

Error Recovery for a Boiler System with OTS PID Controller

Tom Anderson, Mei Feng, Steve Riddle, Alexander Romanovsky
School of Computing Science, University of Newcastle upon Tyne,

Newcastle upon Tyne, NE1 7RU, UK
{tom.anderson, mei.feng, steve.riddle, alexander.romanovsky}@ncl.ac.uk

Abstract.

We have previously presented initial results of a
case study which illustrated an approach to
engineering protective wrappers as a means of
detecting errors or unwanted behaviour in systems
employing an OTS (Off-The-Shelf) item. The case study
used a Simulink model of a steam boiler system
together with an OTS PID (Proportional, Integral and
Derivative) controller. The protective wrappers are
developed for the model of the system in such a way
that they allow detection and tolerance of typical
errors caused by unavailability of signals, violations of
range limitations, and oscillations. In this paper we
extend the case study to demonstrate how forward
error recovery based on exception handling can be
systematically incorporated at the level of the
protective wrappers.

1. Introduction

Although integration of Off-The-Shelf (OTS)
components into systems with high dependability
requirements (including those that are safety-critical) is
becoming a viable option for system developers, care
must be taken to avoid a deterioration in overall system
dependability. OTS components can often be of a
lower quality than bespoke components, may not have
been specifically intended for the environment in
which they are to be deployed, and may be poorly
documented. These factors can all contribute to a
higher risk of failure for complex systems employing
OTS components.

It must be accepted that OTS components will be
utilised in such systems, and that their use will be a
source of failure in spite of all efforts to improve the
quality of OTS components and of the system in which
they are to be integrated. The solution we advocate is
to tailor specialised fault tolerance techniques to
support the integration of OTS components into
complex systems.

1.1. Protective Wrappers

In previous work [1,7] we illustrated an approach to
the development of protective wrappers: a bespoke
software module which intercepts all information
going to and from an OTS item. This approach is
developed further in this paper using the same case
study.

Fault tolerance techniques have three main phases:
error detection, error diagnosis and error recovery [5].
The first phase identifies an erroneous state; error
diagnosis is then used to examine and assess the
damaged area, to enable the system to move to an
error-free state by means of error recovery. We have
previously concentrated on detection and diagnosis,
providing only limited recovery actions.

Component wrapping is an established technique
used to intercept data and control flow between a
component and its environment [6]. A protective
wrapper may detect errors or suspicious activities, and
initiate appropriate recovery when possible, and must
be rigorously specified, developed and executed as a
means of protecting OTS items against faults in the
Rest Of the System (ROS), and the ROS against faults
in OTS items. Sources of information for wrapper
development include specification of the OTS item
behaviour, known “erroneous” behaviour of the OTS
item, and specification of the correct behaviour of the
ROS with respect to the OTS item.

1.2. Case Study

The case study used in this paper concerns the
development of a protective wrapper for an Off-The-
Shelf PID (Proportional, Integral and Derivative)
controller. This case study is intended to illustrate how
the approach could be applied in practice, employing
software models of the PID controller and the steam
boiler system rather than conducting a potentially risky
experiment in a real-world environment. Use of such
software models is an active area of research and
development carried out by many leading control
product companies (including Honeywell [8]), and we

used a third-party model of a steam boiler in this case
study. We believe that this decision adds credibility to
our results. The model simulates a real controller and
steam boiler system, enabling us to investigate the
effect of wrapping with a representative model. In the
course of our work we extended the model by
incorporating protective wrappers.

1.3. Roadmap

The remainder of this paper is organised as follows.
In the following section we describe the simulation
environment, the controller and the boiler models we
are using, and our approach to monitoring the model
variables. Section 3 discusses the requirements for a
protective wrapper, and the next three sections discuss
design and implementation of the wrapper to detect,
diagnose and select an appropriate recovery action for
errors caused by unavailability of signals, violations of
range limits, and signal oscillations. Section 7
concludes the paper by discussing the generic error
recovery strategy and the possible impact of wrappers
on the overall execution of the integrated system.

