

Project IST-511599

RODIN
“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable D4

Traceable Requirements Document for Case Studies

Budi Arief (University of Newcastle upon Tyne, UK),
Joey Coleman (University of Newcastle upon Tyne, UK),
Anthony Hall (affiliated with Praxis High Integrity Systems, UK),
Adrian Hilton (Praxis High Integrity Systems, UK) ,
Alex Iliasov (University of Newcastle upon Tyne, UK),
Ian Johnson (VT Engine Controls Ltd, UK),
Cliff Jones (University of Newcastle upon Tyne, UK),
Linas Laibinis (Aabo Akademi University, Finland),
Sari Leppänen (Nokia, Finland),
Ian Oliver (Nokia, Finland),
Alexander Romanovsky (University of Newcastle upon Tyne, UK),
Colin Snook (University of Southampton, UK),
Elena Troubitsyna (Aabo Akademi University, Finland),
Jurgen Ziegler (Nokia, Finland)

Public Document

28 February 2005

http://rodin.cs.ncl.ac.uk/

Contents

1 Introduction…………………………………………………………………………….. 1
2 Requirements Document for Case Study 1: Formal Approaches in Protocol

Engineering……..……………………………………………………………………….

5

3 Requirements Document for Case Study 2: Engine Failure Management System …… 26
4 Requirements Document for Case Study 3: MITA End-to-end Architecture

Requirements……………………………………………………………………………

53

5 Requirements for Case study 4……………………...………………………………… 70
6 Requirements Document for Case study 5: Ambient Campus – the Lecture

Scenario………………………………………………………..

125

SECTION1. INTRODUCTION

This document presents the results of the requirements elicitation and analysis conducted
for the case studies in RODIN. Usually these processes lead to creating requirements
specification – a document serving as a contract between customers and developers of a
system. The term requirements specification has a very broad meaning: it might be a
document written in plain English, a graphical model, a formal mathematical model, a
collection of scenarios or prototypes, or any combination of these. Usually a written
document (we call it the requirements document) combining natural language
descriptions and graphical models is considered to be the most suitable style to describe
the requirements for large systems.

The requirements document in such a style has been created by J.-R. Abrial in the process
of formal development of controlling software for industrial press [1.1]. The development
started from writing the requirements document and the reference document. The
requirements document essentially consisted of explanatory text in plain English,
diagrams illustrating system functionality and requirements definitions. The requirements
were arranged according to a certain taxonomy and indexed. The taxonomy was used to
structure the requirements according to various views on system behaviour. The indexes
helped in referencing and tracing the requirements in the development process. The
reference document contained only the requirements definitions extracted from the
requirements document. These documents were found indispensable in the formal
development of the system. They were used to eliminate requirement ambiguities, create
formal specifications and validate overall system design. The success of this system
development has motivated the project members to adopt such a document style while
creating the requirements documents for the RODIN case studies. The experience in
creating requirements documents and formal system development in the Event-B
framework was shared by J-R.Abrial at the tutorial given for participants of RODIN in
the beginning of December 2004. As a result, the requirements documents for three case
studies are written following Abrial’s approach.

The requirements document for case study 1 – Formal Approaches to Protocol
Engineering – is presented in Section 2 of this deliverable. The document has been
created from several sources: informal official requirements on 3GPP Positioning
System, a set of UML models describing the positioning service, and documents on the
Lyra development method. The requirements document adopts Abrial’s style. Our next
steps will be to develop formal specification of 3GPP Positioning System by applying
formal modelling techniques of the B Method. We are also planning to apply general
refinement/decomposition techniques to be developed in WP2, and investigate
applicability of formal reasoning techniques for fault tolerance in the area of
telecommunications.

Section 3 contains requirements document for case study 2 – Engine Failure
Management System. The work on this document has explored the use of models in
requirements with a view to making a specification generic and providing instances of the
generic specification. We have also experimented with the expression and integration of

1

requirements using UML. The current plan is to continue work in requirement
engineering with our academic partner to gain insights into providing a well formed
specification. A formal UML-B model will be developed from the requirement work. The
work is expected to progress by developing the link with UML_B and the design issues
it raises and demands it might impose on the methodology.

The requirements specification for case study 2 is novel in that it presents the functional
requirements of the case as generic and traces the requirement to parameterised tables of
an application. The specification is also unique in that it expresses the taxonomy of
requirements and their relationships in a UML diagram style. This will assist in
developing the generic model in line with the UML_B approach adopted for the case
study. The modelling and verification of the generic requirement from parameterised
tables provides a particular focus to drive development of the ProB tool and UML_B
approach and presents specific challenges to scalability of an application and its effects
on the tools.

Unlike the previous section, Section 4 contains requirements document for case study 3 –
Formal Techniques within an MDA Context – written in an unstructured manner as plain
English text. As explained in this section such a style is needed to support further
experimenting with requirements engineering within this case study. The role of the
requirements document for case study 3 is to outline the requirements process, the plan of
work and the initial set of informal (or even semi-formal) requirements for the MITA
End-to-End architecture. Additional architectures will be made available during the
course of the RODIN project as detailed requirements become available. The case study
can be split into a number of phases:

• Construction and Formalisation of E2E Model
• Construction and Formalisation of Security Model
• Mapping of Security Model against E2E Model
• Construction of Simple Application utilising both E2E and Security Concepts

For the E2E and Security framework modelling stages we expect a demonstration of the
internal consistency of the models produced. When mapping the security model against
the E2E model we will have a number of options regarding which parts of the E2E should
take the responsibility for the various security related functionality. It is also conceivable
that the security model and the E2E do not exactly fit - we then need to explore the
ramifications of such a situation with regards to the consistencies of the E2E and security
models. Finally the construction of a simple application (to be decided) that utilizes both
the security and E2E frameworks will be made. Again this application itself must be
internally consistent and be consistent with the architectures/frameworks employed.

Section 5 contains the requirements document for case study 4 – CDIS Air Traffic
Control Display System. This document is written using the proprietary format as
explained in the introduction to this section. Praxis is particularly interested in
understanding how well Event B supports the structuring of a large specification of the
scale of the CDIS specification. For this reason it is important to cover a large part of the
original high level specification in the high-level Event B specification. Taking a vertical

2

slice down through the system structure preserves the many levels of detail in the original
system while keeping the subset size tractable.

The original documents developed by Praxis have been reduced to the subset that forms
the basis of this case study. Included here is the requirements document for our subset,
presented within the original context that CDIS was built. We feel that it is important not
to lose this context as we redevelop the subset of the CDIS system. Updating this
document to reflect the context of RODIN CS4 is neither necessary nor desirable for the
purpose of developing the case study materials to a position where they may be usefully
analysed by the WP3 tool kernel and WP4 plugins. Furthermore, the original context and
methods used will make for an excellent comparison against the emerging WP2
methodology.

Fault tolerance issues are covered in the specification document, which is much larger
than the requirements document included here. Remaining fault tolerance issues –
primarily concerning delays and user error – will be examined during the redevelopment.

Praxis are also interested in understanding how well Event-B refinement supports the
formal development from the high-level specification to the detailed design, in particular,
the introduction of distribution in the design. This relationship between the high-level
specification and the detailed design was not formally established in the original
development as the refinement techniques available at the time were deemed inadequate.
We believe it will be sufficient to focus on the refinement of a subset of the full Event-B
high-level specification to develop useful transferable results on refinement for systems
like CDIS.

To this end, approximately one quarter of the material will be redeveloped in Event-B
notation in the near term. This will allow the experience of a fully developed project to
inform the development of the RODIN methodology and notation. The initial material
and remaining portions will be used to evaluate the RODIN tools as they are developed.

Section 6 defines the requirements of the first scenario of case study 5 (Ambient Campus)
- the Ambient Lecture scenario. This case study will investigate a number of related
scenarios (see deliverable D2 for a more detailed discussion of our possible
choices). This particular scenario allows us to apply and demonstrate the project results in
development, modelling and verification of fault tolerant mobile asynchronous systems.
While creating this scenario, we also performed some initial experimental work with a
chosen coordination-based mobility middleware (Lime) and developed a novel
exception-handling mechanism for applications developed in this paradigm. Next we will
focus on specification of this scenario, on its formal modelling using one of the RODIN
formalisms (most likely B), on application of the mobility abstractions which are under
development in WP2 and on preparation of the second scenario. We are planning to apply
the general refinement/decomposition techniques to be developed in WP2 and to progress
further in our programming experiments. Later on we will evaluate the applicability of
the process-based modelling techniques (WP2) in this case study and apply the mobility

3

plug-in (WP4) to model-check mobility-specific properties of the Ambient Campus
scenarios.

The requirements documents presented in these deliverable define the systems that will
validate RODIN’s tools and methodologies. The documents have been created in a close
co-operation between academic and industrial partners. This work has facilitated
knowledge exchange, tightened co-operation and helped to achieve a common
understanding of research goals.

1.2. References

[1.1]. Available via http://se.inf.ethz.ch/teaching/ws2004/0271/index.html#reading

4

SECTION 2. REQUIREMENTS DOCUMENT FOR CASE STUDY 1:
FORMAL APPROACHES IN PROTOCOL ENGINEERING

2.1 Introduction

This case study investigates application of formal methods for development of
telecommunications protocols. Telecommunications systems tend to be very large and
data intensive. Such systems provide their services by co-ordinating several
subservices distributed over the network. The protocol engineering group at Nokia has
developed the “Lyra” method which supports the service-oriented approach to
protocol engineering. The main goal of this case study is to provide support (in the
form of formal techniques and tools) for various stages of this approach. The
proposed tools and techniques will be validated by the development of a Position
Calculation Application Part (PCAP) specified by the Third Generation Partnership
Project (3GPP). PCAP is part of the User Equipment (UE) positioning system in the
UMTS radio access network. PCAP is specified to manage the communication
between the network elements Radio Network Controller (RNC) and Stand-alone
Assisted Global Positioning System Serving Mobile Location Centre (SAS). The
requirements document for PCAP is presented in this deliverable.

Usually telecommunications systems are verified by using model checking
techniques. However, model checking is prone to the state explosion problem, when
applied to large systems. One of the goals of this case study is to investigate the use of
refinement techniques to prove decomposition and distribution steps. Hence the
important problem to be tackled within the case study is a combination of refinement
and model checking verification techniques. Another topic to be investigated within
case study is the applicability of techniques for formal reasoning about fault tolerance
in telecommunications.

The key research tasks in this case study are:

• development of formal techniques and tools to support automation of rigorous
design flow (described by the “Lyra” method),

• combination of refinement and algorithmic verification techniques in the
development of distributed communicating systems and communication
protocols,

• development of formal techniques and tools to support automation of data
abstractions,

• application of formal reasoning techniques for fault tolerance in the distributed
communication systems and communication protocols domain.

5

2.2 Requirement Taxonomy

Below we present the Requirements Document for The Third Generation Partnership
Project (3GPP) positioning service. The system requirements are given in boxes. An
explanatory text surrounding the boxes should assist in understanding the
requirements.

The requirements are given names. They are given in boxes in bold font. The naming
of requirements is organised using the following taxonomy:

• ARC – architecture: describes architecture of the system and what each part
includes,

• FUN – functionality: describes functional behaviour of components and
constraints,

• COM – communication: describes how distributed components communicate
with each other.

2.3 System Architecture

The Third Generation Partnership Project (3GPP) provides a positioning service for
calculating the physical location of user equipment (UE) in a Universal Mobile
Telecommunication System (UMTS) network. Positioning is based on determining
the geographical position of the UE by measuring radio signals. Communication
between all network elements is done by using predefined signalling protocols.

UMTS Network Architecture related to position calculation is shown on Fig.1. The
abbreviations used in the figure stand for:

• RNC – Radio Network Controller,
• SAS -- Stand-Alone Assisted Global Positioning System Serving Mobile

Location Centre,
• UE – User Equipment,
• LMU – Location Measurement Unit.

RNC and SAS are the network elements responsible for providing the positioning
service. To calculate a position estimate, they need additional measurement data from
UE and LMU devices, which are contacted via intermediate base stations.

6

Fig.2.1 Architecture of the positioning system

UE is a mobile device that is recognised and supported by the UMTS network.

Authentication of UE is outside of the scope of the case study. Hence we assume that
every UE has a valid ID.

ARC1.
The positioning system in the UMTS network consists of the following distant
network elements: Radio Network Controller (RNC), Stand-Alone Assisted
Global Positioning System Serving Mobile Location Centre (SAS), several of
Location Measurement Units (LMU) and User Equipment (UE) devices.

ARC2.
Every UE has a unique ID.

ARC3.
Every UE has a valid ID.

SAS

RNC

Base
station

Base
station

PCAP
communication

UE

LMU

LMU

7

UE (i.e., a client associated with UE) can send a positioning request to the UMTS
network. The network element that is the recipient of a positioning request is Radio
Network Controller (RNC).

The UMTS network should always respond to the positioning request either by
sending a positioning estimate or error message.

We assume that there is only one positioning request at any instance of time. In
practice, if there are several simultaneous requests, RNC creates slave processes
(threads) for each of them. In this case study, we do not consider concurrency and
assume that there is only one process in the system.

In general a positioning request can have a number of various parameters. For
instance, in case the UE is an “advanced device” it can also estimate its own position
and forward this information in the request. In this case, the device can receive a
position estimate with even higher accuracy. However, this feature is optional and is
not considered in the case study. Nevertheless, each request contains the expected
accuracy as a parameter of the request. The estimate should fulfil this accuracy
otherwise the request is considered as failed.

The calculated positioning estimate is returned in the form of geographical or cell-
based coordinates together with the positioning accuracy that was achieved.
Modelling realistic representation of the coordinates is outside of the scope of the case
study. We assume that a position estimate is defined by a couple of numerical values.

FUN1.
Positioning requests are sent by UE and received by RNC.

FUN2.
RNC replies to every positioning request either by sending the positioning
estimate or error message.

FUN3.
There is only one positioning request at any instance of time.

FUN4.
Positioning request consists of UE ID and position accuracy. The accuracy is
represented as a numerical value.

8

The received position estimate is considered successful if it is done with the accuracy
that is requested or higher. If the desired accuracy was not achieved, the request is
considered to be failed.

The UE can cancel the (previously sent) positioning request by sending the
“positioning abort” request to RNC. In response, RNC terminates execution of the
positioning request and returns the “abort confirmation” message to the UE.

Radio Network Controller (RNC) is a UMTS network component, which contains
functionality required to support UE position calculation. It controls the flow of
positioning requests. RNC is responsible for positioning method selection and
position calculation, and provides overall positioning coordination and control.

RNC coordinates UMTS resources (including base stations, Location Measurement
Unit (LMU) devices, the SAS, position calculation functions – see below) to calculate
an UE position estimate and returns the result to UE.

FUN5.
Reply to the positioning request contains a couple of numerical values
representing co-ordinates and a single numerical value representing the achieved
accuracy.

FUN6.
If the position estimate meets required accuracy defined in FUN5 then the
estimate is successful. Otherwise it is failed.

FUN7.
UE can send the “positioning abort” request to RNC. The request contains UE ID.

FUN8.
RNC responds to the “positioning abort” request by terminating position
calculation and returning the “abort confirmation” message to UE.

9

RNC has Radio Network Database (RND), which contains information about
approximate network positions of UE devices as well as precise physical coordinates
of base stations. This information can be used for UE position calculation.

RNC can send a request to RND asking for approximate position of a particular UE.
RND responds by sending a list of base stations in which area the UE is currently
operating.

If RND is unable to provide the requested data, it responds with the corresponding
error message. In that case, RNC can repeatedly send additional measurement
requests to RND. The number of additional requests depends on the current working
load in the network and the user type but it cannot exceed the predefined number of
attempts NRND.

ARC5.
RNC contains Radio Network Database (RND). RND contains approximate
positions of UE devices and the physical coordinates of base stations.

FUN9.
RNC can send RND a “UE position” request, which includes UE ID as a
parameter.

FUN10.
RND responds to RNC “UE position” request by providing a list of base stations
currently surrounding UE .

ARC4.
RNC is a UMTS network component providing overall coordination and control
for UE position calculation.

FUN11.
If RND is unable to provide the requested data, it responds with the corresponding
error message. In that case, RNC can repeatedly (up to the predefined number of
attempts NRND) send additional measurement requests to RND.

10

RNC can send a request to UE asking it to perform radio signal measurements needed
for UE position estimate calculation. RNC uses the approximate UE position (i.e., a
list of base stations surrounding UE) obtained from RND to contact UE.

One of the position calculation methods currently used is OTDOA – the Observed
Time Difference of Arrival method. OTDOA uses measurements of the time
difference between arrived radio signals from different base stations surrounding UE.
The measurements from at least two pairs of base stations are needed for calculation.
To obtain the time measurements, RNC contacts UE via at least three different base
stations. UE makes necessary time measurements and sends them back to RNC.

Stand-Alone Assisted Global Positioning System Serving Mobile Location Centre
(SAS) is an UMTS network element containing a database of location calculation
functions. SAS is controlled by RNC. RNC forwards the positioning data to SAS,
which uses one of available calculation functions to calculate a position estimate and
then returns the result to RNC. The choice of a particular calculation function is
outside of the scope of this case study.

For example, to apply the OTDOA method, RNC forwards timing measurements of
radio signals obtained from the UE and exact physical locations of base stations
(obtained from RND) to SAS. SAS then uses the hyperbolic triangulation method to
calculate the UE position estimate.

FUN13.
We assume that UE has capability to make requested radio measurements and
send radio measurements back to RNC. The response includes requested radio
measurements (as numerical values).

FUN14.
If UE is unable to make required calculations, it responds with the corresponding
error message. In that case, RNC can repeatedly (up to the predefined number of
attempts NUE) send additional measurement requests to UE.

ARC6.
SAS is an UMTS network element containing location calculation functions.

FUN12.
RNC can send UE a request to make local radio signal measurements. The request
includes approximate UE position (obtained from RND) as a parameter.

11

To calculate a UE position estimate, SAS needs additional local reference data, which
can be provided by Location Measurement Units (LMUs). LMUs are stacionary
devices that are capable to constantly monitor closest base stations and do some
specific measurements related to them. For example, for OTDOA method, LMUs
measure relative time difference of internal clocks of the surrounding base stations.
This information is needed to synchronise time measurements received from UE.

FUN15.
SAS applies a certain function to calculate a position estimate and then return the
estimate together with the positioning accuracy to RNC. The input data for this are
described in FUN22.

FUN19.
SAS sends local reference data requests to one or several LMU.

FUN20.
If LMU successfully makes required measurements, it responds to SAS by sending
the requested local reference data.

FUN16.
RNC requests SAS to calculate a position estimate. The request contains
radio signal measurements made by UE (see FUN13) and base station location
data obtained by RNC from RND (see FUN10).

FUN18.
If SAS is unable to make the requested calculations (see see FUN21 and FUN24),
it responds with the corresponding error message.

FUN17.
If position calculation is successful (see FUN23), SAS responds to RNC by
sending a position estimate and the achieved accuracy.

12

SAS contains a database of position calculation functions that calculate a position
estimate on the basis of different data or different calculation method. For simplicity,
we assume that there is a function that takes three parameters (UE measurements,
LMU measurements, and RND data about physical locations of base stations) and
returns a pair – the UE position estimate (a pair of numerical values) and achieved
positioning accuracy.

The functional requirements describing system communication between different
network components are summarised in Table 2.1.

FUN22.
SAS invokes a position calculation function with the input parameters: UE
measurements, LMU measurements and the physical locations of base stations.

FUN24.
If the positioning accuracy achieved by the calculation function does not meet the
accuracy requirement (see FUN4), the corresponding error message is returned. In
that case, SAS can repeatedly (up to the predefined number of attempts NAlgo)
invoke the position calculation function.

