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Abstract. 
 

We have previously presented initial results of a 
case study which illustrated an approach to 
engineering protective wrappers as a means of 
detecting errors or unwanted behaviour in systems 
employing an OTS (Off-The-Shelf) item. The case study 
used a Simulink model of a steam boiler system 
together with an OTS PID (Proportional, Integral and 
Derivative) controller. The protective wrappers are 
developed for the model of the system in such a way 
that they allow detection and tolerance of typical 
errors caused by unavailability of signals, violations of 
range limitations, and oscillations. In this paper we 
extend the case study to demonstrate how forward 
error recovery based on exception handling can be 
systematically incorporated at the level of the 
protective wrappers. 
 
1. Introduction 
 

Although integration of Off-The-Shelf (OTS) 
components into systems with high dependability 
requirements (including those that are safety-critical) is 
becoming a viable option for system developers, care 
must be taken to avoid a deterioration in overall system 
dependability. OTS components can often be of a 
lower quality than bespoke components, may not have 
been specifically intended for the environment in 
which they are to be deployed, and may be poorly 
documented. These factors can all contribute to a 
higher risk of failure for complex systems employing 
OTS components. 

It must be accepted that OTS components will be 
utilised in such systems, and that their use will be a 
source of failure in spite of all efforts to improve the 
quality of OTS components and of the system in which 
they are to be integrated. The solution we advocate is 
to tailor specialised fault tolerance techniques to 
support the integration of OTS components into 
complex systems. 

 

1.1. Protective Wrappers 
 

In previous work [1,7] we illustrated an approach to 
the development of protective wrappers: a bespoke 
software module which intercepts all information 
going to and from an OTS item. This approach is 
developed further in this paper using the same case 
study. 

Fault tolerance techniques have three main phases: 
error detection, error diagnosis and error recovery [5]. 
The first phase identifies an erroneous state; error 
diagnosis is then used to examine and assess the 
damaged area, to enable the system to move to an 
error-free state by means of error recovery. We have 
previously concentrated on detection and diagnosis, 
providing only limited recovery actions.  

Component wrapping is an established technique 
used to intercept data and control flow between a 
component and its environment [6]. A protective 
wrapper may detect errors or suspicious activities, and 
initiate appropriate recovery when possible, and must 
be rigorously specified, developed and executed as a 
means of protecting OTS items against faults in the 
Rest Of the System (ROS), and the ROS against faults 
in OTS items. Sources of information for wrapper 
development include specification of the OTS item 
behaviour, known “erroneous” behaviour of the OTS 
item, and specification of the correct behaviour of the 
ROS with respect to the OTS item. 

 
1.2. Case Study 
 

The case study used in this paper concerns the 
development of a protective wrapper for an Off-The-
Shelf PID (Proportional, Integral and Derivative) 
controller. This case study is intended to illustrate how 
the approach could be applied in practice, employing 
software models of the PID controller and the steam 
boiler system rather than conducting a potentially risky 
experiment in a real-world environment. Use of such 
software models is an active area of research and 
development carried out by many leading control 
product companies (including Honeywell [8]), and we 



 

used a third-party model of a steam boiler in this case 
study. We believe that this decision adds credibility to 
our results. The model simulates a real controller and 
steam boiler system, enabling us to investigate the 
effect of wrapping with a representative model. In the 
course of our work we extended the model by 
incorporating protective wrappers.  
 
1.3. Roadmap 
 

The remainder of this paper is organised as follows. 
In the following section we describe the simulation 
environment, the controller and the boiler models we 
are using, and our approach to monitoring the model 
variables. Section 3 discusses the requirements for a 
protective wrapper, and the next three sections discuss 
design and implementation of the wrapper to detect, 
diagnose and select an appropriate recovery action for 
errors caused by unavailability of signals, violations of 
range limits, and signal oscillations. Section 7 
concludes the paper by discussing the generic error 
recovery strategy and the possible impact of wrappers 
on the overall execution of the integrated system.  

