Formal Service-Oriented Development of Fault
Tolerant Communicating Systems

Linas Laibinis*, Elena Troubitsyna*, Sari Leppdnen**, Johan Lilius*,
Qaisar Malik*

*Abo Akademi University, Department of Computer Science,
Lemminkaisenkatu 14 A, 20520, Turku, Finland
** Nokia Research Center, Mobile Networks Laboratory,
P.O. Box 407, 00045, Helsinki, Finland

1. Introduction

Majority of engineering methods for building complex systems is based on system
decomposition. In the software engineering the decomposition-based development
methods are often referred to as the service-oriented methods. The notion of a service
provides a convenient mechanism for modelling and reasoning about system
interactions and functionality.

In the telecommunicating systems, a service is usually understood as a coherent
piece of functionality that the system delivers to its users. Since telecommunicating
systems are distributed by their nature, a service is usually provided by several
collaborating service components. Often communication between service components
relies on an unreliable media, such as, e.g., radio-based mobile network. Hence
communication failures are an intrinsic part of system behaviour. Therefore, the
correct service provision is unfeasible without integrating the fault tolerance
mechanisms in the system design.

In this paper we propose a formal approach to service-oriented development of
fault tolerant communicating distributed systems. Our approach is based on
formalization of the service-oriented methodology Lyra [4] developed in the Nokia
Research Center. The design flow of Lyra is based on concepts of decomposition and
preservation of the externally observable behaviour. The system behaviour is
modularised and organized into hierarchical layers according to the external
communication and related interfaces so that the distributed network architecture can
be derived from the functional system requirements via a number of model
transformations. This approach coincides with the stepwise refinement paradigm
adopted in the B Method [1].

In this paper we describe our work on the formalizing Lyra in B. We propose
general specification and development patterns according to which the services can be
specified and decomposed into communicating service components. The patterns
generalise the existing practice of the communicating system engineering. Hence our
approach provides the basis for automating the process of development of

communicating systems correct by construction. Tt is illustrated by a case study —
development of a Third Generation Partnership Project (3GPP) positioning system.

2. Overview of Lyra

The Lyra design method consists of four phases corresponding to the classical design
phases: Service Specification, Service Decomposition, Service Distribution and
Service Implementation. These phases correspond also to the conventional phases of
standardization [2]. In the Service Specification phase we define the services provided
by the system (standardization Phase 1). In the Service Decomposition phase we
specify the functional architecture of each the system level service (standardization
Phase 2). In the Service Distribution phase logical entities of the functional
architecture, i.e. service components, are distributed over a given network architecture
and signalling protocols are defined for communication between the network
elements (standardization Phase 3). In the Service Implementation phase we adjust
the functionality to the target environment. The program code for a specific platform
is generated automatically from the resulting implementation.

Next we describe the general idea of the methodology with a running example. We
model part of a Third Generation Partnership Project (3GPP) positioning system [7,8].
The positioning system provides positioning services to calculate the physical
location of a given user equipment (UE) in a Universal Mobile Telecommunication
System (UMTS) network. We focus on Position Calculation Application Part (PCAP)
— a part of the positioning system allowing communication in the Radio Access
Network (RAN). PCAP manages the communication between the Radio Network
Controller (RNC) and the Stand-alone Assisted Global Positioning System Serving
Mobile Location Centre (SAS) network elements. The functional requirements for the
RNC-SAS communication have been specified in [7,8].

The Service Specification phase defines the service in terms of its communication
with the service consumer as shown in Fig. 1. The service consumer requests the
positioning calculation and receives the result of the service execution via the
provided service access point (the upward interface). At this development stage we
abstract away from the details of the position computation and merely observe that the
service execution can result either in the position calculated with the requested
accuracy or in a failure.

| ToPosifoning \/ |_FromPostoning

|_user <<SenioaSpeciication >»
Positioning

Fig 1. Service specification

At the next stage of the development process — Service Decomposition we take
into account that a service is provided in co-operation with service components. The
initial model presented in Fig.1 is augmented with the used service access points (the
downward interfaces) via which the communication with service components is
conducted. The model obtained as a result of the Service Decomposition phase is

presented in Fig.2.
|_ToPosifiening |_FromPesiticning
gugg isBanslncgeaiien wr

|_FromD8 Posifioning |_FromLMU
] [
1 0B 1M
|_ToDB |_TolMU
|_FromlE |_FromAlgorithm
i 1 Aigoritm] _
|_TellE = |_ToAlgorithm