2. Simulation

2.1. Simulink

Simulink (Mathworks) [10] is one of the built-in
tools in MATLAB, providing a platform for modelling,
simulating, and analysing dynamical systems. It
supports linear and nonlinear systems modelled in
continuous time and sampled time, as well as hybrids
of both. Systems can also be multi-rate, i.e., have
different parts that are sampled or updated at different
rates. Simulink contains a comprehensive block library
of sinks, sources, linear and nonlinear components, and
connectors to allow modelling of very sophisticated
systems. Models can also be developed through self-
defined blocks by means of the S-functions feature of
Simulink or by invoking MATLAB functions. After a
model has been defined, it can be simulated and, using
scopes and other display blocks, simulation results can
be displayed while the simulation is running.

Simulink provides a practical and safe platform for
simulating the boiler system and its PID control system,
for detecting operational errors when boiler and control
system interact, and for developing and implementing
a protective wrapper dealing with such errors.

2.2. The Structure of the Model

The abstract structure of the system we modelled is
shown in Figure 1. The overall system has two
principal components: the boiler system and the control

system. In turn, the control system comprises a PID
controller (the OTS item), and the ROS which is
simply the remainder of the control system.

Figure 1. Boiler System and Control System

(including the PID Controller)

The ROS consists of :
• the boiler sensors. These are “smart” sensors which

monitor variables providing input to the PID
controller: Drum Level, Steam Flow, Steam
Pressure, Gas Concentrations and Coal Feeder
Rate;

• actuators. These control a heating burner which can
be ON/OFF, and adjust inlet/outlet valves in
response to outputs from the PID controller: Feed
Water Flow, Coal Feeder Rate and Air Flow;

• configuration settings. These are the “set-points”
for the system: oxygen and bus pressure, which
must be set up in advance by the operators.
Smart sensors and actuators interact with the PID

controller through a standard protocol. Simulink output
blocks can be introduced into the model in such a way
that the variables of the MATLAB working space can
be controlled as necessary. Working with the Simulink
model we were able to perform repeatable experiments
by manipulating any of the changeable variables and
the connections between system components so as to
produce and analyse a range of possible errors that
would be reasonably typical for the simulated system.

2.3. The Simulink Model

The Simulink model (shown in Figure 2) actually
represents the OTS item as three separate PID
controllers that deal with the feed water flow, the coal
feeder rate and the air flow. These controllers output
three eponymous variables: Feed Water Flow (F_wf),
Coal Feeder Rate (C_fr) and Air Flow (Air_f); these
three variables, together with two external variables
(Coal Quality and Steam Load) constitute the
parameters which determine the behaviour of the boiler
system. There are also several internal variables
generated by the smart sensors; some of these, together
with the configuration set-points, provide the inputs to
the PID controllers. Table 1 lists all of the variables
used in the model.

Inputs to OTS

Coal Quality

Steam
Load

Boiler
System

Outputs from OTS

ROS

 Sensors

 Actuators

PID controller
(OTS item)

Control System

Configuration

Table 1. Variables used in the model
Variable Representation Variable Representation

Coal
Quality

Coal quality,
ton per hour

 D_l Drum level

Steam
Load

Steam Load,
fraction of pure
combustibles

S_f Steam flow

F_wf Feed water flow P_d Steam pressure
/ drum

C_fr Coal feeder rate P_b Steam pressure
/ bus

Air_f Air flow
(controlled air)

 O2eco O2
concentration at
economizer

P_ref Bus pressure
set-point

 COeco CO
concentration at
economizer

O2_ref O2 set-point NOxeco NOx
concentration at
economizer

2.4. Variable Monitoring

Simulink scopes and other display blocks enable us

to develop modelling components that observe the
intermediate results while the simulation is running. In
our experiments we can monitor and display a total of
15 variables, comprising all of the variables listed in
Table 1 (except for the two set-points), plus three
internal variables which represent two internal air
flows and one internal steam flow. The simulation time
for all of our experiments is set to 12000 steps. Some
monitoring results are presented in Figure 3. In
particular, this chart demonstrates the behaviour of the
three PID outputs and two external inputs of the boiler
system when at step 2000 the steam load is increased,
and at step 5000 the coal quality changes: in both these

scenarios the boiler system returns to steady operation
reasonably soon.

