
Rigorous development of reusable, domain-specific
components, for complex applications*

I. Johnson1, C. Snook2, A Edmunds2 & M. Butler2

1AT Engine Controls Ltd., Portsmouth, UK.
2 University of Southampton, Southampton, UK.

Abstract. The reuse of reliable, domain-specific software components is a
strategy commonly used in the avionics industry to develop safety critical
airborne systems. One method of achieving reuse is to use domain specific
languages that map closely onto abstractions in the problem domain. While this
works well for control algorithms, it is less successful for some complex
ancillary functions such as failure management. The characteristics of device
failures are often difficult to predict resulting in late requirements changes.
Hence a small semantic gap is especially desirable but difficult to achieve.
Object-oriented design techniques include mechanisms, such as inheritance,
that cater well for variations in behaviour. However, object-oriented notations
such as the UML lack the precision, and rigor, needed for safety critical
software. UML-B is a profile of the UML for formal modelling. In this paper
we show how UML-B can be used to model failure management systems via
progressive refinement, and indicate how this approach could utilise UML
concepts to cope with high variability, while providing rigorous verification.

1 Introduction

Developers in the avionics industry are interested in the use of object-orientated
technology (OOT) [1, 2] as a way to increase productivity. In particular, concepts,
such as inheritance and design patterns, enable more flexible reuse of software. The
emergence of the UML [3] as the de-facto standard modelling language for object-
oriented design and analysis, and the subsequent development of supporting tools, has
promoted the modelling and design of applications in the UML. Due to concerns over
safety certification issues, OOT has not seen widespread use in avionics applications.
One reason for this is that the controlling standards used in the industry, such as
RTCA DO-178B [6] and its European equivalent, EUROCAE ED-12B [7], do not
consider OOT. In order to address this, a new version of the standard, DO-178C/ED
12C, is planned. A significant contribution to this new standard will come from the
findings of the Object Orientated Technology in Aviation (OOTiA) initiative [8],
which was set up by the FAA and NASA to develop guidelines for the safe use of
object-oriented technology in avionics software development.

* This research is being carried out as part of the EU funded research project: IST 511599

RODIN (Rigorous Open Development Environment for Complex Systems).

Application development based on a combination of UML and formal methods will
improve safety and provide flexibility in the design of software for aviation
certification. The combination of UML and formal methods at an abstract modelling
stage will enable the reuse of reliable software components both at the specification
and code levels. We indicate how we can exploit the reuse features of the UML and
the reliability provided by formal methods. The development process will benefit
from a reduction in the semantic gap by defining a vocabulary of entities that maps
closely onto abstractions in the problem domain. UML class diagrams assist greatly
with this, especially in complex application domains where the use of features such as
inheritance caters for variation of subtypes. The use of formal methods to address the
rigorous verification required for safety critical applications has been advocated
before [5] but adoption within industry has been limited partly due to the need for
industrial strength tool support. One formal method that has been developed for
practical use in industry and enjoys good tool support is the B method [9].

1.1 B and B tools

The B method is based on a set theoretic approach and provides the ability to perform
rigorous proof, thus ensuring a self-consistent specification. The B method’s Abstract
Machine Notation (AMN) is used to describe the state and behaviour. Under-
specification in assignments or choices is possible via non-deterministic constructs,
which must be resolved in later refinements prior to implementation. An invariant
clause describes properties of the system that must hold at all times. The B
verification tools [11] generate proof obligations (POs) and then attempt to
automatically discharge (prove) them. Invariably there are a number of PO’s that
remain to be discharged semi-automatically using the interactive prover [10]. The
user guides the proof by suggesting strategies and sub-goals. Discharging POs with
the interactive prover often leads to a greater insight into the specification and
inaccuracies can be identified and addressed at an early stage of development.
Discharging proof obligations can be difficult and time consuming, but once complete
the specification is known to be self-consistent. A model checker, ProB [13], that
searches for deadlocks and invariant violations may be used as a preliminary
verification of the specification before commencing proof. Refinements are related to
the previous level of abstraction in such a way that a valid refinement always satisfies
the abstract specification. Proof provides confidence that the refinement is not only
self-consistent but also reflects the behaviour of the abstract specification it refines.
Event B [12] is a derivation of the original B Method that uses the notion of predicate
guards that enable or disable events. The event driven approach of Event B begins
with the abstraction of the observable events that ‘may’ occur in a system. The
abstraction is refined in a number of steps, adding new events and state information at
each iteration. The aim is to move towards a consistent model, with enough detail to
fully describe the behaviour of the system. There are a number of additional
requirements for the event driven approach, firstly, the added events of a refinement
are not allowed to permanently take control of the system so that the events of the
more abstract model are eventually enabled; secondly, a concrete event must not be
enabled more often than its abstract counterpart; but the abstract event must not be