FUN21.
If LMU is unable to make required measurements, it responds with the
corresponding error message. In that case, SAS can repeatedly (up to the
predefined number of attempts NLMU) send additional measurement requests to
LMU.

FUN23.
If position calculation is successful, the invoked position calculation function
returns the position estimate together with the positioning accuracy (see FUN5).

13

Table 2.1 Functional requirements for communicating components

Requesting
component

Responding
component

Functional requirements

UE RNC FUN1, FUN2, FUN7, FUN8
RNC RND FUN9, FUN10, FUN11
RNC UE FUN12, FUN13, FUN14
RNC SAS FUN16, FUN17, FUN18
SAS LMU FUN19, FUN20, FUN21
SAS Position Calculation FUN22, FUN23, FUN24

2.4 Services and interfaces

In this chapter we will describe the system behaviour in terms of its services and
interfaces. From this point of view, the system consists of several layers representing
it at different levels of detail. The top layer describes system’s interaction with an
external user: what services the system provides, what signals it sends and receives.
Each consequent layer describes more system implementation details, so that the
bottom layer defines the information transfer between actual network elements.

2.4.1 Layer 1

On the top layer, there is software component Positioning which supports the
following interface with the external user (usually called upward interface): it accepts
two incoming signals (POSITIONING_REQUEST and POSITIONING_ABORT)
and responds with two possible outgoing signals: POSITIONING_CONFIRM and
POSITIONING_FAIL_CONFIRM). Each of these signals has certain information
attached in the form of signal parameters.

COM1.
The user can send POSITIONING_REQUEST signal to Positioning requesting
positioning service (see FUN1, FUN4). The signal parameters are UE ID and
positioning accuracy.

COM2.
The user can send POSITIONING_ABORT signal to Positioning requesting to
cancel previously requested positioning service (see FUN7). The only parameter
of this signal is UE ID.

COM3.
Positioning can respond to the user with POSITIONING_CONFIRM signal, if the
positioning request was successfully completed (see FUN2, FUN5). The signal
parameters are the position estimate and achieved positioning accuracy.

14

2.4.2 Layer 2

The second layer describes how the positioning service is decomposed into several
subservices of smaller grannularity. Each of subservices is provided by an external
service component responsible for its execution. The downward interface of the
Positioning component has to be extended to define signals to and from the subservice
components it relies on.

The positioning service consists of four subservices: DB Enquiry, UE Enquiry, LMU
Measurement, and Algorithm Invocation. These services should be executed in the
order presented.

The software component Positioning is also decomposed into ServiceDirector, which
is responsible for orchestrating the execution of the whole service, and four
“handlers” – subcomponents responsible for communication with the corresponding
external service components. There are correspondingly four handlers: DBHandler,
UEHandler, LMUHandler, and AlgoHandler.

Since ServiceDirector replaces the service component Positioning, it implements the
upward interface provided by Positioning.

In addition, ServiceDirector can send an initiating service request signals to the
corresponding handlers, attaching necessary data as signal parameters. The handlers
forward this request, by sending a signal to the corresponding external service
components. Once the external component finishes its request, it returns a signal
informing about success (with some data describing the result of service execution) or
a failure (with some error message attached) of a subservice to the handler. The
handler then relays this signal to the ServiceDirector.

COM4.
Positioning can respond to the user with POSITIONING_FAIL_CONFIRM
signal, if the positioning request failed or was cancelled by the user (see COM2,
FUN2, FUN8). The signal parameter is error message describing the cause of a
failure.

COM5.
ServiceDirector can accept POSITIONING_REQUEST and
POSITIONING_ABORT signals sent by the user, and can respond with
POSITIONING_CONFIRM and POSITIONING_FAIL_CONFIRM signals (see
COM1, COM2, COM3, COM4).

15

In addition to being simple mediators between ServiceDirector and the corresponding
service components, the handlers also contain simple fault tolerance mechanisms. In
particular, a handler analyses the error message and other data received from a service
component, and decides whether sending an additional service request is needed. In
other words, if a handler decides that erroneous situation is recoverable, it can
repeatedly try to send service requests. Otherwise (i.e., error is unrecoverable), a
handler reports the error to ServiceDirector by sending the corresponding error
message.

 Fig.2.2 Functional architecture of Layer 2

Let us now to formulate requirements for four handlers of the positioning service. For
DB Enquiry, we have the following requirements.

COM6.
ServiceDirector can initiate DB Enquiry by sending DB_HANDLER_REQUEST
signal to DBHandler. The UE ID is a parameter of the signal.

COM7.
After receiving DB_HANDLER_REQUEST signal from ServiceDirector,
DBHandler sends DB_REQUEST signal to Radio Network Database(RND). The UE
ID is a parameter of the signal (see FUN9).

COM8.
If RND enquiry was succesfully completed, RND responds by sending
DB_RESPONSE signal to DBHandler. DB data describing a list of base stations
surrounding UE are included as signal parameters. See also FUN10.

User

Service Director

DB Handler UE Handler LMU Handler Algo Handler

Radio
Network
Database

User
Equipment

Location
Measurement
Unit

Position
Algorithm
Server

16

For UE Enquiry, we have the following requirements.

COM9.
If RND enquiry failed, RND responds by sending DB_FAILURE signal to
DBHandler. Error message describing the cause of a failure is included as a signal
parameter. See also FUN11.

COM10.
After receiving DB_FAILURE signal from RND, DBHandler can repeatedly send
DB_REQUEST signal to RND, asking to execute the database enquiry again (see
FUN11).

COM11.
If DBHandler decides that DB Enquiry was succesfully completed, it sends
DB_ENQUIRY_RESPONSE signal to ServiceDirector. The list of base stations
(obtained from RND) is included as a parameter.

COM12.
If DBHandler decides that DB Enquiry has unrecoverably failed, it sends
DB_ENQUIRY_FAILURE signal to ServiceDirector. The error message describing
the cause of a failure is included as a parameter.

COM14.
After receiving UE_HANDLER_REQUEST signal from ServiceDirector,
UEHandler sends UE_MEASUREMENT_REQUEST signal to the UE. The UE ID
and UE position data received from RND are included as parameters of the signal.
See also FUN12.

COM13.
ServiceDirector can initiate UE Enquiry by sending UE_HANDLER_REQUEST
signal to UEHandler. The UE ID and UE position data received from RND are
included as parameters of the signal.

17

For LMU Measurement, we have the following requirements.

COM15.
If UE enquiry was succesfully completed, the UE responds by sending
UE_MEASUREMENT_RESPONSE signal to UEHandler. Radio measurements
data calculated by the UE are included as signal parameters. See also FUN13.

COM17.
After receiving UE_MEASUREMENT_FAILURE signal from the UE, UEHandler
can repeatedly send UE_MEASUREMENT_REQUEST signal to the UE, asking to
execute the UE enquiry again. See also FUN14.

COM18.
If UEHandler decides that UE Enquiry was succesfully completed, it sends
UE_ENQUIRY_RESPONSE signal to ServiceDirector. The radio measurements
calculated by the UE are included as parameters.

COM19.
If UEHandler decides that UE Enquiry has unrecoverably failed, it sends
UE_ENQUIRY_FAILURE signal to ServiceDirector. The error message describing
the cause of a failure is included as a parameter.

COM20.
ServiceDirector can initiate LMU Measurement by sending
LMU_HANDLER_REQUEST signal to LMUHandler. The UE ID and UE position
data received from RND are included as parameters of the signal.

COM16.
If UE enquiry has failed, the UE responds by sending
UE_MEASUREMENT_FAILURE signal to UEHandler. Error message describing
the cause of a failure is included as a signal parameter. See also FUN14.

18

COM21.
After receiving LMU_HANDLER_REQUEST signal from ServiceDirector,
LMUHandler sends LMU_MEASUREMENT_REQUEST signal to LMU. The UE
ID and UE position data received from RND are included as parameters of the
signal. See also FUN19.

COM22.
If LMU enquiry was succesfully completed, the LMU responds by sending
LMU_MEASUREMENT_RESPONSE signal to UEHandler. Radio measurements
data calculated by the LMU are included as signal parameters. See also FUN20.

COM23.
If LMU enquiry failed, the LMU responds by sending
LMU_MEASUREMENT_FAILURE signal to LMUHandler. Error message
describing the cause of a failure is included as a signal parameter. See also FUN21.

COM24.
After receiving LMU_MEASUREMENT_FAILURE signal from the LMU,
LMUHandler can repeatedly send LMU_MEASUREMENT_REQUEST signal to
the LMU, asking to execute the LMU measurement again. See also FUN21.

COM25.
If LMUHandler decides that LMU Measurement was succesfully completed, it sends
LMU_REQUEST_RESPONSE signal to ServiceDirector. The radio measurements
calculated by the LMU are included as parameters.

COM26.
If LMUHandler decides that LMU Measurement has unrecoverably failed, it sends
LMU_REQUEST_FAILURE signal to ServiceDirector. The error message
describing the cause of a failure is included as a parameter.

19

For Algorithm Invocation, we have the following requirements.

COM27.
ServiceDirector can initiate Algorithm Invocation by sending
ALGO_HANDLER_REQUEST signal to AlgoHandler. TheUE position data
received from RND, UE measurement data, and LMU measurement data are
included as parameters of the signal.

COM28.
After receiving ALGO_HANDLER_REQUEST signal from ServiceDirector,
AlgoHandler sends ALGO_INVOCATION_REQUEST signal to the Positioning
Algorithm Database. TheUE position data received from RND, UE measurement
data, and LMU measurement data are included as parameters of the signal. See
also FUN22.

COM29.
If Algorithm invocation was succesfully completed, the Positioning Algorithm
Database responds by sending ALGO_INVOCATION_RESPONSE signal to
AlgoHandler. The calculated UE position estimate and the achieved accuracy are
included as signal parameters. See also FUN23.

COM30.
If Algorith Invocation failed, the Positioning Algorithm Database responds by
sending ALGO_INVOCATION_FAILURE signal to AlgoHandler. Error message
describing the cause of a failure is included as a signal parameter. See also
FUN24.

COM31.
After receiving ALGO_INVOCATION_FAILURE signal from the Positioning
Algorithm Database, AlgoHandler can repeatedly send
ALGO_INVOCATION_REQUEST signal to the the Positioning Algorithm
Database, asking to execute the position calculation again. See also FUN24.

20

If any of subservices fail (i.e., ServiceDirector gets the corresponding error signal
from one of the handlers), the whole positioning service is considered as failed.
ServiceDirector then sends the corresponding error message to the user.

2.4.3 Layer 3

The third layer describes how service components are distributed over the network.
ServiceDirector and four handlers are distributed between RNC and SAS network
elements. ServiceDirector is further decomposed into two parts –
RNC_ServiceDirector and SAS_ServiceDirector.

RNC_ServiceDirector implements the top-level interface with the user. In addition, it
supports interfaces for communication with RNC (during DB Enquiry) and UE
(during UE Enquiry). In other words, it also implements ServiceDirector – DBHandler
and ServiceDirector – UEHandler interfaces.

COM32.
If AlgoHandler decides that Algorithm Invocation was succesfully completed, it
sends ALGO_REQUEST_RESPONSE signal to ServiceDirector. The calculated
UE position estimate and the achieved accuracy are included as signal parameters.

COM33.
If AlgoHandler decides that Algorithm Invocation has unrecoverably failed, it
sends ALGO_REQUEST_FAILURE signal to ServiceDirector. The error message
describing the cause of a failure is included as a parameter.

COM34.
If ServiceDirector gets a signal about a failure of any of subservices (i.e.,
DB_ENQUIRY_FAILURE, UE_ENQUIRY_FAILURE,
LMU_MEASUREMENT_FAILURE, ALGO_REQUEST_FAILURE), it sends
POSITIONING_FAIL_CONFIRM signal to the user (see COM4).

COM35.
RNC_ServiceDirector can accept POSITIONING_REQUEST and
POSITIONING_ABORT signals sent by the user, and can respond with
POSITIONING_CONFIRM and POSITIONING_FAIL_CONFIRM signals (see
COM1, COM2, COM3, COM4).

21

SAS_ServiceDirector supports interfaces for communication with LMU (during LMU
Measurement) and Positioning Algorithm Server (during Algorithm Invocation). In
other words, it also implements ServiceDirector – LMUHandler and ServiceDirector –
AlgoHandler interfaces.

 Fig.2.3 Functional architecture of Layer 3

Since ServiceDirector is now split between two distant network elements, we should
describe communication between RNC_ServiceDirector and SAS_ServiceDirector,
while executing the UE positioning service. The communication is governed by the
PCAP communication protocol ([2.1,2.2]). Position Calculation Application Part
(PCAP) is a communication protocol and part of the UE positioning system in a
UMTS network. PCAP defines the interface and corresponding signalling procedures

COM36.
RNC_ServiceDirector can send signals to and accept signals from DBHandler
and UEHandler according to the interfaces described in COM6-COM12 and
COM13-COM19.

COM37.
SAS_ServiceDirector can send signals to and accept signals from LMUHandler and
AlgoHandler according to the interfaces described in COM20-COM26 and
COM27-COM33.

DB

UE

��LMU

Algo

RNC Service Director

SAS Service Director

User

22

to enable the interaction between RNC and SAS network elements in the process of
performing a position estimate of the UE.

After completing successfully two first subservices (DB Enquiry and UE Enquiry),
RNC_ServiceDirector sends request signal to SAS_ServiceDirector together with data
required for finishing position calculation. In response, SAS_ServiceDirector sends
signal with the position estimate and achieved accuracy (in case of success) or error
message (in case of a failure). Communication is realised using signalling protocols
allowing data transfer between distant network elements.

Both RNC_ServiceDirector and SAS_ServiceDirector have subcomponents called
Peer Proxies, which are responsible for providing PDU (Protocol Data Unit)
communication over the network (according to the PCAP protocol). Peer Proxy
encodes outgoing PDU message before sending it to the underlying transport layer.
Similarly, Peer Proxy decodes incoming transport service messages containing
encoded PDU values. We assume that there are corresponding functions (signals) of
the transport layer that realise the actual data transfer.

COM38.
RNC_ServiceDirector can send SAS_REQUEST signal to RNC_PeerProxy. UE
ID, UE position data from RND, and UE measurement data are included as
parameters. See also FUN16.

COM39.
RNC_PeerProxy encodes received data and forwards them to the underlying
transport layer, which makes the actual data transfer between RNC and SAS.

COM40.
SAS_PeerProxy decodes received data from the underlying transport layer, and
sends SAS_REQUEST signal to SAS_ServiceDirector, attaching the decoded
data as parameters.

COM41.
If UE positioning request is successfully completed, SAS_ServiceDirector sends
SAS_RESPONSE signal to SAS_PeerProxy. The UE position estimate and the
achieved accuracy are included as parameters. See also FUN17.

23

 Fig.2.4 Communication between RNC and SAS

COM44.
RNC_PeerProxy decodes data received from the underlying transport layer, and,
if they indicate successful UE position calculation, sends SAS_REQUEST
signal to SAS_ServiceDirector, attaching the decoded data as parameters.

COM45.
RNC_PeerProxy decodes received data from the underlying transport layer, and,
if they indicate a failure of UE position calculation, sends
SAS_FAILURE_REQUEST signal to SAS_ServiceDirector, attaching the
decoded data as parameters.

COM43.
SAS_PeerProxy encodes data received from SAS_ServiceDirector and forwards
them to the underlying transport layer, which makes the actual data transfer
between SAS and RNC.

COM42.
If UE positioning request has failed, SAS_ServiceDirector sends
SAS_FAILURE_RESPONSE signal to SAS_PeerProxy. The error message
indicating the cause of a failure is included as a parameter. See also FUN18.

RNC SAS

Peer Proxy Peer Proxy

Transport Layer

24

2.4.4 References

2.1. 3GPP. Technical specification 25.305: Stage 2 functional specification of UE

positioning in UTRAN. See http://www.3gpp.org/ftp/Specs/html-
info/25305.htm

2.2. 3GPP. Technical specification 25.453: UTRAN Iupc interface positioning
calculation application part (pcap) signalling. See
http://www.3gpp.org/ftp/Specs/html-info/25453.htm

25

SECTION 3. REQUIREMENT DOCUMENT FOR CASE STUDY 2:
ENGINE FAILURE MANAGEMENT SYSTEM1

3.1. Introduction

An embedded Engine control system comprises of several subsystems. The control
subsystem, executes algorithms on its inputs in order to provide the desired fuel
demand to the engine.
The engine failure management subsystem provides a protective wrapper to the
control subsystem, protecting it from failures in its system inputs and so enhancing
the dependability of the control system. It detects failures, and then manages these
failures in order to provide the control subsystem with an acceptable input or graceful
degradation of behaviour.
This requirement specification describes the functional requirement of the failure
management subsystem.

Features of the Engine Failure Management subsystem

Detection of system sensor input failures
Confirmation of system sensor input failures
Temporary actions during confirmation
Failure actions after confirmation
Failure classification
Failure labelling and notification
Degraded action depending upon severity

The specification first describes the generic features of the requirement then later
provides an example of a particular instance of such a system in tabular form. The
instance is traceable to the generic description by references.

This document is organised into two separate texts (1) The reference text which
contains the requirement and assumptions (2) The explanation text, which may give
further explanation to the requirement/assumptions and there purpose. The reference
text is separated from the explanation text (boxed and given an identifier).

1 This document is the property of AT Engine Controls Ltd. and no part may be reproduced,
transmitted in any form or by any means, electronic, mechanical, photo copying, recording or
otherwise, transferred to other documents, disclosed to a third party or used for any purpose other than
that which this document was produced, without the express written permission of AT Engine Controls
Ltd.

26

3.2. Overview of Sub-System Functionality

The subsystem monitors sensor inputs to be used in other (client) subsystems. The
subsystem checks the condition of a set of inputs from some external equipment to
detect abnormal conditions including transducer failures and failures of the
equipment. To avoid reacting to transient noise on the inputs abnormal conditions
must be confirmed over a number of readings before any permanent action is taken.
During this confirmation period the subsystem must provide acceptable actions in
place of using suspect readings. If the abnormal condition is confirmed, more
permanent action may be taken to provide longer term acceptable operation of the
client subsystems. The following requirements have been given identifiers according
to a taxonomy that is described in the next section.

PROC1 The subsystem executes on a given process cycle.

DET1 The subsystem detects abnormal conditions of inputs caused by failures of
the external equipment.

OUT1 Inputs that are found to be in a normal condition may be passed on as
outputs (if they are required by other subsystems).

CONF1 When an abnormal condition is detected, the subsystem confirms the
suspected failure over a period of time. During this time the condition may
recover.

ACT1 The subsystem takes some temporary action to simulate acceptable input
while a suspected fault is being confirmed.

ACT2 The subsystem simulates acceptable input conditions or performs other
permanent failure actions if it confirms an abnormal condition of the inputs.

PROC2
All tests will be implemented by configuring the generic requirements specified in
this document to meet the specific requirements of the application (as shown in
Tables 3.9.1 to 11).

27

3.3. Taxonomy

This specification identifies and categorises environmental assumptions (ENV),
processing decisions (PROC), functional requirements (FUNC) and performance
requirements (PERF) about the failure management subsystem.

Figure 3.3.1 - Top level classification of specification items illustrated in UML

An input (INP) may have many associated tests and a test may utilise many inputs. A
test is made up of a detection method (DET) and confirmation mechanism (CONF)
pair. Each test also has a collection of conditions (COND) that must be satisfied for
the test to be valid. A confirmation mechanism contains three different actions (ACT),
a healthy action, a temporary action (taken while a test is confirming) and a
permanent action (taken when a test has confirmed). Each action is associated with at
least one output (OUT) that it modifies.

