
The engineering of generic requirements for failure
management

Colin Snook1, Michael Poppleton1, and Ian Johnson2

1 School of Electronics and Computer Science,
University of Southampton, Highfield,

Southampton SO17 1BJ, UK,
cfs,mrp@ecs.soton.ac.uk
2 AT Engine Controls, Portsmouth

IJohnson@atenginecontrols.com

Abstract. We consider the failure detection and management function for en-
gine control systems as an application domain where product line engineering is
indicated. The need to develop a generic requirement set - for subsequent system
instantiation - is complicated by the addition of the high levels of verification
demanded by this safety-critical domain, subject to avionics industry standards.
We present our case study experience in this area as a candidate methodology for
the engineering, validation and verification of generic requirements using domain
engineering and Formal Methods techniques and tools. For a defined class of sys-
tems, the case study produces a generic requirement set in UML and an example
instantiation in tabular form. Domain analysis and engineering produce a model
which is integrated with the formal specification/ verification method B by the
use of our UML-B profile. The formal verification both of the generic require-
ment set, and of a simple system instance, is demonstrated using our U2B and
ProB tools.
This work is a demonstrator for a tool-supported method which will be an out-
put of EU project RODIN3. The method, based in the dominant UML standard,
will exploit formal verification technology largely as a “black box” for this novel
combination of product line, failure management and safety-critical engineering.

1 Introduction

The notion of software product line (also known as system family) engineering be-
came well established [18], after Parnas’ proposal [21] in the 70’s of information hiding
and modularization as techniques that would support the handling of program families.
Product line engineering arises where multiple variants of essentially the same software
system are required, to meet a variety of platform, functional, or other requirements.
This kind of generic systems engineering is well known in the avionics industry; e.g.
[16, 10] describe the reuse of generic sets of requirements in engine control and flight
control systems.

3 This work is conducted in the setting of the EU funded research project: IST 511599 RODIN
(Rigorous Open Development Environment for Complex Systems).

Domain analysis and object oriented frameworks are among numerous solutions
proposed to product line technology. In Domain-Specific Software Architecture [27]
for example, the domain engineering of a set of general, domain-specific requirements
for the product line is followed by its successive refinement, in a series of system en-
gineering cycles, into specific product requirements. On the other hand [11] describes
the Object-Oriented Framework as a “a reusable, semi-complete application that can be
specialized to produce custom applications”. Here the domain engineering produces an
object-oriented model that must be instantiated, in some systematic way, for each spe-
cific product required. In this work we combine object-oriented and formal techniques
and tools in domain and product line engineering.

Developers in the avionics industry are interested in the use of object-oriented and
UML technology (OOT) [7, 19] as a way to increase productivity. Concepts such as
inheritance and design patterns facilitate the reuse of requirements and designs. UML
has emerged as the de-facto standard modelling language for object-oriented design
and analysis, supported by a wide variety of tools. Due to concerns over safety certifi-
cation issues however, OOT has not seen widespread use in avionics applications. The
controlling standards used in the industry, such as RTCA DO-178B [12] and its Euro-
pean equivalent, EUROCAE ED-12B [1], do not consider OOT, although this is under
review.

It is widely recognized that formal methods (FM) technology makes a strong con-
tribution to the verification required for safety-critical systems; indeed, DefStan 00-55
[20] as well as the avionics standards above recommend the use of FM for critical sys-
tems. It is further recognized that FM will need to be integrated [4] - in as “black-box”
as possible a manner - with OOT in order to achieve serious industry penetration. The
combination of UML and formal methods therefore offers the promise of improved
safety and flexibility in the design of software for aviation certification.

One approach to the integration of FM and OOT is to enhance - at the abstract mod-
elling stage - UML with the minimum amount of textual formal specification required
to completely express functional, safety and other requirements. A tool will convert the
customer-oriented abstract UML model to a fully textual model as input to FM tools
such as model-checkers and theorem provers. With suitable tool support for configura-
tion and project management, this approach will facilitate the reuse of verified software
specifications and consequently code components.