enabled more than the disjunction of the concrete event together with the new events.
That is, the abstract event is replaced by a sequence of new events culminating in the
refined event.
Validation of specifications is just as important as verification. ProB [13] can also be
used to animate B machines. The list of currently enabled operations is displayed in a
pane. The current state of variables is displayed in another pane. The user may choose
sequences of enabled operations in order to explore the behaviour of the specification.

2 Failure management

A common functionality required of many systems is to manage failure of its inputs.
This is particularly pertinent in aviation applications where lack of tolerance to failed
system inputs could lead to loss of aircraft. The role of failure management in an
embedded control system is shown in Fig.1.

The
othe
and
reme
of ra
syste
conf
agai
mus
spur
Rem
syste
actio
be t
perm
degr
equi

FAILURE

MAN
CONTROL

O
U
T
P
U
T

I
N
P
U
T

Fig. 1. Context diagram for failure management subsystem
inputs are tested and, if good, are passed unaltered to the control subsystem;
rwise the failure of the input is managed. This may involve substituting values,
taking alternative actions. There are two aspects to the subsystem; detection and
dial action. Failure detection involves checking for input validity, including out
nge checks, rate of change checks, and comparison with other conditions in the
m. A failed condition must persist for a period of time before a failure is
irmed. If the invalid condition is not confirmed the input recovers and is used
n. When setting the persistence conditions for confirmation of a failure, a balance
t be sought between achieving a fast response to failures and over sensitivity to
ious interference. Once a failure is confirmed it is latched until power is reset.
edial actions vary, depending on the input’s function and importance within the
m, and the state of the system when the failure occurred. Temporary remedial
ns, such as relying on the last good value, or suppressing control behaviour, may
aken while a failure is being confirmed. Once a failure is confirmed, more
anent actions are taken such as switching to an alternative source, altering or

ading the method of control, engaging a backup system or freezing the controlled
pment. Tables 1 and 2, show some typical failure management activities.

Table 1. Detection

Signal High Low Rate Conditions for test
120% 0% 100%/sec Engine Stood
120% 10% 100%/sec Engine Starting ESa
120% 50% 100%/sec Engine Running
120% 0% 100%/sec Engine Stood
120% 10% 100%/sec Engine Starting ESb
120% 50% 100%/sec Engine Running

ESa - ESb 5% -5% - ESa or ESb >30%
ESa – Engine speed (main input)
ESb – Engine speed (alternative input)

Table 2. Remedial Actions

Signal Procedure code
Select ESb if available ESa
else Switch to backup system

ES1

ESb ESb not available ES2
ESa/ESb diff Use highest value sensor ES3

Experience has shown that failure management systems can be difficult, and
expensive, to develop and maintain due to their complexity and vulnerability to
change. Changes often occur late in the development cycle, since requirements are
redefined based on empirical performance under failure conditions. The semantic gap
between control algorithm design notations and coding constructs has been addressed
successfully by the development of domain specific languages. Unlike control
algorithms failure management has no successful domain specific language. The
nature of failure management is that different control actions and behaviour are
required, dependent on the outcome of conditional logic for each of many inputs; this
can result in complex overall behaviour. Failure management can become
functionally complex due to the following: the rate of decay of an input depends on
sensor device characteristics, the application of a test depends on engine and input
conditions, a test may depend on the sampling rates of inputs, a test may vary
according to outcomes of other tests, the detection of a failure may require hysteresis
to avoid oscillation, the sequence of tests may depend on temporal interdependence of
input sampling, remedial actions depend on the system state.
One approach, to improve flexibility, is to model a failure management subsystem
using the UML; this will improve configurability and, if combined with formal
methods to ensure consistency, will be particularly suited to the safety critical
applications found in aviation. Modelling functional behaviour will provide the
ontology to convey functional understanding and, through formal techniques, provide
a way to map this to the code, reducing the semantic gap.