Figure 3.3.2 – Overview of functionality expressed as a UML class diagram

The detection mechanism of a test can be further classified as a comparison of
magnitude (MAG), a comparison of rate of change (RATE), a comparison with a
predicted value (PRED) or a comparison between several inputs (MULT).
Hence, functional requirements are identified in the following hierarchy.

28

Figure 3.3.3 – Expansion of functional classification

In accordance with this classification, the reference text in this document is organised
around, and identified by, the following taxonomy.

Assumptions

ENV - is used to label assumptions about the environment of the failure
management subsystem

Decisions
PROC - is used to label decisions about how the system will be processed

Functional requirements
FUNC - is used to label requirements dealing with general functionality not

covered by another category.
INP - is used to label requirements about use of inputs
COND - is used to label requirements dealing with conditions under which a test

is performed.
DET - is used to label requirements dealing with detection.

DET_MAG - is used when dealing with magnitude test detection.
DET_MULT - is used when dealing with multiple input test detection.
DET_PRED - is used when dealing with predicted value test detection.
DET_RATE - is used when dealing with rate test detection.

CONF - is used to label requirements dealing with the confirmation of failures.
ACT - is used to label requirements dealing with actions taken either normally

or in response to failures.
OUT - is used to label requirements about providing outputs

Non-functional requirements
PERF - is used to label requirements dealing with performance.

29

3.4. Environment

The environment consists of various hardware and software components which
provide sensor readings and variables for the failure management subsystem. The
failure management subsystem resides within an engine control unit. Other
subsystems within the same unit interact with the failure management subsystem.

Figure 3.4 – Environment of Failure Management Subsystem

The following components can be identified in the environment of the failure
management subsystem within the engine control unit.

ENV1
The subsystem environment consists of Control Subsystem, Engine Control Unit
platform including I/O facilities and scheduler.

ENV2
The control subsystem uses the outputs from the failure management subsystem
to determine how it should control the fuel flow to the engine.

The following equipment can be identified in the environment of the engine control
unit (in which the failure management subsystem operates).

ENV3
The engine control unit environment is the Engine, Ambient Sensors, Aircraft
Sensors, Engine Sensors and Cockpit Sensors (including Power Lever PL) and
another complete engine system.

30

Engine

ENV4
The engine can be in the following modes

 Start, Start Abort, Lightoff, Running, Shutdown

Engine controller

ENV5
The engine controller performs control of the engine fuel demand based on the
controllers inputs

Sensors
A sensor outputs a measurement of the device it is reading. Depending upon the type
of sensor it will give either a binary or analogue output. A sensor does not output an
error status. In more complicated devices several sensors may be required to be used
in combination to provide the reading of a device.

In order to maintain system dependability, a device may have several sensors which
are used to measure the same input.

ENV6
One type of sensor produces a binary output.

ENV7
One type of sensor produces an analogue output.

ENV8
A sensor is assumed to read over the full range of the device

ENV9
Some external devices may have multiple sensors whose output can later be
combined to provide a device reading.

ENV10
Some external devices may have multiple sensors which provide alternative
measurements of the same source

The PL device is essentially a lever device which is used in the cockpit to demand
more fuel to the engine. It is an instance of ENV9 that has two sensors (offset and
direction) whose output can be combined to provide the full demand reading. It also
contains an instance of ENV10 as it has an interlock output which is an abstract
representation of lever position. (ie in a locked position or in between).

ENV11
The Power Lever (PL) consists of the offset(PL), directional gain (PLg) and
interlock(PLi) Ref ENV9 and ENV10

31

Where
Lever position – basic analogue range of lever, it can be locked into three positions
stopped, idle and full.
Lever offset –magnitude of offset on the idle position
Direction - determines the direction of the offset from the idle position
Interlock – set when the lever is in Stop Idle or Full. It is used for fault detection

ENV12
The PL components operate in the following modes

Lever
Position

Lever in
degrees

PL
offset

Lever
directional
gain PLg

Interlock
PLi

Stop 0 30 Off On
Stop-Idle 0-30 30- 0 Off Off
Idle 30 0 On or Off On
Idle- full 30-60 0-30 On Off
Full 60 30 On On

The computed output used for control corresponds to the lever demand in degrees.
This is derived as follows.

ENV13
When the Directional gain (PLg) is off

PL in degrees = 30° – PL offset

When the Directional gain (PLg) is on

PL in degrees = 30° + PL offset

32

3.5. Subsystem Interface

The subsystem handles several types of input and output variables described below.
The specific variables used are referenced in Tables 3.9.1 & 2 later.

Input
The subsystem uses input variables, which represent sensor readings or settings from
other client subsystems. All variables will be represented by digitalised analogue or
boolean states.
Where sensors are duplicated then different variables are assigned, the inputs are said
to be homogenous. The functionality is as follows:

INP1
The subsystem uses input variables which contain either digitalised values or
Boolean states.

INP2
The subsystem input variables represent either sensor values or other
subsystem variables.

INP3
The subsystem sensor variables represent the scaled full range of the sensor .

INP4
Some “other subsystem” input variables represent engine states.

INP5
Some “other subsystem” input variables represent the controller state.

INP6
Some “other subsystem” input variables represent the control subsystem output.

Output
The subsystem output variables (values and boolean states) to be used by other client
subsystems.

OUT2
The subsystem produces output variables which contain either values or
Boolean states.

Variables representing sensor values after failure management
These variables are output to the control subsystem and represent failure managed
sensor input values. They may contain the actual input value of a sensor input variable
or as in the case of a failed input, some substitute value. In some cases the output
variable may be computed from a combination of the actual input values. Where there

33

are multiple homogenous sensors for the same input only one value will be used. The
selection of which sensor value is used is given in the tables.

OUT3
Some subsystem output variables represent sensor values to be used by the
control subsystem

OUT4
Some subsystem output variables are computed from a combination of sensor
inputs.

OUT5
Some subsystem output variables are derived from a selection of sensor inputs.

Variables that control logic in other subsystems
These variables initiate further actions in the client subsystems, when a sensor input is
failing or failed. Typically this may include fault storage and logic to select actions
such as system freezing.

OUT6
Some subsystem output variables control logic in other subsystems.

34

3.6. Failure Management

The subsystem can perform various kinds of test on an input to detect whether the
transducer and input circuitry are operating correctly. Some tests may only be
performed under certain conditions that depend on the state of the environment
The tests requirements are described in terms of the conditions for applying the test,
the type of detection mechanism, the mechanism for confirming the failure and the
actions taken.

3.6.1. Test Conditions
A particular test will only be enabled under certain conditions. The conditions for
each test are given in Table 3.9.3. These conditions operate on variables and take one
of the following forms.

A test may be enabled under all conditions:

COND1 – Perform test under all conditions (i.e. guard = true).

A test may be enabled when a variable is compared against a fixed constant. Where
compared against may be greater than, equal to or less than.

COND2 – Perform test if variable >, = or < val (a fixed constant value).

A test may be enabled when a variable is compared against another variable or a
function of a variable.

COND3 – Perform test if a variable >, = or < variable or function of variable.

A test may be enabled when a boolean variable is compared against true or false.

COND4 - Perform test if a variable equals true (or false).

Composite conditions may be constructed using a combination of the above forms
linked with conjunction and disjunction and negation.

COND5 - Perform test if composite logical condition is true. Eg (con1 AND con2)
OR con3.

Once a test has been confirmed as failed it is not re-tested (until the hardware has
been re-powered) effectively latching the failed condition. This prevents possibly
confusing changes of behaviour if the failure is intermittent.

PROC3 – A test for an input will not be enabled if the input has already been
confirmed as failed.

3.6.2. Types of Test
Different types of test have been devised from experience with component and
operational failures that have occurred in this domain. The tests operate on sensor
inputs only. An input will be in error if the test detects an abnormality. The actions

35

that are undertaken on the result of a test will depend on the confirmed status of the
input and the state of the system this is discussed later (see section 7). Each test may
have configurable parameters to allow the characteristics peculiar to a particular
sensor input to be configured e.g. its magnitude range. The test instances are
referenced in Tables 3.9.4 to 8.

DET2
The subsystem performs detection of errors (failures) on its INP1 inputs using a
selection of magnitude, rate and multiple tests. Ref. DET-MAG, DET_RATE,
DET_PRED, DET_MULT.

DET3
An input will be in error if a test detects a discrepancy.

DET4
The status of an input will be determined by the confirmation mechanism after
test.

Since devices may have single or multi sensor outputs then tests have been developed
to cover both these configurations and are described below.

3.6.3. Single Sensor Input Tests

The Magnitude test (Mag)
This type of test is intended to detect abnormal values through the detection of out of
device range sensor readings or readings infeasible with the operational state. The
input from the sensor is compared to a reference limit(s) which may be specific to the
input. (The limit will usually have an upper and lower limit which denotes the range).
If the limit is exceeded, then the input is in error otherwise it is in range. The limit
may vary as a function of engine state, in some cases a variable limit may be
computed from a function of another signal. The specific configuration of each input
limit is given in Table 3.9.5.

DET_MAG1
Compares input value against a magnitude (range) limit. The input is in error if
the limit is exceeded.

DET_MAG2
The range limit for an input may be variable or fixed.

The Rate test (Rate)
This test is intended to detect incorrect readings when an input value is changing over
time. It detects if an input changes too much over a fixed time by comparing the
change in value over a fixed time period with a fixed limit. The input is in error if the
limit is exceeded.

36

DET_RATE1
Compares a change in input value over a fixed time interval against a fixed limit.
ie ((In-In-1)/delta T)>lmt. Where In-1 is the previous reading of Input ln. The input
is in error if the limit is exceeded.

Predicted value test (Pred v)
This test is intended to detect incorrect readings based on the intended operational
state of the system. The system predicts a value or range that a particular input may
reach over a fixed time period. It can detect where movement is expected but not
achieved. In application it can be regarded as a form of magnitude test where limits
are constantly varying. However the difference is that the variable limit values are
computed from what the control system has expected the engine system to have
reached as a result of a control action rather than what the current operational state is.
The predicted values may be derived from the control subsystem.

DET_PRED1
Compare input value against a computed value. The input is in error if the
discrepancy lies outside a tolerance of this value.

3.6.4. Multiple Homogenous Input Tests

These tests refer to testing devices that have duplicated sensors. Each of the
duplicated sensor input is tested first using the single sensor tests. Only inputs that are
not in error are then compared. Only one input is chosen for control.

Dual sensor Difference test (Diff)
A comparison between two sensors of the same source are compared and if their
difference lies outside a given tolerance then a sensor is in error.

DET_MULT1
Compares an input value against a different input value from the same INP2
source. A chosen input is in error if the difference exceeds a fixed limit.

PROC4
The comparison of input values from the same source are only enabled if the
inputs have passed their DET-MAG,DET-RATE or DET_PRED tests.

PROC5
This requirement has been deleted.

3.6.5. Multiple Heterogeneous Input Tests

These tests refer to testing specific devices that have multi sensor outputs that can
only have certain combination of values. Incorrect combinations will be considered as
the device in error.

DET_MULT2
Device specific tests are identified for PL.

37

DET_MULT3
Device specific tests involve comparing multi input values from the device.

DET_MULT4
An error will be detected if an Invalid Input combination occurs.

DET_MULT5
Some multi input values are compared against limits in order to set or clear latch
states

3.6.6. Test Scheduling

The subsystem applies the tests in two stages and these can be expressed as
conditions.

COND6
Groups of tests can be applied in different stages.

COND7
Test Stages may depend on conditions Ref Cond_1, Cond_2,Cond _3, Cond_4.

The frequency of each test execution can be configured. Each test will be undertaken,
providing the test conditions associated with it are satisfied. In a multiple input test
the timeliness of acquiring the input values to be compared should be considered in
order to avoid false detections due to comparison between values representing
different points in time.

PROC6
A multi input test should be applied at an interval where the frequency of
individual input readings cannot affect the test.

3.6.7. Test Input Status Confirmation

The subsystem needs to be tolerant to isolated errors, which may be transient, so as to
maintain stability in the control system. In order to achieve this, a failure confirmation
mechanism is employed to confirm when a firm fault has been established. If an input
is in error but not confirmed as a fault, then some action may still occur, but the input
will still be used if the confirmation recovers (see section below). However once
failed, the failure will normally be latched which means it cannot be reset until initial
power up and the input is not recoverable. See section on actions below.

CONF2
 A sensor input will have been determined to have failed, only if a failure
confirmation mechanism has confirmed it.

CONF3
 A confirmed failure may be latched. A latched failure cannot be reset until
system reset.

38

The following mechanism is normally used. This mechanism detects persistent failure
on an input for consecutive cycles and allows recovery if a limit has not been reached.
Tables 3.9.4 to 7 reference instances of the mechanism.

CONF4(persistence counter failure mechanism)
If a test has detected an error (failure) on an input
 Then the inputs fault counter for the test will be incremented by a value x.
until it reaches or exceeds z it will then be designated as a confirmed failure and
no further counting will take place.

If a test has not detected an error on an input (and the signal does not have a
confirmed failure)
 Then the fault counter will be decremented by a value y, limiting at zero.

Whenever the fault counter is not zero and has not reached a limit z then the
input is classified as failing.

The mechanism may have different configurable parameters for each input. The
nominal values for x, y and z are 2 &1 and 8 respectively.

It is useful to have a confirmation mechanism which is not directly associated with
failures as it can be used to confirm when a state has been reached. This is particularly
useful when setting latches when a value has been reached.

CONF5 (confirming persistence of conditions for tests)
If a detection has been made for a number of consecutive readings an action will
be taken. (Since this is not a failure confirmation the confirmation immediately
returns to its healthy state when the confirmation has been achieved). The
confirmation also returns to the healthy state as soon as a single non-detection is
made

3.7. Test Result Actions

The actions that may occur after the execution of a test will depend upon the
confirmed status of the test input and the state of other variables.

ACT3
Actions will depend upon the status of the input being a) healthy, b)not healthy
and not confirmed c) confirmed.

ACT4
Actions will depend on conditional status of other inputs.

If a test is enabled and does not detect an error then the sensor input values will
normally be directly output to the control subsystem but may undergo some
computation beforehand (e.g. the PL device will have its output to the control system
derived from other inputs). Where sensors are duplicated only one sensor input will be
chosen to be output to the control. Instances of healthy action are given in Table 3.9.9.

39

ACT5
Some sensor input variables that are not in error will be output to the control
subsystem.

ACT6
Some sensor input variables that are not in error will be combined for output to
the control subsystem.

Multiple sensor input selection
Where more than two sensors are duplicated then the system selects the sensor from
the inputs by finding the median of the sensors. The median is found by selecting the
middle value of a sorted set of sensor values in ascending order. Where the values are
even then the middle plus one sensor is chosen.

ACT7
Some healthy multiple sensor input variables need to be selected according to
some mechanism before being sent to the control subsystem. Where multiple
inputs are available from the same external source ie multiple homogenous
inputs. Then the median of the sensor input is chosen from the healthy sensors.

If a test is enabled but detects an error then a temporary action will occur as long as
the input has not been confirmed failed.

ACT8
Temporary actions are defined as actions initiated by the subsystem when an
input status is being confirmed.

ACT9
This requirement has been deleted.

ACT10
Where a test has found a sensor input variable in error and the sensor input has
not already been confirmed failed by the confirmation mechanism, then the input
will not be suitable for selection for output to control.

When an input value is in error and its the fault confirmation counter is non zero and
has not reached its limit, then the control subsystem will typically be given the last
value of the input that has not failed i.e. the last good value. There may be an
additional system action such as a system freeze. System freeze refers to setting an
output in the failure management subsystem (ref OUT6.1 Table 3.9.2) which will
freeze the fuel flow in the control system. The specific temporary action for each
input is given in Table 3.9.10.

ACT11
A Temporary action will substitute a value for the erroneous input.

ACT12
A temporary action may set other outputs.

40

3.7.1. Confirmed Failure Actions

Confirmed failure actions refer to those actions that apply after an input has been
confirmed failed by the confirmation mechanism. All confirmed input failures would
be identified and logged in the output fault flags (ref Table 3.9.2). All fault flags are
latched.
A confirmed action may perform a latched control action i.e. it cannot return to using
the original input unless the system is reset on power up. Confirmed failure actions
like the temporary actions may substitute values or variables for the failed input and
may also set other outputs. The confirmed failure action will depend upon the state of
the subsystem and the severity of fault. The specific confirmed action for each input is
given in the confirmed action table. Where the confirmed action is severe it is termed
a hard fault action then the subsystem generally initiate to freeze the fuel flow rate to
the engine by setting the system freeze output. The hard fault action is always latched.
Where the confirmed action is less severe it is termed a soft fault action when this
occurs then the subsystem will normally substitute a value to be used by the control
subsystem for it’s input and may perform some additional control actions through
setting of its output variables to the subsystem. The soft fault action will normally be
latched.

ACT13
Confirmation Action refers to actions initiated by the subsystem when a sensor
input has been confirmed failed by the confirmation mechanism.

ACT14
Upon confirmation of a fault then the transitory failure actions will be superseded
by confirmation actions.

ACT15
A confirmation action will substitute a value for the input and may set other
control variables.

ACT16
Most confirmed actions are latched.

ACT17
 A latched action cannot be reset until the system has been given a reset.

ACT18
A confirmation action that results in a system freeze will always be a latched
action.

ACT19
All confirmed faults are classified into two categories of criticality.
Hard Faults = Failures that could cause unacceptable operation.
Soft Faults = Failures that provide either no impact on normal operation or
limited degradation.

41

ACT20
All confirmed failures (faults) will be logged in fault flags.

ACT21
All fault flags are latched.

42

3.8. Performance Constraints
PERF1
The rate test interval must not be shorter than the execution cycle.

PERF2
The engine failure management system must be able to perform its worst case
tests for all its input within the execution cycle time and within the other demands
on the processor time for the cycle.

PERF3
Each input is required to be tested within a frequency consistent with its output
usage.

43

3.9. Specific Requirements for Fm1 Application
The following tables provide the specific requirements for a failure management
application Fm1 from which the above generic requirements have been derived and
are referenced. The table data is effectively a parameterisation of the generic
requirements.

3.9.1. Inputs
This table defines the inputs and their attributes for a particular application instance.
For generic description see Subsystem Interface section.