 
2. Simulation 
 
2.1. Simulink 
 

Simulink (Mathworks) [10] is one of the built-in 
tools in MATLAB, providing a platform for modelling, 
simulating, and analysing dynamical systems. It 
supports linear and nonlinear systems modelled in 
continuous time and sampled time, as well as hybrids 
of both. Systems can also be multi-rate, i.e., have 
different parts that are sampled or updated at different 
rates. Simulink contains a comprehensive block library 
of sinks, sources, linear and nonlinear components, and 
connectors to allow modelling of very sophisticated 
systems. Models can also be developed through self-
defined blocks by means of the S-functions feature of 
Simulink or by invoking MATLAB functions. After a 
model has been defined, it can be simulated and, using 
scopes and other display blocks, simulation results can 
be displayed while the simulation is running.  

Simulink provides a practical and safe platform for 
simulating the boiler system and its PID control system, 
for detecting operational errors when boiler and control 
system interact, and for developing and implementing 
a protective wrapper dealing with such errors. 

 
2.2. The Structure of the Model 
 

The abstract structure of the system we modelled is 
shown in Figure 1. The overall system has two 
principal components: the boiler system and the control 

system. In turn, the control system comprises a PID 
controller (the OTS item), and the ROS which is 
simply the remainder of the control system. 

 
Figure 1. Boiler System and Control System 

(including the PID Controller) 

The ROS consists of : 
• the boiler sensors. These are “smart” sensors which 

monitor variables providing input to the PID 
controller: Drum Level, Steam Flow, Steam 
Pressure, Gas Concentrations and Coal Feeder 
Rate; 

• actuators. These control a heating burner which can 
be ON/OFF, and adjust inlet/outlet valves in 
response to outputs from the PID controller: Feed 
Water Flow, Coal Feeder Rate and Air Flow; 

• configuration settings. These are the “set-points” 
for the system: oxygen and bus pressure, which 
must be set up in advance by the operators. 
Smart sensors and actuators interact with the PID 

controller through a standard protocol. Simulink output 
blocks can be introduced into the model in such a way 
that the variables of the MATLAB working space can 
be controlled as necessary. Working with the Simulink 
model we were able to perform repeatable experiments 
by manipulating any of the changeable variables and 
the connections between system components so as to 
produce and analyse a range of possible errors that 
would be reasonably typical for the simulated system. 
 
2.3. The Simulink Model 
 

The Simulink model (shown in Figure 2) actually 
represents the OTS item as three separate PID 
controllers that deal with the feed water flow, the coal 
feeder rate and the air flow. These controllers output 
three eponymous variables: Feed Water Flow (F_wf), 
Coal Feeder Rate (C_fr) and Air Flow (Air_f); these 
three variables, together with two external variables 
(Coal Quality and Steam Load) constitute the 
parameters which determine the behaviour of the boiler 
system. There are also several internal variables 
generated by the smart sensors; some of these, together 
with the configuration set-points, provide the inputs to 
the PID controllers. Table 1 lists all of the variables 
used in the model. 
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Table 1. Variables used in the model 
Variable Representation  Variable  Representation 

Coal 
Quality 

Coal quality, 
ton per hour  

 D_l Drum level 

Steam 
Load 

Steam Load, 
fraction of pure 
combustibles 

 
 

S_f Steam flow 

F_wf Feed water flow  P_d Steam pressure 
/ drum 

C_fr Coal feeder rate  P_b Steam pressure 
/ bus 

Air_f Air flow 
(controlled air) 

 O2eco O2 
concentration at 
economizer 

P_ref Bus pressure 
set-point 

 COeco CO 
concentration at 
economizer 

O2_ref O2 set-point    NOxeco NOx 
concentration at 
economizer 

 
2.4. Variable Monitoring 

 
Simulink scopes and other display blocks enable us 

to develop modelling components that observe the 
intermediate results while the simulation is running. In 
our experiments we can monitor and display a total of 
15 variables, comprising all of the variables listed in 
Table 1 (except for the two set-points), plus three 
internal variables which represent two internal air 
flows and one internal steam flow. The simulation time 
for all of our experiments is set to 12000 steps. Some 
monitoring results are presented in Figure 3. In 
particular, this chart demonstrates the behaviour of the 
three PID outputs and two external inputs of the boiler 
system when at step 2000 the steam load is increased, 
and at step 5000 the coal quality changes: in both these 

scenarios the boiler system returns to steady operation 
reasonably soon.  
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Figure 3. Normal Performance of the Boiler 