3 Overview of the UML-B profile and U2B translator

The UML-B [17] is a profile of UML that defines a formal modelling notation. It has
a mapping to, and is therefore suitable for translation into, the B language. UML-B
consists of class diagrams with attached statecharts, and an integrated constraint and
action language based on the B AMN notation. The UML-B profile uses stereotypes
to specialise the meaning of UML entities to enhance correspondence with B
concepts. The profile also defines tagged values (UML-B clauses) that may be
attached to UML entities to provide formal modelling details that have no counterpart
in UML. Several styles of modelling are available within UML-B. Here we use its
event systems mode, which corresponds with the Event B modelling paradigm. In
event systems mode, UML operations represent spontaneous events. Since events are
parameterless, operation parameters represent non-deterministic selection of local
variables. UML-B provides a diagrammatic, formal modelling notation based on
UML. It has a well defined semantics, as a direct result of its mapping to B. There are
barriers to the acceptance of formal methods in industry. The popularity of the UML
enables UML-B to overcome some of these barriers. Its familiar diagrammatic
notations make specifications accessible to domain experts who may not be familiar
with formal notations. UML-B hides B’s infrastructure, it packages mathematical
constraints and action specifications into small sections, each being set in the context
of its owning UML entity. The U2B [18] translator converts UML-B models into B
components (abstract machines and their refinements). Translation from UML-B into
B enables verification and validation tools to be utilised.
In many respects B components resemble an encapsulation and modularisation
mechanism suitable for representing classes. A component encapsulates variables that
may only be modified by the operations of the component. However, to ensure
compositionality of proof, B imposes restrictions on the way variables can be
modified by other components (even via local operations). Translating classes into B
components imposes corresponding restrictions on the relationships between classes.
Therefore we translate a complete UML package (i.e. many classes and their
relationships) into a single B component. This option allows unconstrained (non-
hierarchical) class relationship structures to be modelled. Since the B language is not
object-oriented, class instances must be modelled explicitly. Attributes and
associations are translated into variables whose type is a function from the class
instances to the attribute type or associated class. For example a class A with attribute
x of type X would generate the following B:
SETS A
VARIABLES x
INVARIANT x : A --> (X)

Operation behaviour may be represented textually in a notation based on B, as a state
chart attached to the class, or as a simultaneous combination of both. Further details
of UML-B are given in [17]. Examples of previous case studies using UML-B and
U2B are given in [14,15,16 and 19].

4 UML-B model of failure management

As an example of using UML-B to develop failure management systems we show a
simplified model and its verification. Our first abstract model captures the overall
states of the system. in subsequent refinements we model the stages in confirming a
failure, the mechanism for freezing the system and the relationship between
individual inputs and the collective state of the system. In these early stages we leave
many aspects of the system under specified, saying only, for example, that an input
may be detected as an unconfirmed failure and then may either recover or become a
confirmed failure; but saying nothing about how or why these choices are made.
Despite this (non-deterministic) under-specification the model embodies important
properties about the interaction of the states of inputs that we verify by proof. In
practice, inputs have differing levels of sensitiveness and importance to the control
system operation. However, to simplify the example we only consider inputs to which
the controller is sensitive (i.e. freezes while a failure is unconfirmed) and can not
continue to control without (i.e. hard fault).

4.1 Machine fman_a

This first abstract model of failure management considers the overall state of the
system. It defines the three main states of the controller in response to input validity
conditions, which are; a) normal operation, b) frozen while attempting to confirm a
possible input error, and c) hardfaulted when an input error has been confirmed. Note
that once the system has hard faulted no further events may occur (the model is
intentionally deadlocked). The following state diagram is attached to a class utility
(within the fman_a <<machine>> package) and hence represents a simple variable.

normal hardfaultedfrozen
freeze

unfreeze

hardfault

Fig. 2. Statechart diagram of the abstract machine

Since this level is a simple expression of the permitted transitions between the three
states of the system, the only verification is that there are no other states. The B
produced by U2B for this model is shown in the appendix.