Fig 2. Service decomposition

At the Service Decomposition phase we also design the functional architecture of
the service, as shown in Fig 3. Usually the functional architecture is constructed
according to the following pattern: a service director orchestrates the service
execution by requesting certain services from service components. For instance, to
execute the position calculation service, the service director first requests an
approximate location of the UE from the network database, then it requests the UE to
send additional radio measurements, then it requests several local measurement units
(LMU) to provide some local measurements, and finally the data collected during all
these stages are sent to a location algorithm server which invokes a certain algorithm
for position calculation. After executing the algorithm, the calculated position is
returned to the service director. Let us observe that any of the requested components
can fail (either because of communication or some other failure). When a request to a
service component fails, the service director diagnoses the failure and decides on the
fault tolerance measures to be undertaken.

gy

mmmmmmmmmm ™ I:fu‘ef active <<ServiceDecomposition >>class

1_TaPostianing

|_UEstanmier

i Fescaing
aMeas:MeasHander|
Lo R
[
i |

ing _postioning LToLp
ler anAlgo - AlgoHandler

Fig 3. Functional architecture

To manage complexity of communicating systems, at the Service Decomposition
phase the communication between components still remains on a virtual level — the
realistic communication protocols are introduced upon completing the next (Service
Distribution) stage. At the Service Distribution phase we map the functional system
architecture to the platform architecture. For instance, in our example we decompose
the system in such a way that communication with the network database and UE is
performed by the service director allocated on RNC, while communication with LMU
devices and the algorithm server is performed by the service director allocated on
SAS. The service directors communicate via a certain (predefined by PCAP) protocol.
The result of service distribution is shown in Fig. 4.

Architecture Diagram active =<ServiceDistribution ==class Positioning {2/}

I_UE I_UE

LMY LM

| RNGToSAS ;lmsas: Positioning_SAS

|_Algarithm | |_Algorithm

Fig 4. Platform architecture

In the final (Service Implementation) phase we adjust the model to fit a specific
platform. We omit the detailed discussion of this stage. In the next section we give a
brief introduction into our formal framework — the B Method, which we will use to
formalize the development flow described above.

3. The B Method

The B Method [1] (further referred to as B) is an approach for the industrial
development of highly dependable software. The method has been successfully used
in the development of several complex real-life applications [5]. The tool support
available for B provides us with the assistance for the entire development process. For
instance, Atelier B [6], one of the tools supporting the B Method, has facilities for
automatic verification and code generation as well as documentation, project
management and prototyping. The high degree of automation in verifying correctness
improves scalability of B, speeds up development and, also, requires less
mathematical training from the users.

The development methodology adopted by B is based on stepwise refinement [1].
While developing a system by refinement, we start from an abstract formal
specification and transform it into an implementable program by a number of
correctness preserving steps, called refinements. A formal specification is a

mathematical model of the required behaviour of a (part of) system. In B a
specification is represented by a set of modules, called Abstract Machines. An
abstract machine encapsulates state and operations of the specification and as a
concept is similar to a module or a package.

Each machine is uniquely identified by its name. The state variables of the machine
are declared in the VARIABLES clause and initialised in the INITIALISATION
clause. The variables in B are strongly typed by constraining predicates of the
INVARIANT clause. All types in B are represented by non-empty sets.

The operations of the machine are defined in the OPERATIONS clause. In this
paper we use Event B extension of the B Method. The operations in Event B are
described as guarded statements of the form SELECT cond THEN body END. Here
cond is a state predicate, and body is a B statement. If cond is satisfied, the
behaviour of the guarded operations corresponds to the execution of their bodies.
However, if cond is false, then the execution of the corresponding operation is
suspended, i.e., the operation is in waiting mode until cond becomes true.

B statements that we are using to describe a state change in operations have the
following syntax:

S == x:=e | IF cond THEN S1 ELSE S2 END|S1;S82 | x:T |
S1]|S2 | ANY z WHERE cond THEN S END |

The first three constructs — assignment, conditional statement and sequential
composition (used only in refinements) have the standard meaning. The remaining
constructs allow us to model nondeterministic or parallel behaviour in a specification.
Usually they are not implementable so they have to be refined (replaced) with
executable constructs at some point of program development. The detailed description
of the B statements can be found elsewhere [1].

The B method provides us with mechanisms for structuring the system architecture
by modularisation. A module is described as a machine. The modules can be
composed by means of several mechanisms providing different forms of
encapsulation. For instance, if the machine C INCLUDES the machine D then all
variables and operations of D are visible in C. However, to guarantee internal
consistency (and hence independent verification and reuse) of D, the machine C can
change the variables of D only via the operations of D. In addition, the invariant
properties of D are included into the invariant of C.

To illustrate basic principles of specifying and refining in B, next we present our
approach to formal service-oriented development.