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000

Simulation Steps

th
re

e
PI

D
 o

ut
pu

ts
 a

nd
 s

te
am

 lo
ad

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

C
oa

l Q
ua

lit
y

coal quality

steam load

air flow

coal feeder rate

feed water flow

Figure 3. Normal Performance of the Boiler

System with PID Controllers

2.5. Properties of the Boiler System and the
PID Controllers

In this section we summarise the information which
we collected to guide us in developing the protective
wrappers. The basic boiler specification provides
information on steam flow, bus pressure, output
temperature and coal calorific value. As the OTS item
(the PID controller(s)) is treated as a black box, any
information about its properties must be deduced from
the interface or from relevant sources where available.
In an ideal world the system designer would have a
complete and correct specification of the boiler system,
the PID controller and the ROS. Unfortunately, we
only had access to limited information about the boiler
system and the ROS (which is typical for many
practical situations). From an investigation of the
boiler model and information acquired from all
available sources, we have formulated the following
description.

Information from the documentation available to us
is as follows:
• Output temperature 540 deg C
• Coal calorific value 16-18 MJ/kg
• Steam load 50-125 ton/hour
• Coal quality is measured as a fraction of pure

combustibles (where pure = 1; actual value about
0.55-0.7)

• Three controlled outputs (F_wf, C_fr, Air_f) are
given as a percentage

Information obtained by analysing the interface and by
investigating the simulated model:
• Set-point of bus pressure ranges from 0 to 20 (usual

value about 9.4)
• Set-point of O2 concentration at economiser ranges

from 0 to 0.1 (usual value about 0.03)
• Internal variables input to PID controllers:

PID Controller 1 for Feed
Water Flow

PID Controller 3
for Air Flow

Coal
Quality

Steam
Load

F_wf F_wf

C_fr C_fr

Air_f Air_f

Coal
Quality

Steam
Load

D_lD_l

S_f

P_dP_d

P_bP_b

O2eco

COeco

NOxecoNOxeco

D_l

S_f
F_wfF_wf

Air_fAir_f

C_fr C_fr

O2_ref

O2_ref

COeco

PID Controller 2 for
Coal Feeder rpm

C_frC_fr

P_b

P_ref

P_ref

Boiler System

O2eco

S_f

O2eco

P_d

Figure 2. Simulink Model of the Boiler System
with PID Controllers

• Drum level: output value between -1 and +1
(usual value close to 0)

• Steam Flow: 0 to 125
• Bus pressure: 0 to 20
• O2 concentration at economiser: 0 to 0.5

3. Requirements for a Protective Wrapper

In the previous section we presented an outline
characterisation of the boiler system, as deduced from
the model and other sources. In the following sections
we consider the errors which could arise from
integrating an OTS PID controller in the system, in
order to derive requirements for a protective wrapper.
To simplify our modelling perspective, we adopted the
following assumptions in respect of an implementation
of the system:
• The value of each variable can be checked

instantaneously through microprocessors. In
particular, we assume that the values of input and
output variables of the PID controller are available
instantaneously. This (highly) simplifying
assumption enables us to illustrate the method for
protective wrapper development without regard to
issues relating to response times.

• The wrapper program can be inserted into the
control system, either by a partial hardware
implementation which intercepts the physical
connections, or purely in software. There are, of
course, significant issues involved in deciding on
the implementation of a protective wrapper, but we
do not address these in this paper.
In order to clarify the requirements for a protective

wrapper, it is necessary to form a view of what the PID
controller and the ROS should, and should not, do at
the interface between them. This view can be
formulated as a collection of Acceptable Behaviour
Constraints (ABCs) [7] defined from the perspective of
the systems integrator. Once defined, these ABCs can
be thought of as contracts [11] which a system designer
could use as the basis for defining a protective wrapper,
which can then embody relatively conventional
mechanisms for error detection, containment and
recovery [2].

4. Safe Boiler Operation

Many aspects of the operation of the boiler and
control system, such as the flow of gases, fuelling,
pressures and levels, could lead to a failure of some
type. However, some features are much more
significant in terms of safety; in a steam boiler, the
drum level is a key parameter. This parameter
represents the quantity of water in the boiler more
accurately than a direct measurement of the water level,

due to changes in mass caused by differences in
temperature. By monitoring and controlling the drum
level we can maximize steam quality and maintain the
proper water quantity to prevent damage to the boiler.
Too low a level could expose the water tubes to heat
stress and damage; too high a level could allow water
to go over the steam header, exposing the steam
turbines to corrosion and damage [12, 13]. Steam
pressures on the drum and the bus are the two other
key variables, since they indicate the balance between
the supply and demand for steam. The consequences of
excessively high steam pressures are obvious and
explosive. Thus, any deviation from normal values of
steam pressure and drum level must be corrected
immediately, whereas abnormal values of the other
variables can be tolerated for a time period (which
must be defined by the system designer).