4.2 Refinement fman_r1

In this refinement we recognise that the system state is actually an abstraction of the
states of many instances of input failure management (Fig.4). Each input has three
possible states; ok, suspect, and confirmed. Each input can have a good event
(corresponding to a valid input value being detected) or a bad event (when an invalid

value is detected). Some of these good and bad events (depending on the state of the
full collection of inputs) refine the freeze, unfreeze and hardfault events from
the abstract model. These are first_bad (the first input to enter the suspect state),
last_good and confirm respectively. When an input has confirmed detection of an
invalid value, a guard on each transition prevents further events from being enabled.
This models the intentional deadlock in the abstract model. The refinement relation
(Fig. 6.) specified in a REFINEMENT_RELATION clause attached to the package,
fman_r1, gives the correspondence between the equivalent states of the two models.
The system is normal when no inputs have detected invalid values (confirmed or
suspect), frozen when at least one input has detected an invalid value but no
inputs have been confirmed invalid, and hardfaulted when an input has detected
and confirmed an invalid value. Note that we use a ‘Petri’ style interpretation of the
state model (where each state is a variable whose value is the set of instances in that
state) since this makes it easier to specify the collective state of the class in transition
guards. Verification proves that the collective state of the inputs behaves in
accordance with the overall system states; normal, frozen and hardfaulted. The
B produced by U2B for this model is shown in the appendix.

INPUT

first_bad()
last_good()
bad()
good()
confirm()

Fig. 3. Class diagram of the first refinement

ok suspect confirmed

all transitions have the additional
guard, confirmed = {}

confirm

good[suspect/={self}]

last_good[suspect={self}]

bad[suspect/={}]

first_bad[suspect={}]

Fig. 4. Statechart diagram of the INPUT class

REFINEMENT_RELATION
((control_state=normal) <=> (ok=INPUT)) &
((control_state=frozen) <=> (suspect/={} & confirmed={})) &
((control_state=hardfaulted) <=> (confirmed/={}))

Fig. 5. Refinement relation between abstraction and first refinement.

Table 3. - Event refinement in first refinment

event in refinement r1 refines event in abstraction a

first_bad freeze
bad (new event)
first_good unfreeze
good (new event)
confirm hardfault

4.3 Refinement fman_r2

In this refinement we introduce the idea that each input consists of several tests and
each test is in a passed, failed or latched state. This is modelled as a class TEST which
has a state model, and an association to its owning input. INPUT no longer has any
events or a state model. Its state is derived from its associated collection of TESTs.
The state of an input is ok when all its tests are passed, confirmed when one of its
tests is latched and suspect otherwise.

INPUT

TEST

detect_first()
detect_first_thisInput()
detect()
recover()
recover_last_thisInput()
recover_last()
latch()

11.. *

+input

1

+test s

1.. *

<<constant>>

Fig. 6. Class diagram of the second refinement

passed latchedconfirming

detect

detect_first

detect_first_thisInput

latch

recover_last

recover_last_thisInput

recover

Fig. 7. state diagram of the TEST class

The guards for the transitions (events) are given in Fig 9. (Where a|>s restricts the
association a to links whose targets belong to the set s. E.g. (tests |>
confirming)[{i}] is the set of instances of TEST that are associated with the input,
i, that are in the state confirming).

detect_first: confirming={}
detect_first_thisInput: confirming/={} &
 (tests|>confirming)[{input}]={}
detect: (tests|>confirming)[{input}]/={}
recover_last: confirming={self}
recover_last_thisInput: confirming/={self} &
 (tests|>confirming)[{input}]={self}
recover: (tests|>confirming)[{input}]/={self}
latch: latched={}
 (all events have the additional guard, latched={})

Fig. 8. Guards on events in second refinement

The refinement relation defines the set of inputs in each of the r1 level states based on
the state of its collection of tests. (where s<<|a restricts the association a to links
whose source do not belong to the set s).
REFINES fman_r1
REFINEMENT_RELATION
ok = INPUT - ran(confirming\/latched <| input) &
suspect = ran(confirming <| input) -ran(latched <| input) &
confirmed = ran(latched <| input)

Fig. 9. Refinement relation between first and second refinement.

The events of the class INPUT are re-specified as events of the class TEST and in
terms of the conditions of the collection of tests belonging to the input. Two new
events, detect and recover, are added to model the transitions of subsequent tests
detecting failures when another test on the same input has already done so. These new
events had no effect in the previous level of refinement.