Adoption of formal methods in the safety-critical industry has been limited partly
due to the need for industrial strength tool support. The B method of J.-R. Abrial [2,
23] is a formal method with good tool support, and a good industrial track record,
e.g. [9]. At Southampton, we have for some years been developing an approach of
integrating formal specification and verification in B, with UML-based design methods,
in the above style. The UML-B [26] is a profile of UML that defines a formal modelling
notation combining UML and B. It is supported by the U2B tool [24], which translates
UML-B models into B, for subsequent formal verification. This verification includes
model-checking with the ProB model-checker [17] for B. These tools have all been
developed at Southampton, and continue to be extended in current work.

1.1 Failure detection and management for engine control

A common functionality required of many systems is tolerance to faults in the envi-
ronment, i.e. the detection and management of failed of input signals. This is particu-
larly pertinent in aviation applications where lack of tolerance to failed system inputs
could have severe consequences. The failure manager filters environmental inputs to
the control system, providing the best information possible whilst determining whether
a component has failed or not. The role of failure management in an embedded control
system is shown in Fig. 1.

F A IL U R E

M A N
C O N T R O L

I
N
P

O
U
T
P
U
T

I
N
P
U
T

Fig. 1. Context diagram for failure management subsystem

Inputs may be tested for signal magnitude and/or rate of change being within defined
bounds, and for consistency with other inputs. If no failure is detected, some input
values are passed on to the control subsystem; others are only used for failure detection
and management. When a failure is detected it is managed in order to maintain a usable
set of input values for the control subsystem. This may involve substituting values, and
taking alternative actions. To prevent over-reaction to isolated transient values, a failed
condition must persist for a period of time before a failure is confirmed. If the invalid
condition is not confirmed the input recovers and is used again. Temporary remedial
actions, such as relying on the last good value, or suppressing control behaviour, may
be taken while a failure is being confirmed. Once a failure is confirmed, more permanent
actions are taken such as switching to an alternative source, altering or degrading the
method of control, engaging a backup system or freezing the controlled equipment.

1.2 Fault Tolerance

This application domain (and our approach to it) includes fault tolerant design in two
senses: tolerance to faults in the environment, and in the control system itself. The fail-
ure detection and management application is precisely about maximizing tolerance to
faults in the sensed engine and airframe environment. The control system (including the
FDM function) - is supported by a backup control system in a dynamically redundant
design. This backup system - with distinct hardware/software design, with a reduced-
functionality sensing fit - can be switched in by a watchdog mechanism if the main
system has failed.

In the narrower (and more usual) sense, we will be examining various schemes for
designing fault tolerance into the FDM software subsystem. Work to date has specified
and validated a generic requirements specification for FDM. As we apply refinement
techniques and technology to construct the design, we will consider various relevant
approaches, such as deriving the specification of a control system from environmental
requirements [13], or the use of fault-tolerant patterns for B specifications [14] and their
refinements [15].

1.3 Contribution

Failure detection and management (FDM) in engine control systems is a demanding ap-
plication area, see e.g. [6]. It gives rise to far more than a trivial parameterizable product
line situation, although there will indeed be small-delta system variants fitted out with
component sets which differ only on operational parameters. In general, component sets
will differ more significantly between system variants. The domain engineering of our
requirements covers all variants of interest to AT Engine Controls.

Our approach contributes to the failure detection and management domain by pre-
senting a method for the engineering, validation and verification of generic require-
ments for product-line engineering purposes. The approach exploits genericity both
within as well as between target system variants. Although product-line engineering
has been applied in engine and flight control systems [16, 10], we are not aware of any
such work in the FDM domain. We define generic classes of failure-detection test for
sensors and variables in the system environment, such as rate-of-change, limit, and
multiple-redundant-sensor, which are simply instantiated by parameter. Multiple in-
stances of these classes occur in any given system. Failure confirmation is then a generic
abstraction over these test classes: it constitutes a configurable process of execution of
specified tests over a number of system cycles, that will determine whether a failure of
the component under test has occurred. Our approach is focussed on the genericity of
this highly variable process.

A further complicating factor is the instability of the FDM requirements domain,
which is often subject to late change. This is because the failure characteristics of dy-
namic controlled systems are usually dependent on interaction with the control systems
being developed and can only be fully determined via prototyping. Our generic require-
ments formulation accommodates this ongoing requirements change process.

