Tnfomrl}ahtli]c;n_SOCiety Project 1IST-511599
S RODIN
“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable D19

I nter mediatereport on methodology

Editor: C. B. Jones (Newcastle University)

Public Document

29" August 2006

http://rodin.cs.ncl.ac.uk/

Abstract

One aim of the Rodin project is to contribute formal methods which will underpin the
creation of fault-tolerant systems. This intermediate report from WP2 (Methodology) describes
progress during the second year of the Rodin project; it also discusses our plans for the final
deliverable on methodology.

Contributors:

Many people have written material for Chapters 3 and 2; specific contributions include:

Section 2.1 written by Linas Laibinis

Section 2.2 written by lan Johnson

Section 2.3 written by lan Oliver

Section 2.4 written by Neil Evans and Michael Butler (on behalf of Praxis)

Section 2.5 written by Maciej Koutny

Section 3.1 written by Maciej Koutny

Section 3.2 written by A. lliasov, A. Romanovsky, E. Troubitsyna, L. Laibinis

Section 3.3 written by Joey Coleman and CIiff Jones

Section 3.4 written by Manoranjan Satpathy, Qaisar A. Malik and Johan Lilius

Section 3.5 written by Elena Troubitsyna

Section 3.6 written by Michael Butler

Section 3.7 written by Joey Coleman and Cliff Jones

Section 3.8 written by Divakar Yadav and Michael Butler

Section 3.9 written by Fernando Castor Filho, Alexander Romanovsky, and Cecilia Mary
F. Rubira

Section 3.10 written by Alexei Iliasov, Victor Khomenko, Maciej Koutny, Apostolos Niaouris
and Alexander Romanovsky

Contents

1 Introduction

2.1
2.2
2.3

2.4

2.5

What we are learning from the tension with the case studies

Case Study 1: Formal Approaches in Protocol Engineering
Case Study 2: Engine Failure Management System
Case Study 3: MDA
2.3.1 Development
2.3.2 Model Driven XXX e
233 MDAInRodin
Case Study 4
241 Problemstobe Overcome
2.4.2 A Methodology for SpecifyingCDIS
243 Refinement
Case Study 5: Ambient Campus

3 Discussion of issues

3.1
3.2

3.3
3.4

3.5
3.6

Towards an Algebra of Abstractions for Communicating Processes
Rigorous Development of Fault-Tolerant Agent Systems
3.21 Faulttolerance
3.2.2 Interoperability
3.23 Conclusion
Deriving specifications
Synthesis of Scenario Based Test Cases fromB Models
341 Terminology e
3.4.2 Existing Approaches
343 TheBMethod
344 TheProblem
345 RefinementinB
346 TheApproach. e
347 AnExample
3.4.8 TheAlgorithm
3.4.9 Exponential Nature of the Algorithm
3.4.10 Analysis
3.4.11 Conclusion
Formal View of Developing a Mechanism for Tolerating Transient Faults
Synchronisation-based Decomposition for EventB

10
11
11
12
12
14
14
14
19
26

28
28
30
31
32
33
33
34
35
36
37
37
37
39
39
39
42
43
44
44

3.6.1 Machines as interactivesystems 48

3.6.2 Refinementand New Events 49

3.6.3 Parallel Composition 51

3.6.4 CSPCorrespondence 54

3.6.5 Design Technique: Refinement and Decomposition 56

3.6.6 Concluding 56

3.7 Justifying the soundness of rely/guarantee reasoning 57

3.8 Development of distributed transactions inEvent-B 58

3.8.1 Distributed Transactions, 59

3.8.2 Transaction Model for Abstract Central Database 59

3.8.3 Refinement with Replicated Database 60

3.84 GluinglInvariants 63

385 Conclusions. 65

3.9 \Verification of Coordinated Exception Handling 65
3.10 On Specification and Verification of Location-based Fault Tolerant Mobile Sys-

TeMS . . 68

3.10.1 OQurapproach 69

3.10.2 Model-checking mobilesystems 69

3.10.3 Key implementationissues 70

3.10.4 Experimentalresults 71

3.10.5 Conclusions 73

311 Bits’nPieces 75

4 Theway ahead 76

A Possible structure of the final WP2 report 87

Chapter 1

| ntroduction

This chapter indicates progress on technical issues which were identified in D9 (the “Prelim-
inary report on Methodology™). Overall, we feel that very good progress is being made on
issues of development methods. Chapter 2 sets out methodological insights which have come
from the case studies (this can of course be read in conjunction with D18). The variety of the
case studies is having the desired effect of stretching our ideas on methods. Chapter 3 —like
D9- provides a series of “essays” on methodological issues. These vary considerably in length
— to a large extent this is caused by whether publications exist to which the essay can point for
technical details.!

Possible plans for the final deliverable on methodology are set out in Chapter 4 (and one
structure for the final document sketched in Appendix A). We should be particularly grateful
for input at the October 2006 Project Review on the alternatives for the final methodology
document(s).

Figure 1.1 provides a reminder of the list “issues” identified in D9: they are provided with
“I-n” numbers for reference elsewhere in this (D19) report. Comments on progress on these
issues:

I-1 Building a specification from parts We see this as an important issue for “scaling”; it is
addressed under §2.4 below.

I-2 Partial functions This is not seen as a significant issue — we shall return to it during
proof experiments with the new Rodin prover but the current Event B position is certainly
adequate. (A further paper has been produced [Jon06b].)

-3 Roleof invariants This is not seen as a significant issue — we’ll return to it during proof
experiments with the new Rodin prover.

I-4 Controlling the order of operation execution Work is on-going but there have been no
significant publications on this topic (but see [Jon05b]).

1t is also worth mentioning that Section 2.4 is rather longer than the other case study sections because a
number of technical issues are included in the text.

Number | D9 Section | Brief description

I-1 §2.1.1 Building a specification from parts

I-2 §2.1.2 Partial functions

-3 62.1.3 Role of invariants

I-4 62.1.4 Controlling the order of operation execution
I-5 §2.2.1 Deriving specifications (of “control systems”)
I-6 §2.2.2 Domain modelling

I-7 §2.3.1 Comping with interference

1-8 §2.3.2 Refining atomicity

1-9 §2.3.3 Process algebras and net theory

1-10 62.3.4 Process algebra and Event B

I-11 §2.4.1 Failure management

1-12 §2.4.2 Determining the failure specification of a system
1-13 §2.4.3 BPEL-like languages

I-14 §2.5.1 Synergy between model checking and reasoning
I-15 §2.5.2 Rigorous reasoning

I-16 §2.5.3 Role of programming languages

1-17 63 Requirements structure

1-18 84 Linking UML and B

1-19 65 Records in Event B

1-20 66 Methodology for mobile systems

[-21 87 Model driven development

[-22 68 Exception handling in mobile environments

Figure 1.1: Reference numbers from issues in D19

I-5 Deriving specifications (of “control systems’) This has been an active area; an update
is given in §3.3 below.

I-6 Domain modelling There has been relevant activity in several areas — here, see in par-
ticular Section 2.3. Before the final report is written, we will position each of the case studies
with respect to domains.

[-7 Coping with interference Addressed under §3.7 below.
I-8 Refining atomicity See §2.3, §3.2, §3.6, §3.8, §3.1, §3.11 below.

I-9 Process algebras and net theory This too is an active area; here, it is touched on under
63.1 below.

I-10 Process algebra and Event B Another active area; it is touched on under §3.1 below.
[-11 Failure management Addressed under §2.2 below.

|-12 Deter mining the failure specification of a system Addressed under §3.5 below.
I-13 BPEL-like languages No further work is envisaged on this topic.

I-14 Syner gy between model checking and reasoning We have thought about and discussed
this area but await experiments with the main Rodin tools and Plugins to draw conclusions
(e.g. the encouraging performance results with model checking pi-calculus will certainly affect
how a user will experiment with model-checking before attempting proofs).

I-15 Rigorousreasoning We will be experimenting on this with the new proof tool.

I-16 Role of programming languages Jean-Raymond Abrial talked about this in his VSTTE
position statement. Also addressed under §2.3 below.

I-17 Requirements structure We are using the ideas set out in D9 and will report more in
further deliverables.

[-18 Linking UML and B Addressed under §2.3 below.
[-19 Recordsin Event B Addressed under §2.4 below.
I-20 M ethodology for maobile systems Addressed under §2.5, §3.2, §3.10, §3.11 below.

[-21 Model driven development Addressed under §2.1, §2.3 below.

[-22 Exception handling in mobile environments Addressed under §2.1, §2.5, §3.9, §3.2,
§3.11 below.

Generic specifications Addressed under §2.4 below.

Testing Addressed under §3.4 below.

Transience Addressed under §3.5 (and indirectly —see references— in§3.3) below.

Special needs of usersunfamiliar with formal methods Addressed under §2.1, §2.3 below.

Integration with less formal methods Addressed under §2.3, §3.11 below and in our on-
going “UML/B” work.

Link to Rodin Tasks

The Rodin Description of work defines the following tasks, the link with the sections here is as
follows

Task | Description &n

T2.1 | Formal representations of architectural de- | §2.1 §2.2 §2.3 §2.4 §2.5
sign, decomposition and mapping principles | §3.7 §3.2 §3.11

T2.2 | Reusability, genericity, refinement §2.4 §2.3 §3.4 §3.2 §3.6
63.8§3.1§2.162.383.11

T2.3 | Development templates for fault-tolerant de- | §2.2 §3.3 §3.5 §3.11 §3.2

sign methods
T2.4 | Development templates for reconfigurability, | §2.4 §2.5 §3.2 §3.11
adaptability and mobility
T2.5 | Requirements evolution and traceability §2.2

Chapter 2

What we are learning from thetension
with the case studies

It was always our intention that the case studies would provide feedback to the evolving devel-
opment methods. This is indeed proving to be the case. Here, in this intermediate deliverable
from WP2, we specifically identify some of the things we are learning.

2.1 Case Study 1: Formal Approachesin Protocol Engineer-
INng

The work on Case Study 1 —Formal Approaches in Protocol Engineering— focuses on formal-
isation and verification of the design method Lyra. Lyra is an UML2-based service-oriented
method for development of telecommunication systems and communication protocols. In the
first year of the RODIN project we have developed formal specification and refinement patterns
reflecting essential Lyra models and transformations. This allowed us to verify the Lyra devel-
opment steps (phases) on the basis of stepwise refinement of a formal system model in the B
Method. This work has been reported in [LTL*05].

During the second year our work has progressed in two directions. First, the further devel-
opment of the specification and refinement patterns to incorporate the fault tolerance mecha-
nisms used in the domain [LTL"06]. Second, the development of an approach to formal veri-
fication of consistency of the UML2-based Lyra development [LIM*05]. Let us now describe
these methodological advances in more detail.

To incorporate formal reasoning about fault tolerance into the formalized Lyra develop-
ment flow, the specification and refinement patterns for Lyra models have been extended with
explicit representation of possible errors and error recovery. The extension has affected the
specifications of service components directly responsible for controlling the service execu-
tion flow (called service directors). The recovery mechanisms allowing a service director to
retry the failed service execution as well as to ”roll back” in the service execution flow have
been incorporated in the specification pattern of a service director. Moreover, in refinement
steps modelling service decomposition and distribution over a given network, the fault tol-
erance mechanisms have been accordingly distributed over the involved service components.
Termination of potentially infinite recovery process is guaranteed by modelling the maximal
execution time that is gradually decreased by service execution.

9

To automate translation and verification of Lyra UML models in the B Method, we have
developed an approach to verifying the consistency of the provided UML models. The approach
consists of formalisation of the intra-consistency (i.e., expressing the relationships between
models within the same Lyra development phase) and inter-consistency (i.e., the relationships
between different Lyra phases) rules for the Lyra UML models. The formalisation is done
using the B Method in such a way that the requirements are gradually (i.e., phase by phase)
introduced and incorporated by the corresponding B refinement steps. The achieved results
create a basis for developing a formally verified UML profile for Lyra.

2.2 Case Study 2: Engine Failure Management System

Rodin methods and technology such as UML-B have shown promise in tackling Failure Man-
agement Domain concerns for ATEC such as closing the semantic gap (i.e., closer mapping
of the problem domain to the design) and providing a reliable reusable process to meet the
demands of a safety environment.

In the first year the University of Southampton in cooperation with ATEC developed a
generic model of the failure management system (FMS) based on a UML-B profile. The 2nd
year work on the case material consists of methodological contributions by ATEC, Univer-
sity of Southampton (Soton) and Aabo Akademi (Aabo). Which have been outlined in the
RODIN D18 deliverable.

ATEC have been evaluating emerging RODIN methodology by undertaking a pilot study of
the case material. Their work has demonstrated the usability of the methodology and its tools
by a novice user of formal methods and B. However, it was felt more guidance in model de-
velopment should be developed and this is to be addressed in collaborative research with Aabo
Akademi and the University of Southampton. ATEC’s exploration of methodology has also
identified a need to provide more flexibility in the refinement process in order to identify valid
requirements early from which a more rigorous refinement chain can be constructed. A pro-
cess to address this issue was investigated which has been called Idealisation-De-idealisation.
Idealisation supports the idea that obtaining good abstractions are difficult initially and that
less rigorous development can initially be undertaken to establish the main functionality of a
model. De-idealisation refers to developing the model rigorously to obtain consistency in the
refinement chain..

The University of Southampton has continued developing methodology supporting the
generic model. Work at Southampton has proposed a prototype process for the Verification
and Validation of a generic specification of this type, demonstrating stage (1): validate struc-
tural model using test data — and stage (2): verify system instance data against structural
instance model. This was done using the existing UML-B tool and ProB model checker. The
specification has been decomposed into features as the first step in an investigation of feature-
based description, refinement and composition of generic specifications. This investigation will
establish how to structure such feature-based transformations using the relevant mechanisms of
the Event-B language: refinement, decomposition and generic instantiation. A student project
group at the University of Southampton has developed a plugin for UML-B, the Requirements
Manager. This tool is a PostgreSQL-based repository of FM system instance data, with func-
tions to input and verify instance data against the generic model, and to upload the data to
UML-B for generation of a system instance UML-B specification. As a user-acceptance test of

10

the tool, the Verification and Validation exercise of the previous paragraph has been performed
with a full system instance dataset.

Aabo Akademi has been working with classical refinement development of the FMS (see
Section 3.5). The main result of developing the FMS by stepwise refinement in B is a set
of formal templates for specifying and refining the FMS. The developed FMS is able to cope
with transient faults occurring in the system with multiple homogeneous analogue sensors. The
formal templates specify sensor recovery after the occurrence of transient faults and ensure the
non-propagation of errors further into the system.

2.3 Case Study 3: MDA

First to note is that overall Nokia is not a general user of ‘formal methods’ as, say, some
automotive or aerospace companies might be. However it is well known that we have a need
for analysis of the designs that we are producing.

Secondly is that we already have well defined (and in some cases ingrained) processes and
methods for the development of the various kinds of embedded and real-time systems that are
found in mobile devices.

It is often the case that the adoption of new development technologies requires a wholesale
change in the way systems are developed. It is then often also the case that the new method
fails because of the burden of trying adapt it and the existing processes to each other.

We take the view that new techniques such as those being developed inside Rodin should be
agnostic to the underlying processes and be compatible with existing techniques and methods
as far as possible. This is to minimise the disruption caused when introducing these techniques.

2.3.1 Development

The use of formal methods is already in place, albeit in a minor way due to the plethora of
notations and in most cases the seeming lack of integration with the defacto languages and
processes — particularly the UML.

The first year of Rodin concentrated more on the use of B for the specification of the NoTA
(Network on Terminal Architecure) system. Here we had the chance to compare the use of
UML+B and plain B with already existing models and an implementation constructed through
the use of “agile methods” and the SDL language.

The results of the first year show that overall productivity increases and the amount of
design errors significantly decreases when using a formal method. The caveat here is that the
use of formal methods must be *pragmatic’ rather than ‘dogmatic’ in nature. The first versions
of the upper layers of the NoTA protocol stacks based upon the verified designs are currently
being implemented and tested in production environments.

The second year has focussed much more on the superstructure that Rodin must fit into
in order to gain acceptance and be used with our model based methods. Later sections here
discuss what we mean by MDA and MDE in this context.

Work with Abo Akademi has resulted in two threads of development: the first concentrating
on patterns expressed through ‘MDA-style transformations’ for adding fault tolerance aspects
to a B specification; and secondly more formal underpinnings for ‘model based’ structures.

11

Further work whcih is due to start during the third year of the project will focus on hardware
specification language generation from EventB specifications.

Some work has been proposed with University of Southampton on additions to U2B —
some of which have been prototyped locally and product line structures.

(The work between ATEC and University of Southampton is being followed closely.)

2.3.2 Modd Driven ‘XXX’

The term ‘model driven” is becomming overused such that it can be almost applied as a prefix
to any computing term: model, engineering, testing, development etc. However the (modern)
origins of the term come from the OMG’s Model Driven Architecture concept which attempts to
provide a framework (Figure 2.1) for relating models of varying levels of abstraction together.
The OMG’s MDA also seeks to enforce the split between models of the system (domain, design,
implemention) and the partitioning and mapping which are often called architecture models.

CIM

l .
PSM

l transformation (Platform, Architecture)

PIM
l code—generation

Implementation

Figure 2.1: Model Driven Architecture Superstructure

The MDA is based around the ideas of the platform independent model (PIM) and the the
platform specific model (PSM) bound together with a transformation which effectively encodes
the architectural decisions made to move from the PIM to the PSM. There is also the notion of
the computation independent model (CIM) which is transformed in a similar manner to a PIM;
the semantics of the CIM is not well defined and is relegated to a single sentence in the official
description of the MDA.

We take a broader view such that we have a collection of models which are related by a
number of relationships. These relationships can be classified into various types depending on
what aspects of the model they preserve. The typical example is that (as commonly described
in MDA\) of the transformation which is normally used to concretise one model into another
on some given platform: the source of this tranformation being called the PIM the target(s) the
PSM(s). Another example is that of the translation which maps a model in one language to an
equivalent structure in another language, for example UML to B or CSP to TTCN/3.

2.3.3 MDA in Rodin

The OMG promotes the use of various flavours of the UML as the primary language(s) of
models, while in Rodin we are more flexible in that we use the most suitable language whether

12

or not a translation to or from a flavour of UML is available.

We also work more in the sprit of ‘model driven’ in that we seek to create a superstruc-
ture in which models exist and can be related to each other. In our current NoTA work this
superstructure appears in Figure 2.2.

L)
human thought tansformation may be repeated
as per paftern/architecture application
as necessary
Domain Model
"UML"

Use Cages S ;
“natural language” Transformation * Ar Cgﬁitme

"architecting according to.."

¢ manual encoding

= iFicati
D‘ I Jen ication
l' ﬂ “Walidation HIN Design other models, not addressed here
L e —— e

B SVC Laee |LINLzy\u | MIPILzyul

Tests

"CSP
Transformation Transformation
“according to Architecture(2)" “architecting according to..."| Architecturs (2)

"ML
[l_ Testi
ﬂ *e-‘.l—ngb* HIN HI

Tests |
“TTCN/3, Conformig Lisp” "G/ inux” "C/Symbian”

N HIN
"Blusspec”

Figure 2.2: Model Superstructure

For simplicity we have shown only four levels in this diagram. The first level is always
the idea which we intially encode as natural language use cases and a domain model devel-
oped using object oriented techngiues (and thus described using UML). For this first part a
variety of methods or techniques can be used: we particularly favour CRC cards, Catalysis and
Responsibility Based Design approaches.

The procedure of transforming between two models is the one of mapping a PIM to a PSM
as described by the OMG where the choice of platform is made by application of a pattern
(e.g. making a model MV C specific or applying a fault tolerance pattern) or in the more tradi-
tional sense (encoding a model into Java). This procedure may be repeated as many times as
necessary.

Typically at high levels of abstraction one can map the model to a form where it can be
verified. This in the case of Rodin is simply a mapping to B which is then verified by theorem
proving.

At lower levels of abstraction and especially when the model has been partitioned more
extensively (e.g. into HIN, LIN etc layers) it may be necessary to switch languages to something
more suitable. This is often a cause of some concern for ‘model based’ affictionados where a

13

change between a graphical to a textual language is made. A model expressed in, for example,
C is still a model, albeit one at a very platform specific (or independent) level.

Testing (Model Based of course) is facilitated by formalising the use cases as CSP expres-
sions which can be ‘run’ against the model (i.e. the model is an oracle for those expressions).
These expressions can be transformed in much the same manner as the models they are being
run against to more suitable representations for the more concrete level. Typically one maps to
more suitable testing languages such as TTCN/3 or Conformiq Lisp.

Transformation continues until the models are expressed in a form where execution by some
suitable environment (e.g. x86 processor, compiler, DBMS) is possible.

While model driven approaches concentrate on the top to bottom concretising transforma-
tions and sometimes one or more translation-like mappings they do not concentrate on the
properties that a transformation must adhere to. One aspect of Rodin is the emphasis on trans-
formations that preserve refinement between a pair of models. Of course this is not always
possible in all cases and properties of transformations need to be demonstrated via other route,
for example via testing. Translations between languages are similar but must enforce that the
models are isomorphic with respect to the information they convey.

One aspect not directly discussed here is that of relationships between model elements that
exist on differing architectural partitionings. This normally suggests the usage of some kind of
communication technology. This is should be handled by the transformation which should reify
the relationship into a model in its own right which embodies the communication technology.

24 CaseStudy 4

2.4.1 Problemstobe Overcome

There are two distinct drawbacks of the original approach to the CDIS development: first,
the complexity of the system makes the formal specification necessarily complex and difficult
to visualise, and second is the lack of continuity from the specification to the design. In the
idealised specification, updates are performed instantaneously at all user positions whilst, in the
actual system, there is an inevitable delay because the information must be distributed to the
user positions over a network. Hence, there is no natural refinement of the specification (in the
usual sense of the word) to any realistic design. We have been investigating more novel notions
of specification and refinement (in Event-B) to make the specification more comprehensible
and to find a suitable link between the specification and design viewpoints. In this section, we
begin by outlining our solution to the first of these problems. In particular, we describe a non-
linear refinement technique to introduce different aspects to the specification. Then we give an
outline to a second transformation technique to move from the idealised view of the system to
the design.