We classify the detectable variables into two loops,
the control loop and the safety loop, which operate as
follows:
• an alarm from the safety loop will shut the system

down;
• alarms from the control loop are processed on-line

and either resolved or, if this is unsuccessful, the
safety loop is triggered.
The wrapper envelopes the PID controllers as

shown in Figure 4: it monitors the values of variables
which go into and come out from the PID controllers.
Three variables – the drum level and the steam
pressures on the drum and bus – are classed as
belonging to the safety loop, and all other variables
(PID outputs to the boiler (via the ROS), set-points and
other input variables) belong to the control loop.

Figure 4. Variable categories around the PID
controller(s)

5. Error Recovery

Error recovery transforms a system state that

contains errors into an error free state. The
transformation typically takes the form of either
backward or forward error recovery [2]. Backward
error recovery returns the system to a previous
(assumed to be correct) state; typically, the techniques
used are application-independent and often operate
transparently for the application (e.g. atomic

Wrapper
Variables
from ROS

PID
controller(s) Set

points

PID outputs
to ROS

transactions and checkpoints). Forward error recovery
aims to move the system into a correct state using
knowledge about the current erroneous state; this
recovery is application-specific by its nature. The most
general framework for achieving forward recovery is
exception handling [3]. It is not difficult to see that
backward error recovery is not generally applicable in
dealing with OTS items [4].

Protective wrappers offer a structured approach for
incorporating fault tolerance measures in systems with
OTS items. In previous work [1] we demonstrated how
error detection can be developed in a wrapper by
cyclically checking for each type of possible error
identified during the analysis phase. We characterise
these errors into three distinguishable types: (a) signal
not available, (b) signal violating specifications, and (c)
unacceptable signal oscillations. When the wrapper
detects an erroneous situation it immediately initiates
recovery action by classifying the error and invoking a
corresponding exception handler. Three possible
recovery actions are suggested here.
• Handler1:Reset the signal to a standard normal

value and send an alert to the operators.
• Handler2:
- Wait ∆t, if error resolved, take no action;
- Otherwise, send an alarm to the operators and

wait ∆T, if error resolved, take no action;
- Otherwise, invoke handler 3.
• Handler3: Shutdown the system and send an alarm

to the operators.
In Handler2, the delay times ∆t and ∆T would be

determined by the wrapper designer after consulting
the system specification. In the Simulink model we
took ∆t as 500 steps and ∆T as 1500 steps, representing
reasonable values for a genuine industrial application.

Analysis of the error types for different signals then
enabled us to define a recovery strategy, which is
discussed in the following subsection, and then
illustrated in Figure 5.

5.1. Recovery Strategy

In the case of an erroneous situation detected for a set-
point value, whether it is missing, out of specification
or oscillating is of secondary interest. The wrapper is
aware of the appropriate range of set-point values, and
Handler1 provides appropriate recovery by forcing the
input to a suitable value, and alerting the operators
(since the mistake could be theirs, or an internal
corruption).

The situation is rather different when a PID output
value is detected as being erroneous, but the same
response can be made; either by adopting standard
operating output values, or by storing a recent history
and using a smoothed average, the wrapper can apply

Handler1 to impose a valid output signal which should
result in stable, though suboptimal, performance from
the boiler system. It would be possible to differentiate
between the three error types in terms of determining
the signal value to be imposed, but we have not
exploited this in our simple demonstrator.