Our approach contributes methodologically to product-line requirements engineer-
ing in its integration of informal domain analysis with domain engineering that exploits
both UML and Formal Methods technology. The application of product-line engineer-
ing to failure detection and management is also novel. We have developed a generic
requirement set for the failure detection and management function for a class of sys-
tems supported by AT Engine Controls; this is modelled in UML-B and in a tabular
data schema. We present the process of domain engineering, validating and verifying a
generic model and an example instance model. The UML-B is translated to B with the
U2B tool, and then verified by model-checking with ProB; this verifies both the generic
requirement set and the system instance.

1.4 Structure of the paper

The paper now proceeds as follows. Section 2 introduces formal specification and ver-
ification in B, and our approach in Southampton. Section 3 gives an overview of our
methodology. Sections 4 - 5 discuss the domain analysis and engineering activities.
Section 6 discusses the testing of an instantiated example to verify the generic model.
Section 7 concludes with a discussion of future work.

2 Formal specification and verification with B

The B language [2] of J.-R. Abrial is a wide-spectrum language supporting a full for-
mal development lifecycle from specification through refinement to programming. It is
supported by full-lifecycle verification toolkits such as Atelier B [3], and has been in-
strumental in successful safety-critical system developments such as signalling on the
Paris Metro [9].

A B specification gives an abstract description of requirements, modelled in terms
of system state and behaviour. Simply put, state is described in terms of sets, and be-
haviour in terms of relations on those sets. An invariant clause captures required prop-
erties of the system that must hold at all times, defining the meaning of the data and the
integrity of its structure. The B verification tools [8] generate proof obligations (POs)
that initialisation and all operations maintain the invariant; this is called operation con-
sistency. Automatic and interactive provers are part of the method; we do not discuss
them further here.

A refinement step involves the transformation of an early, abstract nondeterministic
specification into a more concrete one4, by elaboration with more data and algorith-
mic structure, thus reducing nondeterminism. Using the refinement relation between
abstract and concrete models, proof obligations guarantee that the refinement correctly
represents the behaviour of the abstract specification it refines.

2.1 The Southampton approach

In Southampton we have developed two tools to support formal system development in
B: ProB and U2B. ProB [17] is a model checker that searches the full abstract state ma-
chine model of a B specification for invariant violations, returning any counterexample
found. The state model can be presented graphically. Model checking avoids the effort
of proof debugging in early development stages, serving as a preliminary validation of
the specification before commencing proof. ProB furthermore provides a limited form
of temporal model-checking. ProB is also an animator for B machines. In this mode, the
list of currently enabled operations is displayed in a pane. The current state of variables
is displayed in another pane. The user may choose sequences of enabled operations (not
all operations are enabled, or valid, all the time) in order to explore the behaviour of the
specification, thus providing a form of informal prototyping.

The UML-B [26] is a profile of UML that defines a formal modelling notation. It
has a mapping to, and is therefore suitable for translation into, the B language. UML-B

4 The concrete specification in this context is often called the refinement.

consists of class diagrams with attached statecharts, and an integrated constraint and
action language called µB, based on B. The UML-B profile uses stereotypes to spe-
cialise the meaning of UML entities to enhance correspondence with B concepts. The
profile also defines tagged values (UML-B clauses) that may be attached to UML en-
tities to provide formal modelling details that have no counterpart in UML. UML-B
provides a diagrammatic, formal modelling notation based on UML. The popularity of
the UML enables UML-B to overcome some of the barriers to the acceptance of formal
methods in industry. Its familiar diagrammatic notations make specifications accessi-
ble to domain experts who may not be familiar with formal notations. UML-B hides
B’s infrastructure by packaging mathematical constraints and action specifications into
small sections within the context of an owning UML entity. The U2B [24] translator
converts UML-B models into B components (abstract machines and their refinements),
thus enabling B verification and validation technology to be exploited.

3 Overview of methodology

We first give an overview of the methodology which is then discussed in more detail
in the following sections - see Fig. 2. The first stage is an informal domain analysis
(section 4) which is based on prior experience of developing products for the application
domain of failure detection and management in engine control. A taxonomy of the kind
of generic requirements found in the application domain is developed and, from this, a
first-cut generic model is formed, in object-association terms, naming and relating the
generic requirements.