24.2 A Methodology for Specifying CDIS

As stated above, we begin with an idealised view of the system. We model a system that
has a centralised database from which information can be retrieved. In order to get a better
overview of the entire system, we follow a top-down approach. At the top level, we ignore

14

all of the airport-specific features to produce a specification describing a generic display sys-
tem. Through an iterated refinement process, we introduce more features into the specification
until all of the CDIS functionality is specified. At each step the tool generates a number of
proof obligations which must be discharged to show that the refinements are consistent. Since
each refinement introduces only a small part of the overall functionality, the number of proof
obligations at each step is relatively small (approximately less than 20).

Generic Display Context

The purpose of CDIS is to enable the the storage, maintenance and display of data at user po-
sitions. If we ignore specific details about what is stored and displayed then CDIS becomes a
‘generic’ display system. We begin by constructing a specification for a generic system (which
will be, of course, somewhat influenced by the original VDM specification) and, through sub-
sequent refinements, introduce more and more airport-specific details so that we produce a
specification of the necessary complexity, and reason about it along the way. By providing a
top-down sequence of refinements it is possible to select an appropriate level of abstraction to
view the system: an abstract overview can be obtained from higher level specifications whilst
specific details can be obtained from lower levels.

Meta Data Context.

Rather than specifying individual airport attributes (such as wind speed) as state variables of
a particular value type, two abstract types are introduced that correspond to the collection of
attribute identifiers and attribute values. This allows us to represent the storage of data more
abstractly as a mapping from attribute identifiers to attribute values.

CONTEXT META_DATA
SETS Attr_id , Attr_value
END

Pages Context.

The pages of CDIS are device-independent representations of what can be displayed on a
screen. Each page is associated with a page number, and each page consists of its contents.

CONTEXT PAGE_CONTEXT
SETS Page_number ; Page_contents
END

Displays Context.

At this abstract level, we model the physical devices with which the users interact with the
system. However, we only need to acknowledge that each position is uniquely identified (by its
EDD_id), each user position has a type, and each user position has a physical display. Some
user positions are ‘editors’ which have the capability of manipulating data and pages.

15

CONTEXT DISPLAY_CONTEXT
SETSEDD_id , EDD_type , EDD_display
CONSTANTSEDDs, EDIT , EDITORS
PROPERTIES

EDIT € EDD_type A

EDDs € EDD_id — EDD_type A

EDITORS C EDD_id A

EDITORS = EDDs ~! [{ EDIT }]
END

Merge Context.

By merging the previous three contexts (via a SEES clause), we can declare a function that
can determine the actual display, given the appropriate information. In declaring this function,
we use an unfamiliar syntax. In [EBO6], we have proposed the introduction of a record-like
structure to Event-B. This proposal does not require any changes to the semantics of Event-B,
but it gives us a succinct way to define structured data. The declaration of Disp_interface in the
SETS clause of the following context is an example of our proposed syntax

CONTEXT MERGE_CONTEXT
SEES META_DATA , DISPLAY_CONTEXT , PAGE_CONTEXT
SETS Disp_interface :: data : Attr_id — Attr_value,

contents : Page_contents
CONSTANT S disp_values
PROPERTIES disp_values € Disp_interface — EDD _display

The type Disp_interface is a record comprising two fields data (of type Attr_id — Attr_value)
and contents (of type Page_contents). This record type defines the interface to the function
disp_values. The intention is that, given a database of values and the device-independent repre-
sentation of a display, disp_values calculates what is actually displayed (i.e. it returns a value of
type EDD_display). The benefit of using a record type is that it can be refined by adding extra
fields (see [EBO6] for more details). This is necessary because the actual display is dependent
on parameters that are introduced during the refinement stages. The extension of record types
through refinement allows us to modify the interface accordingly (an example of this is given
in Section 2.4.3).

As in the original CDIS specification, the fact that we represent disp_values so abstractly
does not undermine the value of the specification. The dynamic part of the specification (shown
below) focuses on updating attributes and pages, and defines the pages selected at user posi-
tions.

The Abstract Model: A Generic Display

The variable database represents the stored data, and page_selections records the page number
currently selected at a user position. Note that this is a partial function which means that user
positions are not obliged to display a page. The variable pages is a partial function mapping
page numbers and page contents. The variable private_pages holds the page contents of a page
prior to release. This is intended to model an editor’s ability to construct new pages before they
are made public. Finally, trg models the ‘timed release queue’ that enables a new version of a

16

page to be stored until a given time is reached, whereupon it is made public.

MACHINE ABS_DISPLAY
SEES
META_DATA, DISPLAY _CONTEXT, PAGE_CONTEXT, MERGE_CONTEXT
VARIABLES database , pages , page _selections , private_pages , trq
DEFINITIONS
inv =
database : Attr_id — Attr_value A
pages : Page_number + Page_contents A
page_selections : EDD_id + Page_number A
private_pages : Page_number + Page _contents A
trg : Page_number + Page_contents A
ran(page_selections) C dom(pages)
INVARIANT inv
INITIALISATION database , pages , page_selections , private_pages, trq : (inv)

Note that, in addition to type information, the invariant insists that pages can be selected only
if they have contents. We keep the model simple by initialising the system to be any state in
which the invariant holds.

Almost all of the operations given below correspond to operations defined in the original
VDM specification. One exception is the VIEW _PAGE operation that uses the disp_values
function to output an actual display. This is a departure from the original VDM specification
but, since outputs must be preserved during refinement, it forces us to ensure that the appear-
ance of actual displays is preserved.

UPDATE_DATABASE models the automatic update of data via the stream of data com-
ing from the airports, and SET _DATA _VALUE models the manual update of values (by ed-
itors). DISPLAY _PAGE enables any user to select a new page to be displayed, and DIS
MI1SS_PAGE removes a page selection. RELEASE_PAGE makes a private page public, and
DELETE_PAGE enables an editor to delete the contents of a page. In addition to the man-
ual release of pages (via RELEASE_PAGE), pages can be released automatically at specific
times. RELEASE_PAGES_FROM _TRQ models the timed release of pages. However, at
this stage no notion of time exists in the specification. Therefore, this operation selects an ar-
bitrary subset of the pages from trq to be released. This is refined when we introduce a notion
of time (as shown in Section 2.4.3). The operations use common B operators such as function
overriding < , domain subtraction <, and range subtraction .

17

UPDATE_DATABASE (ups) =
PRE
ups € Attr_id -~ Attr_value
THEN
database := database <+ ups
END ,

SET_DATA_VALUE (ei,ai,av) =

PRE

ei € EDD_id A

ai € Attr_id A av € Attr_value
THEN

WHEN ei € EDITORS THEN

database (ai) := av

END

END ;

DISPLAY _PAGE (ei,no) =
PRE

ei € EDD_id A no € Page_number

THEN

WHEN no € dom (pages) THEN

page_selections (ei) := no
END
END ,

DISMISS_PAGE (ei) =
PRE ei € EDD_id THEN
WHEN
ei € dom (page_selections)
THEN
page_selections :=
{ ei } < page_selections
END
END ;

ed — VIEW_PAGE (ei) =
PRE ei € EDD_id THEN
ANY di WHERE
ei € dom (page_selections) A
di € Disp_interface A
data (di) = database A
contents (di) =
pages (page_selections (ei))
THEN
ed := disp_values (di)
END
END

RELEASE_PAGE (no) =
PRE no € Page_number THEN
WHEN
no € dom (private_pages)
THEN
pages (no) :=
private_pages (no) ||
private_pages :=
{no } < private_pages
END
END ,

RELEASE_PAGES_FROM_TRQ =
ANY SSWHERE
SSe
Page_number -~ Page _contents A
SS C trq
THEN
pages := pages < SS ||
trqg :=trq — SS
END |

DELETE_PAGE (ei,no) =
PRE
ei € EDD_id A
no € Page_number
THEN
WHEN ei € EDITORS THEN
pages := { no } <l pages ||
private_pages :=
{no} < private_pages ||
trg:={no} <trq ||
page_selections :=
page_selections & { no }
END
END ;

18

ABSTRACT

MODEL
ri r2
TIMED REVEAL/CONCEAL
MODEL MODEL
r2’ rl’
COMBINED
MODEL

Figure 2.3: Non-linear refinement

2.4.3 Refinement

The abstract specification described in the previous section omitted many of the features that
characterise CDIS. However, this made it possible to give a broad overview of the system,
including its state variables and operations, within a few pages. Now we use this specification
as a basis for refinement in which the omitted details are introduced.

One thing that becomes apparent when using this approach is the lack of order which dic-
tates the sequence of refinements. In the case of CDIS, the way that information recorded in the
database is displayed depends on several (unrelated) things. For example, values are coloured
according to their age. By adding a notion of time, via refinement, it is possible to model such
behaviour. In addition, the model is refined by adding a reveal/conceal feature that enables the
air traffic controllers to display or remove ‘page overlays’ from a screen. The order in which
these features are introduced to the specification is arbitrary since one feature does not depend
on the other. Enforcing a linear refinement policy in which one feature had to be introduced
after the other would be inconvenient because it would be easier to understand a refinement
that adds a reveal/conceal feature to the abstract model (see Section 2.4.3) rather than add it to
the timed model shown in Section 2.4.3. Similarly the timed model of Section 2.4.3 is easier to
appreciate without the reveal/conceal feature of Section 2.4.3. It would be desirable, therefore,
to refine the abstract model in two separate ways and then combine the results. This is depicted
in Figure 2.3. Note that the refinements introducing time (r1 and r1’) are not identical, but are
closely related (similarly for r2 and r2’).

19

Adding Time

In terms of the CDIS subset, there are two main reasons for adding time: each piece of airport
data has an age which affects how it is displayed, and the version of each page that is displayed
is also time-dependent. In this refinement we shall once again use our proposed syntax for
record types [EBO6].

Time Context.

We begin by introducing a new context to the development. The set Date_time represents all of
the different points in time. We also include a total ordering relation (leq) between these points.

CONTEXT TIME
SETS Date_time
CONSTANTS leq
PROPERTIES
leq € Date_time — Date_time A
V (a).(a: Date_time = (a, a) : leq) A
v (a, b).(a: Date_time A b : Date_time =
((a,b):leg A (b,a):leg=a=Db) A
((a,b) : leq Vv (b, a) : leq)) A
V (a, b, ¢).(a: Date_time A b : Date_time A c : Date_time =
((a,b): leg A (b,c): leq= (a,c): leq))
END

Meta Data Context.

In order to record the age of a piece of data as well as its value, we refine the META_DATA
context by defining a record type Attrs with two fields value and last_update.

CONTEXT META_DATAL

SEES META_DATA , TIME

SETS Attrs :: value : Attr_value,
last_update : Date_time

END

Note that the range of value is of our original value type Attr_value. The gluing invariant of the
refined model will ensure that the values of the entries in the refined database will match the
corresponding entries in the original database. (This technique of ‘wrapping’ an abstract type
in a refined type occurs frequently in our approach.) The field last_update (of type Date_time)
records the time at which the value of the attribute was last updated.

Pages Context

We proceed by refining the pages context in a similar manner. We declare a record type Page
with two fields: page_contents holds the structure of a page, and creation_date holds the time
at which a page was created. Note that this has nothing to do with the time at which the page is
released. In order to model the timed release queue faithfully, we must associate a release date
with every page on the queue. By using our proposed syntax for record refinement [EBO06], this
is achieved by defining a subtype of Page (called Rel_page) whose elements have an additional
field called release_date.

20

CONTEXT PAGE_CONTEXT1
SEESTIME , PAGE_CONTEXT
SETS
Page :: page_contents : Page _contents,
creation_date : Date_time ,
Rel_page SUBTYPES Page WITH release_date : Date_time
END

Only pages of type Rel_page occur on the timed release queue. We shall see how the refinement
of the operation RELEASE _PAGES_FROM _TRQ uses this additional information.

M erge Context.

Now that we have introduced a notion of time, the display function disp_values can be aug-
mented so that the ages of the data in the database is taken into account when they are displayed.
We change the interface of the function by adding a new field to Disp_interface called time.
The operator ‘EXTEND’ is similar to the ‘SUBTYPES’ operator, but it adds fields to all ele-
ments of the record type.

CONTEXT MERGE_CONTEXT1
SEES
META_DATA , DISPLAY_CONTEXT , PAGE_CONTEXT ,
TIME , META_DATA1, PAGE_CONTEXT1 , MERGE_CONTEXT
SETS EXTEND Disp_interface WITH time : Date_time
END

Whenever the function disp_values is called, the current time can be passed as a parameter
so that the ages of the relevant data can be determined. In CDIS, the colour of a value when
displayed indicates its age (although this detail is not included at this level of abstraction).

The Refined Model: A Timed Display.

The state variables and the operations of ABS_DISPLAY are refined to incorporate the timed
context. Four of the variables in the refinement replace those of the abstract model. The in-
variant gives the relationship between these concrete variables and their abstract counterparts.
For example, the abstract variable database is refined by timed_database, and they are re-
lated because the attribute values held in database can be retrieved from the value fields in
timed_database.

REFINEMENT ABS_DISPLAY1
REFINES
ABS_DISPLAY
SEES
META_DATA, DISPLAY _CONTEXT, PAGE_CONTEXT, MERGE_CONTEXT,
TIME , META_DATAL1 , PAGE_CONTEXT1 , MERGE_CONTEXT1
VARIABLES
timed_database ,
page_selections ,
timed_pages ,
private_timed_pages,

21

dated_trq,
time_now
DEFINITIONS
invli =
timed_database € Attr_id — Attrs A
timed_pages € Page_number - Page A
private_timed_pages € Page _number -~ Page A
dated_trq € Page_number - Rel _Page A
time_now € Date_time A
database = (timed_database , value) A
ran (page_selections) C dom (timed_pages) A
pages = (timed_pages , page_contents) A
private_pages = (private_timed_pages , page_contents) A
trq = (dated_trq ; page_contents) A
Vn.(nedom (timed_pages) =
(creation_date (timed_pages (n)), time_now) € leq) A
vV n.(ne€dom (private_timed_pages) =
(creation_date (private_timed_pages (n)), time_now) € leq) A
Vn.(n&€dom (dated_trq) =
(creation_date (dated_trq (n)), time_now) € leq)
INVARIANT invl

Some of the operations affected by the refinement are shown below.

UPDATE_DATABASE (ups) =
PRE ups € Attr_id + Attr_value THEN
ANY ff WHERE
ff € Attr_id - Attrs A
dom (ff) =dom (ups) A
(ff ; value) = ups A
(ff ; last_update) = dom (ff) x { time_now }
THEN
timed_database := timed_database < ff
END
END

The parameter to the UPDAT E_DATABA SE operation maintains its type, but the ANY clause
is used to construct a new mapping from Attr_id to Attrs all of whose last_update components
are assigned to the current time (to reflect the time of the update). This mapping is used to
overwrite the appropriate entities in the timed database. An interesting refinement occurs in
the operation RELEASE_PAGES_FROM _TRQ. Rather than selecting an arbitrary subset of
trg to release, time_now is used to select those elements whose release date is earlier than the
current time. The released pages (held in timed_pages) are updated accordingly.

RELEASE_PAGES_FROM_TRQ =
LET SSBE SS=
dated_trq > { rp | rp € Rel_Page A (release_date (rp), time_now) € leq }
IN
timed_pages := timed_pages < SS ||
dated_trq := dated_trq — SS
END

Next, we introduce a new operation, called CLOCK that increases the current time by some
unspecified amount. This operation models the passing of time.

22

CLOCK =

ANY time_next WHERE
time_next € Date_time A
(time_now , time_next) € leq A
time_next # time_now

THEN
time_now := time_next

END

A Different Refinement: Page Overlays

Now we consider an alternative refinement to the abstract model in which the reveal/conceal
feature is added rather than time. First we augment the relevant context PAGE_CONTEXT

MACHINE PAGE_CONTEXT2
SEES
PAGE_CONTEXT
SETS
Graphic_background ,
Overlay_Page_contents SUBTYPES Page _contents WITH overlay : Graphic _background
END

This definition adds the field Overlay _Page_contents to a subset of all page contents (i.e. those
pages that possess an overlay). Now we can augment the model by introducing a new variable
concealed_displays to record which displays are concealing their overlays.

REFINEMENT ABS_DISPLAY?2
REFINES
ABS_DISPLAY
SEES
META_DATA , DISPLAY_CONTEXT , PAGE_CONTEXT ,
PAGE_CONTEXT1 , MERGE_CONTEXT
VARIABLES
database ,
pages ,
page_selections,
private_pages,
trq,
concealed_displays
DEFINITIONS
inv2 =
concealed_displays C EDD _id A
concealed_displays C dom (page_selections)
INVARIANT
inv2

In a similar manner to the timed refinement, the operations of the abstract model are refined
to incorporate reveal/conceal behaviour. In this case we introduce operations to model the
users’ ability to toggle between revealing and concealing overlays on their displays. It is not

23

important to understand the details of the operation RELEASE_PAGES_FROM _TRQ), but
it is important to note the structure of the operation because it will influence the structure of the
corresponding operation in the combined model of Section 2.4.3.

RELEASE_PAGES_FROM_TRQ =
ANY SSWHERE
SS € Page_number —+ Page _contents A
SS Ctrg
THEN
LET p_nums BE
p_nums={no | noe&dom(SS)Anoedom (pages) A
pages (no) € Overlay_Page_contents A
SS (no) ¢ Overlay _Page _contents }
IN
LET edd_ids BE
edd_ids = dom (page_selections > p_nums)

IN
pages := pages < SS ||
trq :=trq — SS ||
concealed_displays := concealed _displays — edd _ids
END
END
END ,

TOGGLE_REVEAL _CONCEAL (ei) =
PRE ei € EDD_id THEN
SELECT ei € concealed_displays THEN
concealed_displays := concealed _displays — { ei }
END
END ;

TOGGLE_REVEAL _CONCEALZ2 (ei) =
PRE ei € EDD_id THEN
SELECT
ei € dom (page_selections) A
pages (page_selections (ei)) € Overlay _Page_contents A
ei ¢ concealed_displays
THEN
concealed_displays := concealed _displays U { ei }
END
END

Putting the Refinements Together

Now that we have two distinct refinements of the same abstract model, the next step is to
combine them into a single model that refines both of them (as in the COMBINED MODEL
depicted in Figure 2.3). We do this in a systematic way to promote the idea that the combination
of non-linear refinements could be done automatically.

The combined context is simply the amalgamation of the sets, constants and properties of
the contexts PAGE_CONTEXT1 and PAGE_CONTEXT2. This can be achieved via the SEES
clause, but for completeness we show this union as a third context COMBINED _PAGE _CONTEXT.

24

CONTEXT COMBINED_PAGE_CONTEXT
SEESTIME , PAGE_CONTEXT
SETS

Page :: page_contents : Page_contents,

creation_date : Date_time ,

Rel_page SUBTYPES Page WITH release _date : Date_time ;

Graphic_background ,

Overlay_Page_contents SUBTYPES Page _contents WITH overlay : Graphic _background
END

The model is constructed by amalgamating the variables of both refined models and taking
the conjunction of their invariants. Note that the consistency of the individual refinements is
preserved by the combination because the variables of the separate refinements are distinct. Al-
though proof obligations are still generated by the tool, the proofs follow those of the individual
refinements. Future work aims to show that such combinations can be done without the need to
generate further proof obligations. In other words, consistency is preserved by this procedure.

REFINEMENT COMBINED_ABS_DISPLAY
REFINES
ABS_DISPLAY
SEES
META_DATA, DISPLAY _CONTEXT, PAGE_CONTEXT, MERGE_CONTEXT,
TIME , META_DATAL1 , PAGE_CONTEXT1 , MERGE_CONTEXT1
VARIABLES
timed_database ,
page_selections ,
timed_pages ,
private_timed_pages,
dated_trq ,
time_now ,
concealed_displays
INVARIANT
invl A inv2

Combining the operations is a bit more tricky, but typically this consists of taking the con-
junction of (i.e. strengthening) the guards, and composing the bodies of the operations via the
parallel operator ||.

25

RELEASE_PAGES_FROM_TRQ =
LET SSBE SS=
dated_trq > { rp | rp € Rel_Page A (release_date (rp), time_now) € leq }
IN
LET p_numsBE
p_nums={no | noe&dom (SS)Anoe dom (timed_pages) A
timed_pages (no) € Overlay_Page_contents A
SS (no) ¢ Overlay_Page _contents }
IN
LET edd_ids BE
edd_ids = dom (page_selections > p_nums)
IN
timed_pages := timed_pages < SS ||
dated_trg := dated_trq — SS ||
concealed_displays := concealed _displays — edd _ids
END
END
END

It can be seen that this operation combines the features of the corresponding operations in the
individual refinements.

2.5 Case Study 5: Ambient Campus

Mobile agent systems are increasingly attracting attention of software engineers. However,
issues related to fault tolerance and exception handling in such systems have not yet received the
level of attention they deserve. In particular, formal support for validating the correctness and
robustness of fault tolerance properties is still under-developed. Within the Ambient Campus
case study, we developed an initial approach to dealing with such issues in the context of a
concrete system for dealing with mobility of agents (CAMA), and a concrete technique for
verifying their properties (partial order model checking). An overall goal of this strand of our
work is a formal model for the specification, analysis and model checking of CAMA designs.
To achieve it, we use process algebras and high-level Petri nets.

In concrete terms, our approach reported in [IKKRO05] is first to give a formal semantics
(including a compositional translation) of a suitably expressive subset of CAMA in terms of an
appropriate process algebra and its associated operational semantics. The reason why we chose
a process algebra semantics is twofold: (i) process algebras, due to their compositional and
textual nature, are a formalism which is very close to the actual notations and languages used
in real implementations; and (ii) there exists a significant body of research on the analysis and
verification of process algebras. In our particular case, there are two process algebras which are
directly relevant to CAMA, viz. KLAIM [DNLMO5, DNFP98] and m-calculus [Par01], and our
intention is to use the former as a starting point for the development of the formal semantics.