Table 3.9.1.
Ref Name Type

[INP1]
Range
[INP3]

Res Description Freq
mS

INP5.1 CYCLE_NO digital 1..16 1 Execution cycle counter
(wraps after 16)

24

INP5.2 POWERUP Boolean on/off - control system in power up
phase

24

INP4.1 START_MODE Boolean on/off - control system performing
start

24

INP4.2 LIGHTOFF Boolean on/off - control system detected engine
lit

24

INP4.3 START_ABORT Boolean on/off - control system aborted start 24
INP4.4 RUN_MODE Boolean on/off - control system completed start 24
INP6.5 FFp digitised 0 to

3000pph
0.1
pph

Fuel Flow Predicted 24

INP2.1 ET1 digitised -200 to
2000°F

0.1°F Engine Temperature sensor 1 24

INP2.2 ET2 digitised -200 to
2000°F

0.1°F Engine Temperature sensor 2 24

INP2.3 ET3 digitised -200 to
2000°F

0.1°F Engine Temperature sensor 3 24

INP2.4 ET4 digitised -200 to
2000°F

0.1°F Engine Temperature sensor 4 24

INP2.5 ET5 digitised -200 to
2000°F

0.1°F Engine Temperature sensor 5 24

INP2.10 ESa digitised 0-200% 0.01 Engine Speed (main) 24
INP2.11 ESb digitised 0-200% 0.01 Engine Speed (backup) 24
INP2.12 EP digitised 0-

100psia
0.1 Engine Pressure 24

INP2.13 AP digitised 0-25psia 0.1 Ambient Pressure 24
INP2.14 APo digitised 0-25psia 0.1 other engine’s AP 24
INP2.15 EQ digitised -20-

200%
0.1 Engine Torque 24

INP2.16 EQo digitised -20-
200%

0.1 other Engine’s Torque 24

INP2.17 ESo digitised 0-200% 0.1 other Engine’s Speed 24
INP2.18 FFm digitised 0 to

3000pph
0.1 Fuel Flow 24

INP2.20 PLm digitised 0 to 30° 0.1 Power Lever (magnitude) 64
INP2.23 OV digitised 0 to 50v 1v Voltage OR 24
INP2.24 BV digitised 0 to 50v 1v Battery Voltage 24
INP2.27 PLi boolean on/off - PL interlock test 24
INP2.28 PLg boolean on/off - PL gain 24
INP2.29 ETo digitised -200 to

2000°F
0.1°F other Engine’s Temperature 24

44

3.9.2. Outputs

This table defines the outputs and their attributes for a particular application instance.
For generic description see Subsystem Interface section. Note the digitalised output
range is a derived property as a result of limiting the input range (ref Table 3.9.1)
through magnitude tests (ref Table 3.9.5) and actions (ref Tables 3.9.9, 10, 11).

Table 3.9.2.
Ref Name Type

[OUT2]
Range

Res Description Freq
mS

OUT6.1 FREEZE Boolean on/off - disable all control 24
OUT6.34 LOADSHARE Boolean on/off - disable load sharing 24
OUT6.33 DUMP Boolean on/off - open fuel dump valve 24
OUT5.1 cET digitised -100 to

1900
0.1 Engine Temperature 24

OUT5.2 cES digitised 0 to 130 0.01 Engine Speed (main) 24
OUT3.1 cEP digitised 1.5 to 200 0.1 Engine Pressure 24
OUT3.2 cAP digitised 4 to 20 0.1 Ambient Pressure 24
OUT3.3 cEQ digitised -10 to

140
0.1 Engine Torque 24

OUT3.4 cEQo digitised -10 to
140

0.1 other Engine’s Torque 24

OUT3.5 cESo digitised 0 to 130 0.1 other Engine’s Speed 24
OUT3.6 cFF digitised -100 to

200
0.1 Fuel Flow 24

OUT3.7 cPL digitised 0 to 60 0.1 Power Lever 64
OUT3.8 cETo digitised -100 to

1900
0.1 other Engine’s Temperature 24

OUT6.2 fET1 boolean on/off - Engine Temperature fault flag Latched
OUT6.3 fET2 boolean on/off - Engine Temperature fault flag Latched
OUT6.4 fET3 boolean on/off - Engine Temperature fault flag Latched
OUT6.5 fET4 boolean on/off - Engine Temperature fault flag Latched
OUT6.6 fET5 boolean on/off - Engine Temperature fault flag Latched
OUT6.11 fESa boolean on/off - Engine Speed (main) fault flag Latched
OUT6.12 fESb boolean on/off - Engine Speed (backup) fault

flag
Latched

OUT6.13 fEP boolean on/off - Engine Pressure fault flag Latched
OUT6.14 fAP boolean on/off - Ambient Pressure fault flag Latched
OUT6.15 fAPo boolean on/off - other engine’s AP fault flag Latched
OUT6.16 fEQ boolean on/off - Engine Torque fault flag Latched
OUT6.17 fEQo boolean on/off - other Engine’s Torque fault

flag
Latched

OUT6.18 fESo boolean on/off - other Engine’s Speed fault
flag

Latched

OUT6.19 fFFm boolean on/off - Fuel Flow Measured fault flag Latched
OUT6.20 fFFp boolean on/off - Fuel FlowPredicted fault flag Latched
OUT6.21 fPL boolean on/off - Power Lever fault flag Latched
OUT6.24 fOV boolean on/off - Voltage OR fault flag Latched
OUT6.25 fBV boolean on/off - Battery Voltage fault flag Latched
OUT6.27 fOS boolean on/off - Overspeed fault flag Latched
OUT6.28 PL_LATCH boolean on/off - latch for PL tests 64
OUT6.29 fEsd boolean on/off - Engine Speed difference test Latched
OUT6.30 fFFd boolean on/off - Fuel Flow difference fault flag Latched
OUT6.31 fOR boolean on/off - OR test fault flag Latched
OUT6.32 fAL boolean on/off - AL fault test flag Latched

45

3.9.3. Conditions

This table defines the conditions for a particular application instance. For generic
description see the Test Conditions section. The listed conditions define predicates.
The refs are used by other tables when referring to test conditions and conditions on
actions.

Table 3.9.3.
Ref Name Predicate Description
COND0 never F Always disabled
COND1 always T Always enabled
COND5.2 starting INP4.1 & INP4.2 & ¬ INP4.3 START_MODE and

LIGHTOFF and not
START_ABORT

COND5.3 running INP4.4 & ¬ INP4.1 RUN_MODE and not
START_MODE

COND5.4 stopped OUT3.7<10 or OUT5.2<50 cPL<10° or cES<50%
COND5.5 not stopped OUT3.7>=10 or OUT5.2>=50 cPL>=10° or cES>=50%
COND2.6 other idling OUT3.5>50 cESo>50%
COND2.7 Speed for EQ OUT5.2>80 cES>80%
COND2.8 Other speed for EQo OUT3.5>80 cESo>80%
COND5.9 Other ET and EQ OUT3.8>800 & OUT3.4>40 cETo>800°F and

cEQo>40%
COND5.10 speed sensed INP2.10>30 & INP2.11>30 ESa>30% or ESb >30%
COND4.11 PL upper quadrant INP2.28=T PLg=T
COND4.12 PL lower quadrant INP2.28=F PLg=F
COND5.13 PL latch reset INP2.27=F or INP5.2=T PLi=F or POWERUP
COND4.14 PL latch OUT6.28=T PL_LATCH=T
COND5.15 power up, stopped INP5.2=T & COND5.4 POWERUP=T & COND5.4
COND5.16 PL zero test cond. INP2.27=F or COND4.14 PLi=F or PL_LATCH=T
COND5.17 PL interlock test cond. INP2.27=F & COND4.12 PLi=F & PLg=F
COND2.18 no volts speed INP2.10<5 ESa <5%
COND2.19 alternator speed INP2.10>90 ESa >90%
COND5.20 engine overspeed INP2.10>125 & INP2.11>125 ESa> 125% & ESb > 125%
COND5.21 engine overspeed INP2.10=<125 or INP2.11=<125 ESa =< 125% or ESb =<

125%
COND5.22 no confirmed freeze

faults
¬((OUT6.11=T & OUT6.12=T) or
(OUT6.14=T & OUT6.15=T) or
((INP5.2=T or OUT6.20=T) &
OUT6.19=T) & OUT6.30=T)

not((fESa=T & fESb=T) or
(fAP=T & fAPo=T) or
((POWERUP=T or fFFp=T)
& fFFm=T) & (fFFd=T))

COND5.23 ESa faulted OUT6.11=T fESa:=T
COND5.24 ESa not faulted OUT6.11=F fESa:=F
COND5.25 AP faulted OUT6.14=T fAP:=T
COND5.26 AP not faulted OUT6.14=F fAP:=F
COND5.27 FFm faulted after

power up
INP5.2=F & OUT6.19=T POWERUP=F & fFFm=T

COND5.28 power up or FFm not
faulted

INP5.2=T or OUT6.19=F POWERUP=T or fFFm=F

COND5.29 ESb not faulted OUT6.12=T fESb=F
COND5.30 ESb faulted OUT6.12=F fESb=T
COND5.31 APo not faulted OUT6.15=T fAPo=F
COND5.32 AP faulted OUT6.15=F fAPo=T
COND5.33 power up or FFp

faulted
INP5.2=T or OUT6.20=T POWERUP=T or fFFp=T

46

COND5.34 power up and FFp not
faulted

INP5.2=F & OUT6.20=F POWERUP=F & fFFp=F

COND5.35 All but one ETs failed card ({ o | o:OUT6.2..OUT6.6 &
o=T}) = 1

All but one ET’s confirmed
failed

COND5.36 All ETs failed (OUT6.2 =F &..& OUT6.6=F) All ET’s confirmed failed
COND5.37 Not all ETs failed not (COND5.36) At least one ET not failed

3.9.4. Confirmation Mechanisms

This table defines the confirmation mechanism and its parameterisation for a
particular application instance. For generic description see Test Confirmation section.

Table 3.9.4.
Ref Name x inc y dec z limit Description
CONF4.0 immediate 1 1 1 single detection – no confirmation
CONF4.1 fault count 2-1-8 2 1 8 fault counter with bias to confirm
CONF4.2 long fault count 1 1 200 approx 2 sec no bias
CONF5.1 latch debounce - - 3 require 3 consecutive to confirm
CONF4.4 fault count 2-1-20 2 1 20 biased fault counter, 10 to confirm
CONF4.5 fault count 2-1-32 2 1 32 biased fault counter, 16 to confirm
CONF4.6 fault count 2-1-80 2 1 80 biased fault counter, 40 to confirm

3.9.5. Magnitude tests

This table defines the magnitude tests and their parameterisation for a particular
application instance. For generic description see Types of Test section.

Table 3.9.5.
Ref. value

tested
Name dir limit

[MAG2]
Freq
mS

Condition Confirm

MAG1.1 INP2.1 ET1 up 1900 24 COND1 CONF4.4
MAG1.2 INP2.1 ET1 lo -100 24 COND1 CONF4.4
MAG1.3 INP2.2 ET2 up 1900 24 COND1 CONF4.4
MAG1.4 INP2.2 ET2 lo -100 24 COND1 CONF4.4
MAG1.5 INP2.3 ET3 up 1900 24 COND1 CONF4.4
MAG1.6 INP2.3 ET3 lo -100 24 COND1 CONF4.4
MAG1.7 INP2.4 ET4 up 1900 24 COND1 CONF4.4
MAG1.8 INP2.4 ET4 lo -100 24 COND1 CONF4.4
MAG1.9 INP2.5 ET5 up 1900 24 COND1 CONF4.4
MAG1.10 INP2.5 ET5 lo -100 24 COND1 CONF4.4
MAG1.19 INP2.10 Esa up 130 24 COND1 CONF4.1
MAG1.20 INP2.10 Esa lo 10 24 COND5.2 CONF4.1
MAG1.21 INP2.10 Esa lo 45 24 COND5.3 CONF4.1
MAG1.22 INP2.11 Esb up 130 24 COND1 CONF4.1
MAG1.23 INP2.11 Esb lo 10 24 COND5.2 CONF4.1
MAG1.24 INP2.11 Esb lo 45 24 COND5.3 CONF4.1
MAG1.25 INP2.12 EP up 200 24 COND1 CONF4.1
MAG1.26 INP2.12 EP lo 1.5 24 COND5.4 CONF4.1
MAG1.27 INP2.12 EP lo 1.3*AP 24 COND5.5 CONF4.1
MAG1.28 INP2.13 AP up 20 24 COND1 CONF4.4
MAG1.29 INP2.13 AP lo 4 24 COND1 CONF4.4
MAG1.30 INP2.14 Apo up 20 24 COND1 CONF4.1
MAG1.31 INP214 Apo lo 4 24 COND2.6 CONF4.1
MAG1.32 INP2.15 EQ up 140 24 COND1 CONF4.5
MAG1.33 INP2.15 EQ lo -10 24 COND2.7 CONF4.5
MAG1.34 INP2.16 Eqo up 140 24 COND1 CONF4.5

47

MAG1.35 INP2.16 Eqo lo -10 24 COND2.8 CONF4.5
MAG1.36 INP2.17 Eso up 130 24 COND1 CONF4.1
MAG1.37 INP2.17 Eso lo 10 24 COND5.9 CONF4.1
MAG1.38 INP2.18 FFm up 2800 24 COND1 CONF4.1
MAG1.39 INP2.18 FFm lo -100 24 COND1 CONF4.1
MAG1.40 INP4.5 FFp up 2800 24 COND1 CONF4.1
MAG1.41 INP4.5 FFp lo -100 24 COND1 CONF4.1
MAG1.42 INP2.20 PLm up 30 24 COND1 CONF4.1
MAG1.43 INP2.20 PLm lo 1 24 COND5.16 CONF4.1
MAG1.44 INP2.20 PLm up 25 24 COND5.17 CONF4.1
MAG1.47 INP2.23 OV up 40 24 COND1 CONF4.2
MAG1.48 INP2.23 OV lo 10 24 COND1 CONF4.2
MAG1.49 INP2.24 BV up 30 24 COND1 CONF4.2
MAG1.50 INP2.24 BV lo 10 24 COND1 CONF4.2

3.9.6. Rate tests

This table defines the Rate tests for a particular application instance. For generic
description see Types of Test section. The tests compare the difference of change in
an input value to a limit. The value tested is |I – I-1| where I-1 is the previous reading.

Table 3.9.6.
Ref. value tested dir lim Frq

mS
Condition Confirm

RATE1.1 |INP2.10 – INP2.10-1 | Esa Up 100 %/s 48 COND1 CONF4.1
RATE1.2 |INP2.13 – INP2.13-1 | AP up 2.6 psia/s 384 COND1 CONF4.1
RATE1.3 |INP2.18 – INP2.18-1 | FF up 2880 pph/s 48 COND1 CONF4.1
RATE1.4 |INP2.20 – INP2.20-1 | PLm up 15% 64 COND4.14 CONF4.1

3.9.7. Multiple Sensor Tests

This table defines the multiple sensor tests for a particular application instance. For
generic description see Types of Test section.

Table 3.9.7.
Ref. Value

tested
 Function dir lim Frq

mS
Condition Confirm

MULT1.1 |INP2.10 –
INP2.11|

|ESa-ESb| speed diff. up 5 48 COND5.10 CONF4.1

PRED1.2 |INP2.18 –
INP4.5|

|FF-FFp| step check up 20 384 COND1 CONF4.1

MULT1.2 |INP2.12 –
INP2.13|

|EP-AP| EPambient up 4.5 24 COND5.15 CONF4.1

MULT1.3 INP2.24 –
INP2.23

BV-OR diode short up 0.2 96 COND2.18 CONF4.6

MULT1.4 INP2.24 –
INP2.23

BV-OR alternator lo 0 96 COND2.19 CONF4.6

3.9.8. Latch (Pseudo) Tests

These tests do not have a permanent state. I.e. once they confirm a detection they go
back to the healthy state and start testing again. They are used for setting/resetting the
PL latch when a condition is met and a value has been reached.

48

Table 3.9.8.

Ref. Value
tested

Function dir lim Frq
mS

Condition Confirm Action

MAG1.51 PLm Pllatch set up 25 48 COND4.11 CONF5.1 OUT6.28=T
MAG1.52 PLm Pllatch set up 5 48 COND4.12 CONF5.1 OUT6.28=T
ACT4.16 PLm Pllatch reset up - 48 COND5.13 - OUT6.28=F

3.9.9. Healthy Actions

This table defines the healthy actions for a particular application instance. For generic
description see Test Result Action section.

Table 3.9.9.
Ref. All these tests must be

healthy
Definition Description Condition

ACT7.1 MAG1.1, MAG1.2,
MAG1.3, MAG1.4,
MAG1.5, MAG1.6,
MAG1.7, MAG1.8,
MAG1.9, MAG1.10

OUT5.1:= median
(INP2.1 to INP2.5)

cET:= median
(ET1..ET5)

COND1

ACT5.2 MAG1.19, MAG1.20,
MAG1.21, MULT1.1,
RATE1.1

OUT5.2 := IN2.10 cES:=ESa COND1

ACT5.3 MAG1.25, MAG1.26,
MAG1.27

OUT3.1 := IN2.12 cEP:=EP COND1

ACT5.4 MAG1.28, MAG1.29,
RATE1.2

OUT3.2 := IN2.13 cAP:=AP COND1

ACT5.5 MAG1.32, MAG1.33 OUT3.3 := IN2.15 cEQ:=EQ COND1
ACT5.6 MAG1.34, MAG1.35 OUT3.4 := IN2.16 cEQo:= EQo COND1
ACT5.7 MAG1.36, MAG1.37 OUT3.5 := IN2.17 cESo:= ESo COND1
ACT5.8 MAG1.38, MAG1.39,

PRED1.2, RATE1.3
OUT3.6 := IN2.18 cFF:=FFm COND1

ACT6.9 MAG1.42, MAG1.43,
MAG1.44, RATE1.4

OUT3.7 := IN2.20 cPL:= 30 - PLm COND4.12

ACT5.10 MAG1.42, MAG1.43,
MAG1.44, RATE1.4

OUT3.7 := IN2.20 cPL:= PLm + 30 COND4.11

ACT5.11 - OUT3.8 := IN2.29 cETo:=ETo COND1
ACT4.12 - OUT6.28 := F PL_LATCH:=F COND5.13
ACT4.13 - OUT6.33:=T,

OUT6.27:=T
DUMP:=T, fOS:=T COND5.20

ACT4.14 - OUT6.33:=F DUMP:=F COND5.21
ACT4.15 MULT1.1, MAG1.40,

MAG1.41
OUT6.1:=F FREEZE:=F COND5.22

49

3.9.10. Temporary (Unconfirmed Failure) Actions

This table defines the temporary actions for a particular application instance. For
generic description see Test Result Action section.

Table 3.9.10.
Ref. Name At least one not

healthy but none
confirmed

Definition Description Cond’n

ACT8.1 ET(x) failing MAG1.1, MAG1.2,
MAG1.3, MAG1.4,
MAG1.5, MAG1.6,
MAG1.7, MAG1.8,
MAG1.9, MAG1.10

OUT5.1:=
median(healthy
(INP2.1 to INP2.5)

cET:=
median(healthy
(ET1..ET5)

 COND 5.37

ACT8.2 ESa failing MAG1.19, MAG1.20,
MAG1.21, RATE1.1

OUT5.2 := lgv(
INP2.10)

cES:=ESa-1 COND1

ACT8.3 ESb failing
while used

MAG1.22, MAG1.23,
MAG1.24

OUT5.2 := lgv(
INP2.11)

cES:=ESb-1 COND5.23

ACT8.4 ESb failing,
not used

MAG1.22, MAG1.23,
MAG1.24

skip do nothing COND5.24

ACT8.5 ES diff
failing

MULT1.1 OUT5.2 := lgv(
INP2.10),
OUT6.1:=T

cES:=ESa-1,
FREEZE:=T

COND1

ACT8.6 EP failing MAG1.25, MAG1.26,
MAG1.27

OUT3.1 :=
lgv(INP2.12)

cEP:=EP-1 COND1

ACT8.7 AP failing MAG1.28, MAG1.29,
RATE1.2

OUT3.2 :=
lgv(INP2.13)

cAP:= AP-1 COND1

ACT8.8 APo failing
while used

MAG1.30, MAG1.31 OUT3.2 :=
lgv(INP2.14)

cAP:= APo-1 COND5.25

ACT8.9 APo failing
not used

MAG1.30, MAG1.31 skip do nothing COND5.26

ACT8.10 EQ failing MAG1.32, MAG1.33 OUT3.3 := lgv(INP
2.15)

cEQ:= EQ-1 COND1

ACT8.11 EQo failing MAG1.34, MAG1.35 OUT3.4 := lgv(INP
2.16)

cEQo:= EQo-1 COND1

ACT8.12 ESo failing MAG1.36, MAG1.37 OUT3.5 := lgv(INP
2.17)

cESo:= ESo-1 COND1

ACT8.13 FFm failing MAG1.38, MAG1.39,
RATE1.3

OUT3.6 := lgv(INP
2.18)

cFF:= FFm-1 COND1

ACT8.14 FFp failing
while used

MAG1.40, MAG1.41, OUT6.1:=T,
OUT3.6 := lgv(INP
6.5)

FREEZE:=T,
cFF:=FFp-1

COND5.27

ACT8.15 FFp failing
not used

MAG1.40, MAG1.41, skip do nothing COND5.28

ACT8.16 FFd failing PRED1.2 OUT3.6 :=
lgv2(INP2.18)

cFF:= FFm-2 COND1

ACT8.17 PL failing MAG1.42, MAG1.43,
MAG1.44, RATE1.4

OUT3.7 :=
lgv2(OUT3.7)

cPL:= cPL-2 COND1

ACT8.18 OV failing MAG1.47, MAG1.48 skip do nothing COND1
ACT8.19 BV failing MAG1.49, MAG1.50 skip do nothing COND1
ACT8.20 diode short

failing
MULT1.3 skip do nothing COND1

ACT8.21 alternator
failing

MULT1.4 skip do nothing COND1

50

Ref. Name At least one not
healthy but none
confirmed

Definition Description Cond’n

ACT8.22 ET failing (MAG1.1, MAG1.2,
MAG1.3, MAG1.4,
MAG1.5, MAG1.6,
MAG1.7, MAG1.8,
MAG1.9, MAG1.10)

OUT6.1:=T, FREEZE:=T, COND5.35

3.9.11. Confirmed Failure Actions

This table defines the confirmed failure actions for a particular application instance.
For generic description see Test Result Action section.