The identification of a useful generic model is a difficult process and therefore fur-
ther exploration of the model is warranted. This is done in the domain engineering stage
(section 5) where a more rigorous examination of the first-cut model is undertaken, us-
ing the B-method and the Southampton tools. The model is animated by creating typical
instances of its generic requirement entities, to test when it is and is not consistent. This
stage is model validation by animation, using the ProB and U2B tools, to show that it
is capable of holding the kind of information that is found in the application domain.
During this stage the relationships between the entities are likely to be adjusted as a bet-
ter understanding of the domain is developed. This stage results in a validated generic
model of requirements that can be instantiated for each new application.

do m a in a n a ly s is do m a in
e n g in e e rin g

firs t-c u t g e n e ric
m o de l

v a lida te d g e n e ric
m o de l

p re v io u s p ro du c t
e x p e rie n c e

Fig. 2. Process for obtaining the generic model

For each new application instance, the requirements are expressed as instances of
the relevant generic requirement objects and their associations, in an instance model
- see Fig. 3. The ProB model checker is then used to verify that the application is
consistent with the relationship constraints embodied in the generic model. This stage,
producing a verified consistent instance model, shows that the requirements are a con-
sistent set of requirements for the domain. It does not, however, show that they are the
right (desired) set of requirements, in terms of system behaviour that will result.

The final stage, therefore, is to add dynamic features to the instantiated model in the
form of variables and operations that model the behaviour of the entities in the domain
and to animate this behaviour so that the instantiated requirements can be validated.
This final stage of the process - “validate instantiation” in Fig. 3 - is work in progress.

in s ta n tia te
g e n e ric m o d e l

v e rify
in s ta n tia tio n

v a lid a te d g e n e ric
m o d e l

a p p lic a tio n in s ta n c e
re q u ire m e n ts

in s ta n c e
m o d e l

c o n s is te n t in s ta n c e
m o d e l

v a lid a te
in s ta n tia tio n

v a lid a te d in s ta n c e
m o d e l

Fig. 3. Process for using the generic model in a specific application

4 Domain analysis

The strategy adopted to reach the first-cut generic requirement model (Fig. 2) was to
apply domain analysis in a style similar to that used by Lam [16]. Prieto-Diaz [22]
defines domain analysis as “a process by which information used in developing software
systems is identified, captured and organised with the purpose of making it reusable
when creating new systems”. The first step was to define the scope of the domain in
discussion with the engine controller experts. An early synthesis of the requirements
and key issues were formed, giving due attention to the rationale for the requirements;
elements of this early draft are given in the introduction. Considering the requirements’
rationale is useful in reasoning about requirements in the domain [16]. For example, the
rationale for confirmation of failure before permanent action is taken, is for the system
to be tolerant to noise. From the consideration of requirements rationale, key issues
were identified which served as “higher-level” properties required of the system. An
example of such a key property would be that the the failure management system must
not be held in a transient action state indefinitely. The rationale from which it has been
derived, is that a transient state is temporary and actions associated with this state may
only be valid for a limited time.

A core set of generic requirements were identified from several representative fail-
ure management engine systems. For example, the identification of magnitude tests with
variable limits and associated conditions established several magnitude test types; these
types have been further subsumed into a general detection type. This type structure
provided a taxonomy for classification of the requirements.

This analysis showed that failure management systems are characterised by a high
degree of fairly simple similar units made complex by a large number of minor vari-
ations and interdependencies. The domain presents opportunities for a high degree of
reuse within a single product as well as between products. For example, a magnitude
test type is usually required in a number of instances in a particular system. This is in
contrast to the engine start domain addressed by Lam [16], where a single instance of
each reusable function exists in a particular product. The methodology described in this
paper is targeted at domains such as failure management where a few simple units are
reused many times and a particular configuration depends on the relationships between
the instances of these simple units. The following requirements taxonomy was derived
from this stage of the domain analysis:

INP Identification of the inputs to be tested.
COND Condition under which a test is performed. A predicate based on the values

and/or failure states of other inputs. Produces a number of actions.
DET Detection of a failure state. A predicate that compares the value of an expression

involving the input to be tested against a limit value.
CONF Confirmation of a (persistent) failure state. An iterative algorithm performed

for each invocation of a detection, used to establish whether a detected failure state
is genuine or transitory

ACT Action taken either normally or in response to a failures, possibly subject to a
condition. Assigns the value of an expression, which may involve inputs and/or
other output values, to an output.