Now consider inputs to the PID controllers which
are not set-points, and are not in the safety loop. When
one of these is detected as erroneous there is little point
in feeding a fixed value to the PID, since this will not
reflect the actual conditions monitored by the ROS.
However, given that there is no immediate safety
concern, the optimistic strategy of “wait and see” may
be successful; indeed for a short interval it may not be
appropriate even to alert the operators, since the
phenomenon may be completely transient in nature (it
would, of course, still be logged for an off-line report).
If the problem persists an alarm report to the operators
may enable them to cure the problem, but if not an
eventual shut-down is inevitable. So the wrapper can
deploy Handler2; again, although differentiation of the
response in line with error type is possible, we have not
exploited this option.

Lastly, consider the variables in the safety loop:
drum level, drum and bus steam pressures. Detecting
an erroneous condition on one (or more) of these
variables implies a risk to safety, and the natural
response is to shut the boiler system down, despite the
economic consequences. Handler3 provides this
response, but to illustrate error category differentiation
in our model we invoke Handler2 in the particular case
of an oscillating value. The justification is that
although a missing signal value or an out of
specification value indicates a clear and present risk of
accident, an oscillating value within specification does
not necessarily pose the same immediate threat – the
oscillations may die out or an operator response could
stabilise the situation. If the oscillations persist then
Handler3 will still be brought into play. Of course, in a
real boiler system this strategy would only be
acceptable if justified by a safety case.

Figure 5. Recovery action implemented by
exception handlers

Handler3

Handler1

Handler2

PID outputs and
set points

Inputs to PID

Drum level and
steam pressures

Control loop

Safety loop

5.2. Exception Handling

When any of the errors above is detected an

exception is raised. Error diagnosis is performed to
select the appropriate handler, depending on which
variable caused the exception to be raised. The
diagnosis is straightforward for variables in the control
loop: in the safety loop, we differentiate between error
categories.

Errors detected by the protective wrapper can be
caused by malfunctioning of the OTS item, by faults
arising in the ROS, or by misinterpretation between the
OTS item and the ROS (Figure 1). In the PID case
study considered here, the exception handlers
implemented in the protective wrapper always act at
the level of the integrated system, which constitutes the
exception handling context [4]; they can send an alert
or alarm signal to the operator, replace an erroneous
value with an alternative “normal” value, await a
natural rectification, or (when safety requires it)) shut
the system down.

Clear separation of the normal and abnormal system
behaviour by employing exception handling in the
wrapper facilitates the integration of the OTS PID into
the composite system [4].

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000
simulation steps

st
ea

m
 p

re
ss

ur
e

on
 b

us

-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0

dr
um

 le
ve

l

drum level

pressure on bus

-500

0

500

1000

1500

2000

2500

3000

0 2000 4000 6000 8000 10000 12000
simulation steps

ai
r f

lo
w

 a
nd

 c
oa

l f
ee

de
r r

at
e

-100
-50
0
50
100
150
200
250
300
350
400

fe
ed

 w
at

er
 fl

ow

feed w ater f low

coal feeder rate

air f low

Figure 6. Erroneous pressure set-point –

boiler system with no wrapper

6. Implementing the Recovery Actions

This section illustrates the operation of recovery

when an error occurs, with the wrapper implemented in
the MATLAB model. The example presented below
applies error recovery by invoking Handler1. The error
was introduced by artificially simulating an incorrectly
valued pressure set-point. At step 5000 the operator
“accidentally” recalibrates the pressure set-point to be
94 instead of the normal value of 9.4.

Figure 6 shows the boiler system behaviour with no
wrapper protection; note that the bus steam pressure is
superimposed over drum steam pressure, so only one
pressure variable is actually displayed.

The first chart of Figure 6 shows that the faulty
pressure set-point results in a huge drop in the drum
level followed by a peak at too high a value before
returning to a level close to normal. Similarly, the three
PID outputs shown in the second chart jump up beyond
their specified levels after step 5000 but return to
normal performance by step 7000. Very much more
serious is the steam pressure, which the first chart
shows rising and remaining at an excessive level.

Figure 7 shows the behaviour of the boiler system
with wrapper protection active.