Table 3.9.11.

Ref. Name All these
tests must
be healthy

At least one
confirmed

Definition Description Cond’n

ACT13.1 ETx fault MAG1.1,
MAG1.2,
MAG1.3,
MAG1.4,
MAG1.5,
MAG1.6,
MAG1.7,
MAG1.8,
MAG1.9,
MAG1.10

OUT5.1:=
median(healthy
(INP2.1 to INP2.5)
OUTx:=T
Where x is in range
6.2 to 6.6

cET:=
median(healthy
(ET1..ET5)),
fETx:=T

COND5.37

ACT13.2 ESa fault,
while ESb
ok

 MAG1.19,
MAG1.20,
MAG1.21,
RATE1.1

OUT5.2 := IN2.11,
OUT6.11:=T

cES:=ESb,
fESa:=T

COND5.29

ACT13.3 ESa fault
while ESb
ko

 MAG1.19,
MAG1.20,
MAG1.21,
RATE1.1

OUT6.1:=T,
OUT6.11:=T

FREEZE:=T,
fESa:=T

COND5.30

ACT13.4 ESb fault MAG1.22,
MAG1.23,
MAG1.24

OUT6.12:=T fESb:=T COND1

ACT13.5 ES diff
fault

MAG1.19,
MAG1.20,
MAG1.21,
RATE1.1,
MAG1.22,
MAG1.23,
MAG1.24

MULT1.1 OUT5.2:=
max(INP2.10,INP2
.11), OUT6.29:=T

cES:=
max(ESa,Esb),
fESd:=T

COND1

ACT13.6 EP fault MAG1.25,
MAG1.26,
MAG1.27

OUT3.1 :=
constant,
OUT6.12:=T

cEP:=constant,
fEP=T

COND1

ACT13.7 AP fault
while APo
ok

 MAG1.28,
MAG1.29,
RATE1.2

OUT3.2 := IN2.14,
OUT6.14:=T

cAP:=APo,
fAP=T

COND5.31

ACT13.8 AP fault
while APo
ko

 MAG1.28,
MAG1.29,
RATE1.2

OUT6.1:=T,
OUT6.14:=T

FREEZE:=T,
fAP=T

COND5.32

ACT13.9 APo fault MAG1.30,
MAG1.31

OUT6.15:=T fAPo:=T COND1

51

Ref. Name All these
tests must
be healthy

At least one
confirmed

Definition Description Cond’n

ACT13.10 EQ fault MAG1.32,
MAG1.33

OUT3.3 :=
constant,
OUT6.34:=T,
OUT6.16:=T

cEQ:=constant,
LOADSHARE:
=T, fEQ:=T

COND1

ACT13.11 EQo fault MAG1.34,
MAG1.35

OUT6.34:=T,
OUT6.17:= T

LOADSHARE:
=T, fEQo:=T

COND1

ACT13.12 ESo fault MAG1.36,
MAG1.37

OUT6.18:=T fESo:= T COND1

ACT13.13 FFm fault
at powerup
or while
FFp ko

 MAG1.38,
MAG1.39,
RATE1.3

OUT6.1:=T,
OUT6.19:=T,

FREEZE:=T,
fFFm:=T

COND5.33

ACT13.14 FFm fault
after
pwrup &
FFp ok

 MAG1.38,
MAG1.39,
RATE1.3

OUT3.6 := IN6.5,
OUT6.19:=T,

cFF:=FFp,
fFFm:=T

COND5.34

ACT13.15 FFp fault MAG1.40,
MAG1.41

OUT6.20:=T, fFFp:=T COND1

ACT13.16 FF diff
fault

MAG1.38,
MAG1.39,
RATE1.3,
MAG1.40,
MAG1.41,

PRED1.2 OUT6.1:=T,
OUT6.30:=T,

FREEZE:=T,
fFFd:=T

COND1

ACT13.17 PL fault MAG1.42,
MAG1.43,
MAG1.44,
RATE1.4

OUT3.7 :=
lgv2(OUT3.7),
OUT6.21:=T,

cPL:= cPL-2,
fPL:=T

COND1

ACT13.18 OV fault MAG1.47,
MAG1.48

OUT6.24:=T, fOV:=T COND1

ACT13.19 BV fault MAG1.49,
MAG1.50

OUT6.25:=T, fBV:=T COND1

ACT13.20 diode short
fault

 MULT1.3 OUT6.31:=T, fOR:=T COND1

ACT13.21 alternator
fault

 MULT1.4 OUT6.32:=T, fAL:=T COND1

ACT8.22 ET failing (MAG1.1,
MAG1.2,
MAG1.3,
MAG1.4,
MAG1.5,
MAG1.6,
MAG1.7,
MAG1.8,
MAG1.9,
MAG1.10)

OUT6.1:=T, FREEZE:=T, COND5.36

 --

52

SECTION 4. REQUIREMENTS DOCUMENT FOR CASE STUDY 3:
MITA END-TO-END ARCHITECTURE REQUIREMENTS

4.1 Introduction

In this case study we wish to experiment with the construction of applications within given

frameworks and architectures which themselves are specified to provide certain kind of

fail-safe and dependency facilities.

Traditional methods of constructing such systems either proceed in a monolithic fashion

where the domain and architecture are inextricably linked or that the domain and architec-

ture are produced separately, in parallel and often without any linkage to each other. In this

latter scenario which we are primarily interested in we will explore the situations where

there are mismatches between the architectures and the application being constructed that

utilises those architectures. In this situation we will be able to better understand where

architectures and applications “break” and what repercussions this has on the overall reli-

ability and dependency properties of the system as a whole.

The role of this document is to outline the requirements process, the plan of work and the

initial set of informal (or even semi-formal) requirements for the MITA End-to-End archi-

tecture. Additional architectures will be made available during the course of the Rodin

project as detailed requirements become available.

The primary concern of this case study is not to produce an application but rather to

understand how architectures for applications can be formalised using the techniques

being developed inside Rodin.

The rationale of this is that architectures and applications are developed separately and that

it is often the case that applications need to be “forced” into certain architectures which

compromise certain desirable features of that architecture or application. A relevant con-

crete example is the addition of security features into existing architectures which can be

compromised easily because of the misalignment between the components - this can be

seen in some popular operating system environments. This in turn compromises the

dependability and fault-tolerance properties of those systems.

The goal is that once an architecture has been formalised this can then be used to assist in

understanding the constraints (and its suitability) of that architecture upon any application

that utilised that architecture; that is a suite of techniques can be developed to check con-

formance of an application or additional architecture against that particular architecture. It

may also be the case that a notion of conformance needs to be adequately discussed.
53

In this document we describe the work plan which includes description of the case study

components and proposed method, the current case study component requirements and

potential alignment and cooperation with other Rodin case studies.

4.2 Work Plan

The case study can be split into a number of phases:

• Construction and Formalisation of E2E Model

• Construction and Formalisation of Security Model

• Mapping of Security Model against E2E Model

• Construction of Simple Application utilising both E2E and Security Concepts

For the E2E and Security framework modelling stages we expect a demonstration of the

internal consistency of the models produced.

When mappings the security model against the E2E model we will have a number of

options regarding which parts of the E2E should take the responsibility for the various

security related functionality. It is also conceivable that the security model and the E2E do

not exactly fit - we then need to explore the ramifications of such a situation with regards

to the consistencies of the E2E and security models.

Finally the either the construction of a simple application or alignment/integration with

out Rodin case studies that utilise both the security and E2E frameworks will be made (in

particular Ambient Campus). Again this application itself must be internally consistent

and be consistent with the architectures/frameworks employed.

4.2.1 Requirements

We initially define requirements for two systems or architectures:

• MITA

• Security Model

The MITA End-to-End Architectural requirements are described in the document E2E

Concepts Reference Model (Ziegler). This document provides the current specification for

these concepts.

The security requirements are described later in this document.

Additional architectures will be introduced during the course of this project.
54

4.2.2 Concept Modelling Process

The first task is therefore to take the initial, unstructured requirements and produce a fina-

lised, structured requirements specification. The process proceeds as shown in figure 1

where we start with some unstructured requirements, proceed with the act of modelling

these producing a finalised structured requirements, a dictionary of the concepts and the

first conceptual model.

The process is highly iterative and relies upon the transient models produced during this

process being validated and checked against the existing unstructured and any structured

requirements produced. In a reflexive manner the models produced also act as a validation

of the requirements themselves.

Conceptual analysis means that we examine the concepts that we are discovering and

decided whether these concepts are relevant and can be well defined. We also check that

the concepts are being used consistently between the authors of the requirements and that

inconsistencies can be either unified or split so that no ambiguity exists in the concept.

We describe each of the work products, their internal structure and relationships involved

in this process. A graphical overview of this is shown in figure 2. Note that we use the ste-

FIGURE 1. Concept Modelling Process
55

reotype <<work product>> to denote which classes become the deliverables rather than

the elements that are contained inside them.

In figure 2 there are dependency arrows between certain elements. This is to show that

those elements do not have a well defined relationship in the usual sense but rather they are

to draw attention to that fact that, for example, the structured requirements depends upon

the unstructured requirements in some manner and to emphasise the tracing from one set

of work products to another.

We consider here that unstructured requirements are provided in the form of a document

containing a mixture of text, formulae, use cases and so on. In this form and without “engi-

neering” and validation the elements in this document have no intrinsic, first class model-

ling value and must not be used directly.

Unstructured requirements can only be used as input to this initial conceptual modelling

activity.

The structured requirements contain a list of requirements, a list of owners of those

requirements and the test cases. The minimum amount of information held in each

requirement is as follows:

• Requirements Identification

FIGURE 2. Work Product Structure
56

This is a number (usually) that uniquely identifies the requirement. No elaborate
schema is required here just plain integer numbers.

• Short Title

A short title to introduce the requirements in a more meaningful way than just a num-
ber is required. This must be kept as short as possible and should not contain any
information other than is necessary for a title.

• Owner

The name of the person who is responsible for this requirement. This is necessary so
that particular queries about the requirement can be traced back to the person who
“invented” that requirements. There can only be one owner for each requirement.

• Description

This is a short description of that requirement. Requirements must be atomic in
nature and not discuss more than one particular topic or aspect.

4.2.3 Test Case

A test case is a description of a test that can be applied to the system to validate some par-

ticular piece of (usually) functionality. Test cases may be constructed from use cases or

some piece of non-functional information contained in the unstructured requirements.

Note that a test case here is a specialisation of a requirement and similarly a test case dis-

cusses certain concepts in the model and has an owner.

Use cases become test cases as we wish to emphasise that in an object oriented system a use

case describes a particular scenario related to how the system is going to be used.

Other test cases might be more non-functional in nature and express wishes such as that

the system must be theorem proved to ascertain some quality standard. This is particularly

the case with safety-critical type systems.

A dictionary contains a list of concepts that are discussed in the structured requirements

and are present in the conceptual model. The dictionary during this process serves to iden-

tify ambiguous and illdefined concepts.

The dictionary is sorted by the individual definitions it contains and the owners - this

allows a concept to appear more than once with more than one owner. If this happens then

analysis of the definitions can be made to ensure that the concept is being used by different

people consistently.

As we are performing object oriented analysis the conceptual model contains effectively

classes and relationships (associations, generalisation/specialisation and so on). Upon the
57

conceptual model there is a viewpoint that states that any view of this model is made using

the UML class diagram.

The conceptual model contains the same concepts as the dictionary but in a graphical form

and with more information about their internal structure, invariants across the concepts

and taxonomic structures etc.

The conceptual model may include supporting text and documentation to assist in the

reading of the model. This text however should not infer more information than is readily

accessible from the structured requirements, diagrams in the conceptual model and dictio-

nary together. The primary use of the supporting text is to document invariants, enumera-

tion types etc and their descriptions - those UML elements that tools find so difficult to

use.

For each test case there must be evidence of that test case being run against the models pro-

duced; in this case the conceptual model contains the evidence that it does adhere to all the

test cases in the requirements.

Additional tests such as the results of theorem proving, model checking or other verifica-

tions may also be present in addition to the tests cases provided in the requirements.

Also we may consider the generation of metrics from the model a type of test report; these

metrics deal with concepts such as class coupling, numbers of attributes/operations per

class, inheritance hierarchy depth and so on.

When using metrics, the results given at this stage of modelling contain little information

unless they are of extreme values. To give metrics value then it is important that metrics are

kept and then compared with other similar projects - do not compare an embedded safety-

critical system with a data warehousing project for example. These metrics are also used

later in the development process for comparison against other models. Do not use metrics

alone as evidence of quality design nor as evidence of the progress of a project. A project

with twice as many lines of code is not twice as good, better quality or contains twice as

much functionality - more often the reverse is true.

4.3 Ambient Campus

The Rodin CS5 Ambient Campus Case Study has obvious links with this case study. One

particularly interesting area is whether the system described in the Ambient Campus Case

Study corresponds to the architecture described in the MITA End-to-End Model.

This work will be undertaken later in the course of this project.
58

4.4 MITA End-to-End Requirements

Internally Nokia promotes a so-called End-to-End (E2E) view that shall comprise all

design work related to Mobile Internet services and technologies.

The E2E concepts reference model provides a baseline model for:

• Presenting the E2E architectures with common, defined terms and conventions

• Conducting E2E driven strategic and business analyses with a clear understanding of
the relevant architectural concepts

• Analyzing and specifying E2E architectures in a wider context from terminals to serv-
ers and peripheral equipment

• Analyzing and specifying E2E architectures in multiple functional layers from applica-
tions to middleware and connectivity functionalities

The main target is to provide a baseline for a set of tools for case specific analyses and

design documentation. Please notice that the E2E concepts reference model does not pro-

vide any universal rule on how to design the details of any particular architecture.

The requirements presented here can be considered as being “unstructured” in nature.

4.4.1 E2E Segments

One way of structuring the E2E environment is done by the concept of E2E Segment. An

E2E segment denotes a part of the E2E environment into which the E2E environment can

be divided by narrowing to the scope of a class of devices but including anything from

hardware over electronics and system software up to general-purpose application software.

Any such instance of the concept of E2E Segment is a concept itself. Exactly three instances

of the concept of E2E Segment exist. They are called the concept of Server Segment, Mobile

Device Segment and Adjacent Device Segment. They are singularities. Each segment sepa-

rates out a mutually distinct part of the E2E environment.

R1: The E2E structure is divided into three segments: server, mobile device and
adjacent device

R2: Each segment is mutually exclusive

Note that this division in segments essentially does not promote the E2E view. Each seg-

ment covers only a particular slice of the E2E view, but covers anything that contributes to

the processing performed in the segment from low-level transmission involved parts to

high-level applications interacting with a user.

However, with the help of the segments the "ends" of the E2E view can be made more

explicit. In almost any particular instance of an E2E view a mobile device from the mobile

device segment takes the end role at one side. This fact makes the mobile device and hence
59

the mobile device segment central to any E2E view. In some cases the other end is found

either in the server or adjacent device segment. In some cases the other end is yet another

mobile device, which, of course, belongs to the mobile device segment too.

R3: A physical device may play any particular role (server etc) at any point in
time depending upon context.

4.4.2 The Mobile Device Segment

The mobile device segment covers anything closely related to any kind of device that the

end user can carry around and physically operate and interact with via certain UI capabili-

ties. The device is able to perform tasks requiring communication.

R5: A mobile device has one or more UI components

R6: A mobile device has one or more communication components (eg: GPRS,
GSM etc)

It may use different means for communication depending the situation, but a connection

via some kind of mobile network is feasible almost everywhere, even when moving. Any

such device is called a mobile device. The mobile phone is the most commonly known

mobile device, but the class of mobile devices is not limited to mobile phones. Another

such instance is a personal digital assistance device (PDA). Any mobile device existing in

the world and any software executed by it is part of the mobile device segment including all

communication means any such mobile device has.

4.4.3 The Server Segment

The server segment covers anything closely related to a class of devices commonly called a

server because it contributes substantially to the production of a service.

R7: Servers provide services which are used by mobile devices

In most cases the server serves the production of a service in an on request manner.

R8: Services are provided as and when requested by a mobile device

The contribution is the storage and delivery of the content some service(s) is (are) based

upon. In other cases the server itself acts actively and issues requests. It is put in charge

fetching some particular data from somewhere and processing this data in order that a par-

ticular service can be composed.

R9: A server is responsible for the transmission and composition of the results of
calling a requested service
60

A server operates unattended and has enough processing and communication capabilities

to communicate with many mobile devices (and other servers) at the same time at satisfac-

tory speed.

R10: A server can handle multiple, concurrent requests

When requested by a mobile device, the server, or more precisely speaking some particular

software installed on it for a certain purpose by somebody and continuously executed by it,

autonomously responds with the requested data. A significant amount of mobile devices

exist that potentially will perform such a request. A server is mostly stationary. It connects

with the Inter- or some Intranet or other network via a physically fixed connection. Any

server existing in the world and any software executed by it is part of the server segment

including all communication means any such server has.

4.4.4 The Adjacent Device Segment

The adjacent device segment covers anything closely related to a kind of device called an

adjacent device. Such a device can be in contact with one particular mobile device via at

least one sort of data connection for some time. Due to this connection this particular

mobile device can make use of the adjacent device for some particular purpose and hence,

in a logical sense, the adjacent device is close to this particular mobile device as the term

adjacent suggests. Only a small set of mobile devices can get in contact with a particular

adjacent device. The preferred, but not limited, way of how a mobile device communicates

with an adjacent device is wireless. This connection may be feasible only if the mobile

device is physically close enough and equipped with the technical communication means

that the adjacent device presumes for this communication purpose.