OUT Identification of the outputs to be used in an action

The analysis then considered the relationships between the common elements. This
was used to form the first-cut generic model of Fig. 2, which is elaborated in UML in
Fig. 4. An input (INP) instance represents a sensor value input from the environment.
It may have many associated tests, and a test may utilise many other inputs. A TEST
is composed of a detection method (DET) and confirmation mechanism (CONF) pair5.
For example an engine speed input, which is tested for out of range magnitude as well as
excessive rate of change, has a detection and associated confirmation for the magnitude
test and a different detection and different confirmation for the rate of change test. Each
test also has a collection of conditions (COND) that must be satisfied for the test to be
applied. For example, the engine speed magnitude test that is applied when the engine
is running is different from the engine speed magnitude test applied while starting the
engine. A confirmation mechanism is associated with three different sets of actions
(ACT), the healthy actions (hAct), the temporary actions (tAct), taken while a test is
confirming failure, and the permanent actions (pAct), taken when a test has confirmed
failure. Each action is associated with at least one output (OUT) that it modifies.

5 Consequently TEST is not a category in the requirements taxonomy above.

DE T

IN Pte s t 0 . .*0 . .*C O N D
0 ..* 1

C O N F

111 1

A C T

0 . .*

1

0 ..*

1

0 ..*1

O U T

1 ..*

1 ..*

+ o u t

+ a c t

1 ..*

1 ..*

0 . .*0 . .*

+ in p u t+ c o n d

10 ..*

1

1

1

+ h A c t

+ tA c t

+ p A c t

0 ..*

0 . .*

0 ..*

Fig. 4. Overview of common types of elements of functionality and their interrelationships

The detection mechanism DET of a test can be further decomposed as (i) a check
that signal magnitude is within defined bounds, (ii) a check that signal rate of change is
within defined bounds or (iii) a comparison with a predicted value.

The generic requirement set was recorded into a traceable requirements document
for the case study. The document had several features which assisted in presenting the
requirements in a way suitable for further analysis, in particular a generic section and
an example instantiation of it in tabular form.

The generic section includes

1. The taxonomy of requirements.
2. The model (Fig.4) of the generic requirement domain.
3. For each generic requirement, a concise statement of the requirement and an expla-

nation of the rationale behind it.

The example instantiation section is in tabular form and consists of

1. Uniquely identified instances of the elements in the generic model.
2. References from each instance to other instances as described by the relationships

in the generic model.

5 Domain Engineering

The aim of the domain engineering stage is to explore, develop and validate the first-
cut generic model of the requirements into a validated generic model as per Fig. 2. At
this stage this is essentially a class model, omitting any dynamic features (except for
temporary ones added for validation purposes). The example presented in this paper
(Fig.5) was derived from the domain analysis (we will illustrate this derivation as we
go) by trying it with specific example scenarios taken from existing applications. In
this way, we develop our understanding of the common, reusable elements within the
domain by testing the relationships between them. Again, we rely on our knowledge of
existing systems.

The model was converted to the UML-B notation (Fig.5) by making associations di-
rectional and adding stereotypes and UML-B clauses (tagged values) as defined in the

OU T

C ON DD E T

10 ..*

+ d c o n d

10 ..*

A C T

1

1 ..*

+ a Ou t 1

1 ..*

1

0 ..*

+ a C o n d 1

0 ..*

IN P

C ON F

1

1 ..*

1

+ d e ts 1 ..*

1 ..*0 ..* + tA c t 1 ..*0 ..*

0 ..*0 ..*

+ p A c t

0 ..*0 ..*

0 ..*0 ..*
+ h A c t

0 ..*0 ..*

1

1

+ in p u t
1

1

v a lid a te d _ m o d e l
< < m a c h in e > >

IN V A R IA N T
u n io n (ra n (h A c t)) \/ u n io n (ra n (tA c t)) \/ u n io n (ra n (p A c t)) = A C T

Fig. 5. Final UML-B version of generic model of failure management requirements

UML-B profile [26]. This allows the U2B translator tool to convert the model into the B
notation where validation and verification tools are available. The translation automati-
cally generates an invariant property, which defines the multiplicity constraints of each
association, and the class membership of instances. For example, U2B generated a total
bijection invariant to reflect the 1 to 1 multiplicity constraints of the association, input.
To validate the first-cut model we needed to be able to build up the instances it holds
in steps. For this stage, all classes were given variable cardinality (there is a UML-B
clause to define the cardinality and variability of classes) and a constructor was added
to each class so that the model could be populated with instances. The constructor was
endowed with behaviour (written in µB) to set any associations belonging to that class
to values (i.e. instances of other classes) supplied as parameters.