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000
simulation steps

st
ea

m
 p

re
ss

ur
es

 o
n

dr
um

 &

bu
s

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

dr
um

 le
ve

l

pressure on
drum

drum level

pressure on bus

-10

10

30

50

70

90

110

130

150

0 2000 4000 6000 8000 10000 12000

simulation steps

co
al

 fe
ed

er
 ra

te
 a

nd
 a

ir
flo

w

0

5

10

15

20

25

30
fe

ed
 w

at
er

 fl
ow

feed w ater f low

air f low

coal feeder rate

Figure 7. Erroneous pressure set-point –
error recovery by Handler1

The wrapper detects the incorrect value of the set-
point and invokes Handler1. Consequently the set-
point is very quickly corrected, and the impact on
system behaviour and on the other variables is greatly
reduced. From the two charts in Figure 7 we see that
although there are some alterations to the variables
when the error occurs, the changes are actually quite
minor, and lie within the range of the specifications for
the system.

7. Discussion and Conclusion

7.1. Generic Error Recovery Strategy

Since an OTS item that has been integrated into a

system is treated as a black box, only the inputs to and
outputs from the OTS are available to be monitored for
error detection. The inputs in a control system can be
partitioned into two groups, where the first group
consists of configuration variables (often under
operator control as set-points), while the second group
provides dynamic status information from the system
under control. A wrapper providing protection in the
system can monitor these two groups of inputs, and the
outputs, and can attempt to distinguish different
categories of erroneous behaviour. As three simple
base categories we proposed: missing value, out of
range value, and oscillating value.

In response to a detected error situation, over these
groups of variables and categories of error, the
protective wrapper can apply an exception handling
framework to attempt to recover from the error.
Simplistic generic recovery strategies that we have
considered are: do nothing, alert the human operators,
change variables to normal values, and stop the system.
In our boiler system example we decided that
erroneous outputs from the OTS could be over-ridden
by the wrapper; in effect, the wrapper will take over
the role of the OTS in erroneous situations, but can
only provide a standard set of normative outputs. In the
same way, the wrapper can over-ride configuration
variable inputs to the OTS, particularly when these are
input set-points. Our Handler1 is used to over-ride
erroneous values.

We need to analyse in more detail the other input
variables delivered to the OTS by the ROS, since
forcing a change here could only have a very indirect
influence on the variable itself, via the OTS and its
outputs back to the controlled system. One important
aspect is with respect to safety and we used this to
apply a hierarchy of recovery. For variables with a
direct impact on safety we “recover” by shutting the
system down (Handler3); for other variables, not in the
safety loop, we first wait to see if the error is transient,
then to see if human intervention will achieve recovery,

and if that too is unsuccessful then the system must be
shut down in any case (Handler2).

Wrapper design for any system would proceed by
analysis of the state space of variables, the errors that
could be detected, the damage assessment that could be
conducted, and the recovery strategies that could be
devised, bearing in mind the implications on system
operations from both a mission (economic) and a
safety perspective.

7.2. Scope of the Wrapper

The essential characteristic of a protective wrapper

is that all inputs to and outputs from the wrapped
component are accessible to and modifiable by the
wrapper. It might be argued that no other system
variables should be accessible to the wrapper, since
otherwise the intuitive image of “wrapping the
component” would be distorted. We feel this is
unnecessarily restrictive. If the system designer
believes that improved performance of the wrapper can
be achieved by utilising information from elsewhere in
the system this should not be prohibited by an artificial
limitation. When the wrapped component is an OTS
item it may be very unlikely that the wrapper could
make any effective use of internal state information
within the OTS component, but valuable insight may
perhaps be gleaned from variables in the ROS that are
not visible to the component. An example of this is
present in our case study. The drum steam pressure is
not actually utilised by the PID controller (although it
is made available), so it is debateable whether or not it
constitutes an input. We gave the wrapper access to
this variable without hesitation, since we suspect that
any practising engineer would do the same.

7.3. Complexity of the Wrapper

A wrapper inserted into a system as a protective

component performs an important role in improving
the reliability of the integrated system. In discharging
this role it is clearly essential that the wrapper does not
itself contribute to an increase in failing behaviour
from the overall system. Ideally, the wrapper should
introduce no faulty behaviour itself, and should capture
and rectify all faulty behaviour it encounters. Perhaps
the best general guidance here is that the most reliable
designs will usually be those that are simplest. The
OTS PID controllers may, of necessity, involve highly
complex algorithms to achieve the optimised boiler
performance that is their goal. But in designing an
effective wrapper we are likely to find that a simple
and effective recovery strategy will outperform
something overly sophisticated. First, a simple design
is more likely to be implemented correctly, and second,

a more complex strategy may have unforeseen
interactions with the control environment and these
could easily detract from effectiveness.