The process algebra semantics of CAMA can then be used as a starting point for developing
efficient model checking techniques aimed at verifying the behavioural correctness of CAMA
designs. In our approach, we are specifically interested in model checking techniques which
alleviate the state space explosion problem, and for this reason we adopted a partial order model
checking based on Petri net unfoldings [KhoO3]. To be able to use it, we will take advantage of

26

a semantics preserving translation from the process terms used in the modelling of CAMA to a
suitable class of high-level Petri nets based on [DKKO06b, DKKO06a].

CAMA is a middleware supporting rapid development of mobile agent software. It offers a
programmer a number of high-level operations and a set of abstractions which help to develop
multi-agent applications in a disciplined and structured way. CAMA is an extensible system. Its
inter-agent communication is based on the LINDA paradigm which provides a set of language-
independent coordination primitives that can be used for coordination of several independent
pieces of software. They allow processes to put tuples (vectors of values) in a shared tuple
space, remove them, and test for their presence. Input operations use special tuples called
templates, where some fields are replaced with wildcards that can match any value.

The approach taken in the Ambient Campus case study is based on the asymmetric model
of agent systems within the location-based paradigm. The main part of communication and
control is implemented by a dedicated service, called location. The approach supports large-
scale mobile agent networks in a predictable and reliable manner. Moreover, location-based
architecture eliminates the need for employing complex distributed algorithms, such as voting
or agreement.

27

Chapter 3

Discussion of 1ssues

3.1 Towardsan Algebra of Abstractionsfor Communicating
Processes

It is often desirable to describe the interface of an implementation system at a different (usu-
ally more detailed) level of abstraction to the interface of the relevant specification. This calls
for a relation aimed at formalising the notion that a process is an acceptable implementation
of another target process in the event that they possess different interfaces. Let us consider a
specification network, P,,.;, composed of n communicating processes P4, ..., P,, and a corre-
sponding implementation network, Q.,., also composed of n processes, Q1, . . ., Q. Intuitively,
P; is intended to be Q;’s specification; we shall also refer to P; as a target or base system, and
to Q; as a source or implementation system. Note that although P;’s and Q;’s interfaces need
not coincide, we do assume that the interface of Q,.; at the boundary with the external envi-
ronment is the same as that of P,,.; (see Figure 3.1), and that we are not interested in the details
of inter-process communication within the networks P,,.; and Q,,.;. In the CSP notation, this
means that the specification network P,,., is of the form (P ||Pz|| - - - ||Pn) \ A, where A is the set
of actions used for the internal communication by the P;’s, while the implementation network
is of the form Q,..; = (Q1]|Qz|| - - - ||Qn) \ B, where B is the set of actions used for the internal
communication by the Q;’s.

Pret, !C

a— P, P, P, _)

1T

a— Q Q: Qs —b
-

Figure 3.1: Network connectivity where pairs of corresponding processes, Q; and P;, may have
different observable actions.

In the usual treatment of process algebras, such as [Mil89, Ros98], the notion that Q,,.;

28

| C

Pret .
a— Py P, P3 —b
o N
a— Qi Q2 Qs —b

Figure 3.2: Network connectivity where each Q; has the same observable actions as P;.

implements P,,.; is based on the idea that Q,,.; is more deterministic than (or equivalent to) P,,;
in terms of the chosen semantics. In practice, to formally verify that such a property holds, one
can proceed in either of the following two ways.

e The first approach is to compare P,,.; and Q,,.; according to a chosen notion of refinement
or equivalence. This is a straightforward approach, but one which potentially suffers from
a severe state space explosion, since the compared processes are obtained by combining
n components.

e The second, usually much better, approach attempts to (i) show an appropriate refine-
ment or equivalence holds for each pair of processes P; and Q;, and (ii) resort to general
theorems to infer the desired relation between the complete networks, P,,.; and Q,,.;.

Within the standard approaches, such as [Mil89, Ros98], the latter compositional way of prov-
ing correctness of the implementation network is handled only in the case when for each i,
P; and Q; have the same actions in their interfaces. Hence the networks in Figure 3.1 cannot
really be treated by this technique, as the constituent processes should be like in Figure 3.2.
Yet in deriving an implementation from a specification we will often wish to implement ab-
stract, high-level interface actions at a lower level of detail and in a more concrete manner. For
example, the link available to connect base components P;, P; may be unreliable, and so may
need to be implemented, in the sources Q;, Q;, by a pair of channels, one for data and one for
acknowledgements. Or an intended implementation Q; of P; may be liable to fail itself, so that
the final implementation Q; is built by assembling redundant replicas of Q;, and thus has each
channel of P; replicated [Lam78] (such a scenario was one of the original motivations behind
the work [KMP97] of which this paper is a continuation). Or it may simply be the case that a
high-level action of P; is rendered in a more concrete, and hence more implementable, form.
As a result, the interface of an implementation process may exhibit a lower (and so different)
level of abstraction than a specification process.

In the process algebraic context, dealing with interface difference necessitates the devel-
opment of what Rensink and Gorrieri [RG01] have termed a vertical implementation relation.
This should adequately capture the nature of the relationship between a specification and an
implementation whose interfaces differ; and should collapse into the standard, horizontal one
whenever the two interfaces happen to coincide. In works [KMP97, BKPPKO02, BKP04], we in-
dependently identified this “collapsing’ requirement as accessibility or realisability, effectively
pioneering it within the CSP process model [R0s98].

29

Technically, in our preceding works [BKPPKO02, BKP04], processes are formalised using
the CSP language, with its standard failures-divergences semantics [R0s98]. The implemen-
tation relation is formulated in terms of failures and divergences of the implementation and
target processes. Interface difference is modelled by endowing the implementation relation
with parameters called extraction patterns. These are intended to interpret implementation be-
haviour as target behaviour (translating, in particular, traces), and suitably constrain the former
in connection to acceptable refusals.

We developed the theory of [BKPPKO02, BKP04] under that crucial restriction of the one-
to-one communication paradigm. That is, we assumed no communication action is shared by
more than two processes within a distributed network of processes (as is the case in Figure 3.1).
This, in particular, excluded systems with broadcast, as well as disallowed, say, a potentially
complex group protocol at the implementation level to be abstracted into a single action at
the specification level. Another limitation of [BKPPKO02, BKP04] was that it only established
the implementation relation to distribute over network composition (i.e. compositionality), not
other useful operations employed to combine and construct processes, notably choice.

In the current work, reported in [KPPKO06], no restrictions are now placed on the class of
specification processes allowed, other than a quite natural divergence-freedom requirement.
Realisability holds in its purest form, in the sense that implementation in the absence of in-
terface difference collapses into standard CSP refinement. Moreover, we can now deal with
process networks where the one-to-one communication constraint need not be adhered to; this
allows group communication to be modelled. We also generalise compositionality results,
through a treatment intended to show that the implementation relation distributes over the main
CSP operators, beginning from internal choice. Such results are apt to prove beneficial in
the compositional verification of systems. It is worth noting, in particular, that more general
scenarios can now be handled than process network topologies as in Figure 3.1, where imple-
mentation and base processes are paired in a unique way. For example, in a situation as in
Figure 3.3 we can apply new results to prove that Q,,.; implements P,,.; in a stepwise fashion,
by showing that: (i) Q; implements P4, and (ii) the parallel composition of Q, and Q3, with
their mutual interaction hidden, implements P.

Pnet !C

a—- P1 P H—b

Qnet

a— Q Q2 Qs r—b
e

Figure 3.3: Networks with different topology.

3.2 RigorousDevelopment of Fault-Tolerant Agent Systems

Mobile agent systems are complex distributed systems that are dynamically composed of in-
dependent agents. Usually agents are designed by different developers to perform individual

30

computational tasks. The agent technology naturally solves the problem of partitioning com-
plex software into smaller parts that are easier to analyse, design and maintain. However, to
ensure interoperability of agents, the individual developments should adhere to a certain “stan-
dard”, which would guarantee compatibility of constructed agents yet avoid over-constraining
the development process. Middleware supporting agent execution is also distributed. In this
work we show how to formally develop a distributed middleware in such a way that its different
parts can be taken apart and implemented independently [ILRTO6].

The initial results of this work were applied in the development of the CAMA (Context-
Aware Mobile Agents) middleware system [AIRO06, 11i06]. The core part of the middleware
— the scoping mechanism [IR05] — was formally designed and then implemented according to
the resultant specification [ILRTO05]. For other parts, such as disconnection toleration and agent
recovery results of the formal development helped to re-engineer the middleware implementa-
tion.

We start from an abstract specification of the overall agent system, i.e., abstractly model
agents together with the location supporting inter-agent communication. In a number of cor-
rectness preserving steps we incorporate various system properties, including fault tolerance,
into the specification. Finally, we arrive at the specification of entire middleware, which can be
decomposed into parts to be implemented by the location and by each individual agent.

In the independent development of individual agents the programmers merely need to aug-
ment this abstract part with an implementation of the desired agent functionality. Such an
approach allows us to ensure inter-operability of individually developed agents and the cor-
rectness of the overall system. Moreover, since the proposed patterns contain abstract specifi-
cations of the means for detecting agent failures, such as disconnections and crashes, and the
corresponding error recovery procedures, we can guarantee fault tolerance of an agent system
developed according to the proposed approach.

One of the major challenges in designing agent systems lies in ensuring interoperability of
agents. This problem can only be properly addressed if we define the essential properties of the
overall agent system, derive the properties to be satisfied by the location and each agent, and
ensure that they are preserved in the agent and location development. This goal can be achieved
by adopting the system approach to developing agent systems, i.e., modelling the entire set of
agents together with the location that provides the infrastructure for agent communication.

3.2.1 Fault-tolerance

One of the essential requirements of multi-agent systems is the ability to operate in a volatile,
error prone environment. Hence we aim at developing fault tolerant agent systems, i.e., systems
which can withstand various kinds of faults. The most typical class of faults in our case is
a temporal loss of connection. It might cause errors or delays in communication between
cooperating agents. In our first refinement step we introduce an abstract representation of this
type of fault.

In most cases an agent loses connection only for a short period of time. After connection
is restored, the agent is willing to continue its activities virtually uninterrupted. Therefore, af-
ter detecting connection loss, the location should not immediately disengage the disconnected
agent but rather set a deadline before which the agent should reconnect. If the disconnected
agent restores its connection before the deadline then it can continue its normal activity. How-
ever, if the agent fails to do it, the location should disengage the agent.

31

This behaviour can be formally modelled by the timeout mechanism. Upon detecting dis-
connection the location activates a timer. If the agent reconnects before the timeout then the
timer is stopped. Otherwise, the location forcefully disengages the disconnected agent.

During the formal development of the system we use a combination of the superposition
refinement and atomicity refinement. With atomicity refinement a single event is refined into a
set of events. A simple abstract event can be represented as of alternative events and this allows
use to explicitly introduce normal behaviour and recovery actions.

The net direction of refinement is a providing a finer recovery actions for agent failures.
Initially, any agent failure is treated as an unrecoverable error. Upon detecting an error, the
failed agent is removed from the scope and disengaged from the location. In our next refinement
step we distinguish between recoverable and unrecoverable errors. Namely, upon detecting an
error the agent at first tries to recover from it (probably involving some other agents into the
error recovery). If the error recovery eventually succeeds then the normal operational state of
the agent is restored. Otherwise, the error is treated as unrecoverable.

While specifying error recovery procedures, it is crucial to ensure that the error recovery
terminates, i.e., does not continue forever. To ensure this, we introduce the variable which
limits the amount of error recovery attempts for each agent. Each attempt of error recovery
decrements this value by one. When for some agent the recovery limit becomes zero then agent
error recovery terminates and the error is treated as unrecoverable.

3.2.2 Interoperability

At the initial stages of the system development we mainly focused on modelling interactions of
agents with the location. We proceed by introducing an abstract representation of the scopes as
an essential mechanism which governs agent interactions while they are involved in cooperative
activities.

The scoping mechanism has a deep impact on modelling error recovery in agent systems.
For instance, if a scope owner irrecoverably fails, then, to recover the system from this error,
the location should close the affected scope and force all agents to leave.

Each scope provides the isolated coordination space for compatible agents to communicate.
Comepatibility of agents is defined by their roles — abstract descriptions of agent functionality.
To ensure compatibility of agents in a scope, each scope supports a certain predefined set of
roles. When an agent joins a scope, it chooses one of the supported roles. We assume that an
agent can join a scope only in one role and this role remains the same while the agent is in the
scope. However, an agent might leave a scope and join it in another role later.

The creator of the scope defines the minimal and maximal numbers of agents that are al-
lowed to play each supported role. This is dictated by the logical conditions on the scope
functionality. For instance, if the scope is created for purchasing a certain item on an electronic
auction then there are must be only one seller and at least one buyer for a scope to function
properly.

However, agent systems are asynchronous systems. Therefore, at the time of scope creation
it cannot be guaranteed that agents will take all the required roles in the right proportions at
once and the scope will instantly become functional. Since agents join and leave the scope
arbitrarily, the scope can be in various states at different instances of time: pending, when the
number of agents is still insufficient for normal functioning of the scope; expanding, when the

32

scope is functional but new agents can still join it; closed, when the maximal allowed number
of agents per each role is reached.

3.2.3 Conclusion

In our development we adapted the system approach, i.e., captured the behaviour of agents
together with their communication environment. While carrying out the development of the
system by refinement, we modelled the essential properties of agent systems and incorporated
fault tolerance mechanisms into the system specification. We demonstrated how to define the
mechanisms for tolerating agent disconnections typical for mobile systems as well as agent
crashes.

The proposed approach provides the developers of agent systems with a formal basis for
ensuring inter-operability of independently developed agents. Indeed, by decomposing the
proposed formal model of the middleware into the parts to be implemented by the agents and
by the location and ensuring adherence of their implementations to these specifications, we can
ensure agent inter-operability.

3.3 Deriving specifications

The research on “Deriving Specifications” was reported on in §2.2.1 of (D9) the Preliminary
report on methodology.* The “HJJ approach” (after the initial letters of the family names of the
three authors) was first set out in [HJJO3]. Not only has this research continued, it is clear that
it is attracting significant attention. We will not report the technical details here since adequate
material can be cited.

As an update on the state as in D9, we can report

e lan Hayes (University of Queensland) presented the HJJ method at the REFT workshop
associated with FM-06.

e CIiff Jones based his keynote talk at DSVIS-05 on the HJJ method; in particular, he
addressed the application of the method to those systems which include human players
(see [Jon05d]).

e Joey Coleman presented a joint (with Cliff Jones) paper on the ideas at the REFT work-
shop associated with FM-06 [CJ05].

e Joey Coleman wrote up the REFT presentation as a (solo) paper [Col06].

o CIiff Jones based his invited talk at the IEEE ICECCS-2005 seminar in Shanghai on the
HJJ approach [Jon05c]

e A journal submission (see [JHJO6] for a pre-print) has been made by the original three
HJJ authors to Acta Informatica.

o CIiff Jones has given several seminars on this topic including ones at an IFIP event
(VSTTE) in Zurich and FM-E/FACS.

LCIiff Jones also described this work to the first Rodin Review in Brussels on 2005-09-30.

33

e This last talk led to a “rebuttal” talk by Prof Tom Maibuam (Canada) in which he debated
several of the technical decisions in HJJ approach (June 2006, London BCS HQ).

There clearly remains research to be done on HJJ. Of particular relevance to Rodin is the
fact that the journal paper [JHJO6] stops short of giving a semantics for ways of combining
whole specifications.

3.4 Synthesisof Scenario Based Test Casesfrom B Models

Software models are usually built to reduce the complexity of the development process and to
ensure software quality. A software model is an abstraction in the sense that it captures the most
important requirements of the system while omitting unimportant details. A model is usually a
specification of the system which is developed from the requirements early in the development
cycle [DJK™99]. This paper concerns with formal models only; in particular, we deal with
model oriented formal languages like Z [Spi88], VDM [Jon90b] and B [Abr96]. By model
oriented we mean, the system behaviour is described using an explicit model of the system
state along with operations on the state. We will focus on B models only.

Model based testing is usually based on the notion of a coverage graph obtained from
the symbolic execution of the model. A subset of the paths in this graph can be treated as
a test suite from the viewpoint of test case generation. Even though model based testing is
an incomplete activity, the selected behaviours could be made effective in the sense that they
capture the interesting activities of the system and hence the success of their testing would give
us confidence about its correctness.

Existing testing tools or techniques [BLLP04, SLBO05] dealing with model oriented lan-
guages partition the input space of the operations into equivalence classes to create operation
instances. Then a Finite State Automaton (FSA) or a coverage graph is constructed in which
the initial node corresponds to the initial state of the model, edges correspond to application of
operation instances. Usually a coverage graph is constructed up to a predefined depth or size.
Some paths of this graph are selected as test cases. When the implementation is subjected to
the same sequence of operations as in a test case, we get an image of the original path in the
model execution. Now if the properties of the implementation path matches with the properties
of the path in the model, we declare that the implementation has passed the test case; otherwise,
a failure.

However, in these approaches, there is no guarantee that the user scenarios are tested. A
user scenario is like a usecase scenario in UML [OMGO5]; in this article, we use scenarios
and usecases interchangeably. The paths that we test as test cases may bear no resemblance
to the operation sequences in relation to user scenarios. How to know that we are not missing
out some scenarios? Of course if all possible operation instances do appear in the coverage
graph, and we are able to test all of them, we can say that the user scenarios have been tested
in an implicit way. But since we fix a predefined bound on the depth of the coverage graph,
some operation instances may lie beyond this bound, and then there is no way to locate them.
Furthermore, some valid operation instance may not appear in the graph at all. In this paper,
we address these issues. Of course, here we assume that the entire development path from
the specification to code is not entirely formal, in which case testing may not be necessary;
however, in practice, the entire development process is less often formal.

34

o

Refinement Test Case
Chain RU V. i T Chain
ROV Y,
R B T(k-1)

Figure 3.4: The Basic Idea

The basic idea behind our paper can be seen from Figure 3.4. We define an initial usecase-
based test case T in terms of a sequence of operations in relation to the initial specification R.
Thereafter, given any successive refinement pair R; and R ;, and T; as the usecase-based test
case for R;, we derive T;.; such that it is a valid behaviour of R; 1, and in addition, T; and T;
are equivalent to each other as far as the original test case is concerned. The main contributions
of our paper are:

o \We relate our test cases to user scenarios; in the process, we also find out if the refinement
has missed out on some scenarios.

e \We generate a small number of test cases, and our approach is much more focused. The
result is that the time to execute the test cases becomes smaller.

The organization of this section is as follows. Section 3.4.1 discusses the testing termi-
nology we use. Section 3.4.3 describes the problem in a formal manner. In Section 3.4.4, we
discuss our approach over a running example. Section 3.4.10 discusses the strengths and the
weaknesses of our approach. Section 3.4.11 concludes the material.

3.4.1 Terminology

A testing criterion is a set of requirements on test data which reflects a notion of adequacy on
the testing of a system [RAO92, ZHM97]. An adequacy criterion serves two purposes: (a) it
defines a stopping rule which determines whether sufficient testing has already been done; so,
testing can now be stopped, and (b) it provides measurements to obtain the degree of adequacy
obtained after testing stopped. For our purpose, the testing criterion would be to test the use-
cases. However, the usecases are usually generic in nature; so the criterion would be to test
some instances of the usecases.

In model based testing, the test cases that are derived from a model always refer to an ab-
stract name space. Since they would be used to test the implementation, it is necessary to define
a mapping between the abstract name space of the model and the concrete name space of the
implementation. Gannon et al. [GHM?97] have termed this as representation Mapping. In the
context of test oracle generation, there are two types of mappings: control and data [RAO92].

35

Control mappings are between control points in the implementation and locations in the spec-
ification; these are the points where the specification and the implementation states are to be
matched. Data mappings are transformations between data structures in the implementation
and those in the specification.

3.4.2 Existing Approaches

The work by Dick and Faivre [DF93] is a major contribution to the use of formal methods in
software testing. A VDM specification has state variables and an invariant (Inv) to restrict the
variables. An operation, say OP, is specified by a pre-condition (OP.) and a post-condition
(OPyost). The approach partitions the input space of OP by converting the expression (OP e A
OPpost A Inv) into its Disjunctive Normal Form (DNF), and each disjunct, unless a contradic-
tion, represents an input subdomain of OP. Next as many operation instances are created as the
number of non-contradictory disjuncts in the DNF. An attempt is then made to create a FSA
in which each node represents a possible machine state and an edge represents an application
of an operation instance. A set of test cases is then generated by traversing the FSA, each test
case being a sequence of operation instances.

BZ-Testing Tool (BZ-TT)[BLLPO04] generates functional test cases from B as well as Z
specifications. The test case generation proceeds in the following steps.

e Each operation is partitioned into a set of operation instances so that each partition corre-
sponds to exactly one control path within the operation; the conjunction of all predicates
along with the postcondition in relation to the control path is called the effect predicate
of the operation instance.

e The free state variables in each effect predicate is assigned with their maximum and
minimum values to obtain a set of boundary goals. Similarly, boundary input values are
obtained by giving maximum and minimum values to the input variables in the effect
predicate.

e A preamble is computed by using a Constraint Logic Programming (CLP) Solver which
finds a path through symbolic execution from the initial state to a boundary state, a state
satisfying a given boundary goal. And then relevant operation instances are applied at
the boundary state by giving them boundary inputs.

Satpathy et al. [SLBO5] discuss the prototype of a tool called ProTest which performs
testing of an implementation in relation to its B model. The tool performs partition analysis
using a technique similar to that of Dick and Faivre. A finite coverage graph is created from
a symbolic execution of the B model by a model checking tool called ProB [LB05]. Some
paths starting from the initial state are taken as test cases. The ProTest tool can run Java
programs. So the B model and its implementation are run simultaneously by the tool — the
former symbolically and the latter at the concrete level — in relation to a test case and similar
model and implementation states are matched to assign a verdict.

All approaches usually partition the input space to create operation instances, but when
a specification is further refined, the original partitions may have no meaning in relation to
the refinements because the data space might have changed. Derrick and Boiten [DB99] have
developed a strategy to transform the operation instances so that they remain meaningful in
relation to the appropriate refinement.