System with PID Controllers 

2.5. Properties of the Boiler System and the 
PID Controllers 
 

In this section we summarise the information which 
we collected to guide us in developing the protective 
wrappers. The basic boiler specification provides 
information on steam flow, bus pressure, output 
temperature and coal calorific value. As the OTS item 
(the PID controller(s)) is treated as a black box, any 
information about its properties must be deduced from 
the interface or from relevant sources where available. 
In an ideal world the system designer would have a 
complete and correct specification of the boiler system, 
the PID controller and the ROS. Unfortunately, we 
only had access to limited information about the boiler 
system and the ROS (which is typical for many 
practical situations). From an investigation of the 
boiler model and information acquired from all 
available sources, we have formulated the following 
description. 

Information from the documentation available to us 
is as follows:  
• Output temperature 540 deg C 
• Coal calorific value 16-18 MJ/kg  
• Steam load      50-125 ton/hour 
• Coal quality is measured as a fraction of pure 

combustibles (where pure = 1; actual value about 
0.55-0.7) 

• Three controlled outputs (F_wf, C_fr, Air_f) are 
given as a percentage 

Information obtained by analysing the interface and by 
investigating the simulated model: 
• Set-point of bus pressure ranges from 0 to 20 (usual 

value about 9.4) 
• Set-point of O2 concentration at economiser ranges 

from 0 to 0.1 (usual value about 0.03) 
• Internal variables input to PID controllers:  
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Figure 2. Simulink Model of the Boiler System 
with PID Controllers 



 

• Drum level: output value between -1 and +1 
(usual value close to 0) 

• Steam Flow: 0 to 125 
• Bus pressure:  0 to 20  
• O2 concentration at economiser:  0 to 0.5 

 
3. Requirements for a Protective Wrapper 
 

In the previous section we presented an outline 
characterisation of the boiler system, as deduced from 
the model and other sources. In the following sections 
we consider the errors which could arise from 
integrating an OTS PID controller in the system, in 
order to derive requirements for a protective wrapper. 
To simplify our modelling perspective, we adopted the 
following assumptions in respect of an implementation 
of the system: 
• The value of each variable can be checked 

instantaneously through microprocessors. In 
particular, we assume that the values of input and 
output variables of the PID controller are available 
instantaneously. This (highly) simplifying 
assumption enables us to illustrate the method for 
protective wrapper development without regard to 
issues relating to response times. 

• The wrapper program can be inserted into the 
control system, either by a partial hardware 
implementation which intercepts the physical 
connections, or purely in software. There are, of 
course, significant issues involved in deciding on 
the implementation of a protective wrapper, but we 
do not address these in this paper. 
In order to clarify the requirements for a protective 

wrapper, it is necessary to form a view of what the PID 
controller and the ROS should, and should not, do at 
the interface between them. This view can be 
formulated as a collection of Acceptable Behaviour 
Constraints (ABCs) [7] defined from the perspective of 
the systems integrator. Once defined, these ABCs can 
be thought of as contracts [11] which a system designer 
could use as the basis for defining a protective wrapper, 
which can then embody relatively conventional 
mechanisms for error detection, containment and 
recovery [2].  

 
4. Safe Boiler Operation 
 

Many aspects of the operation of the boiler and 
control system, such as the flow of gases, fuelling, 
pressures and levels, could lead to a failure of some 
type. However, some features are much more 
significant in terms of safety; in a steam boiler, the 
drum level is a key parameter. This parameter 
represents the quantity of water in the boiler more 
accurately than a direct measurement of the water level, 

due to changes in mass caused by differences in 
temperature. By monitoring and controlling the drum 
level we can maximize steam quality and maintain the 
proper water quantity to prevent damage to the boiler. 
Too low a level could expose the water tubes to heat 
stress and damage; too high a level could allow water 
to go over the steam header, exposing the steam 
turbines to corrosion and damage [12, 13]. Steam 
pressures on the drum and the bus are the two other 
key variables, since they indicate the balance between 
the supply and demand for steam. The consequences of 
excessively high steam pressures are obvious and 
explosive. Thus, any deviation from normal values of 
steam pressure and drum level must be corrected 
immediately, whereas abnormal values of the other 
variables can be tolerated for a time period (which 
must be defined by the system designer).  