9

10

11

12

0 2000 4000 6000 8000 10000 12000
simulation steps

st
ea

m
 p

re
ss

ur
e

on
 d

ru
m

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

dr
um

 le
ve

l

drum level w ith three
protected PID ouputs

drum level w ith tw o
protected PID ouputs

pressure w ith three
protected PID outputs

pressure w ith tw o
protected PID outputs

Figure 8. Comparison of effects on

performance of boiler system with two kinds
of wrapper designs

Fig. 8 shows a comparison of the impact on two of

the variables in the safety loop for the boiler system,
with two different wrapper designs responding to the
situation described in section 6 (the pressure set-point
changed from 9.4 to 94 at step 5000). One wrapper
applies recovery by using Handler1 to reset all three
PID outputs to standard values, while the other
wrapper only resets the feed water flow and air flow,
leaving the coal feeder rate at its computed value. We
can see from Fig. 8 that the more simplistic strategy of
only changing two of the variables leads to a swifter
and more stable recovery.

This paper has summarised our recent work in the
development of protective wrappers as a structured
approach to providing error detection and recovery in
systems utilising OTS items. This approach embodies
error classification and corresponding recovery
strategies implemented within an exception handling
framework, building on the structure and error
detection issues considered in earlier papers [1,7].

8. Acknowledgements

This work was supported by the EPSRC/UK project

DOTS: Diversity with Off-The-Shelf Components.
(http://www.csr.ncl.ac.uk/dots), and has benefited
significantly from interaction with colleagues at City
University within the project. A. Romanovsky is
partially supported by FP6 IST RODIN Project (IST-
511599).

An earlier version of the paper was presented at
ECOOP 2003.

9. References
[1] T. Anderson, M. Feng, S. Riddle, A. Romanovsky.

Protective Wrapper Development: A Case Study. 2nd
International Conference on COTS-Based Software
Systems (ICCBSS 2003). Ottawa, Canada, February,
2003. pp. 1-14

[2] P. A. Lee, T. Anderson, Fault Tolerance: Principles and
Practice, Wien - New York, Springer-Verlag, 1991.

[3] F. Cristian. Exception Handling and Tolerance of
Software Faults. In M. R. Lyu (Ed). Software Fault
Tolerance. John Wiley and Sons, 1995, pp. 81-108

[4] A. Romanovsky. Exception Handling in Component-
Based System Development. 25th Int. Computer
Software and Application Conference (COMPSAC
2001), Chicago, IL, October, 2001. pp. 580-586.

[5] J.-C. Laprie. “Dependable Computing: Concepts,
Limits, Challenges”. Special Issue of the 25th
International Symposium On Fault-Tolerant Computing.
IEEE Computer Society Press. Pasadena, CA. June
1995. pp. 42-54

[6] J. Voas. Certifying Off-The-Shelf Software
Components. IEEE Computer, 31(6), 1998, pp. 53-59.

[7] P. Popov, S. Riddle, A. Romanovsky, L. Strigini. On
Systematic Design of Protectors for Employing OTS
Items. In Proc. of the 27th Euromicro conference.
Warsaw, Poland, September 2001 IEEE CS. pp. 22-29.

[8] V. Havlena, Development of ACC Controller with
MATLAB/SIMULINK. MATLAB ’99. Praha: VSCHT -
Ustav fyziky a merici techniky, 1999, pp. 52-59.

[9] J-R. Abrial, E. Börger, H. Langmaack. Formal Methods
for Industrial Applications: Specifying and
Programming the Steam Boiler Control. LNCS 1165,
Springer Verlag, October 1996.

[10] Mathworks, Using Simulink: reference guide,
http://www.mathworks.com

[11] B. Meyer. Programming by Contract. In D. Mandrioli,
B. Meyer (eds.), Advances in Object-Oriented Software
Engineering. Prentice Hall, 1992.

[12] Siemens, Boiler Control Overview,
http://www.procidia.com

[13] Minnesota Department of Labor and Industry, Your
guide to safer boiler operation,
http://www.doli.state.mn. us/pdf/guide2saferboiler.pdf.