The developing model was then tested by adding “dummy” instances using the an-
imation facility of ProB and examining the values of the B variables representing the
classes and associations in the model to see that they developed as expected. Initially, an
instance of CONF cannot be added because there are no instances of INP with which to
parameterize it. This forces a partial ordering on the population of the model. The INP
constructor is available initially because the INP class has no outgoing associations. As
soon as an instance of INP is added the multiplicity constraint of the association, input,
is violated. ProB provides an indicator to show when the invariant is violated. Observ-
ing the invariant violations is an essential part of the validation of the model. Knowing
that the model will detect inconsistent instantiations is at least as important as knowing
that it accepts consistent ones.

Figure 6 shows ProB being used to validate the generic model. The top pane shows
the B version of the model generated automatically from the UML-B version (Fig. 5).
The centre bottom pane shows the currently available operations (i.e. the constructors
we added to the generic model for testing purposes). An operation is only enabled when
its preconditions and guards are true. In our model this is when there are unused ‘pos-
sible’ instances left to create and values available to supply as parameters. (Note that,
for practical reasons, we limit a class’s set of possible instances to a small enumerated
set). An available operation is invoked by selecting it from this pane. Each available
operation is repeated in the list for each possible external (parameter) or internal (non-
determinism) choice. The left pane shows the current value of each variable as well as
an indication of whether the invariant has been violated. The right pane shows the se-
quence of operations that have already been taken. In the state shown, two outputs and a
condition were created. This enabled the constructors for DET and ACT. An action, a1,
associated with output, o1, and condition, cf1, has been created and can be seen in the
variables aout and acond representing the associations from ACT. The invariant is
(correctly) violated in this state because output o2 is not used by an action, disobeying
the surjection property of the association.

The model was re-arranged substantially during this phase as the animation revealed
problems. Firstly, our initial model associated each detection with a confirmation. Dur-
ing animation we discovered that this was a mistake since many related detections may
be used on a single input all of which should have the same confirmation mechanism.
We re-arranged the model to associate inputs with confirmations (hence losing the asso-
ciation class, test). We also discovered that actions were often conditional, so we added
an association from ACT to COND. Finally we found that, since we had associated sets
of actions with confirmations, we did not need a further multiplicity from actions and
outputs, thus simplifying the model a little. Hence, ProB animation provides a useful
feedback tool for validation while domain engineering a reusable model in UML-B. The
final version of the generic model is shown in Fig. 5. A confirmation (CONF) is the key
item in the model. Each and every confirmation has an associated input (input:INP)
to be tested and a number of detections (dets:DET) are performed on that input. Each
detection has exactly one enabling condition (dcond:COND). A confirmation may also
have a number of actions (hAct:ACT) to be taken while healthy, a number to be taken
while confirming (tAct:ACT) and a number to be taken once confirmed (pAct:ACT).
Each action acts upon exactly one output (aOut:OUT).

Once we were satisfied that the model was suitable, we converted the classes to fixed
instances and removed the constructor operations. This simplifies the corresponding B
model and the next stage. The associations (representing the relationships between class
instances) are the part of the model that will constrain a specific configuration. These are
still modelled as variables so that they can be described by an invariant and particular
values of them verified by ProB.

6 Testing a specific example satisfies the generic model

Having arrived at a useful model we then specified an example application - creating an
instance model - and used ProB to check the example was consistent with the properties

Fig. 6. ProB being used to validate the generic model

expressed in the generic model. This produced a verified consistent instance model as
per Fig. 3. This verification is a similar process to the previous validation but the focus
is on possible errors in the example rather than in the model. The example specifica-
tion was first described in tabular form. The generic model provides a template for the
construction of the tables. Each class is represented by a separate table with properties
for each entry in the table representing the associations owned by that class. The tab-
ular form is useful as an accessible documentation of the specific example but is not
directly useful for verification. To verify its consistency, the tabular form was translated
into class instance enumerations and association initialisation clauses attached to the
UML-B class model. This was done manually, which was tedious and error prone, but
automation via a tool is envisaged.