We classify the detectable variables into two loops, 
the control loop and the safety loop, which operate as 
follows: 
• an alarm from the safety loop will shut the system 

down; 
• alarms from the control loop are processed on-line 

and either resolved or, if this is unsuccessful, the 
safety loop is triggered. 
The wrapper envelopes the PID controllers as 

shown in Figure 4: it monitors the values of variables 
which go into and come out from the PID controllers. 
Three variables – the drum level and the steam 
pressures on the drum and bus – are classed as 
belonging to the safety loop, and all other variables 
(PID outputs to the boiler (via the ROS), set-points and 
other input variables) belong to the control loop.  

 

 
 

Figure 4. Variable categories around the PID 
controller(s) 

 
5. Error Recovery  

 
Error recovery transforms a system state that 

contains errors into an error free state. The 
transformation typically takes the form of either 
backward or forward error recovery [2]. Backward 
error recovery returns the system to a previous 
(assumed to be correct) state; typically, the techniques 
used are application-independent and often operate 
transparently for the application (e.g. atomic 
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transactions and checkpoints). Forward error recovery 
aims to move the system into a correct state using 
knowledge about the current erroneous state; this 
recovery is application-specific by its nature. The most 
general framework for achieving forward recovery is 
exception handling [3]. It is not difficult to see that 
backward error recovery is not generally applicable in 
dealing with OTS items [4].  

Protective wrappers offer a structured approach for 
incorporating fault tolerance measures in systems with 
OTS items. In previous work [1] we demonstrated how 
error detection can be developed in a wrapper by 
cyclically checking for each type of possible error 
identified during the analysis phase. We characterise 
these errors into three distinguishable types: (a) signal 
not available, (b) signal violating specifications, and (c) 
unacceptable signal oscillations. When the wrapper 
detects an erroneous situation it immediately initiates 
recovery action by classifying the error and invoking a 
corresponding exception handler. Three possible 
recovery actions are suggested here.  
• Handler1:Reset the signal to a standard normal 

value and send an alert to the operators. 
• Handler2:  
- Wait ∆t, if error resolved, take no action;  
- Otherwise, send an alarm to the operators and 

wait ∆T, if error resolved, take no action; 
- Otherwise, invoke handler 3. 
• Handler3: Shutdown the system and send an alarm 

to the operators. 
In Handler2, the delay times ∆t and ∆T would be 

determined by the wrapper designer after consulting 
the system specification. In the Simulink model we 
took ∆t as 500 steps and ∆T as 1500 steps, representing 
reasonable values for a genuine industrial application. 

Analysis of the error types for different signals then 
enabled us to define a recovery strategy, which is 
discussed in the following subsection, and then 
illustrated in Figure 5. 

 
5.1. Recovery Strategy 
 
In the case of an erroneous situation detected for a set-
point value, whether it is missing, out of specification 
or oscillating is of secondary interest. The wrapper is 
aware of the appropriate range of set-point values, and 
Handler1 provides appropriate recovery by forcing the 
input to a suitable value, and alerting the operators 
(since the mistake could be theirs, or an internal 
corruption). 

The situation is rather different when a PID output 
value is detected as being erroneous, but the same 
response can be made; either by adopting standard 
operating output values, or by storing a recent history 
and using a smoothed average, the wrapper can apply 

Handler1 to impose a valid output signal which should 
result in stable, though suboptimal, performance from 
the boiler system. It would be possible to differentiate 
between the three error types in terms of determining 
the signal value to be imposed, but we have not 
exploited this in our simple demonstrator. 

Now consider inputs to the PID controllers which 
are not set-points, and are not in the safety loop. When 
one of these is detected as erroneous there is little point 
in feeding a fixed value to the PID, since this will not 
reflect the actual conditions monitored by the ROS. 
However, given that there is no immediate safety 
concern, the optimistic strategy of “wait and see” may 
be successful; indeed for a short interval it may not be 
appropriate even to alert the operators, since the 
phenomenon may be completely transient in nature (it 
would, of course, still be logged for an off-line report). 
If the problem persists an alarm report to the operators 
may enable them to cure the problem, but if not an 
eventual shut-down is inevitable. So the wrapper can 
deploy Handler2; again, although differentiation of the 
response in line with error type is possible, we have not 
exploited this option. 