4. Formal Service-Oriented Development

We start to formalize the Lyra development by creating a specification pattern
modelling a communicating component. This pattern is used throughout the entire
development process. The pattern is called Abstract Communicating Component
(ACC). ACC consists of a “kernel”, i.e., the provided functionality, called Abstract

Calculating Machine (ACAM), and a “communication wrapper”, i.e., the
communication channels via which data are supplied to and consumed from the
component, called Abstract Communicating Machine (ACM).

The specification of an abstract communicating component (ACC) consists of
operations specifying ACM and ACAM. The variables inp_chan and out_chan model
the input and output channels. The environment places requests for the service by
assigning to inp_chan and receives the results of the service via out_chan. Data
transferred to and from ACC are modelled abstractly. We reserve the abstract constant
NIL to model the absence of data, i.e., the empty channel. The variables input and
output are one-place data buffers internal to the ACC. The variable input stores the
data read from inp_chan. It is used as a temporal data storage in calculating the
required service. The variable output stores the final result of calculations which is
consequently put into the output channel out_chan for the server consumer.

The operations env_write and env_read model the behaviour of the service
consumer: placing the request to execute a service and reading the results of its
execution. The operation read models reading the service request by ACC from the
input channel. The symmetric operation write writes the results of service provision
into the output channel. These operations specify the “communication wrapper” (i.e.,
ACM) part of ACC.

In the initial specification, ACAM is modelled abstractly by the operation
calculate, which non-deterministically assigns the variable output either the result of a
successful service provision or a failure. The machine ACC (presented below)
specifies the described behaviour instantiated for the position calculation case study.

MACHINE ACC
calculate =
SELECT not(input = INP_NIL) &
(output = POS_NIL)

VARIABLES
inp_chan, input, out_chan, output

THEN
INVARIANT CHOICE
inp_chan : INPUT_DATA & output ::

input : INPUT_DATA &
out_chan : POS_DATA &
output : POS_DATA

INITIALISATION
inp_chan, input := INP_NIL, INP_NIL ||
out_chan, output := POS_NIL, POS_NIL

OPERATIONS

env_write =
SELECT inp_chan = INPUT_NIL
THEN
inp_chan :: INPUT_DATA - {INPUT_NIL}
END;

read =
SELECT not(inp_chan = INP_NIL) &
(input = INP_NIL)
THEN
input,inp_chan := inp_chan,INP_NIL
END;

POS_DATA - {POS_NIL,POS_FAIL}
OR
output := POS_FAIL
END ||
input := INP_NIL
END;

write =
SELECT not(output = POS_NIL) &
(out_chan = POS_NIL)
THEN
out_chan,output := output,POS_NIL
END;

env_read =
SELECT not(out_chan = POS_NIL)
THEN
out_chan := POS_NIL
END

END

The next phases in the Lyra development are the functional and the platform-based
decomposition. In our approach they correspond to two consequent refinement steps —
first refining the algorithmic part of ACC, i.e. ACAM, and then introducing the peer
entities distributed over the given platform. The result of the first refinement is
graphically represented in Fig.5.

|DB || UE ||LMUI|AIgDSew-

SetviceDitector

Chatpnt
Charmel

Trpaat
Charmel

Fig.5. Functional decomposition of ACAM

ACAM is refined by introducing the service director modelled by the operation
director which orchestrates the execution of the whole positioning service, and the
operations db, ue, Imu, and alg modelling execution of the corresponding service
components.

Basically we decompose ACAM to model stages of the positioning service.
Additionally, we introduce the variables that model results obtained at these
intermediate stages from the corresponding service components. At this refinement
step, these variables are non-deterministically updated in the operation director. We
model not only successful execution of the intermediate stages by the service
components but also possible failures. Moreover, we abstractly model error recovery
— upon detecting an error, the service director can retry (up to the predefined number
of attempts) to execute a certain stage of the service. However, if error recovery fails,
the service director terminates the service execution and returns the error as the final
result. The refined specification of the ACC — ACC1 instantiated for the positioning
service is presented in Fig.6.

The second refinement that we perform models the mapping of the functional
decomposition into the given target platform. We introduce communication with the
service components into the specification of the service director. The service
components are specified according to the proposed pattern ACC. The service
director plays now a role of the service consumer for the service components.
Namely, it sends the requests to execute the services required for the corresponding
stages and receives the obtained results. Let us observe that at this refinement step we
replace non-deterministic updates to the variables storing the results of the
intermediate stages by assigning them the values obtained from the communication
channels. The graphical representation of this stage for the positioning system is given
in Fig.7.