Table 4. Event refinement in second refinement

event in refinement r2 event in refinement r1 event in abstraction
a

detect_first first_bad freeze
detect_first_thisInput bad -
detect - -
recover_last last_good unfreeze
recover_last_thisInput good -
recover - -
latch confirm hardfault

4.4 Adding further details to Test

In subsequent refinements we introduce further detail to the model in many stages that
we summarise here. This includes events and a counter attribute for confirming (or
recovery of) a test. We add a parameter, pval, and a corresponding limit for
deciding when detect, recover and latch events occur for a particular test.
Having verified the previous refinement stages we no longer need to distinguish
separate events for the differing conditions when a test detects an invalid input. We
therefore merge detect, detect_first and detect_first_thisInput using a
three branch guarded choice (SELECT substitution). Subsequently we also merge in
the confirmation counting events and latching event with further guarded branches of
the same event. In this way the correspondence of actions taken under different
conditions is verified to represent the abstract event model before being merged into a
conditional single event, as the model is refined towards an implementation. The B
produced by U2B for the merged operation, test, is shown in the appendix.

ok counting latched

test[pval<=limit] test[pval>limit & count<climit] / count:=count+inc

test[pval<=limit & count>dec] / count:=count-dec

test [pval>lim it & count >=cl imi t]

test[pval<=limit & count<=dec] / count:=0

tes t[pval>lim it] / count=inc

Fig. 10. Statechart diagram of refinement with counting and merged events

4.5 Defining subtypes of Test

Having rigorously developed a generic test class this can be specialised in further
refinements to perform several sub-types of test, such as magnitude tests, rate of
change tests and difference comparison tests. There are now three subclasses of TEST.
TEST is an abstract class having no instances other than those that belong to one of its
subclasses. The inheritance is modelled in the B produced by U2B as disjoint subsets
of TEST. MAG represents a magnitude test that reuses the behaviour of its superclass.
DIFF is a test that compares the associated input with another input (represented by
association, comp). It overrides the test event by ‘calling’ the superclass’ test
passing it the difference in the values of the 2 inputs. To achieve this we add a value
attribute to the class INPUT with an update event to change its value. RATE is a rate
of change test that compares the current value of its associated input with the last
value it tested. It has an additional attribute to record the last value and overrides the
test operation as shown.

TEST
count
<<constant>> inc : NATURAL
<<constant>> dec : NATURAL
<<constant>> climit : NATURAL
<<constant>> limit : NATURAL

test(pval : NATURAL)

INPUT
value : NATURAL = 0

update(inv : NATURAL)

11.. *

+input

1

+t est s

1.. * <<constant>>

DIFF

test()

+comp
11

MA G

test()

RATE
last : NATURAL = 0

test()

Fig. 11. Class diagram for refinement with subclasses of test

The overriding of the test event is shown below. This is modelled in the
corresponding B by collating the three specialised test events into a single event with
three guarded branches. The guard for each branch tests the instance for membership
of a subclass.

MAG:test = super.test(input.value)
DIFF:test = super.test(abs(input.value-comp.value))
RATE:test = last:=input.value ||
 super.test(abs(input.value-last))

 where abs(i,j)= max(i-j,j-i)

Fig. 12. Overriding of the event, test

5 Discussion

To verify an event refinement it is required to show that any new events lead
(eventually) to the enabling of one of the original events. When we attempted to
verify our first refinement we found that this wasn’t possible. Our initial attempt at a
model as presented above doesn’t ensure that if the system enters the freeze state it
will ever be able to leave it, (a requirement imposed by Event B). The problem is that,
although an individual input must leave the unconfirmed state after entering it,
another input might also enter the unconfirmed state before the original one leaves it.
In this way, inputs could take it in turns to be unconfirmed leaving the system
permanently frozen. This would be an undesirable outcome since the frozen state is
intended to be a temporary stage before confirming or recovering. A limiting
mechanism that forced the system into the hardfaulted state after a certain number of
unconfirmed inputs would prevent this and enable us to prove the event refinement.
Even with this grossly oversimplified example the event modelling approach
increased our understanding of the problem at the earliest stages of development.