36

3.4.3 TheB Method

The B-method, originally developed by J.-R. Abrial [Abr96], is a theory and methodology for
formal development of computer systems. B is used to cover the whole range of software
development cycle; the specification is used to generate code with a set of refinement steps in
between. At each stage, the current refinement needs to be proved consistent with the previous
refinement.

The basic unit of specification in the B-method is called a B machine. Larger specifications
can be obtained by composing B machines in a (tree-like) hierarchical manner. This is a design
restriction on B with a view to making the proofs compositional. An individual B machine
consists of a set of variables, an invariant to restrict the variables, and a set of operations to
modify the state. An operation has a precondition, and an operation invocation is defined only
if the precondition holds. The initialization action and an operation body are written as atomic
actions coded in a language called the generalized substitution language [Abr96]. The language
allows specification of deterministic and non-deterministic operations and assignments. An
operation invocation transforms a machine state to a new state. The behaviour of a B machine
can be described in terms of a sequence of operations, and the first operation of the sequence
originates from the initial state of the machine.

3.4.4 TheProblem

It should be clear that, in case of the BZ-TT and ProTest approaches, if all operation instances
do appear in the coverage graph then, and each such instance is tested, it would imply that all
scenarios are covered in an implicit manner. However, usually all such instances do not appear.
The reasons are as follows:

o If the model invariant is weak then a valid operation instance may not be reachable. For
instance, the constraint 10 < X < 20 could be present in a model as 0 < X < 100. If X
in a state has value of 50, then some valid operations may not be applicable and so would
not appear in the coverage graph. Usually the invariants suffer from incompleteness.

e A bad initialization may stop some operation instances from appearing.

e An operation instance may not occur because we make a finite construction of the cov-
erage graph according to some predefined depth; but, had we continued with graph con-
struction, possibly some more instances might have appeared. But the missing operation
instances may be related to the usecases.

3.45 RefinementinB

In the B method, the initial specification passes through a succession of refinements and the
code can be generated from the final refinement. In practice, the whole refinement sequence
is generated less often; one approach is to produce a few refinement steps, generate code and
then consistency of the implementation is left to model based testing. Or it could be the case
that only one specification is written and code is written manually in relation to this.

Classical B refinement is expressed in terms of a gluing invariant to link the concrete states
to abstract states. Further, refinement in B method and various tools supporting B is limited to

37

(exists) ain Al

R a AOP (exists) a’
/S "
Gl |
cl Xel
cinCl C COP c’

Figure 3.5: Relational Definition of Forward Simulation

forward refinement, or downward simulation [Dun03, LBO5]. Let us consider two successive
refinements: Ry and R,, the latter being a refinement of the former; i.e., Ry is more abstract in
relation to Ry. Let GI be the gluing invariant or relation between them. Furthermore, let Al and
ClI be the abstract and concrete initial states of the two refinements. Let AOP and COP stand
for an abstract operation and its concrete operations in R; and R, respectively. Then forward
simulation as a relational definition is as in Figure 3.5 [HHS86, LB05]. In other words:

e Every concrete initial state must be related to some initial abstract state

e |f concrete state ¢ and abstract state a are linked by GI, and a concrete operation COP
takes ¢ to ¢/, then there must exist an abstract state a’ so that the relationship in the
diagram holds.

If R; and R, satisfy these relationships then we can say that R, is consistent with R;. The proof
obligations generated by the tools supporting B prove this relationship.

In this background, we will illustrate the problem that we address in our paper. The user
scenarios can be described with ease in relation to the initial or the most abstract specification.
The initial specification usually has a few high level operations and it would be easy to describe
our usecases in terms of these operation sequences, and further the length of these sequences
would be small. The description of usecases as a linear sequence of operations will be termed
as our initial test cases. However, some usecases may be non-terminating. Consider the use
case: send messages; this means any number of messages can be sent. This usecase can be
expressed by the regular expression: send.(send)*. In such a case, we only take a finite instance
of this as our initial test cases, say the sequence: < send, send, send, send >.

Usually the initial specification undergoes a succession of refinements, and one such re-
finement, say R;, is referred to while writing the code. Let us call this as the implementation
refinement. Now the problem is that our initial test cases in this situation do not hold any
ground because the semantic gap between the code and the initial test cases could be very high.
Our approach decreases this gap to a desired level. Our approach upgrades the initial test cases
to obtain test cases in sync with the implementation refinement. Refer to Figure 3.6. Let us
assume that refinement R;.; has been obtained from R; through forward simulation. Further R;
satisfies test case Tj; in other words, T; is a valid trace of R;. Under this scenario, our approach
derives a test case Ti,; which is satisfied by R;,, and in addition T, is a trace refinement of
Ti.

38

R — satisfies T
Gl . Trace
' refinement
v
R ------ satisfies------ (exists) T
i+1 () i+1

Figure 3.6: A step in the synthesis of Test Cases

3.4.6 TheApproach

We refer to the initial specification as Ry. We are given usecase-based test cases for Ry; we
have seen that they are easy to construct in relation to the initial specification. Thereafter
we repeatedly use the simulation diagram of Figure 3.6 to obtain test cases for successive
refinements. This we demonstrate through an example.

3.4.7 An Example

We have taken the leader election problem as our running example. The B machine Leader.mch
shows the initial B specification. The Appendix presents this machine along with its two suc-
cessive refinements. A finite number of processors are arranged in a ring, each processor has a
numeric ID. The processor with the highest numeric value is elected as the leader. So, the only
usecase would be: elect a leader. There is only one state variable and only one operation called
elect besides the initialization clause. It could be seen that the initial test case in relation to the
lone usecase would be: < init, elect >.

LeaderR.mch is the first refinement of Leader.mch. It has two new operations, called ac-
cept() and reject() in addition to the operations of the original machine. LeaderRR.mch is a
refinement of LeaderR.mch. It has one more new operation called send(). As per the rules of
refinement a new event introduced in a refinement must terminate. This is usually ensured by
assuming a variant and showing that each invocation of the new operation decreases this vari-
ant. We will call the new events in a refinement as 7-operations; they are internal operations
when we view them from its parent refinement. With this background, we will now discuss the
algorithm to synthesize test cases. In this context, we make the following assumptions.

e we assume a flat B machine; i.e., a machine without any hierarchy.

e Each new event introduced through a refinement has an explicit numeric variant which is
decreased after every invocation.

3.4.8 TheAlgorithm

The Algorithm in Table 3.1 assumes that initial test cases are given, and then it synthesizes
test cases for subsequent refinements. We will illustrate our algorithm over the leader election

39

Algorithm: GenerateTestCases
Input: A specification (Ry) and K refinementsas Ry, ..., Rk,
and Gl; is the gluing invariant between R; and R;_;.
Output: K + 1 test sequences in form of graphs: Go, . .., Gk
step 1:
Create K 4+ 1 nodes Iy, . . ., Ik as initial nodes of Gy, . .., Gk.
Let I; receive the assignments of the Initialization clause in refinement i.
step 2
Consider all variants in K refinements. Restrict constants and set sizes
so that in the worst scenario, the problem size remains small.
Based on this, instantiate the Ik
step 3:
Project I, backwards to give full instantiationto I, ... lx_;.
step 4:
Complete a linear path in G, to represent a user scenario.
Each node and edge is to receive instantiation as in symbolic execution.
=1,
step 5:
Looking at G;_4, construct G; as follows:
Let Gj_; have t states (nodes) as li_; = Ay, ..., A
for(j=2,...,t)do
Construct for G;, nodes B;, and derive assignments to a subset of
state variables in B; such that: B; A Gl; = A;.
Construct a path from B;_, to B; by repeated execution of
T-operations of R;.
Strategy: Whenever data values are needed for operation parameters
select the data values (closed terms) in B;
endfor
step 6:
if (i = K) stop
elsei=1i+ 1, Goto step 5.

Table 3.1: Algorithm for graph creation

40

winner = max (|

elect() (A1
(state AO) .
Gl hotds,
.
\
Gl holds, .-
é"
. kL= 10 A
. position = accept(}/ N accept () -
INKT | iD{0,15.20} | .~ yip0n Jx=200
\\ . A R winner = 20
winner = kX oA et L (®3) \ positionb = ?
osition = ID(M . wi - AN , winner = 10°,

o p ()/2() /~ winner =10 | position=

B vl=n(n+l / position = \ ! T«

BGY 1 f10-510, G R
20515, ! \ 20->10, B
Gl holds.. RN . s> Glholds®

L7 AN - "*.N AN o

. - .. -

k2 =10 ..
out = ID{10,15,20} ~.§J holds
. in= N S

's
.
N
N
.
N
- . V2=6;next=... N .~
* / 20->15) Sel
*\‘ Yvinner: //7" {out: } \‘ accept .\\
in={} P {10->10, / ~
out = ID(M) 15318} A x=20

4
B(0)

out(20)=15 V/
nxt(15)=in(20) ,
out(10)=10V

nxt(10)=in(10) ,
out(15)=15V
nxt(15)=in(15

v2 = m(m+1)/2

T~ send

N x:ié\ 7T (C4)

R @

Figure 3.7: Steps in generating the Coverage Graphs

problem as the running example. In the first step, the algorithm creates initial nodes for all the
refinements. In Figure 3.7, this is shown by nodes AO, B0, and CO respectively.

Because of the new events a test case for the current refinement could be larger in size in
relation to the corresponding test case of the previous refinement; the extent to which it could
be larger is strictly dependent on the variants of the new events in the refinement. As we will
soon discuss, the construction algorithm is of exponential complexity. Therefore, we limit the
problem size by a suitable instantiation. This task is performed by Step 2 in the algorithm.
For the present, the problem size is dependent on variants v1 and v2 and they should be given
small values. For the present and to keep the presentation simple, we give the value of 3 to
the size of set M so that vl and v2 both get the value of 6. We then can select any values
for M, and for the present it is {10, 15, 20}. And then the instantiation of the constant function
next = {(10, 20), (20, 15), (15, 10) which shows the directions to treat the subset as a ring. This
instantiation has been shown in a box on top of node CO.

We first give instantiation to the initial node of the last refinement and then we project
these instantiations in relation to the gluing invariant backwards so that the initial states of all
refinements receive instantiation. In the algorithm, this is done by step 3. In the example, we
project the instantiation of CO to BO and A0. They have been shown in the boxes attached to
the respective nodes.

In step 4 of the algorithm, we symbolically execute the specification (or refinement Ry) in
relation to the instantiation and the initial trace. In the process all the nodes in the trace receive
instantiation. Note this at node A1 in the figure.

41

Step 5 discusses how we take a fully instantiated trace of a refinement and then derive
incrementally a fully instantiated trace of the next refinement. We illustrate this through the
example. < A0, Al > is a fully instantiated path in R,. Let us assume there exists a state for the
first refinement having a gluing relation with A1, and let us name it B3. Then from the gluing
relation and the fact that Al is instantiated, we can give partial instantiation to B3; more about
this instantiation latter. Since the gluing relation here is ID (identity function), we have for B3,
winner = 20. Next we try to find a path between B0 and B3 such that the final edge would
be labelled with elect() and its prefix would consist of edges all labelled with the new events
(7 operations). Our algorithm assumes that such a path exists; we will consider the issue of
non-existence later.

The algorithm for finding the shortest path between two such states is NP-Complete [GJ79]
because it is a variant of the satisfiability problem. So, we follow a greedy strategy. The strategy
states that whenever you need data values for the 7-operations, always select the values from
the target state. To be more specific, the data values of the target node has partial instantiation,
and some of them may coincide with the data values in the source state. We select values from
the state variables which differ from the assignments in the source state.

For the current example, we have winner= 20 in the target state; so we try to use this
value as parameter to the 7-operations. In the process we create the path < B0,B1,B2,B3 >.
We could have applied the other 7-operation reject, but giving it the value of 20 made its
precondition false.

Thereafter we repeat step 5 to complete the graph construction for all the refinements. For
the current example, we need to obtain a trace for refinement Ry. The gluing relation, say Gl
between R; and Ry is:

position(x) =y < out(x) =y V next(y) = in(x)

We now discover a node to be sync with B1 such that the above gluing relation holds; however,
we can discover many nodes denoted by X such that X A Gl = B1, we discover the most
generic one. This means that we assign values to the new node X in a conservative manner.
For the present C4 is the state which is in sync with B1 in terms of the gluing relation. Note
in the Figure 3.7, how assignment of some state variables of C4 have been given in the form of
predicates.

As per our greedy strategy, whenever we select parameters for the 7-operation send, we
select 15 or 20; this is because these are the places where CO and C4 differ. In the process
we discover the path < C0,C1,C4 >. Next, we discover a node C10 in sync with node B2.
So, now our task is to find a path between C4 till C10 by use of Step 5 once again. And this
continues.

3.4.9 Exponential Nature of the Algorithm

Refer to Figure 3.8. The graph at the top shows some traces for refinement R; and assume
that all the traces shown implement the single trace of Ry, its previous refinement. Let us
assume this single trace of Ry do correspond to one of the usecases. Now as per the rules of
refinement, if R, implements any of the traces of R; then we are done and we can conclude
that R, implements the original usecase. However, the situation is much more trickier when we
have to show that R, does not implement the usecase.

42

Trace 1
B
ForR 1 Trace 2
® <

G

Trace 3

Figure 3.8: Showing non-existence of trace implementation

Let us see how our algorithm works. Consider the situation when the construction for R is
over and we are dealing with R,. The algorithm first takes the trace < A, B, E > and constructs
apath < X,Y,Z,... > to show the correspondence. It may so happen that we fail to find such
a trace. If so, we next consider the path < A, B, F > and see if a trace for it exists in R,. If we
fail again we try < A, C, G >. If we fail for all traces, it may be legal from refinement point of
view, but it would also mean that R, does not implement the given usecase. And then a warning
could be given to the developer to show this deficiency in the refinement process.

Since in the worst case we may have to go for exhaustive enumeration of traces, the algo-
rithm is of exponential nature. However, the length of each trace is limited by the variants of
the 7-operations in the refinement. But we always select small values for our variants because
of which we do not let the algorithm explode.

Theorem: The traces obtained by the algorithm in Section 3.4.8 conforms to the commutative
diagram of Figure 3.6.

Proof: Refer to Figure 3.6. The algorithm assumes that R;, Rj;; and T; are given, and then
it computes a trace T;,;. The fact that R;,; satisfies T, is obvious, since the trace is one
of the behaviours of Ri,;. The construction also ensures that T, preserves the trace of T;.
More formally, when we treat the new events in R;,; as the internal 7-operations then there
exists a rooted branching bisimulation [vGWO05] between T; and T;; with respect to the glu-
ing relation; this simply comes from our construction method. Rooted branching bisimulation
preserves trace equivalence under refinement of actions provided actions are atomic [vGWO05].
And in B, the operations or actions are atomic. O

3.4.10 Analysis
The following are the highlights of our approach:

43

e A tool supporting the generation of usecase-based test cases would be semi-automatic in
the following sense. The tool would take the initial usecase-based test case instances as
input, a specification and a set of successive refinements. The developer may initialize the
parameters to limit the solution size. Thereafter, rest of the process could be automated.

e To make the test cases robust one could consider more than one initialization. Further-
more, one could consider multiple instances of the same usecase scenario.

e The approach is capable of generating test cases of shorter length. The current ap-
proaches usually create a coverage graph in an ad-hoc manner like: take the initial state
and go on applying operation instances till a predefined depth is reached. Our method
gives an orientation to the graph creating process; we predefine a depth but our predefined
depth has a logical basis.

e Our method can warn the developer of refinement incompleteness in the sense that the
refinement omits a certain desired scenario. Thus, our method can help in making the
refinements robust.

The following are the low points which needs further research.

e It seems the exponential nature of our algorithm is unavoidable. Even though we limit the
problem size, we need intelligent strategies to further cut down the creation of redundant
nodes.

e When we show the non-existence of a desired path in a refinement, we need enumeration
of all possible paths limited by the variants. Optimization issues in this situation need to
be addressed.

3.4.11 Conclusion

We have presented a method in which model based test cases are usecase oriented. Whenever,
a specification or a refinement is further refined, our usecase-based test cases can be upgraded
to remain in sync with the refinement. Our approach also finds incompleteness in refinements
which can be corrected much ahead in the development cycle. Most of the steps in our method
can be automated.

Our approach also helps in the formal development process. The method can help in making
refinements themselves robust in relation to the original specification. It can also help in cutting
down the time to prove proof obligations. After creating a refinement and before proving the
proof obligations, the refinement can be tested against the specification in relation to teh test
cases derived from our method. If it shows some inconsistencies, then certainly, we have
avoided performing some unnecessary proofs.

3.5 Formal View of Developing a M echanism for Tolerating
Transient Faults

The main goal in developing a safety-critical control system is to ensure that the controller is
fault-free and that it is able to cope with faults of other system components. The mechanism to

44

support fault tolerance constitutes a large part of the controller and is often seen as a separate
component. We refer to it as Failure Management System (FMS). It is a part of the embedded
control system as shown in Fig.3.9. The main role of the FMS is to detect erroneous inputs of
the system sensors and prevent their propagation into the controller, i.e., provide the controller
with the correct information about the system state.

Actuators

Figure 3.9: Structure of an embedded control system

An acute issue in developing the FMS is design of a mechanism for tolerating and recover-
ing from transient faults of the system components. In [ITLS06] we presented an approach to
developing the FMS with the mechanism for tolerating transient faults by stepwise refinement
in the B Method.

The formal development of the FMS starts with an abstract specification defining the be-
haviour of the FMS during one FMS cycle. The stages of such a cycle are:

e obtaining inputs from the environment,

performing tests on inputs and detecting erroneous inputs,

deciding upon the input status,

setting the appropriate remedial actions,

sending output to the controller either by simple forwarding the obtained input or by
calculating the output based on the last good values of inputs,

e freezing the system.

At the end of the operating cycle the system either reaches the terminating (freezing) state or
produces a fault-free output. In the latter case, the operating cycle starts again.

Abstract specification. In our abstract specification we model the readings of N multiple
homogeneous analogue sensors, measuring the same physical process in the environment. The
input values produced by the environment (i.e., sensor data) are assigned non-deterministically.

After obtaining the sensor readings from the environment, the FMS starts error detection.
In the abstract specification we model only the result of error detection, which is either TRUE,
if an error is detected on the sensor reading on a particular input, or FALSE otherwise.

Based on the results obtained at the detection phase, the FMS non-determinis- tically de-
cides upon the status of an input (i.e., a particular sensor), which may be classified as fault-free,
suspected or confirmed as failed. Suspected inputs are those faulty inputs which still may
recover. The remaining faulty inputs are designated as confirmed as failed.

Upon completing analysis, the FMS applies an appropriate remedial action. A healthy
action is executed if the input is fault-free; a temporary action if the input is suspected, and a
confirmation action if the input is confirmed as failed. While performing a healthy action, the

45

FMS forwards its input to the system controller. As a result of a temporary action, the FMS
calculates the output based on the information about the last good input value. After executing
a healthy or a temporary action, the FMS operating cycle starts again. In case of a confirmation
action, if the FMS cannot properly function after the input has failed, the system enters the
freezing state. Otherwise, it removes the input which has been confirmed as failed from further
observations and calculates the output based on the last good input value.

Refining Input Analysisin the FM S. The refinement process of the FMS starts by elabo-
rating on the input analysis procedure. The input analysis is performed gradually by consider-
ing inputs one by one until all the inputs are analyzed.

The current value of the input status is calculated based on the results of error detection
performed on a certain input and the value of input status obtained at the previous cycle of the
FMS. Namely, if the analysed input was previously fault-free, it becomes suspected after an
error is detected. If the input was already suspected and an error is detected again, it can either
stay suspected or become confirmed as failed.

A more detailed procedure for determining the input status is based on using a customisable
counting mechanism which re-evaluates the status of a particular input at each cycle. It is
introduced to distinguish between recoverable and unrecoverable transient faults.

Refining Error Detection in the FMS. Further development of the FMS continues by
refining the error detection procedure. The detection mechanism is the most important part of
the FMS. The mechanism of error detection relies on a specific architecture of error detection
actions called evaluating tests. The tests may vary depending on the application domain. For
instance, commonly used tests on analogue signals are the magnitude test, the rate test and the
predicted values test.

The basic category of evaluating tests is simple tests. An input signal may pass through
several simple tests, which can be applied in any order. A simple test is executed based solely
on the input reading from a sensor. After all simple test associated with a certain input are
executed, so called complex tests can be performed. The results of the complex tests depend on
the results of the simple tests.

Since the system observes homogeneous multiple sensors, for each of N sensor readings
the same series of tests can be applied. The tests are executed considering one input at a time,
until all the inputs are tested. For each input, we select the tests to be executed according to
certain requirements:

reql each test can be executed at most once on a certain input;
reg2 if the test is complex, then all the simple tests it depends on have to be already executed;

req3 if some input has failed, i.e., the error on input is detected, then no more tests on that
input should be performed.

The result of the execution of each enabled test is modelled non-deterministically. If the result
shows that the test on the input failed, the input is found in error. We should guarantee that for
some input to be error free, it should successfully pass all the required tests.

The mechanism of error detection can be further refined. Namely, which tests are enabled
for execution depends not only on the requirements listed in req1-3 but also on some additional
conditions on the required test frequencies and the internal state of the system:

46

req4 every test is executed with a certain frequency the test frequency can be different for
different tests;

req5 in order for some complex test to be executed, its frequency has to be divisible by the fre-
quencies of all the simple tests required for its execution; This requirement is necessary
in order to ensure the application of all required tests on the same data;

req6 the execution of each test may depend on the current internal state of the system.

In order to apply tests according to the given frequencies, we introduce time scheduling.
There is one global clock guaranteeing that the tests with the same frequency are executed at
the same time instances. We model the real time by introducing the event which increments the
current time whenever the event is enabled. The progress of time is allowed in two situations:

e after one FMS operation cycle finishes and before the next one starts, or

e when there are no tests enabled for execution under given conditions.

In the latter case, we allow time to progress and possibly the internal system state to be updated
until some tests become enabled. After executing all required tests on a particular input, the
FMS classifies the input as detected in error or error-free.

The detailed specification of the FMS behaviour while performing the error detection and
input analysis is given in the form of the B specification templates. These templates can be
instantiated to develop a domain-specific FMS.