ProB was then used to check which conjuncts of the invariant were violated by the
example instantiation. All that is needed is to invoke the intialisation in ProB. Fig. 7
shows the “analyse invariant” facility of ProB being used to identify an error (each line
represents a conjunct in the invariant). Several conjuncts are violated (=false), all
are constraints on associations involving the class, ACT. Examining the initialisations
of these associations reveals that links had not been added for action act1310. Sev-
eral iterations were necessary to eliminate errors in the tables before the invariant was
satisfied (all conjuncts = true).

Fig. 7. ProB being used to verify the example application

We found that the analyse invariant facility provided some indication of where the
invariant was violated (i.e. which conjunct) but, in a data intensive model such as this,
it is still not easy to see which part of the data is at fault. It would be useful to show a
data counterexample to the conjunct (analogous to an event sequence counterexample
in model checking). This is another area for potential tool support.

7 Conclusion

In this paper we have illustrated a product-line approach to the rigorous engineering,
validation and verification of generic requirements for critical systems such as fail-
ure management and detection for engine control. The approach can be generalised to
any relatively complex system component where repetitions of similar units indicate an
opportunity for parameterised reuse but the extent of differences and interrelations be-
tween units makes this non-trivial to achieve. The product-line approach amortises the
effort involved in formal validation and verification over many instance applications.

As indicated before, the methodology and tools presented are work in progress. Dur-
ing the domain analysis phase we found that considering the rationale for requirements
revealed key issues, which are properties that an instantiated model should possess.
At the moment, however, these are not enforced by the generic model. Key issues are
higher level requirements that could be expressed at a more abstract level from which
the (already validated) generic model is a refinement. The generic model could then
be verified to satisfy the key issue properties by proof or model checking. This mat-
ter is considered in [25] which gives an example of refinement of UML-B models in
the failure management domain. The domain analysis process of Fig. 2 would then be
elaborated as shown in Fig. 8.

do m a in a n a ly s is do m a in
e n g in e e rin g

v e rify k e y
is s u e s

p re v io u s p ro du c t
e x p e rie n c e

firs t-c u t g e n e ric
m o de l

va lida te d g e n e ric
m o de l

k e y -is s u e s a b s tra c t
m o de l

fin a l v e rifie d g e n e ric
m o de l

Fig. 8. Elaboration of domain analysis process to show refinement of key issues

Further development is required to validate instance models, as per section 3, Fig.
3. Whilst an instance model can be verified against the constraints embodied within
the generic model (i.e. that it is a valid instantiation of the generic model), it may be
the wrong configuration. That is, it may specify the wrong run-time behaviour. A fur-
ther stage to validate the specific configuration is envisaged. Formal refinement could
be utilised to add new variables and events to represent the dynamic behaviour of the
system. This would allow the specific configuration to be validated via animation.

We have indicated that requirements for support tools are emerging from the case
study; such tools are being specified and planned. Simple database support is required
for product line data definition: maintenance and evolution of the sets of requirement
instance definition tables that define application product instances.

Section 6 identified the need for finer-grained diagnosis of invariant violation in
ProB. ProB could be enhanced to provide, for example, a data counterexample causing
an invariant violation. A related need is for validation and debugging support for bulk
data upload. Given that much of this validation is based on the object types and asso-
ciations in the generic class model of Fig. 5, this is again a job for a database tool. We
are also examining ways to feed such data counterexamples back to the UML diagram
of the generic model; clearly a more user-friendly approach.

The current toolset leads to a seperation between the modelling language (UML-B)
and the verification and validation language (B). In future work, as part of the Rodin
project, we hope to provide better integration and feedback of verification results to
the source models based on a new, extensible, version of the B tools. However, even
without this integration, UML-B provides benefits in the form of model visualisation,
and efficient model creation and editing compared to textual B.