6 Future work

This paper describes our first attempt using an event based modelling approach, with
UML-B, to improve the reusability and portability of failure management systems.
We are in the preliminary stages of a three-year research programme that aims to
investigate this area. Within the project we will develop UML-B, to better support the
use of UML features such as inheritance, and to provide modelling mechanisms that
aid the refinement and transformation of UML-B models. We plan to re-implement
the U2B translator within eclipse in order to achieve better integration with the B
validation and verification tools, which will also be ported to eclipse. We will test and
develop the ideas presented in this paper, on a larger scale example, in the following
stages. Model a small but realistic, imaginary failure management application. The
model may consist of several levels of refinement but be platform independent. We
will then validate and verify the model via translation to B. Following validation and
verification; we will investigate methods for abstracting away from the specific
example to obtain a generic UML-B model that is application independent. New ideas
for the development, using B# [20], may be used in this stage. Further development of
UML-B and U2B may be needed to support this kind of model. Finally, we will
investigate mechanisms for model transformation to obtain application and domain
specific models from the generic model.

7 Conclusions

In this paper we have illustrated an approach to rigorous development of critical
complex systems, such as failure management, in a manner that results in a high
degree of re-usable verified components. The approach provides rigorous consistency
verification through a sequence of refinement steps starting from a very abstract
expression of overall system behaviour. This process of refinement can be continued
through requirements development, design and into implementation. The process
involves a, UML based, formal modelling notation, UML-B and utilises the tools
available for the formal notation B. The refinement process inherently provides a high
degree of reuse of verified specifications due to the deferment of specific application
details. The genericity features of the UML may be used to provide re-usable
common components within each refinement level. In this way we hope to provide a
library of component classes that have a flexible but simple mapping with application
domain concepts. The hierarchy of class models can then be instantiated with an
object model for different applications thus achieving a specification and
implementation language with small semantic gap that is suitable for the target
complex problem domain; in this case, failure management systems. This approach
could similarly be used for other complex systems problems.

References

1. Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall PTR, Upper Saddle
River, NJ 1997.

2. Grady Booch, Object Oriented Analysis and Design with Applications , The
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA 1994.

3. Object Management Group, OMG Unified Modeling Language Specification, version 1.3,
June 1999, from http://www.omg.org/technology/documents/modeling_spec_catalog.htm.

4. Jishnu Mukerji, Joaquin Miller, MDA guide version 1.0, available from Object
Management Group website http://www.omg.org.

5. Ministry of Defence (1997) Def Stan 00-55: Requirements for safety related software in
defence equipment, Issue 2. http://www.dstan.mod.uk/data/00/055/02000200.pdf

6. Radio Technical Commission for Aeronautics, RTCA DO 178B -Software considerations in
Airborne Systems and Equipment Certification, from http://www.rtca.org.

7. Eurocae ED12B, Software considerations in Airborne Systems and Equipment
Certification, from http://www.eurocae.org.

8. FAA/NASA, OOTiA - Object Orientated Technology in Aviation Program, from
http://shemesh.larc.nasa.gov/foot/.

9. J-R Abrial, The B-Method, Cambridge University Press, 1996.
10. J-R Abrial_ and D Cansell, Click’n Prove: Interactive Proofs Within Set Theory, from

http://www.loria.fr/~cansell/cnp.html.
11. B4free is a set of tools for the development of B models from http://www.b4free.com.
12. J-R Abrial, Event Driven Construction, 1999, from

http://www.atelierb.com/documents.htm
13. M.Butler, and M. Leuschel, ProB: A Model-Checker for B, Proceedings of FME 2003:

Formal Methods - LNCS 2805, from http://www.ecs.soton.ac.uk/~mal/systems/prob.html
14. C. Snook, K. Sandstrom, Using UML-B and U2B for formal refinement of digital

components, Proceedings of Forum on specification & design languages, Frankfurt, 2003.
15. C. Snook and M. Butler, Using a Graphical Design Tool for Formal Specification,

Proceedings of the 13th Annual Workshop of the Psychology of Programming Interest
Group (PPIG).

 16.M. Butler, C. Snook, Verifying Dynamic Properties of UML Models by Translation to the B
Language and Toolkit, Proceedings of UML 2000 Workshop, Dynamic Behaviour in UML
Models: Semantic Questions.