As future work we plan to elaborate on creating a methodology for developing the FMS
using not only B but UML templates as well.

3.6 Synchronisation-based Decomposition for Event B

In the Event-B, a system is specified as an abstract machine consisting of some state variables
and some events (guarded actions) acting on that state. This is essentially the same structure as
an action system [BKS83] which describes the behaviour of a parallel reactive system in terms
of the guarded actions that can take place during its execution. Techniques for refining the
atomicity of operations and for composing systems in parallel have been developed for action
systems and such techniques are important for the development of parallel/distributed systems.
Different views as to what constitutes the observable behaviour of a system may be taken.
In the state-based view, the evolution of the state during execution is observable but not the
identity of the operations that cause the state transitions. In the event-based view, the execution
of an operation is regarded as an event, but only the the identity of the event is observable and
the state is regarded as being internal and not observable. The event-based view corresponds
to the way in which system behaviour is modelled in various process algebras such as ACP
[BK85], CCS [Mil89] and CSP [Hoa85]. An exact correspondence between action systems
and CSP was made by Morgan [Mor90]. Using this correspondence, techniques for event-based
refinement and parallel composition of action systems have been developed in [But92, But96].
In this section, we shall use the event-based view of action systems, applying the techniques
of [But92, But96] to Event-B machines. For a description of the state-based view of action
systems see [BS89].

47

MACHINE VM1
SETS STATE = {A,B}
VARIABLES n
INVARIANT n € STATE
INITIALISATION n:=A

EVENTS

coin = WHENN=ATHENnNn:=BEND

choc = WHENnNn =B THENnn:= AEND

END

Figure 3.10: Simple vending machine.

3.6.1 Machinesasinteractive systems

An Event-B machine consists of some state variables, a set of events, each with its own unique
name, and an initialisation action. A machine proceeds by firstly executing the initialisation.
Then, repeatedly, an enabled event is selected and executed. A system deadlocks if no event is
enabled. Fig. 3.10 contains an Event-B system, called VM1, specified as a B abstract machine.
This is intended to represent a simple vending machine. The state of the machine is represented
by the variable n. The machine has two events called coin and choc respectively. Initially n is
set to state A so that only the coin event is enabled. When the coin event is executed, n is set
to B, and only the choc event is enabled. Execution of the choc event then results in coin being
enabled again and so on. Thus VM1 describes a system that alternatively engages in an coin
event then a choc event forever.

As mentioned already, we are taking a purely event-based view of Event-B machines. This
means that the environment of a machine only interacts with the machine through its events
and has no direct access to a machine’s state. The environment of a machine can also control
the execution of events by blocking them. This will be seen clearly in Section 3.6.3, where
parallel composition of machines is described. Influenced by process algebra, we can view an
Event-B machine as an interactive system. As in process algebra, the meaning of two or more
such systems interacting will be defined by a parallel composition operator for machines.

Recall that in Event-B an event is specified one of the three following forms:

evt = BEGIN S(v) END
evt = WHEN P(v) THEN S(v) END
evt = ANY x WHERE P(x,v) THEN S(x,v) END

where P(...) is a predicate denoting the guard, x denotes some parameters that are local to the
event, and S(. . .) denotes the action that updates some variables. The variables of the machine

48

containing the event are denoted by v. Local event parameters x cannot be assigned to, instead
their value is constrained by P(x,Vv). The action part of an event consists of a collection of
assignments that modify the state simultaneously. An assignments has one of the following
three simple forms:

X := E(x,v)
X :€ E(X,V)
X | Q(x,v,V)

where x are some variables, E(. . .) denotes an expression, and Q(. . .) a predicate.

When modelling interactive systems it is convenient to be able to distinguish input and
output parameters. This distinction is important when we consider parallel composition later.
We adopt the convention that input parameters are denoted by names ending with “?” while
output parameters are denoted by names ending with ‘!”. Influenced by process algebra, we
take the view that an event with input parameters models a channel through which a machine is
willing to accept input values from the environment whenever that event is enabled. Similary,
an event with output parameters models a channel through which a machine is willing to deliver
output values whenever that event is enabled.

The machine in Fig. 3.11 models an unordered buffer that is always ready to accept values
of type T on the left channel, and to output on the right channel a value that has been input
but not yet output. The order in which values are output is arbitrary. The unordered buffer is
modelled by having a bag of values as the state variable. A bag is a collection of elements
that may have multiple occurrences of any element. We write bag(T) for the set of finite bags
of type T. Bags will be enumerated between bag brackets < and . Addition of bags b, c, is
written b 4 ¢, while subtraction is written b — c. The initialisation statement of UBuffer1l sets
the bag to be empty. The input action left accepts input values of type T, adding them to the bag
a. Provided a is non-empty, the output action right nondeterministically chooses some element
from a, removes it from a and outputs it as y.

3.6.2 Refinement and New Events

Recall that new events may be introduced in Event-B refinement, that is, a refined machine may
have additional events that have no corresponding events in the abstract machine. New events
are required to refine skip. This ensures that they have no effect in terms of the abstract state.
In order to ensure that the new events do not cause divergence that could prevent progress of
the existing events, a refinement should include a variant expression. That variant expression
should be decreased by each of the new events.

An example of a refinement with new events is given in Fig. 3.12. UBuffer2 represents an
unordered buffer with an input channel left and an output channel right. However, instead of
having a single bag as its state variable, UBuffer2 has two bags, b and c. The left action places
input values in bag b, while the right action takes output values from bag c. Values are moved
from b to ¢ by the internal action mid, which is enabled as long as b is non-empty. The mid
event is a refinement of skip under the gluing invariant a = b + c¢ since the bag sum b + c is
unchanged by execution of mid. Since b is finite, mid will eventually be disabled, so it cannot
cause divergence. This is verified by proving that the mid event decreases the variant size(b).

49

MACHINE UBufferl
VARIABLES a
INVARIANT a € bag(T)
INITIALISATION a:= <>

EVENTS

left = ANY x? WHERE x? € T THEN a := a + <x?> END

right = ANYy! WHEREY! € a THEN a := a — <y’> END

END

Figure 3.11: Unordered buffer.

REFINEMENT UBuffer2

REFINES UBufferl

VARIABLES b,c

INVARIANT bebag(T) A cebag(T) ANa=b+c
VARIANT size(b)

INITIALISATION b, Cc:= <>, <>

EVENTS

left = ANY x? WHERE x € T THEN b := b + <x?> END

right = ANY y! WHEREYy! € ¢ THEN ¢ := ¢ — <y!> END
/* NEW EVENT */

mid = ANY zWHEREze bTHENDb,c:=b— <z>-,c+ <z- END

END

Figure 3.12: Unordered buffer with new event.

The new events introduced in a refinement step can be viewed as internal events as found
in process algebra. Internal events are not visible to the environment of a system and are

50

thus outside the control of the environment. In Event-B, requiring a new event to refine skip
corresponds to the process algebraic principle that the effect of an event is not observable. Any
number of executions of an internal action may occur in between each execution of a visible
action. If a system reaches a state where internal events can be executed forever, then the
system is said to diverge. Requiring new events to decrease a variant ensures that they do
not introduce divergence. If machine M is refined by machine N with new events then any
observable behaviour of N is also an observable behaviour of M. See Section 3.6.4 provides a
more precise definition of what this means.

3.6.3 Parallel Composition

In this section, we describe a parallel composition operator for machines. The parallel com-
position of machines M and N is written M || N. M and N must not have any common state
variables. Instead they interact by synchronising over shared events (i.e., events with com-
mon names). They may also pass values on synchronisation. We look first at basic parallel
composition and later look at parallel composition with value passing.

Basic Parallel Composition of Machines

To achieve the synchronisation effect between machines, shared events from M and N are
‘fused’ using a parallel operator for events. Assume that m (resp. n) represents the state vari-
ables of machine M (resp. N). Variables m and n are disjoint. The parallel operator for events
is defined as follows:

WHEN G(m) THEN S(m) END || WHEN H(n) THEN T(n) END
= WHEN G(m) A H(n) THEN S(m) || T(n) END

ANY x WHERE G(x,m) THEN S(x,m) END |
ANY y WHERE H(y, n) THEN T (y, n) END
= ANY X,y WHERE G(x,m) A H(y,n) THEN S(x,m) || T(y,n) END

The parallel operator models simultaneous execution of the events actions and the composite
event is enabled exactly when both component events are enabled. This models synchronisa-
tion: the composite system engages in a joint event when both systems are willing to engage in
that event.

The parallel composition of machines M and N is a machine constructed by fusing shared
actions of M and N and leaving independent actions independent. The state variables of the
composite system M || N are simply the union of the variables of M and N.

As an illustration of this, consider N1 and N2 of Fig. 3.13. N1 alternates between an a-event
and a c-event, while N2 alternates between an b-event and a c-event. The system N1 || N2 is
shown in Fig. 3.14. The a-event and b-event of N1 || N2 come directly from N1 and N2
respectively as they are not joint events (i.e., indedpendent events). The c-event is a joint event
and is defined as the fusion of the c-events of N1 and N2. The initialisations of N1 and N2 are
also combined to form the initialisation of N1 || N2. The effect of N1 || N2 is that, repeatedly,

51

MACHINE N1 MACHINE N2
VARIABLES m VARIABLES n
INVARIANT m € STATE INVARIANT n € STATE
INITIALISATION m:=A INITIALISATION n:=A
EVENTS EVENTS
a = WHEN b = WHEN
m=A n=A
THEN THEN
m:=B n:=B
END END
¢ = WHEN ¢ = WHEN
THEN THEN
m = n =
END END
END END

Figure 3.13: Machines with common actions.

the a-event or the b-event can occur in either order, then both systems must synchronise on the
c-action.

Parallel Composition with Value-Passing

We extend the parallel operator to deal with input/output parameters and value-passing. An
output event from one system is composed with a corresponding input event from another in
such a way that the output value from one event becomes the input value for the other event.
In order to model the passing of the output value to the input parameter we simply make the
corresponding input and output parameters a single joint parameter:

ANY x! WHERE G(x!,m) THEN S(x?,m) END ||
ANY x? WHERE H(x?,n) THEN T(x!,n) END
= ANY x! WHERE G(x!,m) A H(x!,n) THEN S(x!,m) || T(x!,n) END
Notice that the joint parameter variables x! in the resulting fused event are themselves output
parameter. This allows us to fuse input events from further machines with the fused event in a

compositional way, thereby modelling broadcast communications.
More generally, fused events may also have additional independent parameters (y and z)

52

MACHINE N1 || N2

VARIABLES m,n

INVARIANT m € STATE A n € STATE
INITIALISATION m,n:=A A

EVENTS

a= WHENm=ATHENmM:=BEND

b= WHENnN=ATHENnN:=BEND

I

WHENmM=BANn=BTHENmM:=A| n:=AEND

END

Figure 3.14: Composite machine formed through parallel composition.

besides the joint parameters:

evl = ANY x|,y WHERE G(x!,y,m) THEN S(x!,y,m) END
ev2 = ANY x?,z WHERE H(x?,z,n) THEN T(x7,z,n) END

ANY x!,y,z WHERE
G(x!,y,m) A H(x!,z,n)
evl | ev2 = THEN
S(xl,y,m) || T(x!,z,n)
END

The fusion of input-input pairs of events is also permitted:

evl = ANY x?7,y WHERE G(x?,y,m) THEN S(x?,y,m) END
ev2 = ANY x?,z WHERE H(x?,z,n) THEN T(x7,z,n) END

ANY x7,y,z WHERE
G(x7,y,m) A H(x?,z,n)
evl |ev2 = THEN
S(x7,y,m) || T(x?,z,n)
END

53

MACHINE UBufferL MACHINE UBufferR
VARIABLES b VARIABLES ¢
INVARIANT b € bag(T) INVARIANT ¢ € bag(T)
INITIALISATION b := <> INITIALISATION ¢ := <>
EVENTS EVENTS
left = ANY x? WHERE right = ANY y! WHERE
X?eT ylec
THEN THEN
b:=b+4+ <x7?> c:=Cc— <y~
END END
mid = ANY y! WHERE mid = ANY x? WHERE
yleb X?eT
THEN THEN
b:=b— <yl>- C:=C+ <X7>
END END
END END

Figure 3.15: Buffers.

The composition of two systems M and N is then constructed by fusing joint input-output
pairs of events and input-input pairs of events. As before, independent events remain indepen-
dent. Fusion of output-output pairs of actions is not permitted. This avoids the introduction of
deadlock in situations where two output actions are not willing to output the same value.

Fig. 3.15 presents the machines UBufferL and UBufferR. UBufferL is simply an unbounded
buffer with right renamed to mid, while UBufferR has left renamed to mid. When UBufferL and
UBufferR are placed in parallel, they interact via the mid channel, with values being passed from
UBUufferL to UBufferR. This can be seen by constructing the composite machine UBufferL ||
UBLufferR as described above (see Fig. 3.16). The composite machine UBufferL || UBufferR
is the same machine as UBuffer2 of Fig. 3.12. We have already seen that UBuffer2 refines
UBufferl and thus we have that the simple abstract machine UBufferl consisting of a single
variable and two events is refined by the parallel composition of UBufferL and UBufferR.

3.6.4 CSP Correspondence

In CSP [Hoa85], the behaviour of a process is viewed in terms of the events it can engage in.
Value-passing is modelled by grouping events into input channels and output channels. Each
process P has an alphabet of events A, and its behaviour is modelled by a set of failures F and
a set of divergences D. A failure is a pair (t, X), where t is a trace of events and X is a set of

54

MACHINE UBufferL || UBufferR
VARIABLES b,c
INVARIANT b e bag(T) A ¢ € bag(T)

INITIALISATION b, Cc:= <>, <>

EVENTS
left = ANY x? WHERE
XreT
THEN
b:=b+ <x7>
END

right = ANY y! WHERE
ylec
THEN
c,yl:=c— <yl
END

mid = ANY y! WHERE
yleb
THEN
b,c:=b— <yl> c+ <y~
END

END

Figure 3.16: Parallel composed buffers.

events; (t, X) € F means that P may engage in the trace of events t and then refuse all the events
in X. A divergence is a trace of events d, and d € D means that, after engaging the trace d,
P may diverge (behave chaotically). Process (A, F, D) is refined by process (A, F’, D’), written
(A,F,D) C (A,F,D),if

FOFand DDD'.

In [Mor90], a correspondence between CSP and an event-based view of action systems is
described. This involves giving a failures-divergence semantics to action systems, with the exe-
cution of actions corresponding to the occurrence of CSP-like communication events. Event-B
machines have the same semantic structure and refinement definitions as action systems so
these failures-divergence definitions apply equally to Event-B machines [But97]. Let {M]
represent the failures-divergence semantics of machine M. The definition of {M] may be
found in [But92, Mor90]. Previously we claimed that if M is refined by N, then any observable

55

behaviour of N is an observable behavior of M. The observable behaviour of a machine can be
represented by its failures-divergence semantics and it can be shown [But92, WM90] that if M
is refined by N, then

ML £ {ND-

CSP has both a hiding operator (P \ C) for internalising events and a parallel composition
operator (P || Q) for composing processes based on shared events. Both operators are defined
in terms of failures-divergence semantics: Let [P] be the failures-divergence semantics of a
process P. Then [[P \ C] is defined by HIDE([[P]], C) and [P || Q]| is defined by PAR([P]], [Q])),
where HIDE and PAR are described in [Hoa85].

We have already seen the synchronised parallel operator for Event-B machines. In order
to regard new events in an Event-B refinement as internal, some events of a machine may be
flagged as internal. This means that they are treated differently to observable events in the
definition of the machines failures-divergence semantics. A hiding operator for maachines
(M \ C) simply flags events in C as being internal. It can be shown [But92] that the hiding and
parallel operators for action systems (i.e., Event-B machines) correspond to the CSP operators;
that is, for action systems M and N:

{M\ C} = HIDE({M],C)
{M N} = PAR({ME, {NT}).

Significantly HIDE and PAR are monotonic w.r.t. (failures-divergence) refinement [Hoa85].
Therefore a corollary of the above correspondence is that the hiding and parallel operators for
action systems are monotonic w.r.t. (failures-divergence) refinement

3.6.5 Design Technique: Refinement and Decomposition

The derivation of the composite system UBufferL || UBufferR illustrates a design technique that
may be used to refine decompose an abstract machine into parallel subsystems: refine the state
variables so that they may be partitioned amongst the subsystems, introducing internal events
representing interaction between subsystems, then partition the system into subsystems using
the parallel operator for machine in reverse. The refinement of the single system can always be
performed in a number of steps rather than a single step.

We stated above that synchronised parallel composition of machines is monotonic, i.e., if
M is refined by M’ and N is refined by N’, then M || N is refined by M’ || N’. This means
that when we decompose a system into parallel subsystems, the subsystems may be refined and
decomposed independently. This is a major methodological benefit, helping to modularise the
design and proof effort.

3.6.6 Concluding

In this section, we have taken an event-based view of machines. An alternative approach is
the state-based one. In the state-based view, the refinement rules are the same, but the parallel
composition of machines is somewhat different; events are not fused; instead machines share
variables through which they interact. The choice between an event-based and a state-based
view will depend on the nature of the application being developed. The event-based view is

56

more suited to the design of message-passing distributed systems, while the state-based view is
more suited to the design of parallel algorithms.

These techniques provide a powerful abstraction mechanism since they allow us to abstract
away from the distributed architecture of a system and the complex interactions between its
subsystems; a system can be specified as a single abstract machine and only in later refine-
ment steps do we need to introduce explicit subsystems and interactions between them. The
reasoning required to use these techniques involves standard refinement arguments and variant
arguments. The approach is also very modular since the parallel components of a distributed
system can be refined and decomposed separately without making any assumptions about the
rest of the system. The construction of composite machines modelling synchronised parallel
composition is not yet support by the standard B tools nor the RODIN platform. As shown here,
the construction is syntactic and thus should easily be supportable by a simple extension/plug-in
for the RODIN platform.

3.7 Justifying the soundness of rely/guarantee reasoning

A variety of methods exist for the formal development of sequential programs from specifica-
tions. Of special relevance to Rodin are, of course, the methods used on B [Abr96]; however,
the ideas used in VDM [Jon90a] are very similar and we expect to be able to migrate concepts
from both. More work is required here with respect to Event-B [MAV05].

The methods for sequential programs are compositional in a useful way. In practice, this
means that one can use the “operation decomposition” rules in the development process where
the programming combinators are applied to specifications rather than programs. It is essential
that the specification says all that is needed of an implementation. Technically, one needs to
know that the program combinators are “monotonic” in the refinement ordering (i.e. increase
in domain, decrease of non-determinacy (while still retaing a sufficient domain)).

It is recognised [Jon03] that it is technically difficult to find compositional methods that
cope with concurrency. Jones’ old research on rely/guarantee conditions copes with interfer-
ence in both specifications and program design; the research has been taken much further by
a series of PhD students and has been applied in a variety of practical applications. Unfortu-
nately, this left a lack of a clear reference publication on the rely/guarantee method (one would
not accuse [dR0O1] of being either short nor accessible). We have returned to this challenge. In-
terestingly, we have found a new way of justifying the soundness of rely/guarantee reasoning.
We are close to finishing a paper in which we present the formal proofs and expect to cut this
down to a journal submission.

In closing, it is worth pointing out that we are not ignoring design of data structures. People
working on the Rodin methodology were among the first to recognise that “data reification”
(aka “refinement”) is often more important than refining programming constructs but we fo-
cussed here on language constructs because of the intention to talk about concurrency. But
there is an intruiging link! In doing this research and revisiting reasoning about interference,
we have found a connection between the choice of data representation and the ability to perform
(atomic) updates in the reified state — see [Jon06a].

57

3.8 Development of distributed transactionsin Event-B

Distributed algorithms are difficult to understand and verify. There exists a vast literature on
distributed algorithms [Lyn96, SS01] that provides solutions to several problems of distributed
systems. Some of the well known problems of distributed systems are distributed mutual exclu-
sion, distributed deadlock detection, global state recording, agreement, consensus, termination
detections etc. These algorithms attempt to provide the solution through a well defined mecha-
nism in which various components of the system interact with each other. The solution of many
of such problems are based on exchange of messages, tokens or logical clocks. In most cases,
these algorithms are either improvement or variant of each other.

There exist several approaches for verification of these algorithms which includes model
checking and theorem proving. However, the application of proof based formal methods for
systematic design and development of such complex systems is rare. A clear sketch of spec-
ification and sound proof of correctness are as important as algorithms itself. The abstraction
and refinement are valuable technique for modelling complex distributed systems and reason
about them. The important feature of this approach is to formally define an abstract global
architecture-independent model of a system and successively refine it to a distributed design
in a series of intermediate steps. In principle this allows one to take a top-down approach to
development starting with a high level specification and refining this to a distributed implemen-
tation.

Formal methods provide a systematic approach to the development of complex systems.
Formal methods use mathematical notations to describe and reason about systems. The B
Method [Abr96, CMO03] is a model oriented state based method for specifying, designing and
coding software systems. The B Method provides a state based formal notation based on set
theory for writing abstract models of systems. Event B [MAVO05] is an event driven approach
to system modelling based on B for developing distributed systems. This formal technique
consists of the following steps :

- Rigorous description of abstract problem.
- Introduce solutions or details in refinement steps to obtain more concrete specifications.
- \erifying that proposed refinements are valid.

The development methodology supported in B Method is stepwise refinement. This is done
by defining an abstract formal specification and successively refining it to an implementable
specification through a number of correctness preserving steps. At each refinement step more
concrete specifications of a system are obtained. The B Method requires the discharge of proof
obligations for consistency checking and refinement checking. The B Tools Atelier B [Ste97],
Click’n’Prove [ACO03] provide an environment for generation and discharge of proof obliga-
tions required for consistency checking and refinement checking. Applications of the B method
to distributed system may be found in [ACMO03, But02, RB05, YBO05, YBO6]. In this section
we present some guidelines to formally develop a model of distributed transaction for repli-
cated database. In the abstract model, an update transactions modifies the abstract database as
a single atomic event. In the refinement, update transaction modifies each replica separately.