R10: An adjacent device is one that is physically close to a mobile device

R11: Adjacent devices may themselves be mobile devices

R12: An adjacent device is distinct from a server but might itself provide some
kind of services

However, the class of adjacent devices includes also devices that only have some network

connection. In this case the mobile device connects to the adjacent device indirectly via

mobile network. An adjacent device remains at the same location for at least the time it is

performing some task(s) assigned to it. The class of adjacent devices includes many kinds

of devices that look differently and perform quite dissimilar tasks. Examples of adjacent

device are: a point of sale terminal able to perform a Bluetooth connection with a mobile

device; a VCR or set-top-box communicating with the mobile device via some particular

wireless proximity connection; the sauna switch with a fixed Internet connection that the

mobile device indirectly communicates with via mobile network. Any adjacent device

existing in the world and any software executed by it is part of the adjacent device segment

including all communication means any such adjacent device has.
61

4.4.5 E2E Layers

Disparate and in addition to the structuring by segments, the E2E environment is dissected

by the concept of E2E Layer. An E2E layer denotes a part of the E2E environment into

which the E2E environment can be divided by focusing on the items at a distinct level in

the range from hardware over system software up to general-purpose application software

but neglecting any natural boundaries between devices. Any such instance of the concept

of E2E Layer is a concept itself. Exactly four instances of the concept of E2E Layer exist.

They are called the concept of:

• Application Layer

• Enabler Layer

• Driver Layer

• Connectivity Layer

R13: The E2E Architecture is divided into four segments (as described)

The application layer, enabler layer and connectivity layer cover together the E2E environ-

ment completely and each of these three layers separates out a mutually distinct part. The

part of the E2E environment covered by the connectivity layer superimposes the part iden-

tified by the driver layer completely. However, some of the part of the E2E environment

covered by the connectivity layer remains outside of the driver layer. In contrast to the seg-

ments, each layer keeps the E2E view intact by stretching from E2E.

R14: The E2E segments are distinct and non-overlapping

The application layer covers the processing of the operations and interactions a user per-

forms or the content a user receives. The connectivity layer is devoted to the processing of

transmission of data. Anything may be found in here from special wire-based links over

any kind of wireless connection up to mobile networks. The so-called enabler layer aims to

include what neither is pure and plain transmission nor a direct contribution to the opera-

tions or interactions of a user. These layers, and in particular the driver layer, will be

described in more detail in the subsequent sections.

4.4.6 Application Layer

This model defines that any item in the application layer is an instance of the concept of

Application. In the narrowed scope of this model, an application denotes a unit of software

executing in an instance of the concept Mobile Device, Server or Adjacent Device.

R14: Applications execute on mobile or adjacent devices.

If we neglect for a moment all the nuts and bolts of the E2E environment and take a simple

holistic view, we can say an application performs some dialog with the end user, which is a

process of providing information to and taking input from the end user.
62

R15: Applications have a dialogue with the user via some UI.

Due to this dialog and directed by it, the executing application (or set of) produces the ser-

vice the end user desired. All the other stuff of the E2E environment is needed only to

make this dialog feasible and to support the delivery of this service.

Any of these applications we prefer to view primarily as an item of the segment it belongs

to. They are instances of the concept of Server Application, Mobile Device Application and

Adjacent Device Application respectively, which are specializations of the concept of

Application.

R16: The concept of application can itself be subdivided as according to the E2E
segments

 Each of these specialized applications takes the narrowed view of one particular instance

of E2E Segment and is executed by an instance of the concept Mobile Device, Server or

Adjacent Device respectively. The development work on such an application is done from

the point of view of the single segment and for use in a particular device of that segment,

hence in a non-E2E view. However, a single project might combine the development of the

corresponding applications from different segments in some sort of a super-application

approach.

Any mobile device application performs some dialog with the end user by using the partic-

ular user interface capabilities of the mobile device. Any server application is able to per-

form the dialog with the end user only indirectly with the help of a mobile device

application dedicated to that purpose.

R17: mobile device applications interact directly with the user via some UI

R18: service applications interact only via an intermediate, for example
through the help of some mobile device.

R19: Users do not interact directly with server applications

 This mobile device application may or may not contribute to the production of the ser-

vice(s). In any case, it will make use of the particular user interface capabilities of the

mobile device in order to process the dialog originating from the server application. The

underlying layers support this processing. In particular the connectivity layer provides

some particular data transmission mechanism. The same indirect manner of dialog applies

for any adjacent device application.

R20: Users can access applications on adjacent devices only via some interme-
diate - similar to that of server applications.

However, a server application, and in particular if there is content stored by it, must be

installed and maintained by somebody, for instance the so-called service provider. For that
63

purpose, the server application is able to interact directly with the service provider. Also an

adjacent device application may interact directly with a user that is physically close enough

to the device. Those local interactions are not in the E2E view and thus not in the scope of

this model.

R21: Service Providers may interact directly with server applications

With the logical view of our model in mind we can say that the applications provide ser-

vices to each other and to the end user. A standard structure for these service relationships

and their directions exists. There, the services are labeled anonymously S1 to S5. These

labels are placeholders for any real service that might occur between the items connected

by the arrow. As you can see, any kind of application serves the end user (S1, S2 and S3). In

addition, a mobile device application serves an adjacent device application (S4) and a

server application (S5), because the physical provisioning of S1 and S3 requires such ser-

vices of a mobile device application. S4 and S5 are thus secondary services. Of course, the

complete physical performance of such a service requires some processing in the lower lay-

ers as well. In particular, the physical device-to-device data transmission occurs in connec-

tivity layer.

R23: All physical device-to-device data transmission occurs in connectivity layer

Of course, the model includes the option that an instance of a particular kind of applica-

tion serves another instance of the same kind. For instance, a server application may serve

another server application.

R24: Server applications may serve other server applications directly.

The two applications may or may not reside in the same device. The model ignores such

device boundaries. In particular, a mobile device application executing in one particular

device may serve a mobile device application executing in another device. S7 in Figure 7

might represent such a case.

This model defines the concept of Application and its specializations as concepts at meta-

level two. Hence, any particular instance of those concepts is a concept itself, but at meta-

level one. This fact allows developing models that are based on this reference model and

define their own concepts as they go to further detail. An example might be the concept of

Game modeled as a particular instance of the concept of Mobile Device Application. Tak-

ing further details into account such a model might define some specializations of the con-

cept of Game and only those specializations might become executing objects.

4.4.7 Connectivity and Driver Layer

This model defines that any item in the driver layer is an instance of the concept of Driver.

In the narrowed scope of this model, a driver denotes a unit of software executing in an

instance of the concept of Mobile Device, Server or Adjacent Device. A particular driver

makes a particular device capable to communicate with other devices via a particular data
64

transmission mechanism. However, in order that communication via this transmission

mechanism is finally feasible, this mechanism must actually be available in the connectivity

layer too. A driver could be made for and thus requires a physically distinct mechanism,

such as Bluetooth.

R25:Connectivity drivers provide the communications mechanism, eg: blue-
tooth

Another driver, for instance a HTTP stack based one, may include the decision about the

data transmission mechanism only in a logical sense and thus defers the decision about the

physical means to the parts in the connectivity layer it is actually collaborating with.

This model describes only the general properties of the connectivity layer that is not cov-

ered by the driver layer. In that part of the connectivity layer the physical data transmission

from device to device takes place. Any kind of data transmission mechanism is potentially

used. The choice is limited only by the capabilities of the involved devices and the physical

availability of the desired mechanism at the actual point in time and space.

Some transmission mechanisms, such as Bluetooth, require only properly equipped

devices with the corresponding driver working in the driver layer in order to connect.

R26: Devices (of any kind) have various kinds of communication mechanisms

R27: Certain drivers use certain kinds of communication mechanism

R28: A device can not communicate via a driver if no suitable mechanism for
that driver is available on that device

Other transmission mechanisms, such as mobile network, require in the connectivity layer

a lot of additional infrastructure installed and properly working. Such infrastructure stuff

can optionally be connected to the Internet and in such a case the Internet might be used to

connect to the target device if that is on the Internet too. It shows the standard E2E envi-

ronment map with examples of specializations of the concept of Driver depending on the

data transmission mechanism they support and the segment they belong to. The possible

data exchange paths between them are labeled P1 to P4. Notice that P2 definitely and P3

optionally represent communication between two mobile devices.

If a device is equipped with a driver offering only one particular kind of transmission

mechanism, this device can communicate with other devices only if this mechanism is

actually available in the connectivity layer and this mechanism is also somehow able to

connect to the target device. If a device is equipped with a set of drivers each offering

another particular transmission mechanism and a few of these mechanisms are actually

available in the connectivity layer, this device must select which of them to use either by

querying the end user or based on some built-in preferences.
65

R29: If more than one driver is available then some selection method must be
implemented

R30: An ordering of preferences for particular drivers is required

R31: The failure of a driver means that it can be replaced “on-the-fly” if the com-
munications path can be restored between the devices

The concept of Driver is a concept at meta-level two. Any particular instance of the con-

cept of Driver is a concept itself, but at meta-level one. This fact allows developing models

that are based on this reference model and define their own concepts as they go to further

detail. An example might be a concept of Bluetooth Driver modeled as a particular

instance of the concept of Driver. Taking further details into account such a model might

define some specializations of the concept of Bluetooth Driver and only those specializa-

tions might become executing objects.

4.4.8 Enabler Layer And E2E Service Enabler

Contrary to the other layers, the enabler layer is modeled primarily with the E2E view in

mind and thus considers the boundaries of the segments as secondary. The model defines

that the item we consider to view in the enabler layer is an instance of the concept of E2E

Service Enabler (E2E SE).

4.4.9 Formal Properties of E2E Segments

The concept of E2E Segment and Layer introduce quite many formal properties. These

details are more or less obvious for a reader, but must be stated in order to make the model

complete and allow further derivations correctly based on stated facts, such as the standard

E2E environment map introduced in the subsequent section.

Due to the disparate manner of the definition of the concept of E2E Segment and E2E

Layer, any particular layer covers some part of all three segments and any particular seg-

ment covers some part of all four layers. Thus, we can say the part of the E2E environment

covered by a particular segment and the part covered by a particular layer coincide pair

wise and define a subpart common to the particular segment and particular layer

R32: All constituents of the E2E architecture exist as both a segment and layer
component

The three subparts in which the driver layer coincides with each of the three segments

cover completely and exactly the part of the E2E environment that the connectivity layer

has in common with any segment, i.e. the common subparts defined by coinciding the

driver layer with the segments are identical with the common subparts defined by coincid-

ing the connectivity layer with the segments. Therefore, the number of common subparts

is nine in total and not twelve, as the number of segments multiplied by the number of lay-

ers would suggest.
66

The subparts in which the application, enabler or driver layer coincides with each particu-

lar segment cover the application, enabler or driver layer completely and exactly. Or in

other words, anything that is part of the application, enabler or driver layer is also part of

exactly one particular segment. However, this is not true for the connectivity layer because

some of the part of the E2E environment separated out by the connectivity layer is outside

of any segment. This is exactly the part of the connectivity layer not superimposed by the

driver layer.

Furthermore, the model introduced here implies that for any layer any instance of a device

of the classes of devices specified by each of the three segments contains items belonging to

that layer. The layers can (and shall) be applied as top-level decomposition of these devices

as well. However, any such device covers that part of the connectivity layer only that the

driver layer embraces. The other part of the connectivity layer is outside of any such device.

These devices desire to exchange data with each other for the purpose of a service. Such

device-to-device data transmission always involves the connectivity layer, because it is the

only place where any kind of data transmission mechanism for that purpose resides. For

instance all infrastructure of the mobile network is part of the connectivity layer.

R33: All device-to-device communication is made via the connectivity layer.

4.5 Security Architecture

The Security Architecture requirements are at this time not available, however a basic out-

line of the architecture can be constructed.

Overall the security architecture is considered to be a separate aspect from the design of

any application and should be applicable to any application. The security architecture must

ensure as automatically as possible that the following objectives as defined in MITA are

achieved:

• Integrity

Prevention of errors or security lapses, eg: modification of information, storage of data
and corruption of the system as a whole

• Confidentiality

Prevention of the unauthorised disclosure of information to a third party.

• Authentication

Verification of users, security zones, trustworthiness of applications and data.

• Availability

Prevention of the unauthorised holding of information or resources.

• Intimacy
67

A user may treat or consider his or her own data as public but the security architecture
must prevent disclosure intentionally or unintentionally.

4.6 Base Requirements

S1: All applications will be certified by some authority (for example, VeriSign).
This enables the integrity and source of an application to be verified.

S2: Applications communicate via messages. A message might be a data
packet over GPRS/GSM, Bluetooth or a coarse grained data packet such as XML
(WebServices), SMS, E-mail etc.

S3: The “world” is divided into a number of zones of varying levels of trust and
security. Zones may be application based, user based or some other mecha-
nism. It is conceivable that some data/application/etc might exist in any
number of zones at any point in time.

S4: Users have different perceptions of trust for each zone. For example, zones
which do not process any information but just act as data carries trust all mes-
sages while the user’s end device will.

S5: Messages or communication which cross zone boundaries must undergo
some kind of certification or encryption to ensure that their validity/integrity is
upheld.

S6: Messages may not pass between a zone of higher trust and a zone of lower
trust without some form of certification and/or encryption.

S7: Users may set up trusted channels of communication between applications
in different zones. However this channel would then be restricted to communi-
cation between those applications only. This would be achieved by certification
of the messages.

S8: A user may reduce their level of trust for any zone at any time. This makes
their overall perception of the world more secure.

S9: To increase their level of trust certification or validation of certification must
be obtained. It is also possible that a zone’s level of trust could be increased but
this would entail that any zone communicating directly with it would consider
that zone to be less trustworthy.

S10: Any message that appears compromised or does not have a valid certifi-
cate will be “sandboxed”

S11 Sandboxes are zones which are completely untrustworthy and can not
communicate with any external zone.

S12: Users may share their views of zone security with other users
68

S13: If two zones are shared then their overall security or trust level is of the low-
est

S14: If a zone is unshared then it returns to its original trust status. This might
compromise security if that zone then contains uncertified applications or data
obtained from other zones originally. In this case the zone’s trust returns to the
lowest level of trust for any received application or data.

S15: Users may customise access to their zones (see also S12) using certification

S16: The Security Architecture will be implementable within MITA

S17: Authentication may be made via certification, password or other suitable
mechanism

S18: “Single Sign-on” must be provided as far a possible

S19: Messages which contain “secure information” (eg: passwords) must be
readable only in zones of equal or higher trust level than the information inside
the message is destined for.

S20: Messages may be time-stamped and have time dependent levels of trust.
For example, a message containing financial results information will be initially
secret (to some) but public to all after a certain time.

S21: In user terms, the security of applications and messages must be as trans-
parent as possible and the management of the policies used as automatic as
possible

S22: Secure key and certification exchange/distribution must be possible within
the architecture

S23: Key and certification exchange/distribution may be implemented by IKE
(Internet Key Exchange) where possible (ie: non mobile)

S24: Acknowledgement of receipt (or not) of messages must be possible

S25: Authentication may be made over a number of levels.

Additional requirements will be made available during the course of the project.
69

© 2005 Praxis High Integrity Systems

1 INTRODUCTION

1.1 Purpose

This document states the requirements for the Civil Aviation Authority’s CCF Display
Information System, or ‘CDIS’ and includes requirements traceability.

It is intended that this document will be the starting point for prototyping and detailed
specifi cation work to be done during the implementation, and also for the acceptance tests the
CAA will use to determine whether the CDIS system meets its requirements.

1.2 Readership

Readers who are unfamiliar with air traffi c control concepts will fi nd that chapter 2 provides a
fairly comprehensive introduction. Chapter 3 describes the functional requirements. These
chapters assume that the reader is already familiar with air traffi c control terminology.

1.3 Background

CDIS is one of a number of systems being commissioned by the CAA which go to make up a
new super-system for air traffi c control in the south east of England called the Central Control
Function, or ‘CCF’. The main purpose of CCF will be to ensure the safe and orderly arrival and
departure of flights to and from airports in the London Terminal Manoeuvring Area, or ‘LTMA’.

1.4 Special notations

Various special notations have been used in parts of this document:

• entity relationship diagrams;
• data flow diagrams;

These are described briefly in the document, in the chapters where they are fi rst used. The
particular variants of ER and data flow notations used are described in reference [2].

1.5 Structure of this document

Chapters 0 and 1 are document control and introduction respectively.

In chapter 2, we describe the environment in which the CDIS system will operate, using entity
relationship diagrams. Chapter 2 forms an essential part of the system specifi cation, and should
not be separated from it; readers new to the document intending to understand fully chapters 3
and 4 should start by reading chapter 2.

In chapter 3, we describe the functions of the CDIS system; the chapter starts with a data-flow
diagram description of the primary functionality of the CDIS system.

70

© 2005 Praxis High Integrity Systems

2 DESCRIPTION OF THE CDIS ENVIRONMENT

The sections in this chapter are as follows:
2.1 Introduction
2.2 Data from airports
2.3 Systems related to CDIS
2.4 Users of CDIS and their roles
2.5 CDIS devices

2.1 Introduction

This chapter describes the environment in which the CDIS system will operate.

2.1.1 How the description is divided up

Because the description is large, we have split it up into a number of themes. Each theme is
described in a separate section. See the top of the page for the list of themes.

In the chapter we make extensive use of entity-relationship diagramming to document
relationships and invariant relations. Each theme’s section is arranged as follows:

1. A text overview.

2. An entity relationship diagram which highlights the most important entities in that part of
the environment, and documents the relationships between the entities.

3. A text description of each entity, including descriptions of all its attributes; entity and
attribute names are in bold type; the text describing the attributes is indented with respect
to the entity description.

4. A description of each relation in the diagram; the actual relation is printed in italic type.

5. A list of additional invariant relations which cannot readily be captured in the entity
relationship diagram, with accompanying text descriptions.

6. A list of assumptions.

7. A list of questions.

2.1.2 Benefi ts of describing the environment

Describing the environment of CDIS serves a number of purposes:

1. We aim to specify and implement a system which closely reflects its environment, so that
changes in that environment, which lead to changes requested in the CDIS software, are
naturally reflected in changes to the corresponding pieces of that software. An
understanding of the environment is a prerequisite of such an approach.

2. It provides an accurate picture of the boundary of the CDIS system, which is a vital part
of specifying the system. An extensive environmental description has been put together
for the whole of the CCF by the MITRE Corporation. This chapter singles out those parts
of the environment especially relevant to CDIS, and brings these up to date; it further
describes those parts of the CDIS environment made up of other computer systems—.
These fall within the boundary of CCF, and so are not described in the MITRE
documents.

71

© 2005 Praxis High Integrity Systems

2.1.3 The system/environment boundary

The environmental model considers the world of air traffi c control from the perspective of the
CDIS system. Entities such as pages held by CDIS are internal to the system and disregarded by
the model. Other entities such as airports or controllers are clearly part of the environment and
are included in the CDIS world model. Less obviously, the external computer systems which
interface to CDIS also form part of its environment. For a further group of entities which relate
to the system’s interfaces to the world, a choice must be made whether to class them as world
objects or system objects. These entities, which include devices such as display devices, are said
to be on the system/environment boundary. In this specifi cation we choose to include peripheral
devices in the environmental model.

2.1.4 Understanding Entity relationship diagrams

The entity-relationship diagramming notation is described immediately below. Readers familiar
with E-R diagramming should skip the section and continue reading at the start of section 2.2.

Entity relationship diagrams show the relations between objects that are of interest. The objects
are called entities, and each is represented by a rectangular box on the diagram. Relations
between objects are represented by further, lozenge-shaped boxes, connected to the relevant
entities by lines. The lines are annotated with numbers, or letters which stand for numbers.

A text description of the diagram’s entities and relationships is usually given and the important
attributes of each entity described. The range of values relevant to an attribute may also be given;
this is referred to as its domain. Attributes whose names appear in square brackets are optional.

In the variant of the notation used here, each relation may strictly only be read one way. We hav e
attempted to arrange the diagrams so that the direction of reading is always left-to-right or down
the page, though this is not always possible when attempting to avoid crossing lines.