17. C. Snook, I. Oliver and M. Butler, The UML-B profile for formal systems modelling in
UML, In UML-B Specification for Proven Embedded Systems Design, Springer (In press
2004)

18. C. Snook, and M. Butler, U2B - A tool for translating UML-B models into B, In UML-B
Specification for Proven Embedded Systems Design, Springer (In press 2004)

19. Mermet, J. (ed.) UML-B Specification for Proven Embedded Systems Design, Springer (In
press 2004)

20. J-R Abrial, B#: Toward a synthesis between Z and B, In D.Bert, J.Bowen, S.King,
M.Walden, editors, ZB 2003: Formal Specification and Development in Z and B. Third
International Conference of B and Z Users, Lecture Notes in Computer Science, Vol.2651,
Springer, pp.168-178.

http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://www.omg.org/
http://www.rtca.org/
http://www.eurocae.org/
http://shemesh.larc.nasa.gov/foot/
http://www.loria.fr/~cansell/cnp.html
http://www.b4free.com/
http://www.atelierb.com/documents.htm

Appendix - B produced by U2B

B machine for first abstract level
MACHINE fman_a
SETS CONTROL_STATE={normal,frozen,hardfaulted}
DEFINITIONS
 type_invariant == (control_state : CONTROL_STATE) ;
 invariant == (type_invariant)
VARIABLES control_state
INVARIANT invariant
INITIALISATION
 control_state :(invariant & control_state = normal)
OPERATIONS /*EVENTS*/
 hardfault =
 SELECT control_state=frozen THEN
 control_state:=hardfaulted
 END ;
 freeze =
 SELECT control_state=normal THEN
 control_state:=frozen
 END ;
 unfreeze =
 SELECT control_state=frozen THEN
 control_state:=normal
 END
END

B refinement for the first refinement:
REFINEMENT fman_r1
REFINES fman_a
SETS INPUT
DEFINITIONS
 tests == input~ ;
 type_invariant == (
 ok : POW(INPUT) &
 suspect : POW(INPUT) &
 confirmed : POW(INPUT)) ;
 INPUT_invariant == (
 ok /\ suspect={} & ok /\ confirmed={} &
 suspect /\ confirmed={} &
 ok \/ suspect \/ confirmed = INPUT) ;

 invariant == (type_invariant & INPUT_invariant) ;
 refinement_relation == (
 ((control_state=normal) <=> (ok=INPUT)) &
 ((control_state=frozen) <=> (suspect/={} &
 confirmed={})) &
 ((control_state=hardfaulted) <=> (confirmed/={})))
VARIABLES ok, suspect, confirmed
INVARIANT invariant & refinement_relation
INITIALISATION
 ok, suspect, confirmed :(invariant &
 ok=INPUT & suspect={} & confirmed={})
OPERATIONS /*EVENTS*/
 first_bad =
 ANY thisINPUT WHERE thisINPUT:INPUT THEN
 SELECT confirmed={} THEN

 SELECT thisINPUT : ok & suspect={} THEN
 ok:=ok-{thisINPUT} ||
 suspect:=suspect\/{thisINPUT}
 END
 END
 END ;
etc.

B for the operation test:

ANY thisTEST,pval WHERE thisTEST:TEST & pval:NATURAL
THEN
 SELECT thisTEST : ok & pval>limit(thisTEST)
 THEN ok:=ok-{thisTEST} ||
 counting:=counting\/{thisTEST} ||
 count(thisTEST)=inc(thisTEST)
 WHEN thisTEST : ok & pval<=limit(thisTEST)
 THEN skip
 WHEN thisTEST : counting & pval>limit(thisTEST) &
 count(thisTEST)<climit(thisTEST)
 THEN count(thisTEST):=count(thisTEST)+inc(thisTEST)
 WHEN thisTEST : counting & pval>limit(thisTEST) &
 count(thisTEST) >=climit(thisTEST)
 THEN counting:=counting-{thisTEST} ||
 latched:=latched\/{thisTEST}
 WHEN thisTEST : counting & pval<=limit(thisTEST) &
 count(thisTEST)<=dec(thisTEST)
 THEN counting:=counting-{thisTEST} ||
 ok:=ok\/{thisTEST} || count(thisTEST):=0
 WHEN thisTEST : counting & pval<=limit(thisTEST) &
 count(thisTEST)>dec(thisTEST)
 THEN count(thisTEST):=count(thisTEST)- dec(thisTEST)
 END
END