Lastly, consider the variables in the safety loop: 
drum level, drum and bus steam pressures. Detecting 
an erroneous condition on one (or more) of these 
variables implies a risk to safety, and the natural 
response is to shut the boiler system down, despite the 
economic consequences.  Handler3 provides this 
response, but to illustrate error category differentiation 
in our model we invoke Handler2 in the particular case 
of an oscillating value. The justification is that 
although a missing signal value or an out of 
specification value indicates a clear and present risk of 
accident, an oscillating value within specification does 
not necessarily pose the same immediate threat – the 
oscillations may die out or an operator response could 
stabilise the situation. If the oscillations persist then 
Handler3 will still be brought into play. Of course, in a 
real boiler system this strategy would only be 
acceptable if justified by a safety case.  
 

Figure 5. Recovery action implemented by 
exception handlers 
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5.2. Exception Handling 
 
When any of the errors above is detected an 

exception is raised. Error diagnosis is performed to 
select the appropriate handler, depending on which 
variable caused the exception to be raised. The 
diagnosis is straightforward for variables in the control 
loop: in the safety loop, we differentiate between error 
categories. 

Errors detected by the protective wrapper can be 
caused by malfunctioning of the OTS item, by faults 
arising in the ROS, or by misinterpretation between the 
OTS item and the ROS (Figure 1). In the PID case 
study considered here, the exception handlers 
implemented in the protective wrapper always act at 
the level of the integrated system, which constitutes the 
exception handling context [4]; they can send an alert 
or alarm signal to the operator, replace an erroneous 
value with an alternative “normal” value, await a 
natural rectification, or (when safety requires it)) shut 
the system down. 

Clear separation of the normal and abnormal system 
behaviour by employing exception handling in the 
wrapper facilitates the integration of the OTS PID into 
the composite system [4]. 
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Figure 6. Erroneous pressure set-point – 

boiler system with no wrapper 

6. Implementing the Recovery Actions  
 
This section illustrates the operation of recovery 

when an error occurs, with the wrapper implemented in 
the MATLAB model. The example presented below 
applies error recovery by invoking Handler1. The error 
was introduced by artificially simulating an incorrectly 
valued pressure set-point. At step 5000 the operator 
“accidentally” recalibrates the pressure set-point to be 
94 instead of the normal value of 9.4. 

Figure 6 shows the boiler system behaviour with no 
wrapper protection; note that the bus steam pressure is 
superimposed over drum steam pressure, so only one 
pressure variable is actually displayed.  

The first chart of Figure 6 shows that the faulty 
pressure set-point results in a huge drop in the drum 
level followed by a peak at too high a value before 
returning to a level close to normal. Similarly, the three 
PID outputs shown in the second chart jump up beyond 
their specified levels after step 5000 but return to 
normal performance by step 7000. Very much more 
serious is the steam pressure, which the first chart 
shows rising and remaining at an excessive level. 

Figure 7 shows the behaviour of the boiler system 
with wrapper protection active. 
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Figure 7. Erroneous pressure set-point – 
error recovery by Handler1 



 

The wrapper detects the incorrect value of the set-
point and invokes Handler1. Consequently the set-
point is very quickly corrected, and the impact on 
system behaviour and on the other variables is greatly 
reduced. From the two charts in Figure 7 we see that 
although there are some alterations to the variables 
when the error occurs, the changes are actually quite 
minor, and lie within the range of the specifications for 
the system.  
 
7. Discussion and Conclusion 
 
7.1. Generic Error Recovery Strategy   

 
Since an OTS item that has been integrated into a 

system is treated as a black box, only the inputs to and 
outputs from the OTS are available to be monitored for 
error detection. The inputs in a control system can be 
partitioned into two groups, where the first group 
consists of configuration variables (often under 
operator control as set-points), while the second group 
provides dynamic status information from the system 
under control. A wrapper providing protection in the 
system can monitor these two groups of inputs, and the 
outputs, and can attempt to distinguish different 
categories of erroneous behaviour. As three simple 
base categories we proposed: missing value, out of 
range value, and oscillating value. 