REFINEMENT ACC1 IF curr_service = SD

THEN
REFINES ACC curr_service := DB
ELSIF curr_service = DB
VARIABLES THEN
curr_service, handling_flag ... dbdata :: DB_DATA-{DB_NIL};
IF DB_Eval(dbdata) = OK
INVARIANT THEN
curr_service : SERVICE & curr_service := UE
handling_flag : BOOL & ... ELSIF DB_Eval(dbdata) = RECOV &
(n_db >0)
INITIALISATION THEN
curr_service, handling_flag := SD,FALSE n_db := n_db-1
Il ... ELSE
posdata,curr_service :=
OPERATIONS POS_FAIL,CALC
END
env_write = ... ELSIF curr_service = UE ...
ELSIF curr_service = LMU ...
read = ... ELSIF curr_service = ALG ...
END ||
db = handling_flag := FALSE
SELECT curr_service = DB END;
THEN
handling_flag := TRUE calculate =
END; SELECT (curr_service=CALC) & ...
THEN
ue = ... output,input := posdata,INP_NIL ||
curr_service := SD
Imu=... END;
alg=... write = ...
director = env_read = ...
SELECT handling_flag = TRUE
THEN END
Fig.6. ACCI refinement
| LK AlzoSerT ey |
| DB | | UE | Servive Subdirector |
| SericeDectoy |
Trpaat Cratpart
Chamel Charmel
s Irpuit Chatput —

Fig.7. Service distribution

The excerpt from the refinement of ACCI1 — the refinement machine ACC2 is given
below.

director =
SELECT handling_flag = TRUE &
(((curr_service = DB) & not(db_out_chan = DB_NIL)) or ...)
THEN
IF curr_service = SD
THEN
curr_service := DB
ELSIF curr_service = DB
THEN
dbdata <-- db_read_ochan;
IF DB_Eval(dbdata) = OK
THEN
curr_service := UE
ELSIF DB_Eval(dbdata) = RECOV & (n_db > 0)

THEN

n_db := n_db-1
ELSE

posdata,curr_service := POS_FAIL,CALC
END

ELSIF curr_service = UE ...
ELSIF curr_service = ALG

THEN
posdata <-- sas_read_ochan; ...
END ||
handling_flag := FALSE
END;

At the consequent refinement steps we will focus on particular service components
and refine them (in the way described above) until the desired level of granularity is
obtained. Once all external service components are in place, we can further
decompose their specifications by separating their ACM and ACAM parts. Such
decomposition will allow us to concentrate on the communicational parts of the
respective components and further refine them by introducing details of required
concrete communication protocols.

5. Conclusions

In this paper we proposed an approach to formal modelling of communicating
distributed systems. We derived the specification and refinement patterns that can be
used to automate the development of such systems. The patterns define the formal
semantics of UML diagrams usually used in the development process. Hence UML
modelling can be used as a syntactic sugaring of the formal development. Because of
the wide acceptance of UML in industry our approach can therefore be easily
integrated into existing development practice.

In this paper we demonstrated how to model faulty behaviour and fault tolerance
features of communicating systems. Unreliable communication is an intrinsic part of

communicating distributed systems. Hence addressing the fault tolerance issues in
the development process is an important merit of the proposed approach.

The formalisation of the UML-based development of communicating distributed
systems has been undertaken in the Lyra approach. Lyra is based on model checking
and enables reasoning about preservation of the externally observable behaviour
throughout the development process. However, the model checking techniques are
prone to the state explosion problem since telecommunicating systems tend to be
large and data intensive. Our approach helps to overcome this limitation.

As a future work, we will continue to develop the proposed approach to address
issues of concurrency and verification of the temporal properties of communication
protocols between network elements. Moreover, we are planning to develop a tool
support to automate the proposed approach.

Acknowledgements
The work reported in this paper is financially supported by IST-511599 EU Project
RODIN.

References
1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. ITU-T. Rec. .30 (1993). Method for characterization of telecommunication services

supported by an ISDN and network capabilities of an ISDN.

3. L.Laibinis and E.Troubitsyna. Fault Tolerance in a Layered Architecture: A General
Specification Pattern in B. Proceedings of 2™ International Conference on Software
Engineering and Formal Methods (SEFM 2004), Beijing, China, September 2004.
IEEE Press, pp.346-355.

4. S.Leppdnen, M.Turunen, and 1.Oliver. Application Driven Methodology for
Development of Communicating Systems. FDL’04, Forum on Specification and
Design Languages. Lille, France, September 2004.

5. MATISSE Handbook for Correct Systems Construction. 2003. http://www.esil.univ-
mrs.fr/~spc/matisse/Handbook/

6. Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 2001.
Available at http://www.atelierb.societe.com/index uk.html

7. 3GPP. Technical specification 25.305: Stage 2 functional specification of UE
positioning in UTRAN. See http://www.3gpp.org/ftp/Specs/html-info/25305.htm

8. 3GPP. Technical specification 25.453: UTRAN Iupc interface positioning calculation
application part (pcap) signalling. See http://www.3gpp.org/ftp/Specs/html-
info/25453.htm