The remainder of this section is organized as follows: Section 3.8.1 contains background on
the problem, Section 3.8.2 Transaction model for abstract database, Section 3.8.3 refinement

58

with replicated database, Section 3.8.4 presents Gluing Invariants, Section 3.8.5 concludes the
material.

3.8.1 Distributed Transactions

A distributed system [SSO01] is a collection of autonomous computer systems that cooperate
with each other for successful completion of a distributed computation. A distributed compu-
tation may require access to resources located at participating sites. A distributed transaction
may span several sites reading or updating data objects. A typical distributed transaction con-
tains a sequence of database operations which must be processed at all of the participating sites
or none of the sites to maintain the integrity of the database [SKS01]. Assuming that each site
maintains a log and a recovery procedure, commit protocols [GR93, SKS01] ensure that all
sites abort or commit a transaction unanimously despite multiple failures.

System availability is improved by the replication of data objects in a distributed database
system. It is advantageous to replicate data objects when the transaction workload is predomi-
nantly read only. However, during updates, the complexity of keeping replicas identical arises
due to site failures and conflicting transactions. We consider read anywhere write everywhere
replica control protocol [OVV99] for a distributed database system. An update transaction which
spans several sites issuing a series of read/write operations is executed in isolation at a given
site. The basic idea used in this paper is to allow update transactions to be submitted at any site.
This site, called the coordinating site, broadcasts update messages to replicas at participating
sites. Upon receipt of update requests, each site starts a sub transaction if it does not conflict
with any other active transactions at that site. The coordinating site decides to commit if a
transaction commits at all participating sites. The coordinating site decide to abort it if it aborts
at any participating site.

One of the important issues to be addressed in the design of replica control protocols is
consistency. The One Copy Equivalence [BHG87, OV99] criteria requires that a replicated
database is in a mutually consistent state only if all copies of data objects logically have the
same identical value.

3.8.2 Transaction Model for Abstract Central Database

The abstract model of transactions is given in Fig. 3.17 as a B machine. The abstract model
maintains a notion of central or one copy database. TRANSACTION, OBJECT and SITE are
defined as sets. The TRANSSTATUS is an enumerated set containing value COMMIT,ABORT
and PENDING. These values are used to represent the global status of transaction. The abstract
variable trans refers to started transactions. This variable is defined as trans € P(TRANSACTION)
as shown in invariant. The variable trans is initialized as trans := @. The database is repre-
sented by a variable database as total function from OBJECT to VALUE. The variable database
is initialized non deterministically. A mapping (o+—V) € database indicate that an object o has
value v in database.

The variable transobject is total function which maps a transaction to powerset of ob-
jects. A mapping (t; — 0;) € transobject, where t; € trans and o; € P(OBJECT), indicate that
transaction t; either read or write to the data objects in set 0;. The variable transeffect is a total
function which maps a transaction to object and corresponding value of object. A mapping

59

MACHINE Database

SETS TRANSACTION; OBJECT; VALUE;
TRANSSTATUS={COMMIT,ABORT,PENDING}

VARIABLES trans, transstatus, database, transeffect, transobject

INVARIANT trans e ATRANSACTION)

transstatus e trans — TRANSSTATUS

database e OBJECT — VALUE

transeffect e trans — (OBJECT — VALUE)
transobject e trans — A(OBJECT)

Vt.(te trans = dom(transeffect(t)) < transobject(t))

> > > > >

INITIALISATIO

=2

trans :=& || transstatus :=&
|| transeffect := {} || transobject :={}
|| database :e OBJECT — VALUE
OPERATIONS
StartTran(tt) = ; CommitWriteTran(tt) = ;
val « ReadTran(tt,ss) = ; AbortWriteTran(tt) = ;

END

Figure 3.17: Abstract Model of Transactions in B

(t—(0—V)) € transeffect, where t € trans, o € OBJECT and v € VALUE indicate that transac-
tion t will update object o to value v. The invariant dom(transeffect(t))C transobject(t) indicate
that all objects to be updated must be a part of transaction objects.

The abstract B Machine also contains the parameterized operations StartTran, CommitWrite-
Tran, AbortWriteTran and ReadTran. The B specification of these operations are given in Fig.
3.18. The parameterized event StartTran(tt) models an event of starting a new transaction tt.
Guards of event ensure that tt is a fresh transaction. The event CommitWriteTran(tt) models
commit of an update transaction. Guards of this event ensures that when a pending transaction
tt commits, the abstract database is modified with the effects of transaction and its status is
set to Commit. Similarly, the event AbortWriteTran(tt) models abortion of update transaction.
When a pending transaction aborts, transaction status is set to Abort and its effects are not
written to database. The event ReadTran(tt,ss) models commit of a read-only transaction tt at
site ss. When a pending read-only transaction commits, it reads the data objects from abstract
database. It can be noticed that in the abstract model that an update transaction commits atom-
ically by updating the database with its effect. Its effects are not written to database in case of
aborts.

3.8.3 Refinement with Replicated Database

The Initial part of the refinement is given in Fig. 3.19. In the refinement notion of replicated
database is introduced. It may be noted that in abstract model given in Fig. 3.18, an update
transaction perform updates on abstract central database whereas in a refined model an up-
date transaction updates all copies of replica at various sites separately. Similarly, a read only
transaction reads the data from the replica maintained at the site of submission of transaction.
The abstract variable database is replaced by a variable replica in the refinement. The new
variables coordinator, replica, and freeobject are introduced in refinement. A mapping of form
(t—s) € coordinator imply that site s is a coordinator site for transaction t. A coordinator site

60

for a transaction is determined when a transaction is started. Each site maintains a replica of
database. The variable replica is initialized non deterministically to have same value of each
data object at each site. Subsequently, these objects may be modified by update transactions.

StartTran(tt) =
PRE tt e TRANSACTION
THEN SELECT tt trans
THEN trans :=trans (Aftt} || transstatus(it) := PENDING

|| ANY objects, updates
WHERE objects e P; (OBJECT) A updates e objects — VALUE

THEN transobject(tt) := objects || transeffect(tt) := updates
END END END;

CommitWriteTran(tt) =
PRE tt e TRANSACTION
THEN SELECT tt e trans A transstatus(tt) =PENDING A dom(transeffect(tt)) = &
THEN transstatus(tt) := COMMIT || database := database < transeffect(tt)
END END;

AbortWriteTran(tt) =
PRE tt € TRANSACTION
THEN SELECT tt e trans A transstatus(tt) = PENDING 1 dom(transeffect(tt)) = &
THEN transstatus(tt) := ABORT
END END;

val « ReadTran(tt,ss) =
PRE tte TRANSACTION A ss e SITE
THEN SELECT tt e trans A transstatus(tt) = PENDING
A dom(transeffect(tt))=
THEN val := transobject(tt) < database || transstatus(tt) := COMMIT
END END;

Figure 3.18: Operations of Abstract Model

REFINEMENT Replica

REFINES Database
SETS SITE, SITETRANSSTATUS={commit,abort,precommit,pending}
VARIABLES
coordinator, sitetransstatus, freeobject, replica
INVARIANT ...
A coordinator € trans — SITE
A sitetransstatus e trans —+ (SITE -»SITETRANSSTATUS)
A replica e SITE — (OBJECT — VALUE)
A freeobject e SITE «<» OBJECT
INITIALISATIONe.e.

|| coordinator := & || sitetransstatus :=

|| freeobject := SITE x OBJECT
|| ANY data WHERE data : OBJECT — VALUE
THEN replica := SITE x{data} END

Figure 3.19: Initial Part of Refinement

61

A mapping (s—(0—V)) € replica indicate that site s currently has value v for object 0. The
variable freeobject keeps record of objects at various sites which are free i.e. those object on
which a lock may be acquired.

The variable sitetransstatus maintains the status of all started transaction at various sites.
A mapping of form (t— (s—commit))e sitetransstatus indicate that t has committed at site s.
The new events such as IssueWriteTran, BeginSubTran, SiteAbortTx, SittCommitTx, ExeAbort-
Decision and ExeCommitDecision are introduced in operations. The events in the refinement
are triggered within the framework of two phase commit protocol [BHG87]. These events are
either coordinator site events or participating site events as given in Fig. 3.20 and Fig. 3.21.

StartTran(tt) =

IssueWriteTran(tt) =
SELECT ...ccovvenne
A transobject(tt) c freeobject[{coordinator(tt)}]
A Vtz.(tz € trans A (coordinator(tt) —tz)e activetrans
= transobject(tt) n transobject(tz)=L)

|| freeobject := freeobject - {coordinator(tt)} x transobject(tt)
END;

CommitWriteTran(tt) =
SELECT
A Vss.(sse SITE = sitetransstatus(tt)(ss)= precommit)
A VsS,00 - (sSeSITE A 00e OBJECT A 00 e transobject(tt) = (ss—00) & freeobject)

THEN
transstatus(tt) := COMMIT
|| replica(coordinator(tt)) := replica(coordinator(tt)) < transeffect(tt)
|| freeobject := freeobject U {coordinator(tt)}x transobject(tt)
END;
AbortWriteTran(tt) =
SELECT ..iviviiiiinnnnn.
A 3ss. (ss e SITE A sitetransstatus(tt)(ss)= abort)
THEN e,
transstatus(tt) := ABORT
|| freeobject := freeobject U {coordinator(tt)} x transobject(tt)
END;

val « ReadTran(tt,ss) =

SELECT ...coevvinnnnn.
A transobject(tt) e freeobject[{ss}]
A §S = coordinator(tt)
THEN ...l
val := transobject(tt) < replica(ss)
|| transstatus(tt):=COMMIT
END

Figure 3.20: Coordinator Site Events

62

Coordinator Site Events

The coordinator site events are given in Fig. 3.20. The submission of a fresh transaction tt
is modelled by the event StartTran(tt). The site of submission of transaction is assigned as
a coordinator site of that transaction. The event IssueWriteTran(tt) models the issuing of an
update transaction at the coordinator. The guard of IssueWriteTran(tt) ensures that a transaction
tt is issued by the coordinator when all active transactions running at the coordinator site of tt
are not in conflict with tt.

The CommitWriteTran(tt) models the commit event of an update transaction. An update
transaction tt globally commits only if all participating sites are ready to commit it, i.e., it
has status pre-commit at all sites. As a consequence of the occurrence of the commit event at
the coordinator, the replica maintained at the coordinator site is updated with the transaction
effects. The data objects held for transaction tt are declared free and the status of the transaction
at the coordinator site is set to commit. The AbortWriteTran(tt) event ensures that an update
will abort if it has aborted at some participating site. A pending read-only transaction tt returns
the value of objects in the set transobject(tt) from the replica at its coordinator.

Participating Site Events

The participating site event are given in Fig. 3.21. The BeginSubTran(tt,ss) event models start-
ing a subtransaction of tt at participating site ss. The guard of BeginSubTran(tt) ensures that a
sub transaction of tt is started at participating site ss when all transactions tz running at ss are not
in conflict with tt. A participating site ss can independently decide to either pre-commit or abort
a subtransaction. The events SiteCommitTx(tt,ss) and SiteAbortTx(tt,ss), model pre-committing
or aborting a subtransaction of tt at ss.

The event of ExeCommitDecision(tt,ss) and ExeAbortDecision(tt,ss) model commit and
abort of tt at participating site ss once the global abort or commit decision has been taken
by the coordinating site. In the case of global commit, each site updates its replica separately.

It can be noticed that in the abstract model, an update transaction modifies the abstract one-
copy database through a single atomic event. In the refinement, an update transaction consists
of a collection of interleaved events updating each replica separately. This is achieved by re-
placing abstract variable database by the concrete variable replica. The transaction mechanism
on the replicated database is designed to provide the illusion of atomic update of a one copy
database.

3.8.4 Gluing Invariants

The development methodology supported in B Method is stepwise refinement. This is done
by specifying an abstract model and successively transform it to more detailed refinements.
For verification of distributed algorithms, rigorous description of problem may be given in
abstract model and solution may be introduced in detailed specifications in refinement steps.
The properties on the system are defined through invariants. In the refinement checking, B tool
generate proof obligation which needs to be discharged to show that a refinement is valid. The
Invariant which holds on abstract model also holds on the refinement.

63

BeginSubTran(tt,ss) =
SELECT A SS # coordinator(tt)
A transobject(tt) < freeobject[{ss}]
A Viz.(tz e trans A (Ss —tz) e activetrans
= transobject(tt) N transobject(tz) = &)

THEN
|| freeobject := freeobject - {ss}x transobject(tt)
END;

SiteCommitTx(tt,ss) =

SELECT A 8s = coordinator (tt)

THEN sitetransstatus(tt)(ss) := precommit

END;

SiteAbortTx(tt,ss) =

SELECT A 88 = coordinator(tt)

THEN || freeobject := freeobject U {ss} x transobject(tt)
END;

ExeAbortDecision(ss,tt) =

SELECT A 8s = coordinator(tt)
THEN || freeobject := freeobject U {ss} x transobject(tt)
END;

ExeCommitDecision(ss,tt) =
SELECT A 88 = coordinator(tt)

THEN || replica(ss) := replica(ss) < transeffect(tt)
|| freeobject := freeobject U {ss} x transobject(tt)

END;

Figure 3.21: Participating Site Events

An abstract machine is refined by applying the standard technique of data refinement. If a
statement S that acts on variable a, is refined by another statement T that acts on variable b under
invariants | then we write S C, T. The invariant | is called the gluing invariant and it defines the
relationships between a and b. Replacing the abstract variable database in machine Database
by concrete variable replica in refinement Replica results in proof obligations generated by
the B tool. Initially, the only proof obligations that can not be proved involve the relationship
between variables database and replica. These proof obligations were associated with the
events ReadTrans and CommitWriteTran. In order to prove these proof obligations we have to
add the following invariant.

(ss — 00) € freeobject = database(00)= replica(ss)(0o)

This invariant means that a free object 00 at site ss represents the value of 0o in the abstract
database. Due to addition of this invariant B Tool further generate proof obligations. These
proofs are discharged by adding new invariants. We need to continue to the point when all
proofs are discharged.

We observe that at every stage new proof obligations are generated by B Tools due to
addition of new state properties as invariants. In this process at every stage we also discover
further system properties to be expressed in model as invariants. By discharging the proof
obligations we ensure that refinement is a valid refinement of abstract specifications.

64

3.85 Conclusions

In this section we outlined a formal approach to modelling and analyzing distributed system by
means of abstraction and refinement. We have presented a case study on distributed transac-
tion mechanism for replicated database. In the abstract model, an update transaction modifies
the abstract one copy database through a single atomic event. In the refinement, an update
transaction consists of a collection of interleaved events updating each replica separately. The
transaction mechanism on the replicated database is designed to provide the illusion of atomic
update of a one copy database.

The system devolvement approach considered is based on Event B which facilitates the in-
cremental development of distributed system. The B tool generates the proof obligations for
refinement and consistency checking. The majority of proofs were discharged using the auto-
matic prover of the tool, however some complex proof requires use of the interactive prover.
These proofs helps to understand the complexity of problem and the correctness of the solu-
tions. Our experience with this case study strengthens our believe that abstraction and refine-
ment are valuable technique for modelling complex distributed system.

3.9 Verification of Coordinated Exception Handling

Usually, a large part of the system code is devoted to error detection and handling [Cri89,
WNO4]. However, since developers tend to focus on the normal activity of applications and
only deal with the code responsible for error detection and handling at the implementation
phase, this part of the code is usually the least understood, tested, and documented [Cri89].
In order to achieve the desired levels of reliability, mechanisms for detecting and handling
errors should be developed systematically from the early phases of development [RAFCO5].
Ideally, the construction of system fault tolerance mechanisms should follow a rigorous or
formal development methodology [BFGO02].

Error recovery in concurrent and distributed systems is known to be complicated by various
factors, such as high cost of reaching an agreement, absence of a global view on the system
state, multiple concurrent errors, etc. These systems require special error recovery mechanisms
that suit their main characteristics. The Coordinated Atomic (CA) Actions concept [XRR*95]
results from combining distributed transactions and atomic actions for the construction of re-
liable distributed systems that use competitive and cooperative concurrency. Atomic actions
control cooperative concurrency and implement coordinated exception handling [CR86] whilst
distributed transactions maintain the consistency of the resources shared by competing actions.
CA actions function as exception handling contexts for cooperative systems so that any excep-
tion raised in an action is handled in a coordinated manner by all action participants.

In order for CA actions to be applicable for the construction of complex, real-world sys-
tems with strict dependability requirements, software development based on CA actions has to
be supported by rigorous models, techniques, and tools. Several approaches have been pro-
posed for formalizing the CA action concept with the intention either to give a more complete
and rigorous description of the concept [VGO00] or to verify systems designed using CA ac-
tions [XRR"02]. However, an important aspect of CA actions that has not been addressed by
existing work is the modelling and verification of the coordinated exception handling. This is
surprising, since exception handling complements other techniques for improving reliability,

65

such as atomic transactions, and promotes the implementation of specialized and sophisticated
error recovery measures. Moreover, in distributed applications where a rollback is not possible,
such as those that interact with the environment, exception handling may be the only choice
available.

In this work, we examine the problem of specifying CA action-based designs in a way that
allows us to verify automatically if these designs exhibit certain properties of interest regarding
coordinated exception handling. Moreover, since coordinated exception handling is strongly
related with action structuring, it is also necessary to model how CA actions are nested and
composed [RPZ03] to define multiple exception handling contexts. We present an approach to
modeling CA action-based designs that makes it possible to verify these designs automatically
using a constraint solver. The main component of the proposed approach is a formal model
of CA actions that specifies the structuring of a system in terms of actions, as well as infor-
mation relative to exception flow amongst these actions. This model can be directly specified
using well-known specification languages, like B [Abr96] and Alloy [Jac02], and verified au-
tomatically using the tool sets associated with these languages. This work resulted in a paper
presented at this year’s ACM Symposium on Applied Computing [CFRRO06]. A more detailed
description of the proposed approach is available as a technical report [CRRO05].

In the proposed approach, developers start by performing traditional activities of a software
development process, namely, analysis and architectural design of the system, assuming that
the system is concurrent and cooperative. At the same time, they define the scenarios in which
the system may fail (fault model), what exceptions correspond to each type of error, and where
and how the exceptions are handled (exceptional activity). The specification of the system’s
fault model and exceptional activity can be conducted as prescribed by some works in the
literature [RAFCO5]. The result of these activities is a CA action-based design of the system
that includes a description of the exceptions that can be raised in each CA action and how
they are handled. This design is usually described in a modeling language for CA actions
(or simply modeling language), for example, the Coala [VG00] formal language, or the FTT-
UML [GCRO04] profile for the UML.

To verify the CA action-based design, it is necessary to translate it to a formal language
with adequate support for automated verification (verification language). Examples of such
languages are B [Abr96] and Alloy [Jac02]. If the modeling language has a well-defined se-
mantics, like Coala, this translation can be completely automated by a tool. The translation can
also be automated for informal notations, like UML profiles, but only partially. Usually, some
manual intervention is required to resolve ambiguities. Developers used to formal methods can
write the system descriptions directly in the verification language. The choice of using one or
two specification languages is based solely on usability issues.

The formal specification produced by translating the CA action-based design to the verifi-
cation language must adhere to a generic CA actions meta-model specifying the elements of
CA actions and how they relate (hereafter called generic CA actions model). This meta-model
supports a static description of the CA action-based design that ignores temporal informa-
tion. The elements of the generic CA actions model are ACTION, ROLE, PARTICIPANT, and
ROOT_EXCEPTION. They are the main concepts used in the definition of CA actions. Some
of them, like ACTION and ROLE, include additional information represented through relations
and functions. For example, the set of roles of an action is defined by the ROLES relation,
which associates actions to their respective roles. Both the formal specification and the generic
CA actions model are described in the verification language. Up to now, we specified generic

66

CA actions models using B and Alloy as verification languages [CRRO5]. Developers can use
either of them to formalize CA action-based designs.

A system is verified by providing its formal specification as input to a constraint solver for
the verification language, together with the properties to be verified. The properties of interest
that a system must satisfy are split in three categories: basic, desired, and application-specific.
Basic properties define the well-formedness rules of the model, the characteristics of valid CA
actions. They specify the coordinated exception handling mechanism and how actions are orga-
nized. Desired properties are general properties that are usually considered beneficial, although
they are not part of the basic mechanism of CA actions. In general, they assume that the basic
properties hold. Application-specific properties are rules regarding the flow of exceptions in a
specific CA action-based application. Examples of basic (BP) and desired (DP) properties are
presented below, stated informally. The paper describing this approach [CFRRO06] includes an
example of application-specific property.

BP1. If a participant performs a role in a nested action, it must also perform some role in the
containing action.

BP2. No cycles in action nesting.

BP3. The exception resolution mechanism of an action resolves all possible combinations of
concurrent internal exceptions, unless explicitly stated otherwise.

DP1. Top-level (not nested) CA actions have no external exceptions.
DP2. All internal exceptions of an action are handled in it.

DP3. Any role of an action has handlers for all of the action’s internal exceptions, including all
resolved ones.

The snippet below presents a formal specification for properties BP1 and DP1 in B, using
the ASCII version of the B Abstract Machine Notation [Abr96] supported by B-compliant tools
such as ProB.

!A. ((A:ACTION) =>
/*x*%xxx Property BPl sxx%x/
INA. ((NA:ACTION & NA:NestedActions[{A}]) =>
INAR. ((NAR:ROLE & NAR:Roles[{NA}]) =>
#P. (P: PARTICIPANT & NAR:RolesPlayed[{P}]
& card(RolesPlayed[{P}] /\ Roles[{A}]) > 0))

)
&

/**x%x Property DP1l x*x*%/
(not (#TLA. (TLA:ACTION & A:NestedActions[{TLA}])) => External [{A}] =

We used the Alloy Analyzer [Jac04] and ProB [LBO04] constraint solvers to verify formal
specifications in Alloy and B, respectively. If any of the properties of interest does not hold,
the constraint solver produces a counterexample. Both constraint solvers, besides generating a
counterexample, include a graphic visualizer that provides additional help in the identification
of the problem.