In response to a detected error situation, over these 
groups of variables and categories of error, the 
protective wrapper can apply an exception handling 
framework to attempt to recover from the error. 
Simplistic generic recovery strategies that we have 
considered are: do nothing, alert the human operators, 
change variables to normal values, and stop the system. 
In our boiler system example we decided that 
erroneous outputs from the OTS could be over-ridden 
by the wrapper; in effect, the wrapper will take over 
the role of the OTS in erroneous situations, but can 
only provide a standard set of normative outputs. In the 
same way, the wrapper can over-ride configuration 
variable inputs to the OTS, particularly when these are 
input set-points. Our Handler1 is used to over-ride 
erroneous values. 

We need to analyse in more detail the other input 
variables delivered to the OTS by the ROS, since 
forcing a change here could only have a very indirect 
influence on the variable itself, via the OTS and its 
outputs back to the controlled system. One important 
aspect is with respect to safety and we used this to 
apply a hierarchy of recovery. For variables with a 
direct impact on safety we “recover” by shutting the 
system down (Handler3); for other variables, not in the 
safety loop, we first wait to see if the error is transient, 
then to see if human intervention will achieve recovery, 

and if that too is unsuccessful then the system must be 
shut down in any case (Handler2). 

Wrapper design for any system would proceed by 
analysis of the state space of variables, the errors that 
could be detected, the damage assessment that could be 
conducted, and the recovery strategies that could be 
devised, bearing in mind the implications on system 
operations from both a mission (economic) and a 
safety perspective. 

 
7.2. Scope of the Wrapper 

 
The essential characteristic of a protective wrapper 

is that all inputs to and outputs from the wrapped 
component are accessible to and modifiable by the 
wrapper. It might be argued that no other system 
variables should be accessible to the wrapper, since 
otherwise the intuitive image of “wrapping the 
component” would be distorted. We feel this is 
unnecessarily restrictive. If the system designer 
believes that improved performance of the wrapper can 
be achieved by utilising information from elsewhere in 
the system this should not be prohibited by an artificial 
limitation. When the wrapped component is an OTS 
item it may be very unlikely that the wrapper could 
make any effective use of internal state information 
within the OTS component, but valuable insight may 
perhaps be gleaned from variables in the ROS that are 
not visible to the component. An example of this is 
present in our case study. The drum steam pressure is 
not actually utilised by the PID controller (although it 
is made available), so it is debateable whether or not it 
constitutes an input. We gave the wrapper access to 
this variable without hesitation, since we suspect that 
any practising engineer would do the same. 

 
7.3. Complexity of the Wrapper 

 
A wrapper inserted into a system as a protective 

component performs an important role in improving 
the reliability of the integrated system. In discharging 
this role it is clearly essential that the wrapper does not 
itself contribute to an increase in failing behaviour 
from the overall system. Ideally, the wrapper should 
introduce no faulty behaviour itself, and should capture 
and rectify all faulty behaviour it encounters. Perhaps 
the best general guidance here is that the most reliable 
designs will usually be those that are simplest. The 
OTS PID controllers may, of necessity, involve highly 
complex algorithms to achieve the optimised boiler 
performance that is their goal. But in designing an 
effective wrapper we are likely to find that a simple 
and effective recovery strategy will outperform 
something overly sophisticated. First, a simple design 
is more likely to be implemented correctly, and second, 



 

a more complex strategy may have unforeseen 
interactions with the control environment and these 
could easily detract from effectiveness. 
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Figure 8. Comparison of effects on 

performance of boiler system with two kinds 
of wrapper designs 

 
Fig. 8 shows a comparison of the impact on two of 

the variables in the safety loop for the boiler system, 
with two different wrapper designs responding to the 
situation described in section 6 (the pressure set-point 
changed from 9.4 to 94 at step 5000). One wrapper 
applies recovery by using Handler1 to reset all three 
PID outputs to standard values, while the other 
wrapper only resets the feed water flow and air flow, 
leaving the coal feeder rate at its computed value. We 
can see from Fig. 8 that the more simplistic strategy of 
only changing two of the variables leads to a swifter 
and more stable recovery. 

This paper has summarised our recent work in the 
development of protective wrappers as a structured 
approach to providing error detection and recovery in 
systems utilising OTS items. This approach embodies 
error classification and corresponding recovery 
strategies implemented within an exception handling 
framework, building on the structure and error 
detection issues considered in earlier papers [1,7]. 
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