A relation is read as follows: preface the fi rst entity name with ‘a’, ‘can’, or ‘each’. Next,
examine the number on the line immediately adjacent to the second entity; if zero is one of the
numbers shown, preface the name of the relation with ‘may’, otherwise preface it with ‘must’.
The name of the relation will usually be a verb; where it is not, preface the name with ‘be’.
Finally, we need to add the second entity in the sentence; if there is a letter on the relevant
relation line by it, preface it with ‘one or more’; otherwise, preface it with whatever number is
there. Make it singular or plural according to the sense.

Practise on the examples shown at the end of this section. In example one, we show a relation
between inbound queue and arrival. It should be read as ‘An inbound queue may have one or
more arrivals’. The ‘one or more’ corresponds to the letter ‘n’; the ‘may’ to the zero. Example
two should be read ‘A flight may be controlled by an ATCO’.

Subtyping: sometimes it is useful to differentiate two or more kinds of an entity. The entity (the
‘parent’) is placed above, and the kinds of it which are to be differentiated are shown below in
separate entity boxes, each joined to the parent as shown in example three. A short cross-bar
highlights the line to the parent entity. Note that the subtypes are exclusive: if an entity has
several subtypes, instances of one of those subtypes cannot also be regarded as one of the other
subtypes.

72

© 2005 Praxis High Integrity Systems

Entity relationship diagrams: examples

ATCO

flight

0,1

0<=n

0<=n

1

controlled
by

arrival

have

inbound
queue

EG 2EG 1

user in role

engineerINT
director

ASA

EG 3

2.2 Data from airports

There is a requirement for airport operational information such as meteorological data to be
captured and displayed on computer systems at airports and at LATCC. It is proposed that
relevant information be stored on Airport Display Information Systems (ADIS), which will be
installed at Heathrow, Gatwick, Stansted, and Luton airports.

The ADIS systems will have communications links to NAS and to CDIS. A subset of ADIS
information will be held by CDIS and displayed on support information pages, dynamically
updated by CDIS from data passed across the CDIS/ADIS interfaces. It will be possible to
manually overwrite the airport information from CDIS, though the manually entered values will
only remain until the next dynamic ADIS update. Information which has not been updated
within a parameter time is marked as old data. If after a further parameter period the data has still
not been updated, it is deemed to be out of date. An indication of the status of the data will be
shown when the data is displayed. A further possibility is that no value is available for display, as
will be the case immediately following an ADIS startup (and initially, during a CDIS startup).

73

© 2005 Praxis High Integrity Systems

The installation of an ADIS system, is a prerequisite for a free-flow airport, ie an airport at
which take-off can occur without prior clearance from CCF controllers. For certain airports such
as Luton, the presence of an ADIS may still not allow free-flow on all routes, owing to Luton’s
proximity to Stansted.

Data from airports stored by CDIS includes meteorological information and data concerning each
runway at the airport.

2.2.1 Entity relationship diagram

1

0,1

1<=n1
have

have ADIS

runwayairport

2.2.2 Entity defi nitions, including attributes

traceunit REQ.ADIS.EN

ADIS

An Airport Information Display System (ADIS) is a computer system for capturing and
displaying operational information concerning an airport. ADIS systems are linked to NAS and
to CDIS and a subset of the ADIS system information is held on CDIS and dynamically updated
via the ADIS/CDIS interfaces. ADIS systems will also be the source of departures information
received by CDIS, though the data will normally be routed via NAS.

airport id

An airport has at most one ADIS and therefore the airport id provides a unique identifi er for
the ADIS entity. This is attribute models the relation: an ADIS must be owned by one airport.
attribute.

74

© 2005 Praxis High Integrity Systems

traceunit REQ.AIRPORT.EN

airport

An airport, or airfi eld, is the point of departure or destination of a flight. It is the focal point of a
control zone and as such always has an associated ATCO called the airfi eld controller, or tower
controller. Larger airports may also be assigned a LATCC fi nal approach approach director,
called the FIN, or number two director.

airport id

This attribute uniquely identifi es an airport, possibly by using the airport name.

MAC id

The identifi er for the MAC which includes the airport. This attribute formalises the relation:
airport is included in MAC.

domain: same as MAC.MACid.

ATIS letter

The Airfi eld Terminal Information Service (ATIS) letter is used by controllers when giving
meteorological information to aircraft. The ATIS letter changes every half hour to the next
letter, ie ‘b’ follows ‘a’ etc.

meteorological data

This consists of: average, maximum, and minimum wind speed in knots (or the value
‘CALM’); average, maximum, and minimum wind direction (in degrees); serial number
(alphanumeric); date/time; visibility (Km (?) or free text); cloud (4 values giving
OKTAS/height or the single value ‘CAVOK’); temperature and dewpoint (numeric or free
text); QNH (mbar); QFE (mbar); remarks (free text); metar (free text); time of insertion (free
text). Note: ‘OKTAS’ are eighths of sky covered by cloud; ‘CAVOK’ indicates: Clear And
Visibility OK; QNH is the local sea-level pressure in mbar; QFE is the runway atmospheric
pressure in mbar.

traceunit REQ.RUNWAY.EN

runway

An airport has one or more runways, which may be used for arrivals, departures, or both.
Heathrow, for example, has two parallel runways which lie East-West. Depending on the wind
direction, traffi c may land towards East (bearing 270) or towards West (bearing 090). The two
runways are distinguished as L(eft) and R(ight). The left runway is called either 09L or 27L
according to the direction of traffi c flow. Similarly the right runway is called either 09R or 27R.

75

© 2005 Praxis High Integrity Systems

Heathrow also has a third, shorter runway, lying roughly North-South.

airport id

This attribute identifi es the airport served by the runway. Runways are uniquely identifi ed by
the airport id and the runway name. This attribute establishes the relationship: runway is
owned by airport.

runway name

The runway name is based on its direction and position with respect to other runways, eg 27L,
09R. The airport id and runway name uniquely identify the runway.

runway lights

This attributes consists of an on/off status for HIA, SHN, TDZ, CL, SL, SNOW, and PAPI,
and an intensity value in the range 1 to 7.

runway status

This attribute defi nes whether the runway is being used for arrivals, departures, or both.

ILS category

This is a numeric value 1, 2, or 3, which denotes the type of Instrument Landing System (ILS)
available on the runway.

IRVR at touchdown

Runway visual range at touchdown in metres.

IRVR at midpoint

Runway visual range at midpoint in metres.

IRVR at stop end

Runway visual range at stop end in metres.

2.2.3 Relation descriptions

traceunit REQ.AIRPORT.RUNWAY

airport to runway

An airport must have one or more runways. Note that this does not imply there is always a
runway in use. Gatwick, for example, sometimes uses its main taxiway as a second runway when
the runway is unavailable for maintenance at night. The inverse relation is: a runway must be
owned by one airport.

76

© 2005 Praxis High Integrity Systems

airport to ADIS

An airport may have an ADIS. Conversely, an ADIS must be owned by one airport.

2.2.4 Additional invariants

traceunit REQ.AIRPORT.ADIS

1. A free flow airport must have an ADIS (or an equivalent system).

traceunit REQ.ADIS.NAS_LINK

2. An ADIS airport has a communications link to NAS.

2.2.5 Assumptions

1. Runway lights messages are repeated for each runway.

2. There is only one intensity value for each runway covering all the lights.

2.3 Systems related to CDIS

2.3.1 ADIS

The four main LTMA airports will be equipped with new computer systems which will be used to
gather operational data about weather, runways, etc., and also about departing flights. These
systems are the ‘Airport display information systems’ or ‘ADISs’. They will be equipped with
peripherals at the airports, and will be interfaced to the systems at LATCC via the CAA’s
CAPSIN X25 network. CDIS will receive airport and departure data from each operational
ADIS.

The ADIS systems are used to capture and display airport operational information such as
meteorological data. A subset of this information will be displayed on CDIS support information
pages, dynamically updated from data received via the CDIS/ADIS interfaces.

The installation of an ADIS system, and hence of a link to NAS, is a prerequisite for a free-flow
airport, ie an airport at which take-off can occur without prior clearance from CCF controllers.
For certain airports such as Luton, the presence of an ADIS would still not allow free flow on all
routes, owing to its proximity to Stansted.

77

© 2005 Praxis High Integrity Systems

2.4 Users of CDIS and their roles

2.4.1 Overview

In this section we describe the various different sorts of role associated with the CDIS system,
ranging from air traffi c control roles to supporting roles such as the engineering role that
encompasses the taking of daily and weekly backups, and maintaining the system. We consider
the information CDIS needs to have about the users of the system.

Users are the people who use CDIS. Roles are the CDIS-related jobs they perform. The careful
separation of ‘user’ and ‘role’ may seem somewhat artifi cial; it is useful because it helps clarify
the requirements of the system:

• One user may be simultaneously carrying out more than one role.

• Certain roles, such as page editing, may be being carried out simultaneously by more than
one user.

• When expressing system requirements, it is a user acting in a role that is generally of most
interest. For example, it is a user acting in a role who enters commands; and whose actions
must be checked by the system to confi rm that the commands they are inputting are indeed
valid for that role (or the system prevents them from ever inputting invalid commands by
never offering them in the fi rst place).

The following roles have been identifi ed:

— (TMA) sector controller
— editor
— engineer.

Grouping of Roles

Certain functionality within the system is associated with a group of roles, rather than a single
role. We adopt the following role groupings:

ATCO the TMA sector controller roles

non-ATCO everyone else

administrator an editor

The CDIS facilities may be divided up into a number of facility sets; various role groupings then
have or do not have access to particular facility sets.

CDIS system security

Security is mainly provided by physical control of user access to the positions.

Roles

Below we identify the major CDIS roles.

78

© 2005 Praxis High Integrity Systems

traceunit REQ.ROLE.TMA

TMA TMA sector controller. There will be fi ve TMA sector controllers in each of
the TMA North and TMA South, making 10 TMA sectors in all. CDIS’
main function so far as these controllers are concerned will be the provision
of pages, and especially the departures and arrivals-sequence pages, as this
information is useful to the sector controllers provided it is supplied
suffi ciently timelily.

traceunit REQ.ROLE.EDITOR

Editor Data editing staff. A role usually carried out by ATSAs. These staff are
responsible for entering the support information pages to the system. They
work at user positions specially confi gured for this purpose.

traceunit REQ.ROLE.ENGINEER

Engineer The engineers staff the engineer position and system console positions, the
former round-the-clock. They carry out all the day-to-day tasks associated
with maintaining a running system, including handling
removable/consumable media, carrying out backups, carrying out scheduled
preventative maintenance, and taking action to restore system services after
any failures.

79

© 2005 Praxis High Integrity Systems

2.4.2 Entity relationship diagram

0,1

control
console

system
console

editing
terminal

ATCO
terminal

flight
support

engineereditor
TMA
sector
controller

role user
position

use
0<=n

2.4.3 Entity defi nitions

traceunit REQ.ROLE.EN

role

Many CDIS roles have been identifi ed. We use the word ‘role’ to mean a user carrying out a
particular job, so there are as many instances of, say, ‘engineer’ as there are people acting in that
role.

role id

Identifi es the role.

domain: The roles are as listed in the text overview above.

New roles may well be needed from time to time—see the confi guration/adaptation section in

80

© 2005 Praxis High Integrity Systems

chapter 3.

traceunit REQ.USER_POSN.EN

user position

Any position on CDIS where a user inputs commands to the system, including commands entered
on a PSD. Includes all ATCO suites, editing terminals, and engineer terminals.

There is some duplication of equipment required within user positions, and some duplication of
positions.

traceunit REQ.ENGINEER.DUPLICATION

The following positions are duplicated for extra reliability:

• engineer position; (the system console is not required to be duplicated, but there should be
another console which can carry out the system console role).
position id

Identifi es the operator station.

The sub-types of user position are listed below:

traceunit REQ.POSN.ATCO

ATCO suite

The standard ATCO furniture suite. The suites are arranged in one of two banks one on each side
of the CCF room. An ATCO suite will have at least the following user equipment:

• an EDD, a PSD;

suite id

Identifi es the suite; used by the supervisors, initially to confi gure the system, and, later, to
reconfi gure either for bandboxing or in response to suite failures.

81

© 2005 Praxis High Integrity Systems

traceunit REQ.POSN.EDITOR

editing terminal

Used by a supervisor or an ATSA to input support information pages and related commands.
There will be several editing terminals on the working system.

traceunit REQ.POSN.ENGINEER

engineer position

One is sited in the CCF adjacent to the engineering area, and one in the CDIS CCPS machine
area (‘equipment room’). Staffed round-the-clock by engineering staff; however these staff hav e
other responsibilities and a mechanism will be needed to attract their attention to important
ev ents.

traceunit REQ.ENGINEER.FUNCTIONS

The engineer’s position will be used for quite a large number of subsidiary system functions,
including:

• system (re)start and shut down
• page/TRQ confi guration
• back-ups/restores

traceunit REQ.POSN.SYS_CONSOLE

system console

Essentially a system boot and operating system console. Not staffed round-the-clock. The
system console is to support the following functions:

• re-boot system

82

© 2005 Praxis High Integrity Systems

2.4.4 Relation descriptions

user to role

A user may act in one or more roles. Reading the relation the other way,

traceunit REQ.ROLE.USERS

A role may be acted out by one or more users. Certain sector control roles may in the future be
conducted by two or three cooperating ATCOs.

role to user position

A role may be assigned to a user position. Notice that, since we mean by ‘role’ a user acting in a
given capacity, and since a user can be in only one place at a time, a role can be assigned to at
most one user position. The inverse relation is:

traceunit REQ.USER_POSN.ROLES

a user position may be assigned many roles.

2.4.5 Additional invariants

traceunit REQ.ROLE.SUITABLE_POSN

1. Editors must be assigned to their respective terminal types. TMA sector controller roles
must be assigned to ATCO terminals. Engineer roles must be assigned to the engineer
position.

traceunit REQ.USER.MULTIPLE_ROLES

83

© 2005 Praxis High Integrity Systems

2. If a user is acting in a number of roles, those roles are all assigned to the same user
position.

2.5 CDIS devices

2.5.1 Overview

Peripheral devices such as keyboards, and displays are on the boundary between the CDIS
environment and the system itself. These devices are suffi ciently important to merit inclusion in
the CDIS world model. Here we show the kinds of device required by CDIS and describe their
relationship to user positions.

2.5.2 Entity relationship diagram

mouse

0<=n1
deviceequipped

withuser position

PSDkeyboardEDDprocessor

2.5.3 Entity defi nitions

traceunit REQ.DEVICE.EN

device

This entity includes EDDs, keyboards and PSDs.

device_id

Unique device identifi er.

84

© 2005 Praxis High Integrity Systems

traceunit REQ.PROCESSOR.EN

processor

Each non-console user position will have at least one processor. At certain positions the
processor will be duplicated either for reasons of reliability or increased functionality.

traceunit REQ.EDD.EN

EDD

EDDs are used for displaying pages of information. The screen will be divided into a main
display area, for full-size pages, and a status area at the bottom, used for viewing broadcast
messages.

traceunit REQ.KEYBOARD.EN

keyboard

Ke yboards are used for editing purposes.

traceunit REQ.MOUSE.EN

mouse

Mice are used for editing purposes.

traceunit REQ.PSD.EN

PSD

A PSD (Page Selection Device) is a keypad used for selecting pages for display.

85

© 2005 Praxis High Integrity Systems

2.5.4 Relation descriptions

user position to device

A user position may be equipped with one or more devices. Positions other than console
positions have at least a processor.

traceunit REQ.EDD.USER_POSN

Positions other than the system console have at least an EDD. The inverse relation is: devices
may be used at one user position.

2.5.5 Additional invariants

traceunit REQ.DEVICES.ATCO

1. ATCO terminals have at least a processor, an EDD, a PSD.

traceunit REQ.DEVICES.EDITOR

2. Editing terminals have at least a processor, EDD, keyboard and mouse.

traceunit REQ.DEVICES.SYS_CONSOLE

3. The system console has no devices.

traceunit REQ.DEVICES.ENGINEER

86

© 2005 Praxis High Integrity Systems

4. The engineer positions have at least a processor, an EDD, a a mouse and a keyboard.

We intentionally avoid specifying exact confi gurations, to allow for the possibility of evolution in
the way positions are set up for different roles.

87

© 2005 Praxis High Integrity Systems

3 FUNCTIONAL REQUIREMENTS FOR CDIS

In this chapter we describe the functions which the CDIS system will perform, including all
operations to be offered to users of the system. Considerations of "human factors" and the
requirements for the MMI are outside the scope of this study, but are an important part of the
work to be done before implementation.

The chapter is divided into the following sections:

• Introduction
• Primary function
• Error & exception handling
• System confi guration/adaptation

In the introduction we provide a requirements summary, and give guidance on the Yourdon
notation used in other sections. In the primary function section, we describe the primary
functions to be provided by CDIS, presented as a levelled set of Yourdon data flow diagrams.
The section addresses all normal functioning of each CDIS user and automatic facility.

3.1 Introduction

In this section we state the purpose of the functional requirement, its scope and intended
readership, we describe how the requirements were gathered, we give a short summary of the
requirement, and an introduction to the Yourdon modelling notation used in the remainder of the
chapter. We also explain the tie-up with the environmental modelling of the previous chapter.

3.1.1 Purpose of Functional Requirement

The functional requirement has been put together to:

• be the basis for a fi xed price proposal for undertaking the implementation of the CDIS
system;

• form the cornerstone of the implementation project. To this end the requirement must:

— describe the system to be designed and built;
— form the basis for acceptance testing of the system by the CAA;
— be the main source of information for the user manuals to be written for the system.

3.1.2 Scope

From the above it is evident that the readers of the requirements specifi cation will have widely
differing technical backgrounds. Some diffi cult decisions have had to be made over what to leave
out and what to include in the description.

CDIS is a new system to the CAA—the SIRS system being the nearest thing to CDIS at LATCC
to date—so at this stage it is not possible to work out all the uses CAA staff will make of the
system, and therefore to identify completely the areas where a degree of flexibility is important.
We perceive it as important that a certain amount of time be included in the implementation
project for prototyping.

The requirements set out in this document represent our best understanding of the CDIS
requirements as presented to us in documents (references [1] to [9] inclusive, and also [12] to
[14]) or by members of the CAA CDIS requirements liaison team. The scope of the requirements
description in this document has been limited chiefly by lack of time to step through all the

88

© 2005 Praxis High Integrity Systems

requirements suffi ciently thoroughly; but also by lack of fully agreed interface defi nitions (ICDs)
and by inadequate time to carry out prototyping in the area of user interfaces. A substantial
amount of detailed specifi cation work remains to be done at the start of the implementation
contract.

3.1.3 Short Summary of CDIS Requirement

CDIS is a distributed information, command and control system, with various important ancillary
functions. The purpose of CDIS is to aid Air Traffi c Control Offi cers in their control of air traffi c,
and particularly of arrivals and departures, in the London TMA. CDIS is one of a number of
cooperating systems which make up a super-system, the Central Control Function or ‘CCF’, with
this common purpose.

Support Information Pages

Air traffi c control offi cer users of CDIS select pages for viewing on high resolution colour
displays. Pages contain text and/or graphical information, some of which may be updated in real
time. CAA supervisors and support staff create the pages in isolation from the ATCO part of
CDIS using special editor programs provided with the system. Release of pages into the ATCO
operational part of CDIS may be delayed, allowing editing of pages to take place days or even
weeks in advance.