The usefulness of the proposed approach was demonstrated by a case study. The target of
the case study was the Fault-Tolerant Insulin Pump Therapy [CGPO05], a control system with
strict reliability requirements for treating patients with diabetes. A detailed description of this

67

system, including a CA action-based design, is available elsewhere [CGPO05]. The proposed
approach helped us to uncover some problems in the original, informal design of the system.
The first one was an implicit assumption that we discovered while manually translating the
UML description of the system to B, according to the proposed approach. The second problem
was pointed out by ProB when we tried to verify the formal specification of the system. The
problems we found were directly related to the use of coordinated exception handling. In other
formal models for specifying CA actions, it would be harder to spot problems like the ones we
found because they focus on different aspects of CA action-based systems, such as temporal
ordering of events [XRR"02] and dynamic CA action structuring [TLIR04].

3.10 On Specification and Verification of L ocation-based Fault
Tolerant M obile Systems

This work investigates context aware location-based mobile systems. In particular, we are in-
terested how their behaviour, including fault tolerant aspects, could be captured using a formal
semantics, which would then be suitable for analysis and verification. We propose a new for-
malism and middleware, called CAMA, which provides a rich environment to test our approach.
The approach itself aims at giving CAMA a formal concurrency semantics in terms of a suitable
process algebra, and then applying efficient model checking techniques to the resulting process
expressions in a way which alleviates the state space explosion. The model checking technique
adopted in our work is partial order model checking based on Petri net unfoldings, and we use
a semantics preserving translation from the process terms used in the modelling of CAMA to a
suitable class of high-level Petri nets.

Model-checking carries out the verification of a system using a finite representation of its
state space, and exhibits a trade-off between the compactness of this representation and time
efficiency. For example, deadlock detection is PSPACE-complete for a compact (bounded)
Petri net or equivalent process algebra representation, but polynomial for state graph repre-
sentation. However, the latter is often exponentially larger, causing the state space explosion
problem [Val98].

Mobile systems are highly concurrent causing a state space explosion when applying model-
checking techniques. One should therefore use approach which alleviates this problem. In our
case, we focus on an approach based on partial order semantics of concurrency and the cor-
responding Petri net unfoldings [McM92]. A finite and complete unfolding prefix of a Petri
net is a finite acyclic net which implicitly represents all the reachable states of the original net.
Efficient algorithms exist for building such prefixes [Kho03], and complete prefixes are often
exponentially smaller than the corresponding state graphs, especially for highly concurrent sys-
tems, because they represent concurrency directly rather than by multidimensional “diamonds”
as it is done in state graphs. Referring to the mobility model by CAMA, our approach is par-
ticularly suitable for verification of reachability-like (or state) properties, such as:

e The system never deadlocks, though it may terminate in a pre-defined set of successful
termination states.

e Security properties, i.e., all sub-scope participants are participants of the containing
scope.

68

e Proper using of the scoping mechanism, for example: a scope owner does not attempt
to leave without removing the scope; agents do not leave or delete a scope when other
agents expect some input from the scope; and the owner of a scope does not delete it
while there are still active agents in the scope.

e Proper use of cooperative recovery: all scope exceptions must be handled when a scope
completes; all scope participants eventually complete exception handling; and no excep-
tions are raised in a scope after an agent leaves it.

e Application-specific invariants. (Note that the negation of an invariant is a state property,
i.e., the invariant holds iff there is no reachable state of the system where it is violated.)

To our knowledge, this is the first attempt to develop unfolding based model checking technique
for mobile systems, and consequently it was clear right from the start that we would need to
make several decisions of both theoretical and implementation nature.

3.10.1 Our approach

The first problem we had to address was the choice of formal model for capturing the properties
and behaviour of mobile systems. A decision was made to focus initially on existing formalisms
for mobility with the view that the expected model checkers would then be easily adaptable to
the context of CAMA. We decided to investigate two process algebras for mobility, viz. 7-
calculus [MPW92, Par01] and KLAIM [BBN*03, NFP98]. They represent both synchronous
and asynchronous models of distributed systems computation, and so we expected that they
would cover a full range of issues relating to the mobility case study. w-calculus allows, in
particular, to express dynamic change in the process ability to communicate with the external
environment, by passing new channels through interactions on previously known channels. It
also provides means to express and reason about a variety of security related aspects. The
choice of the second model was influenced by our work in other parts of the Ambient Campus
case study. KLAIM, in particular, supports explicit localities which are first-class data that
can be manipulated by active processes, and coordination primitives for controlled interactions
among processes located at network’s localities.

We the set out to develop semantics-preserving translations (in the sense of provably gen-
erating strongly equivalent labelled transition systems) of both the w-calculus and KLAIM into
suitable classes of high-level Petri nets. Our choice for the latter was a modular model of high-
level Petri nets, resulting in compositional translation of process expression terms. The work on
translating 7r-calculus has been carried out throughout the duration of RODIN, and resulted in
two translations: one for finite 7-calculus terms [DKKO6b], and recently for general recursive
expressions [DKKO06¢]. The translation of KLAIM was based on some key ideas of our work
on the w-calculus, and was first reported in [DKKO06a].

3.10.2 Model-checking mobile systems

In [DKKO06b] we proposed a translation of a w-calculus term P results in a p-net (a kind of high-
level Petri net) with a very close behavioural relationship with the original process expression.
More precisely, [DKKO06b] showed that the labelled transition system of P is strongly bisimular
to the labelled transition system of the p-net PN (P).

69

The theoretical translation described in [DKKO06b] is not directly implementable (due to the
infinite number of tokens in a special tag place employed by the translation), and in our imple-
mentation oriented work we set out to modify it in such a way that it could be model-checked
by existing tools. Moreover, the specific model-checking technique we decided to use was right
from the beginning the unfolding-based verification of Petri nets, which already proved to be
efficient in dealing with, e.qg., digital asynchronous systems and distributed programs [Kho03].

There are several variations of the unfolding-based model-checking technique, including
unfolders and property verifiers. The way p-nets are defined suggests that one should employ
a variant which is capable to deal efficiently with coloured tokens and high-level arc annota-
tions. In particular, one should avoid the expansion of the high-level Petri net to its low-level
representation and unfolding the latter, since such an approach may yield a huge intermediate
low-level net, rendering the whole attempt practically useless (see [KKO03] for a thorough dis-
cussion of this issue). We therefore decided to use the PUNF model-checker (complemented
by the MPSAT property verifier based on a SAT-solver), which directly applies unfolding to
high-level nets without expanding them to low-level nets, as described in [KKO03]. Having de-
cided on the particular unfolding approach, we then had to address a number of implementation
issues, as described in the rest of this paper.

3.10.3 Key implementation issues

A basic problem we faced right from the outset was that p-nets are not compatible with the input
required by the unfolder, in that PUNF requires as input a high-level net which: (i) is strictly
safe in the sense that no place can ever hold more than one coloured token; and (ii) does not
include any read-arcs. Another, even more fundamental, issue is that the p-net resulting from
the translation will in all but the simplest cases have infinite state space. The reason is that the
set of potentially known (or new) channel names is countably infinite, and so any input prefix
which receives a name from the environment will necessarily give rise to infinite branching. As
a result, a naive state space exploration through exhaustive enumeration is bound to fail. The
way in which addressed these problems is outlined below.

Infinity of new channels. We are primarily interested in checking state properties of mobile
systems expressed using 7r-calculus expressions. For this reason, the main property of channels
we are interested in is whether a channel which has been received from the environment is
brand new (i.e., fresh) or the same as one of the already known channels. As far as sending to
the outside of channels previously restricted is concerned, they are always brand new (fresh),
i.e., different from those already known. As the precise identity of a channels which has just
become known is irrelevant for our purposes, we proceed as follows: (i) if a restricted channel
(3 is sent outside it becomes known simply as (3; and (ii) if input into a channel « happened and
the inserted channel is a fresh channel, its identity is set to «, otherwise it is one of the existing
known channels. In this way, the number of known channels other than those present initially
is bounded by the total number of action names appearing in a 7-calculus term. The resulting
model can therefore be made bounded and then model-checked. It is worth observing that this
treatment of newly known channels is a kind of symmetry reduction employed at the level of
system modelling.

70

Read arcs. A specific feature of p-nets is that they use read arcs which test for the presence
of tokens without consuming them. We use the standard simulation of a read arc using two
directed arcs pointing in the opposite directions. Intuitively, this replaces a non-destructive read
operation by a destructive one, followed by a re-write. One can observe that this transformation
preserves the interleaving semantics of the net.

Non-safeness. Almost all of the places in p-nets resulting from translation are strictly safe,
and so conform to the input required by PUNF. The tag-place, on the other hand, is never
safe (actually, in the theoretical translation its marking is always infinite). However, with the
decisions about the modelling of known channels made above, we can simulate the working of
the tag-place by introducing a status places for each action of a process term. The status place
holds always one token, 0 or 1 (initially 0), and is suitably updated during the execution of the
p-net.

Partial transition expansion. An immediate side-effect of replacing the tag-place by a finite
set of status places is that each of the transitions used in the original translation accessing the
tag-place needs to be replaced by a set of transition jointly simulating the effect of a single
transition in the original translation (note that transition modelling internal communication do
not need to be modified). The overall effect was that the number of transition increased but
their arc annotations became simpler.

3.104 Experimental results

In our experiments described in [KKNO6], we used simple ‘classroom’ scenarios inspired by
the Ambient Campus case study. A typical w-calculus-like example has the following form:

NESS(n) < (vh)(vhy) ... (vh) (T [S1] ... | Sa)

where T represents a ‘teacher’ process, and each S; a ‘student” process. Their respective defi-
nitions are as follows (note that input prefixes are denoted as a?b and the output ones as a'b):

T £ a’ness. (hyness.h;?x; .0 | --- | hplness.h,?x,.0)

S; £ h?addr;. (h'h;.h;!done. 0
+h7another; . addr;!h; . addr;!another; . hj!done . 0)

The idea is that the teacher first receives from the school electronic submission system? a chan-
nel ness using which the students are supposed to submit their work for assessment. The
teacher passes this channel to all the students (using n parallel sub-processes), and (also in par-
allel) then waits for the confirmation that the students have finished working on the assignment
before terminating. A student’s behaviour is somewhat more complicated. After receiving
the ness channel, students are supposed to organise themselves to work on the assignment in
pairs and, after finishing, exactly one of them sends to the support system (using the previously
acquired ness channel) two channels which give access to their completed joint work. The
students finally notify the teacher about the completion of their work. The property to verify

2Called NEss in Newcastle.

71

is that all the processes involved in the computation successfully terminate by reaching the end
of their individual code. For instance, the following move is possible for the initial expression:

(vh)(vhy)...(vhy) (T Sy |...|Sh) >, (vh)(vhy)...(vhy) (T | Sy | ... | Sn)

where b is the channel on which links to the completed pieces of coursework are to be submit-
ted,and T" = hy!b.h;?%;.0 | --- | hy!b.h,?x,. 0.

Examples like that described above allowed us to have easily scalable specifications, which
satisfy a correctness property only for some values of n. (Note that for the above example only
even n leads to a successful termination). Also, the examples were interesting by exhibiting
different sources of state space explosion, e.g., coming from parallel composition and choice
constructs. The former kind of state space explosion is typically avoided by the unfolding based
model-checking techniques, whereas techniques based on interleaving suffer from it. To treat
the latter kind of state space explosion we have initiated work on a highly promising novel
unfolding-based technique [KKKV05].

Part of the experimental results of [KKNOG6] are presented in Table 3.2. The meaning of the
entries is as follows. The first column identifies a specific instance being model-checked. After
that we give the size of the high-level Petri nets derived for the input expression (| P |and | T |
provide the numbers of places and transitions, respectively), as well as the size of finite prefix
of its unfolding (| B | and | E | provide the numbers of conditions and events, respectively). The
last two columns show the times (in seconds) needed to generate the unfolding using PUNF,
and to verify the chosen correctness criterion (i.e., deadlock-freeness) using MPSAT.

Problem Net Prefix Time, [s]
[P | T| | B |E| | PUNF MPSAT
NEss(2) | 157 200 1413 127 <1 <1
NESs(3) | 319 415 5458 366 1 <1
NESS(4) | 537 724 | 24561 1299 6 <1
NEss(5) | 811 1139 | 93546 4078 46 <1
NESsS(6) | 1141 1672 | 281221 10431 411 311
NESs(7) | 1527 2335 | 701898 22662 | 2904 8

Table 3.2: Experimental results.

After completing the implementation and testing, we compared the performance of our
prototype model checking technique with that of a leading verification tool in the area of mo-
bile computing, viz. the Mobility Workbench (MW) [Wor06] (we used its most recent version
released in April 2006). The results we obtained indicate in a strong way that our approach
performs much better than that offered by the Mobility Workbench. For example, for the series
of systems in Table 3.2, MW’s performance was comparable for n < 4, however, forn = 5
it crashed with memory overflow after working for over 1 hour. Similar results were obtained
for other example systems in [KKNOG6]. Clearly, comparative testing needs to be extended, but
even at this stage we can substantiate our initial belief that partial order reduction should offer
significant efficiency gains in the model checking of complex mobile systems.

72

Further experiments During the series of experiments we conducted, a closer analysis of
firing sequences leading to deadlocks detected what might be considered as a “security breach’.
More precisely, the specification allows the whole protocol to terminate successfully in such a
way that the students inform the environment (rather than the teacher), and the teacher receives
the completion messages from the environment (rather than from the students). Intuitively,
this means that the environment acts as an ‘intruder in the middle’. Moreover, on the verifi-
cation side, the possibility of ‘too many’ communications with the environment should also
increase the size of the resulting unfolding. One would therefore expect that the situation be-
comes different if most of the communication is done within the system’s processes. To test
this hypothesis, and to address the security issue described above, we re-designed the original
specification, in the following way:

SNESs(n) £ (vh)(vhy) - - - (vhy)(vhres) (T” | S§ | --- | S)
where:

T £ a’ness. (hy!ness . hy!hres.hres?x; .0
| -+ | hylness. hplhres. hres?x,.0)

S/ £ hi?addr; . hi?report; .
(h!h; . report;!done . 0
+h?another; . addr;!h; . addr;!another; . report;!done . O)

Intuitively, SNESS(n) uses a new secret channel hres to ensure that the communication between
the students and the teacher about the completion of coursework does not leak outside the
system. The results confirmed our initial hypothesis.

Finally, we investigated the effect of reducing the state explosion due the protocol for pair-
ing the students. We therefore model-checked the system assuming that the students know in
advance what the pairing is, and who is to communicate with the environment. This, of course,
was only possible if n is even. The results indicated that the unfolding copes very well with the
state space explosion which is due to concurrency present in the system specification.

3.10.5 Conclusions

The results of this work, reported in [KKNO06] as well as in the paper to be published in the
REFT book[IKKRO5] directly contribute to T2.1, T2.3 and T2.4 of WP2. They indicate that
model-checking based on Petri net unfoldings can be a successful technique to deal with dis-
tributed systems with mobility. We can also identify at least three challenging areas of fu-
ture work leading to potentially significant improvements in efficiency and applicability of the
present approach:

e To develop an unfolding technique dealing with the read arcs in a direct way, rather than
simulating them using pairs of directed arcs. A significant step forward towards such a
technique has been made in [KKO06], where foundations for the unfolding of inhibitor
arcs (which are complementary to read arcs) have been developed.

e To introduce a restricted form of m-calculus recursion (or iteration) still allowing one to
use model-checking. This work has already strong theoretical underpinnings contained

73

in [DKKO06c], and we are now working on suitable implementation of a restricted version
of the solution presented there.

e To deal with the state space explosion problem caused by aspects other than a high
level of concurrency; there are strong indications that the recently proposed merged pro-
cesses [KKKVO05] could offer an effective solution.

74

3.11 Bits’'n Pieces

Datamation used to have a section of short news items: this section collects together notes on
some evolving pieces of work.

Design patterns During the second year we have been working on developing a set of design
patterns and the decomposition method to be applied in rigorous development of the large scale
open agent systems. This work is reported in the second year deliverable D18 (§6) and in
more details in [ILRTO6]. Four patterns: the specification pattern, the decoupling pattern, the
refinement pattern and the decomposition pattern have been proposed and applied in our work
on the Ambient Campus Case Study. Application of these patterns allows developers to ensure
agent interoperability, decentralised development and code reuse.

M odelling systemsbased on languages Part of the work being done in the Ambient Campus
case study (CS5) involves the use of the Linda and Publish/Subscribe coordination mechanism.
However, in the development of our scenario, we have found it necessary to use a languuage
which combines the features of both Linda and Publish/Subscribe. As the two systems are not
mutually descriptive, it is not possible to properly emulate one in the other.

To this end, a framework was developed around a coordination language which provides
the features of both Linda and Publish/Subscribe and this language was defined by way of an
Event-B model. However, this resulted in an ad hoc semantics that was ambiguous, difficult to
understand and difficult to extend safely.

The coordination language has since been redefined in terms of a structural operational
semantics (SOS). In doing so, we were forced to confront —and resolve— the ambiguities in the
language, including some that we had not been aware of initially.

Despite the different natures and pragmatic intents of Event-B and SOS models, there are
interesting correspondences in their notational styles. This correspondence not only makes the
task of feeding the work done on the SOS model back into the Event-B model easier, but it also
allows a high degree of confidence that the two models represent the same system.

The importance of a clean, unambiguous language semantics cannot be overstated when
attempting to build a model of a system based on that language. The correspondence between
the two methods suggest there are interesting formal links to be pursued, though even the
informal connection we have explored thus far has been very useful. Our work will appear in a
forthcoming Technical Report at Newcastle University.

SOS Joey Coleman is presenting a paper at the FM-Ed-06 meeting in Canada.

Relevant publicationsnot cited elsewherein thisreport Readers might be interested in [HIR04,
JR05, Ran00, JOWO06, Jon05a, CJO*05, BGJ06, WV01, Jon81, dRE99, Owi75, OG76, Jon83a,
Jon83hb, Jon96, Stg90, Col94, Xu92, Bue00, Din00, BS01, dR0O1, Plo81, Plo04b, Plo04a, Jon96,
Bur04, Nip04, CM92].

75

Chapter 4

Theway ahead

This “Month 24” document reports on considerable progress on methodological issues facing
Rodin and its eventual users. There still remains much work to be done before we can claim to
have a formal development method for fault-tolerant systems.

We see the main challenge for the last year as producing a coherent final document which
summarises what has been achieved. This task is made possible because of the significant book
being produced by Jean-Raymond Abrial. The WP2 final report will both build on this and
confine itself to material which does not fit into the Event-B framework.

We have always made clear that our prime deliverable on the tools front will be coherent
support for Event B. We will incorporate as many ideas as possible into this framework. Fur-
thermore, the “plug-in” idea offers us a way of providing support for other concepts. To give
just one example, the “UML to B” concept offers a way of seducing a community which is not
already using formal methods towards the more formal Rodin tools. There are however other
ideas which would require separate support at the formal level. An example here is the use of
rely/guarantee style specifications.

We will obviously want to report on other methodoloogies that can help the user develop
dependable complex systems. Appendix A sets out a possible structure for the final deliverable
on Methodology: we should be delighted to discuss this with our project officer and the chosen
reviewers. It is worth stating now that we think it would be counter productive to attempt a
“catalogue of everything” in the final report: we will maximise coverage but only in so far as
we can offer the reader a coherent story.

76

Bibliography

[Abro6]

[AC03]

[ACMO3]

[AIR06]

[BBN*03]

[BFG02]

[BGJO6]

[BHG87]

[BKS85]

[BKPO4]

[BKPPK02]

J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge Univer-
sity Press, 1996.

Jean-Raymond Abrial and Dominique Cansell. Click’n prove: Interactive proofs
within set theory. In TPHOLSs 2003, pages 1-24, 2003.

Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechan-
ically proved and incremental development of ieee 1394 tree identify protocol.
Formal Asp. Comput., 14(3):215-227, 2003.

B. Arief, A. lliasov, and A. Romanovsky. On Using the CAMA Framework for
Developing Open Mobile Fault Tolerant Agent Systems. University of Newcastle.
Technical report, University of Newcastle, 2006.

L. Bettini, V. Bono, R. De Nicola, G. L. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, and B. Venneri. The klaim project: Theory and practice.
In Global Computing, volume LNCS 2874 of LNCS, pages 88-150. Springer-
Verlag, 2003.

Cinzia Bernardeschi, Alessandro Fantechi, and Stefania Gnesi. Model checking
fault tolerant systems. Software Testing, Verification, and Reliability, 12:251-275,
December 2002.

D. Besnard, C. Gacek, and C. B. Jones, editors. Structure for Dependability:
Computer-Based Systems from an Interdisciplinary Perspective. Springer, 2006.
ISBN 1-84628-110-5.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, 1987.

J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstrac-
tion. Theoret. Comp. Sci., 37:77-121, 1985.

J. Burton, M. Koutny, and G. Pappalardo. Implementing Communicating Pro-
cesses in the Event of Interface Difference. Fundamenta Informaticae, 59:1-37,
2004.

J. Burton, M. Koutny, G. Pappalardo, and M. Pietkiewicz-Koutny. Composi-
tional Development in the Event of Interface Difference. In P.Ezhilchelvan and

77

[BKSS3]

[BLLPO4]

[BS89]

[BS01]

[Bue00]

[Bur04]

[But92]

[But96]

[But97]

[But02]

[CFRRO6]

[CGPO5]

A.Romanovsky, editors, Concurrency in Dependable Computing, pages 479-543.
Kluwer Academic Publishers, 2002.

R.J.R. Back and R. Kurki-Suonio. Decentralisation of process nets with cen-
tralised control. In 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed
Computing, pages 131-142, 1983.

E. Bernard, B. Legeard, X. Luck, and F. Peureux. Generation of test sequences
from formal specifications: Gsm 11-11 standard case study. Software Practice
and Experience, 34(10):915-948, 2004.

R.J.R. Back and K. Sere. Stepwise refinement of parallel algorithms. Sci. Comp.
Prog., 13:133-180, 1989.

Manfred Broy and Ketil Stglen. Specification and Development of Interactive
Systems. Springer-Verlag, 2001.

Martin Buechi. Safe Language Mechanisms for Modularization and Concur-
rency. PhD thesis, Turku, 2000.

