitions to Υ¬ϕ is given in [5].

Theorem 1 (LTL-X Model-Checking of M-nets). Let Υ be a strictly safe

M-net system whose reachable markings are pairwise incomparable with respect to

set inclusion,3 and ϕ be an LTL-X formula. It is possible to construct a product

net system Υ¬ϕ satisfying the following properties:

– Υ satisfies ϕ iff Υ¬ϕ has neither illegal ω-traces nor illegal livelocks.

– The input and output places of the invisible transitions are the same in Υ

and Υ¬ϕ.4

From [4, 5] we know that the number of L-transitions can grow exponentially
in the size of the M-net system Υ , and so inserting them explicitly into the
product net Υ¬ϕ would seriously hamper this approach. Therefore we follow
the trick of [4, 5] and generate such transitions on-the-fly during the unfolding
procedure. In order to do so we extend the construction of the product net Υ¬ϕ

by the following step:

4. For each Büchi transition, add a copy of it with exactly the same guard and
preset, but empty postset. (In our example, these new copies of u0, u1 and
I0 are L0, L1 and L2, respectively.) All these new copies form a subset of
transitions which are candidates to become livelock monitors (L-transitions)
during the unfolding procedure.

The unfolding procedure makes use of these candidates in such a way that
every time when an L-labelled event e could be inserted into the prefix it is
checked whether starting from the marking M which is reached by firing e A¬ϕ

accepts an infinite run. If this is the case then the L-event is inserted into the
prefix (otherwise it is not), and its preset is expanded to the whole marking M ,
and its postset is a copy of the preset with instances of the visible, scheduler

3 The latter condition is technical and can be removed [5].
4 And thus much concurrency is preserved.



and Büchi places removed. This guarantees that from this marking only invisible
transitions can be fired in the future.

The check whether A¬ϕ can start an accepting run from M restricted to the
Büchi places can be done as follows. Let q be the Büchi place marked under M .
We remove from A¬ϕ all the transitions whose guards are evaluated to false
under M (and thus cannot fire). Now, in order to check whether there exists an
accepting run of A¬ϕ it is enough to search for a strongly connected component
in the obtained graph which is reachable from q and contains at least one I-
transition.

4 Tableaux System

We showed in Section 3 that the model-checking problem for LTL-X can be
reduced to the problem of finding illegal ω-traces and illegal livelocks. In [4, 5]
these problems are solved by considering the prefix as a “distributed” tableaux,
in which the conditions are “facts” and the events represent “inferences”, with
the cut-off events being the terminals of the tableaux. We follow this approach,
and informally describe how illegal ω-traces and illegal livelocks are detected.

The tableaux T for Υ¬ϕ is shown in Figure 3. It contains three terminals,
e15, e16, and e17, but for the moment let us concentrate on e17. Since it is a cut-
off event of the prefix, there exists a partially ordered execution (po-execution)
C (C = {e2} in our example) with the same marking {q0, S, p0

1, p
1
3} of Υ¬ϕ as

the po-execution [e17] = {e1, . . . , e8, e12, e14, e17}, where [e] is defined as the
minimal (w.r.t. ⊂) causally closed set of events containing e. Since C ⊂ [e17],
the execution [e17]\C = {e1, e3, . . . , e8, e12, e14, e17} starts and ends at the same
marking {q0, S, p0

1, p
1
3} of Υ¬ϕ, i.e., it can be repeated arbitrarily many times.

Moreover, it contains an I-event e12, and thus an illegal ω-trace ττ ′ω is detected,

where τ
df

= u0 corresponds to C and τ ′ df

= t3t2t3u0t1u0t2I0t1u1 corresponds to
[e17] \ C.

The way of detecting illegal livelocks is quite similar, but in this case a
terminal e occurring after an L-event eL is considered. This means that there
exists a po-execution C ⊂ [e] (which also contains eL) such that the execution
[e]\C starts and ends at the same marking. Now we can use the same argument
as above to find an infinite trace ττ ′ω, but τ ′ will contain only transitions of Υ¬ϕ

corresponding to the events occurring after eL. Since an L-transition empties
the scheduler places of tokens, and they are never put back, no visible or Büchi
transition of Υ¬ϕ can be enabled after firing an L-transition. Thus τ ′ consists
only of invisible transitions, i.e., an illegal livelock is detected. (See [4, 5, 10] for
more details.)

5 Experimental Results

In this section we present experimental results for the verification of LTL-X prop-
erties. We compare our implementation (in the following denoted by Punf) with
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(a)

Net Formula Result UnfSmdls Spin Punf

Abp 2(p → 3q) True 0.19 0.01 0.08
Bds 2(p → 3q) True 199 0.71 8.47
Dpd(7) 32¬(p ∧ q ∧ r) True 507 2.14 7.25
Furnace(3) 32p True 1057 1.00 26.90
Gasnq(4) 32p True 240 0.14 8.46
Rw(12) 2(p → 3q) True 2770 0.44 47.67
Ftp 32p True >12000 3.99 836
Over(5) 32p True 66.01 0.44 0.12
Cyclic(12) 2(p → 3q) True 0.38 11.25 0.08
Ring(9) 32p True 2.13 1.64 0.13
Dp(12) 32¬(p ∧ q ∧ r) True 13.05 117 0.36
Ph(12) 32¬(p ∧ q ∧ r) True 0.04 0.61 0.02
Com(15,0) 2(p → ¬3q) True — 3.11 0.02
Par(5,10) 2(p → ¬3q) True — 3.60 0.02