References

[1] EUROCAE ED12B - Software considerations in Airborne Systems and Equipment Certifi-
cation. http://www.eurocae.org.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

[3] J.-R. Abrial. http://www.atelierb.societe.com/index uk.html, 1998. Atelier-B.
[4] P. Amey. Dear sir, Yours faithfully: an everyday story of formality. In F. Redmill and T. An-

derson, editors, Proc. 12th Safety-Critical Systems Symposium, pages 3–18, Birmingham,
2004. Springer.

[5] K. Araki, S. Gnesi, and D. Mandrioli, editors. International Symposium of Formal Methods
Europe, volume 2805 of LNCS, Pisa, Italy, September 2003. Springer.

[6] C.M. Belcastro. Application of failure detection, identification, and accomodation methods
for improved aircraft safety. In Proc. American Control Conference, volume 4, pages 2623–
2624. IEEE, June 2001.

[7] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language - a Reference
Manual. Addison-Wesley, 1998.

[8] D. Cansell, J.-R. Abrial, et al. B4free. A set of tools for B development, from
http://www.b4free.com, 2004.

[9] B. Dehbonei and F. Mejia. Formal development of safety-critical software systems in rail-
way signalling. In M.G. Hinchey and J.P. Bowen, editors, Applications of Formal Methods,
chapter 10, pages 227–252. Prentice-Hall, 1995.

[10] S.R. Faulk. Product-line requirements specification (PRS): an approach and case study. In
Proc. Fifth IEEE International Symposium on Requirements Engineering. IEEE Comput.
Soc, Aug. 2000.

[11] M. Fayad and D. Schmidt. Object-oriented application frameworks. Communications of
the ACM, 40(10):32–38, Oct. 1997.

[12] Radio Technical Commission for Aeronautics. RTCA DO 178B -Software considerations
in Airborne Systems and Equipment Certification. http://www.rtca.org.

[13] I.J. Hayes, M. A. Jackson, and C. B. Jones. Determining the specification of a control
system from that of its environment. In Araki et al. [5], pages 154–169.

[14] L. Laibinis and E. Troubitsyna. Fault tolerance in a layered architecture: a general specifi-
cation pattern in B. In Proc. 2nd Int. Conf. on Software Engineering and Formal Methods,
pages 346–355. IEEE Computer Society, Sep 2004.

[15] L. Laibinis and E. Troubitsyna. Refinement of fault tolerant control systems in B. In Proc.
SAFECOMP 2004, volume 3219 of LNCS, pages 254–268. Springer, 2004.

[16] W. Lam. Achieving requirements reuse: a domain-specific approach from avionics. Journal
of Systems and Software, 38(3):197–209, Sept. 1997.

[17] M. Leuschel and M. Butler. ProB: a model checker for B. In Araki et al. [5], pages 855–874.
[18] R. Macala, L. Jr. Stuckey, and D. Gross. Managing domain-specific, product-line develop-

ment. IEEE Software, pages 57–67, May 1996.
[19] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
[20] UK Ministry of Defence. Def Stan 00-55: Requirements for safety related software in

defence equipment, issue 2. http://www.dstan.mod.uk/data/00/055/02000200.pdf, 1997.
[21] D. L. Parnas. On the design and development of program families. IEEE Transactions on

Sofkvare Engineering, SE-2, March 1976.
[22] R. Prieto-Diaz. Domain analysis: An introduction. ACM SIGSOFT Software Engineering

Notes, 15(2):47–54, 1990.
[23] S. Schneider. The B-Method. Palgrave Press, 2001.
[24] C. Snook and M. Butler. U2B - a tool for translating UML-B models into B. In J. Mermet,

editor, UML-B Specification for Proven Embedded Systems Design, chapter 5. Springer,
2004.

[25] C. Snook, M. Butler, A. Edmunds, and I. Johnson. Rigorous development of reusable,
domain-specific components, for complex applications. In J. Jurgens and R. France, edi-
tors, Proc. 3rd Intl. Workshop on Critical Systems Development with UML, pages 115–129,
Lisbon, 2004.

[26] C. Snook, I. Oliver, and M. Butler. The UML-B profile for formal systems modelling in
UML. In J. Mermet, editor, UML-B Specification for Proven Embedded Systems, chapter 5.
Springer, 2004.

[27] W. Tracz. DSSA (Domain-Specific Software Architecture) pedagogical example. ACM
Software Engineering Notes, pages 49–62, July 1995.