J. Burton. The Theory and Practice of Refinement-After-Hiding. PhD thesis,
University of Newcastle upon Tyne, 2004.

M.J. Butler. A CSP Approach To Action Systems. D.Phil. Thesis, Programming
Research Group, Oxford University, 1992. http://eprints.ecs.soton.
ac.uk/974/.

M.J. Butler. Stepwise refinement of communicating systems. Science of Com-
puter Programming, 27(2):139-173, September 1996.

M.J. Butler. An Approach to the Design of Distributed Systems with B AMN.
In Jonathan P. Bowen, Michael G. Hinchey, and David Till, editors, ZUM ’97:
The Z Formal Specification Notation, 10th International Conference of Z Users,
Reading, UK, April 3-4, 1997, Proceedings, volume 1212 of Lecture Notes in
Computer Science, pages 223-241. Springer, 1997.

Michael J. Butler. On the use of data refinement in the development of secure
communications systems. Formal Asp. Comput., 14(1):2-34, 2002.

Fernando Castor Filho, Alexander Romanovsky, and Cecilia Mary F. Rubira. Ver-
ification of coordinated exception handling. In Proceedings of the 21st ACM Sym-
posium on Applied Computing, pages 680-685, Dijon, France, April 2006.

A. Capozucca, Nicolas Guelfi, and Patrizio Pelliccione. The fault-tolerant insulin
pump therapy. In Proceedings of FM’2005 Workshop on Rigorous Engineering
of Fault-Tolerant Systems, pages 33—42, Newcastle upon Tyne, UK, 2005.

78

[CJ05]

[CJO*05]

[CM92]

[CMO3]

[Col94]

[Col06]

[CR86]

[Cri8g]

[CRRO5]

[DB99]

[DF93]

[Din00]

[DIK+99]

Joey W. Coleman and CIiff B. Jones. Examples of how to determine the specifica-
tions of control systems. In M. Butler, C. Jones, A. Romanovsky, and E. Troubit-
syna, editors, Proceedings of the Workshop on Rigorous Engineering of Fault-
Tolerant Systems (REFT 2005), number CS-TR-915 in Technical Report Series,
pages 65-73. University of Newcastle Upon Tyne, June 2005.

Joey Coleman, CIiff Jones, lan Oliver, Alexander Romanovsky, and Elena
Troubitsyna. RODIN (rigorous open development environment for complex sys-
tems). In EDCC-5, Budapest, Supplementary Volume, pages 23-26, April 2005.

J. Camilleri and T. Melham. Reasoning with inductively defined relations in the
HOL theorem prover. Technical Report 265, Computer Laboratory, University of
Cambridge, 1992.

Dominique Cansell and D Merry. Foundations of the b method. Computing and
Informatics., 22(1-31):2-34, 2003.

Pierre Collette. Design of Compositional Proof Systems Based on Assumption-
Commitment Specifications — Application to UNITY. PhD thesis, Louvain-la-
Neuve, June 1994,

Joey W. Coleman. Determining the specification of a control system: an illustra-
tive example. In M. Butler, C. Jones, A. Romanovsky, and E. Troubitsyna, editors,
Proceedings of the Workshop on Rigorous Engineering of Fault-Tolerant Systems
(REFT 2005), number 4157 in Lecture Notes in Computer Science. Springer-
Verlag, 2006.

R. Campbell and B. Randell. Error recovery in asynchronous systems. IEEE
Transactions on Software Engineering, SE-12(8):811-826, 1986.

Flaviu Cristian. Exception handling. In Dependability of Resilient Computers.
BSP Professional Books, 1989.

Fernando Castor Filho, Alexander Romanovsky, and Cecilia Mary F. Rubira. Ver-
ification of coordinated exception handling. Technical Report CS-TR-927, School
of Computing Science, University of Newcastle upon Tyne, 2005.

J. Derrick and E. Boiten. Testing refinements of state-based formal specifications.
Software Testing, Verification and Reliability, 9:27-50, 1999.

J. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based specifications. In Formal Method Europe ’03, volume 670 of
LNCS, pages 268-284. Springer Verlag, 1993.

Jurgen Dingel. Systematic Parallel Programming. PhD thesis, Carnegie Mellon
University, 2000.

S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton, and
B.M. Horowitz. Model based testing in practice. In International Conference on
Software Engineering, pages 285-294. ACM Press, 1999.

79

[DKKO06a]

[DKKO6b]

[DKKO6c]

[DNFP98]

[DNLMO5]

[dRO1]

[dRE99]

[Dun03]

[EBO6]

[GCRO4]

[GHM97]

[GJ79]

[GR93]

[HHS86]

[HJJ03]

R. Devillers, H. Klaudel, and M. Koutny. A Petri net semantics of a simple process
algebra for mobility. Electronic Notes in Computer Science - ENTCS, 1254, 2006.

R. Devillers, H. Klaudel, and M. Koutny. Petri Net Semantics of the Finite pi-
calculus Terms. Fundamenta Informaticae, 70:203—-226, 2006.

R. Devillers, H. Klaudel, and M. Koutny. A petri net translation of pi-calculus
terms. In International Colloquium on Theoretical Aspects of Computing (sub-
mitted). Springer-Verlag, 2006.

R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for
Agents Interaction and Mobility. IEEE Transactions on Software Engineering,
24(5):315-330, 1998.

R. De Nicola, D. Latella, and M. Massink. Formal modeling and quantitive anal-
ysis of KLAIM-based mobile systems. In Applied Computing, pages 428-435,
2005.

W. P. de Roever. Concurrency Verification: Introduction to Compositional and
Noncompositional Methods. Cambridge University Press, 2001.

W. P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof
Methods and Their Comparison. Cambridge University Press, 1999.

S. Dunne. Introducing backward refinement into b. In ZB 2003, volume 2681 of
LNCS, pages 178-196. Springer Verlag, 2003.

Neil Evans and Michael Butler. A proposal for records in Event-B. In Formal
Methods 2006, 2006.

Nicolas Guelfi, Guillaume Le Cousin, and Benoit Ries. Engineering of depend-
able complex business processes using uml and coordinated atomic actions. In
Proceedings of International Workshop on Modeling Inter-Organizational Sys-
tems, pages 468-482, 2004.

J.D. Gannon, R.G. Hamlet, and H.D. Mills. Theory of modules. IEEE Transac-
tions on Software Engineering, 13(7):820-829, 1997.

M.R. Garey and D.S. Johnson. Computers and Intractability. W. H. Freeman and
Company, 1979.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

J. He, C.A.R. Hoare, and J.W. Sanders. Data refinement refined. In ESOP ’86,
volume 213 of LNCS, pages 187-196. Springer Verlag, 1986.

lan Hayes, Michael Jackson, and Cliff Jones. Determining the specification of a
control system from that of its environment. In Keijiro Araki, Stefani Gnesi, and
Dino Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of Lecture
Notes in Computer Science, pages 154-169. Springer Verlag, 2003.

80

[HIR04]

[Hoa85]
[IKKRO05]

[11i06]

[ILRTO5]

[ILRTO6]

[IRO5]

[ITLS06]

[Jac02]

[Jac04]

[JHJO06]

[Jon81]

[Jon83a]

[Jon83b]

Tony Hoare, CIiff Jones, and Brian Randell. Extending the horizons of
DSE. In Grand Challenges. UKCRC, 2004. pre-publication visible at
http://www.nesc.ac.uk/esi/events.

C.A.R. Hoare. Communicating Sequential Processes. Prentice—Hall, 1985.

A. lliasov, V. Khomenko, M. Koutny, and A. Romanovsky. On Specification and
Verification of Location-based Fault Tolerant Mobile Systems. In REFT 2005
Workshop on Rigorous Engineering of Fault-Tolerant Systems. Newcastle Upon
Tyne, UK (http://rodin.cs.ncl.ac.uk/events.htm), June 2005.

A. lliasov. Implementation of Cama Middleware. In A.lliasov B.Arief and
A.Romanovsky, editors, On Using the CAMA Framework for Developing Open
Mobile Fault Tolerant Agent Systems. University of Newcastle. University of
Newcastle, 2006.

A. lliasov, L. Laibinis, A. Romanovsky, and E. Troubitsyna. Towards formal
development of mobile location-based systems. In REFT’05 — Workshop on Rig-
orous Engineering of Fault Tolerant Systems, July 2005.

A. lliasov, L. Laibinis, A. Romanovsky, and E. Troubitsyna. Rigorous develop-
ment of fault tolerant agent systems. Technical Report TR762, Turku Centre for
Computer Science, March 2006.

A. lliasov and A. Romanovsky. CAMA: Structured Coordination Space and Ex-
ception Propagation Mechanism for Mobile Agents. Presented at ECOOP 2005
Workshop on Exception Handling in Object Oriented Systems: Developing Sys-
tems that Handle Exceptions. July 25, 2005. Glasgow, UK, 2005.

Dubravka llic, Elena Troubitsyna, Linas Laibinis, and Colin Snook. Formal de-
velopment of mechanisms for tolerating transient faults. Technical Report TR763,
Turku Centre for Computer Science, April 2006.

D. Jackson. Alloy: A lightweight object modeling notation. ACM TOSEM, 11(2),
April 2002.

D. Jackson. Alloy home page, 2004.

C. B. Jones, I. J. Hayes, and M. A. Jackson. Specifying systems that connect to
the physical world. Technical Report CS-TR-964, School of Computing Science,
University of Newcastle, 2006.

C. B. Jones. Development Methods for Computer Programs including a Notion
of Interference. PhD thesis, Oxford University, June 1981.

C. B. Jones. Specification and design of (parallel) programs. In Proceedings of
IFIP’83, pages 321-332. North-Holland, 1983.

C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Transactions on Programming Languages and Systems, 5(4):596—
619, 1983.

81

[Jon90a]

[Jon90Db]

[Jon96]

[Jon03]

[Jon05a]

[JonO5b]

[Jon05c]
[Jon05d]

[Jon06a]

[JonO6b]

[JOW06]

[JRO5]

[Kho03]

[KKO3]

[KKO6]

C. B. Jones. Systematic Software Development using VDM. Prentice Hall Inter-
national, second edition, 1990.

C.B. Jones. Systematic Software Development using VDM (2nd Edn). Prentice
Hall, 1990.

C. B. Jones. Accommodating interference in the formal design of concurrent
object-based programs. Formal Methods in System Design, 8(2):105-122, March
1996.

C. B. Jones. Wanted: a compositional approach to concurrency. In Annabelle
Mclver and Carroll Morgan, editors, Programming Methodology, pages 1-15.
Springer Verlag, 2003.

C. B. Jones. Reasoning about the design of programs. Royal Soc, Phil Trans R
Soc A, 363(1835):2395-2396, 2005.

C. B. Jones. Sequencing operations and creating objects. In Proceedings Tenth
IEEE International Conference on Engineering of Complex Computer Systems,
pages 33-36. IEEE Computer Society, 2005.

Cliff Jones. The case for research into obtaining the right specification, June 2005.

Cliff Jones. Determining the specification of systems involving humans, July
2005.

C. B. Jones. An approach to splitting atoms safely. Electronic Notes in Theo-
retical Computer Science, MFPS XXI, 21st Annual Conference of Mathematical
Foundations of Programming Semantics, 155:43-60, 2006.

Cliff B. Jones. Reasoning about partial functions in the formal development of
programs. In Proceedings of AV0CS’05, volume 145, pages 3-25. Elsevier, Elec-
tronic Notes in Theoretical Computer Science, 2006.

Cliff Jones, Peter O’Hearn, and Jim Woodcock. Verified software: a grand chal-
lenge. IEEE Computer, 39(4):93-95, 2006.

Cliff Jones and Brian Randell. Dependable pervasive systems. In Trust and Crime
in Information Societies, chapter 3, pages 59-90. Edward Elgar, 2005. also visible
at http://www.foresight.gov.uk.

V. Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
thesis, School of Computing Science, University of Newcastle upon Tyne, 2003.

V. Khomenko and M. Koutny. Branching Processes of High-Level Petri Nets. In
TACAS 2003, volume 2619 of Lecture Notes in Computer Science, pages 458-
472, 2003.

H.C.M. Kleijn and M. Koutny. Infinite Process Semantics of Inhibitor Nets. In
Petri Nets and Other Models of Concurrency - ICATPN 2006, volume 4024 of
Lecture Notes in Computer Science, pages 282—-301, 2006.

82

[KKKVO05] V. Khomenko, A. Kondratyev, M. Koutny, and V. Vogler. Merged Processes —

[KKNO6]

[KMP97]

[KPPKO6]

[Lam78]

[LBO04]

[LBOS5]

[LIM*05]

[LTL*05]

[LTL*06]

[Lyn96]
[MAVO05]

[McM92]

[Mil89]

a New Condensed Representation of Petri Net Behaviour. In CONCUR 2005,
volume 3653 of Lecture Notes in Computer Science, pages 338-352, 2005.

V. Khomenko, M. Koutny, and A. Niaouris. Applying Petri Net Unfoldings for
Verification of Mobile Systems. In Fourth International Workshop on Modelling
of Objects, Components and Agents - MOCA 2006, pages 161-178. Bericht 272,
Department Informatik, Universitat Hamburg, 2006.

M. Koutny, L. Mancini, and G. Pappalardo. Two Implementation Relations and
the Correctness of Communicated Replicated Processing. Formal Aspects of
Computing, 9:119-148, 1997.

M. Koutny, G. Pappalardo, and M. Pietkiewicz-Koutny. Towards an Algebra of
Abstractions for Communicating Processes. In ACSD 2006. To be published,
2006.

L. Lamport. The Implementation of Reliable Distributed Multiprocess Systems.
Computer Networks, 2:95-114, 1978.

M. Leuschel and Michael J. Butler. ProB: A model checker for B. In Proceedings
of FME’2003, LNCS 2805, pages 855-874. Springer-Verlag, Pisa, Italy, 2004.

M. Leuschel and M. Butler. Automatic refinement checking for b. In ICFEM ’05,
volume 3785 of LNCS, pages 345-359. Springer Verlag, 2005.

Sari Leppdnen, Dubravka Ilic, Qaisar Malik, Tarja Syst&, and Elena Troubitsyna.
Specifying UML Profile for Distributed Communicating Systems and Commu-
nication Protocols. Proceedings of Workshop on Consistency in Model Driven
Engineering (C@MODE’05), November 2005.

Linas Laibinis, Elena Troubitsyna, Sari Leppénen, Johan Lilius, and Qaisar Ma-
lik. Formal Model-Driven Development of Communicating Systems. Proceedings
of 7th International Conference on Formal Engineering Methods (ICFEM’06),
LNCS 3785, Springer, November 2005.

Linas Laibinis, Elena Troubitsyna, Sari Leppénen, Johan Lilius, and Qaisar Ma-
lik. Formal service-oriented development of fault tolerant communicating sys-
tems. Technical Report TR764, Turku Centre for Computer Science, April 2006.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

C. Métayer, J.-R. Abrial, and L. Voisin. Event-B language. Deliverable D7, EU-
IST “RODIN” Project, 2005.

K. L. McMillan. Using Unfoldings to Avoid State Explosion Problem in the
Verification of Asynchronous Circuits. In CAV 1992, volume 663 of Lecture Notes
in Computer Science, pages 164-174, 1992.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

83

[Mor90]

[MPW92]

[NFP98]

[Nip04]
[0G76]

[OMGO05]
[OV99]

[Owi75]
[Par01]
[Plo81]
[Plo04a]
[Plo04b]

[Ran00]
[RAO92]

[RBO5]

[RAFCO5]

[RGO1]

C.C. Morgan. Of wp and CSP. In W.H.J. Feijen, A.J.M. van Gasteren, D. Gries,
and J. Misra, editors, Beauty is our business: a birthday salute to Edsger W.
Dijkstra. Springer—\erlag, 1990.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100:1-77, 1992.

R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315-
330, 1998.

Tobias Nipkow. Jinja: Towards a comprehensive formal semantics for a java-like
language. Manuscript, Munich, 2004.

S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Informatica, 6:319-340, 1976.

OMG. Unified Modeling Language (UML), Version 2.0, 2005.

M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Sys-
tems, Second Edition. Prentice-Hall, 1999.

S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis, De-
partment of Computer Science, Cornell University, 1975.

J. Parrow. An Introduction to the w-calculus. In Bergstra, Ponse, and Smolka,
editors, Handbook of Process Algebra, pages 479-543. Elsevier, 2001.

G. D. Plotkin. A structural approach to operational semantics. Technical Report
FN-19, Computer Science Department, University of Aarhus, 1981.

Gordon D. Plotkin. The origins of structural operational semantics. Journal of
Logic and Algebraic Programming, 60—61:3-15, July—December 2004.

Gordon D. Plotkin. A structural approach to operational semantics. Journal of
Logic and Algebraic Programming, 60—61:17-139, July—December 2004.

B. Randell. Facing up to faults. The Computer Journal, 43(2):95-106, 2000.

D.J. Richardson, A. Leif Aha, and T.O. O’Malley. Specification-based test oracles
for reactive systems. In ICSE ’92, pages 105-118. ACM Press, 1992,

Abdolbaghi Rezazadeh and Michael Butler. Some guidelines for formal develop-
ment of web-based applications in B-Method. In ZB 05, pages 472-492, 2005.

Cecilia Mary F. Rubira, Rogério de Lemos, Gisele Ferreira, and Fernando Castor
Filho. Exception handling in the development of dependable component-based
systems. Software — Practice and Experience, 35(5):195-236, March 2005.

A. Rensink and R. Gorrieri. Vertical Implementation. Information and Computa-
tion, 170:95-133, 2001.

84

[R0s98]
[RPZ03]

[SKSO01]

[SLBOS]

[Spiss]

[SS01]

[Ste97]
[Stg90]

[TLIR04]

[Valog]

[VGOO]

[VGWO5]

[WMO0]

[WNO4]

[Wor06]
[WV01]

A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.

A. Romanovsky, Panos Periorellis, and Avelino Zorzo. Structuring integrated
web applications for fault tolerance. In Proceedings of the 6th IEEE Interna-
tional Symposium on Autonomous Decentralized Systems, pages 99-106, Pisa,
Italy, 2003.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Con-
cepts, 4th Edition. McGraw-Hill Book Company, 2001.

M. Satpathy, M. Leuschel, and M. Butler. Protest: An automatic test environ-
ment for b specifications. Electronics Notes on Theoretical Computer Science,
111:113-136, 2005.

J.M. Spivey. Understanding Z. Cambridge University Press, 1988.

Mukesh Singhal and Niranjan G Shivratri. Advanced Concepts in Operating Sys-
tems. Tata McGraw-Hill Book Company, 2001.

Steria. Atelier-B User and Reference Manuals, 1997.

K. Stelen. Development of Parallel Programs on Shared Data-Structures. PhD
thesis, Manchester University, 1990.

F. Tartanoglu, N. Levy, V. Issarny, and A. Romanovsky. Using the b method for
the formalization of coordinated atomic actions. Technical Report CS-TR: 865,
School of Computing Science, University of Newcastle, 2004.

A. Valmari. The state explosion problem. In Advances in Petri Nets, volume
LNCS 1491 of LNCS, pages 429-528. Springer-Verlag, 1998.

J. Vachon and N. Guelfi. Coala: a design language for reliable distributed system
engineering. In Proceedings of the Workshop on Software Engineering and Petri
Nets, pages 135-154, Aarhus, Denmark, June 2000.

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimu-
lation semantics. Journal of the ACM, 43(3):555-600, 2005.

J.C.P. Woodcock and C.C. Morgan. Refinement of state-based concurrent sys-
tems. In D. Bjarner, C.A.R. Hoare, and H. Langmaack, editors, VDM ’90, volume
LNCS 428, pages 340-351. Springer—\erlag, 1990.

W. Weimer and G. Necula. Finding and preventing run-time error handling mis-
takes. In Proceedings of the 19th ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, Vancouver, Canada, October 2004.

Mobility Workbench, 2006. http://www.it.uu.se/research/group/mobility/mwb.

Gerhard Weikum and Gottfried Vossen. Transactional information systems: the-
ory, algorithms, and the practice of concurrency control and recovery. Morgan
Kaufmann Publishers Inc., 2001.

85

[XRR+95]

[XRR*02]

[Xu92]

[YBO5]

[YBO6]

[ZHMO7]

Jie Xu, Brian Randell, Alexander B. Romanovsky, Cecilia M. F Rubira, Robert J.
Stroud, and Zhixue Wu. Fault tolerance in concurrent object-oriented software
through coordinated error recovery. In Proceedings of the 25th Symposium on
Fault-Tolerant Computing Systems, pages 499-508, Pasadena, USA, 1995.

Jie Xu, Brian Randell, Alexander B. Romanovsky, Robert J. Stroud, Avelino F.
Zorzo, Ercument Canver, and Friedrich W. von Henke. Rigorous development of
an embedded fault-tolerant system based on coordinated atomic actions. IEEE
Transactions on Computers, 51(2):164-179, February 2002.

Qiwen Xu. A Theory of State-based Parallel Programming. PhD thesis, Oxford
University, 1992.

Divakar Yadav and Michael Butler. Application of Event B to global
causal ordering for fault tolerant transactions. In REFT, pages 93-103,
http://www.eprints.ecs.sotonn.ac.uk/10981/, 2005.

Divakar Yadav and Michael Butler. Rigorous design of fault-tolerant transactions
for replicated database system using Event B. In Rigorous development of Com-
plex Fault Tolerant Systems. Springer (to appear), 2006.

H. Zhu, P.A.V. Hall, and J.H.R. May. Software unit test coverage and adequacy.
ACM Computing Surveys, 29(4):366-427, 1997.

86

Appendix A

Possible structure of the final WP2 report

e [ntroduction

— Systems and their dependability

— What constitutes a (formal) method?
— Role of tool support

— Achieving fault-tolerance

e An outline of the Event-B approach to specification and refinement

e Tool support

— Rodin tool philosophy (database architecture)
— Proof support

— Role of abstract model checking

— Model checking as abstract testing

— Generating code

e Specifications

— Using UML and linking to formal specifications (MJB)
— Model-driven architecture

— Deriving specifications (CBJ)

— Coping with evolution

e Extending refinement notions

e Handling mobility

87