Net Spin Punf

Cyclic(15) 168 0.08
Cyclic(16) 478 0.07
Cyclic(17) 1601 0.10
Ring(12) 75.38 0.30
Ring(13) 274 0.50
Ring(14) 1267 0.85
Dp(13) 559 0.53
Dp(14) 2123 0.75
Ph(15) 16.69 0.01
Ph(18) 1570 0.01
Com(20,0) 232 0.02
Com(21,0) 686 0.03
Com(22,0) 2279 0.02
Par(6,10) 161 0.02
Par(7,10) mem 0.04

(b)

Table 1. Experimental results for LTL-X model-checking.

the unfolding based LTL-X model-checker for low-level nets UnfSmodels [5],
and with the model-checker Spin [12]. All experiments are performed on a Linux
PC with a 2.4 GHz Intel(R) Xeon(TM) processor and 4 GB of RAM. All times
are measured in seconds.

We used UnfSmodels version 0.9 of 22nd of October 2003, and invoked it
with the option -l (for LTL-X model-checking).

We used Spin version 4.0.7 of 1st of August 2003, and invoked it with the op-
tions -DMEMCNT=32 (to allow the use of all 4 GB of memory) and -DNOFAIR

(as no fairness assumptions were needed). Spin’s partial order reductions were
used in all cases (they are enabled by default).

We used Punf version 7.03 (parallel). In order to have a fair competition
against the other tools we invoked Punf in all examples with the option -N=1

which means that the unfolding procedure is not parallelised, and Punf uses
only one CPU.

The benchmarks (except Ph(n), Com(n,m) and Par(n,m)) are taken from
J.C. Corbett [3]. We used only deadlock-free examples because our semantics for
LTL-X for deadlocking systems is different from Spin’s semantics and thus the
results would not be comparable. These benchmarks together with the corre-
sponding result files are available at
http://www.fmi.uni-stuttgart.de/szs/people/schroeter/CAV/cav.tgz.

In order to have a fair contest against Spin all systems were modelled in
Promela, all of them (except Ph(n), Com(n,m) and Par(n,m)) by J.C. Cor-
bett [3], but we scaled up some of the benchmarks. The M-nets used as the
input for Punf were automatically derived (using a routine implemented by one
of the authors) from Spin’s automata representations of the Promela models.
The low-level nets used as the input for UnfSmodels were obtained from the
M-nets with the help of the hl2ll utility of the Pep tool [9].

Table 1(a) confirms that our approach outperforms UnfSmodels on all ex-
amples, with an increase of speed up to 550 times (Over(5) example). But we
should mention that as noted in [5] UnfSmodels is more or less an academic
prototype, whereas Punf is a high-performance unfolding engine. Com(15,0)
and Par(5,10) could not been verified with UnfSmodels because either the



Net Spin Punf(1) Punf(2)

Com(20,3) mem 8.58 6.01
Com(22,3) mem 11.51 8.51
Com(25,3) mem 17.29 12.84
Par(20,100) mem 8.60 4.84
Par(20,150) mem 31.98 18.28
buf(20) — 22.70 16.95
buf(25) — 142.72 89.40

Table 2. Experimental results for the parallel mode.

Büchi automaton corresponding to the LTL-X formula for the low-level net (in
the former case) or the low level net itself (in the latter case) could not be gener-
ated within reasonable time. Comparing Punf and Spin one can see that Spin

performs better on the examples over the line. In contrast, Punf outperforms
Spin on the examples under the line. We wanted to investigate this further and
therefore we scaled up these systems and checked them again.

The results are shown in Table 1(b). They seem to confirm that Spin’s ver-
ification time grows exponentially with the size of the benchmark, whereas the
verification time of Punf remains less than a second in all cases. All these sys-
tems have a high degree of concurrency, and the results show that our partial
order technique handles these systems quite well. In contrast, Spin’s partial or-
der reductions are not very efficient on these examples. In our current theory this
seems to be related to a reduction condition for LTL-X model-checking which is
known as the reduction proviso (see, e.g., [2, 19] for further details).

As it was already mentioned, our unfolding routine supports multiple threads
running in parallel. To demonstrate this we performed some experiments on a
two processor machine.

The results are shown in Table 2. Punf(n) means that Punf makes use of n

processors. The results confirm that the process of LTL-X model checking can
be parallelised quite efficiently. This speeds up the verification, in the best case
up to n times. Also the results show that these examples are not verifiable with
Spin because it runs out of memory. (We did not verify the Buf(n) system with
Spin because it was modelled directly as an M-net).

6 Conclusions

We have presented an efficient algorithm for verification of LTL-X properties of
high-level Petri nets. We followed an approach proposed by Esparza and Heljanko
in [4, 5] for low-level nets, generalised it to M-nets, and implemented it using a
state of the art parallel unfolding engine for high-level nets described in [15,
13]. Finally, we presented results showing that our implementation outperforms
UnfSmodels on all examples, and beats Spin on some examples, mainly those
having a high degree of concurrency. To the best of our knowledge, this is the
first parallel algorithm for verification of LTL-X properties of high-level Petri
nets based on unfoldings.
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