Airport Data

CDIS receives liv e feeds of airport data from information systems (ADISs) situated at the free-
flow airports Heathrow, Gatwick, Stansted and Luton. This data is displayed on some of the
support information pages described above. It is updated in real time; where data is unavailable
from an airport, CDIS supervisors/editors may enter airport data manually to the system. Data
entered in this fashion is specially highlighted to make users aware that it is not live data.

3.1.4 How the requirements are presented

The primary requirements are presented as a levelled hierarchy of Yourdon data flow diagrams. It
is assumed that readers of the document are familiar with the data flow diagram notation.

The bulk of the requirements defi nition is held at levels 2, 3 and 4 (taking the fi rst breakdown of
the context diagram as level 0). Each major level 2 or 3 subsection defi ning requirements is
divided into the following subsection parts:

• a list of principles which underly the system requirements in that area;

• a text overview of the requirement;

• a data flow diagram or diagrams with accompanying text description;

The DFDs provide a process-oriented view of CDIS. It has been possible to model only a
fraction of the processes in the limited time available for the study.

3.2 Primary Function

In this section we describe the primary functionality of the CDIS system by means of a levelled
set of data flow diagrams, with additional text description. The diagram hierarchy is presented
top-down. The description is chiefly process-oriented.

The fi rst two data flow diagrams are simplifi ed overall views of CDIS. The fi rst, the context

89

© 2005 Praxis High Integrity Systems

diagram, shows the main flows of data into and out of the system. Apart from the many different
types of user command & display input/output, it may be seen that the system also interfaces to
other computer systems including ADIS.

Context Diagram

user_trans_data_io

CDIS_
system

user_control_io

tape_
archive

ADIS_
CDIS_
msg

tape_
drive

ADIS

user_page_io

user

0

90

© 2005 Praxis High Integrity Systems

The Level Zero Diagram

user_trans_
data_io CDIS_time

user_control_io

ADIS_
msg

trans_
data_msg

control_
system

tape_archive

ADIS

user_page_io

tape drive
trans_data_item

trans_data_item

user

maintain_
trans_data

trans_data

maintain_
and_dis_
play_CDIS
page

1

3

2

In the level zero diagram, we show the main breakdown of description of functionality into three
elements:

1. system control;
2. support information page display and editing;
3. the maintenance of transient data;

Only one store is shown at this top level description: the transient data store. This is a piece of
system state modifi ed on receipt of transient data update messages from NAS or ADIS, and all
parts of which may be confi gured into any of the support information pages for display to the
users of the system.

The other data flows are as for the context diagram.

1 Control System

This part of the specifi cation describes many of the ancillary functions offered by CDIS.

Text Overview

Under engineering_functions we have gathered together facilities offered the engineer users of
CDIS to carry out routine operation and maintenance of the system.

91

© 2005 Praxis High Integrity Systems

Data flow diagram 1, with description

trans_data_msg

tape_archive

tape drive

CDIS_time

engineer_io

engineering_
functions

ADIS_CDIS_msg

ADIS

manage_
system_
interfaces

user

.2

.1

Process description:

1.1 manage_system_interfaces

input/outputs:

ADIS_CDIS_msg
Inputs from and outputs to ADIS.

outputs:

trans_data_msg
A processed transient data message updating the CDIS transient data store.

1.2 engineering_functions

input/outputs:

engineer_io
All engineer user commands and responses.

inputs:

outputs:

CDIS_time
CDIS-internal time distributed to other parts of the system.

tape_archive
System backup archive data to tape.

92

© 2005 Praxis High Integrity Systems

1.1 Manage system interfaces

In this sub-section we address the requirements of managing the most important CDIS interfaces,
to the various ADIS systems.

Principles

• Detailed non-application-level information will be supplied in separate architecture and
design documents. Here we supply only an abstract description of the application layers of
the interface.

• Each ADIS supplies CDIS with airport data messages of various kinds.

There are no differences between ADIS systems signifi cant to CDIS. Accordingly, we restrict
our attention to an ADIS system assumed to represent any of the actual ADISs.

Text Overview

The ADIS interface forms a major part of the CDIS environment, as described in chapter 2.
CDIS receives transient data from ADIS, which it stores internally, and which it offers for
display on support information pages as confi gured by the page editors and system supervisors.

From the ADIS systems, CDIS receives data about runways and airports, including
meteorological data. The full list of messages is given in the ADIS-CDIS ICD [1].

Data flow diagram 1.1 with description

trans_data_msg

ADIS_trans_
data_msg

ADIS_CDIS_msg

ADIS

manage_
ADIS_
iface

.

.2

93

© 2005 Praxis High Integrity Systems

Process description:

1.1.1 manage_ADIS_interface
The process specifi cation for the CDIS side of the CDIS:ADIS interface.

inputs:

ADIS_CDIS_msg

traceunit REQ.SYS_IF.ADIS_CDIS_MSG

The generic input from an ADIS.

outputs:

ADIS_trans_data_msg

traceunit REQ.SYS_IF.ADIS_TRANS_DAT A_MSG

Airport data.

The main input from ADIS; transmitted by the interface management software to the
airport transient data handling sub-system. Refer to the transient data management
description in process 2 for further details on how transient data is handled.

1.2 Engineering functions

Under engineering functions we group together a number of facilities required by the engineer
users of CDIS to operate and maintain a fully serviceable system. We defi ne facilities for:

• system start-up and shut-down;
• archive management.

Principles

traceunit REQ.SYS.STARTUP_RAPID

94

© 2005 Praxis High Integrity Systems

• System start-up/start-over must be very rapid. Only essential functions should be performed
during the start-up process.

• Some data are required to be stored on tape:

i. Backups of all disc-based data (whether this is done using the operating system or
the application is not a concern of this specifi cation). Backups are distinguished
from archives in that they are always copies of data currently on disc, kept as a
safeguard against loss or corruption of the disc-based data. Archives on the other
hand are kept to save disc space and the archived material is usually deleted from
disc following the copy to tape.

Text Overview

Start up
How the system is initialised to the point where it is in a suitable state to start up the CDIS
application (ie power-up, and probably also some separate operating system re-boots) is not
specifi ed functionally. This section explains the engineer facilities to start up, start over, and shut
down CDIS, given an operational LAN, processor and operating system infrastructure.

traceunit REQ.SYS.INITIAL_STARTUP

Initial start up is carried out at the system console. Start-up and start-over differ:

traceunit REQ.SYS.STARTUP

• Start up of CCPS is divided into cold start and warm start. The only difference is where the
state of the CCPS is derived from. Neither kind of start up will preserve transient data.
Adaptation can be changed on either kind of start up.

• Cold start, also called start from snap, will involve loading a previously saved snapshot of the
CDIS state from a tape. From then on, it will be similar to warm start except for the way out
of step PS/2s are treated: while on a warm start PS/2s are not started immediately if their
pages are out of date, on a cold start, all healthy PS/2s will be started even if their pages are
out of date. The facility will rarely be used, and will probably follow an operating-system re-
boot of the whole CDIS processor population.

95

© 2005 Praxis High Integrity Systems

traceunit REQ.SYS.STARTOVER

• Start up of a workstation will be independent of start up of the CCPS and can be done at any
time. If CDIS is running it will automatically be incorporated into the system if it is enabled.

• A warm start will only be possible if CDIS was shut down in good order. It will involve
starting from the state immediately before the last shutdown. There will be protection against
this being attempted if there was no successful shutdown, for example if CDIS failed. This is
necessary because the state of CDIS is not reliable in such circumstances.

Shutdown
Shutdown will be initiated at the control console.

Archive management

Backups

As part of CDIS normal operation, engineers will have to make periodic backups of all data held
on disc on the system. No automatic backups will be made.

traceunit REQ.TAPE.NO_OVERWRITE

The system shall check for mounting of already-written tapes, and not overwrite these.

96

© 2005 Praxis High Integrity Systems

Data flow diagram 1.2 with description

.archive_req

CDIS_time

CDIS_time

maintain_
CDIS_time

CDIS_dbase_archive_input

tape_archive

tape drive
startup_or_shutdown_req

startup_or_shutdown_report

CDIS_database

manage_
archives

user

startup/
shutdown

.2

.3

.1

Process specifi cation:

1.2.1 startup/shut-down

inputs:

startup_or_shut-down_req
Request by the user to start up, start over, or shut down.

traceunit REQ.SYS.STARTUP_VALID

Start-up invalid unless the system is in a shut-down state.

CDIS_time
Required as input for broadcast and logging purposes.

outputs:

97

© 2005 Praxis High Integrity Systems

startup_or_shut-down_report
Output about the start-up, start-over or shut-down.

1.2.2 maintain_CDIS_time
This process specifi es how the system manages time. Details are not relevant to the
Rodin subset.

outputs:

CDIS_time
As used throughout the CDIS system.

1.2.3 manage_archives
This process specifi cation covers all aspects of managing the archives.

inputs:

archive_req
A backup request issued by the user.

CDIS_dbase_archive_input
State of the database to be saved for a cold start.

outputs:

tape_archive
The archive output to tape.

2 Maintain and display CDIS page

Principles

• Accessing support information is an important, but relatively small part of an ATCO’s
activity.

• Access to support information should be simple, using as few key strokes as possible.

• Ease of use of the system is more important than flexibility.

• Full page displays are required for certain static information such as maps, but are not
required for the various kinds of dynamically updated information.

• Transient data on display is updated in real time as new information becomes available to
CDIS.

• It should be possible to display different combinations of departure information, airport
information, inbound queue information, and other, static data on a single EDD. This is
achieved by using half pages for transient data.

• There are suffi ciently few half page combinations that they should be set up by the supervisor,
rather than confi gured by the ATCOs at their suites.

• Scrolling of pages is unacceptable. Where there is too much information for a page or half
page, the data should be divided across several pages.

• There is a requirement to edit pages and withhold publication of the new version until a future
date. It is not required, however, to hold more than one pending version of a page.

98

© 2005 Praxis High Integrity Systems

• There is no requirement to share information, other than transient data items, among half
pages. Full, split screen pages may, howev er, share half pages.

• There is a need to use templates for defi ning transient data pages. The template for transient
data, called a layout descriptor, specifi es the position and origin of each transient data item
and defi nes a text or graphics background.

Text Overview

One of the primary functions of CDIS is to make readily available to air traffi c controllers and
their supervisors a variety of textual and graphical information in the form of pages, which can
be viewed, one at a time, on the display terminal at a control suite.

traceunit REQ.PAGE.VIEW_POSNS

All information pages can be viewed at positions equipped with an EDD and a keypad page
selection device (PSD). In addition, all pages can be viewed at editing terminals which are
equipped with keyboards.

traceunit REQ.PAGE_EDIT.POSNS

Pages can only be composed or altered at editing terminals, however. The PSD allows all pages
to be selected by page number and a subset to be retrieved by fastkey access. There are default
fastkey to page mappings defi ned for each user role which can be redefi ned by the CCF
supervisor.

It is envisaged that the EDD’s will display two kinds of page: full screen pages, and split screen
pages. Full screen and split screen pages, will have predefi ned text or text + graphics contents.
The CDIS graphics will support the "free-hand" drawing capability required to draw such things
as coastlines.

Split screen pages differ from full screen pages, in that the page is made up from two half page
defi nitions, either two landscape or two portrait half pages.

The information displayed on pages can be categorized as either fixed data, also referred to as
static data, or transient data, alternatively called dynamic data.

traceunit REQ.PAGE.FIXED_DAT A_UPDATE

Fixed data records information which is updated relatively infrequently and always manually.

99

© 2005 Praxis High Integrity Systems

Transient data on the other hand is normally updated in real-time by CDIS in response to update
messages received from other computer systems. The data may be displayed graphically, for
example showing a compass rose and pointer to indicate the wind direction at a particular airport.
Transient data includes general airport information.

traceunit REQ.TRANSIENT_DAT A.AGING

Transient data which is not updated within a parameter time will be marked by CDIS as old data,
and after a further parameter period relabelled as out-of-date. This ‘ageing’ of transient data will
be reflected by pages displaying the data.

traceunit REQ.TRANSIENT_DAT A.MARK_MANUAL

Items of transient data will also be marked to indicate if their current value was entered manually
or if no value is available. Airport operational information, at least, will sometimes be manually
overwritten at editing terminals that are assigned the appropriate privilege. It will also be
possible to defi ne as transient data, information which is never updated dynamically by CDIS, but
only by manual input. This will permit emulation of transient data sources such as an ADIS
system.

traceunit REQ.TRANSIENT_DAT A.FLAG_CHANGES

There is a requirement for CDIS to be able to flag changes to selected transient data items using,
say, inv erse video. Particularly important changes, such as changes in atmospheric pressure will
need to be flagged and possibly acknowledged by all positions displaying the information (CQF
307). Certain items of meteorological data may need to be flagged if they vary outside a
specifi ed range. Flagged data requiring acknowledgment will remain flagged at a console
position until acknowledged by all relevant controllers.

Whereas static pages can be edited on-line, dynamic pages must be validated off-line to ensure
that no transient data is obscured as a result of using an inappropriate layout defi nition. Only
pages having valid defi nitions can be released for on-line display.

A valid new page, or a new version of an existing page, can either be released immediately for
display or held on a timed release queue (TRQ) and made available at a specifi ed date and time.
This allows information to be entered well in advance of its required release date, and the page
editing workload can be spread over a period of time. Static or dynamic information pages can
be held on the queue, dynamic pages becoming active only when released. Full pages or half

100

© 2005 Praxis High Integrity Systems

pages can be queued. Only one version of a page may be held on the TRQ.

In general, ATCOs are not informed of the release of new pages, or the update of current pages.
However, messages to this effect can be broadcast and displayed in the status area of the screen.

Entity-relationship description

Note that a split screen page is always associated with two half pages.

Entity relationship diagram:

0<=n

0<=n
0<=n

0<=n

user
position

2

half page

includes displayshave

split screen
page

full screen
page

1<=n0<n
page displayable

at

.3

layout descriptor

transient data item

0..1

Entity defi nition, including attributes:

page

CDIS support information may be formatted and displayed on one or more information pages.
They are the chief means by which ATCOs access CDIS information. Pages are viewed at
terminals whose display area is divided into an upper and a lower logical screen. The upper
screen, which occupies most of the viewing area, displays at one time a single page. The lower
screen is used to display broadcast messages. A keypad device, called a Page Selection Device
(PSD) can be used to select any page for display.

page id

This attributes uniquely identifi es a page. Note that the page number does not provide a
unique key since there may be several versions of some pages.

domain: The domain of this attribute is arbitrary, but could be based on the version and
page number.

101

© 2005 Praxis High Integrity Systems

traceunit REQ.PAGE.NUMBER

page number

Pages are numbered. There may be up to three versions of a page with a given page
number: a current version, a backup version, and a version on the timed release queue.

traceunit REQ.PAGE.SELECTION

An ATCO uses his PSD to select by page number the current version for display. The
information displayed on a page corresponding to a given number is defi ned by data entry
staff or the CCF supervisor.

domain: The natural numbers, starting at 1.

version

traceunit REQ.PAGE.CURRENT_VERSION

For a giv en page number there is one version of the page available for selection at all
display terminals. This is called the current version.

traceunit REQ.PAGE.BACKUP_VERSION

There may also be a backup version. This is created from a current version when it is
edited to create a new version.

traceunit REQ.PAGE.PENDING_VERSION

A third possible version of a page is referred to as pending. A page can be edited, then
held as pending on the Timed Release Queue (TRQ).

102

© 2005 Praxis High Integrity Systems

traceunit REQ.PAGE.TRQ_RELEASE

The current and backup versions are unchanged until, at a preset date and time, the
current version becomes the new backup and the pending version is removed from the
TRQ to become the new current version. Note that it is possible for all three versions of a
page to exist at once.

traceunit REQ.PAGE.UNIQUE_ID

A page is uniquely identifi ed by its page number and version attributes.

traceunit REQ.PAGE.VERSION

domain: The page version may be current, backup, or pending.

[release date]

traceunit REQ.PAGE.RELEASE_DATE

The release date attribute specifi es the time and date for a pending page to be removed
from the TRQ to become the new current page.

domain: This attribute consists of a date and a time, or the value null for pages not on the
TRQ. Under normal circumstances the date will be a later date than the current system
date.

full screen page

traceunit REQ.PAGE_TYPE.FULL_SCREEN

page id

103

© 2005 Praxis High Integrity Systems

The unique page identifi er is as described for page.page id.

page number

The page number is as described for page.page id.

fixed data

This attribute specifi es the data to be displayed.

traceunit REQ.PAGE.FIXED_DAT A

domain: Fixed data may be text-only data, or graphics with text. Text data may use a
number of fonts, inverse video, double height or flashing characters, underlining,
reveal/conceal.

half page

traceunit REQ.PAGE_TYPE.HALF_PAGE

A half page occupies half of the main screen area of an EDD, and may divide the display either
vertically (portrait format) or horizontally (landscape format). Tw o portrait half pages, or two
landscape half pages may appear on a split screen page.

traceunit REQ.HALF_PAGE.CONTENTS

A half page may contain text or text and graphics fi xed data, or alternatively text or text and
graphics transient data formatted according to a layout descriptor.

traceunit REQ.HALF_PAGE.UNIQUE_ID

half page id

Each half page has a unique identifi er.

domain: arbitrary

104

© 2005 Praxis High Integrity Systems

traceunit REQ.HALF_PAGE.ORIENTATION

orientation

The orientation of a half page can be either landscape or portrait.

domain: landscape or portrait

traceunit REQ.HALF_PAGE.VERSION

version

A half page can be a current, backup, or pending version, as described for page.version.

traceunit REQ.HALF_PAGE.RELEASE_DATE

[release date]

Same as page.[release date]
split screen page

traceunit REQ.PAGE_TYPE.SPLIT_SCREEN

A split screen page is the same size as a full screen page, but splits the page either vertically or
horizontally, and uses half page defi nitions to defi ne separately the content and layout of each
part. A static half page may be set up to display fi xed data shown on other half pages. A half
page containing transient information uses a layout which can be shared across many pages.
Similarly the transient data formatted by the layout may appear on several pages.

page id

Each split screen page has a unique identifi er. This is the same as described for
page.page id.

first half page

This is a reference to a half page which describes the content of the upper half page or left
half page, depending on the chosen layout, whether landscape or portrait. This attribute

105

© 2005 Praxis High Integrity Systems

may contain text or text with graphics fi xed data, or alternatively a text or text with
graphics layout description for transient data and references to data items to be displayed.
Transient data half pages must be created off-line and only released on-line following
verifi cation that the layout displays the data as intended.

domain: Either fi xed data or references to transient data items and a layout descriptor.

second half page

The second half page defi nes the content of the lower half page or right half page,
depending on the chosen layout, whether landscape or portrait. See description of split
screen page.first half page.

traceunit REQ.SPLIT_SCREEN_PAGE.RELEASE_DATE

[release date]

Same as full screen page.[release date]

traceunit REQ.SPLIT_SCREEN_PAGE.VERSION

version

Same as full screen page.version
layout descriptor

traceunit REQ.PAGE.LAYOUT_DESCRIPTOR

This entity describes a format for displaying transient data items on a page. It defi nes the data
positions and a text or graphics and text background.

traceunit REQ.PAGE.LAYOUT_DESCRIPTOR_USE

A giv en layout may be used by several page descriptions.

106

© 2005 Praxis High Integrity Systems

traceunit REQ.PAGE.TRANSIENT_DAT A

The transient data to be displayed may be specifi ed by the layout itself, or by the page description
which uses the layout, or by a mix of these methods.

traceunit REQ.PAGE.TRANSIENT_VERIFICATION

Page descriptions containing transient data must be created off-line and released on-line
following verifi cation that the layout displays the data as intended.

layout id

This attribute uniquely identifi es the layout.

domain: Arbitrary.

orientation

The layout can be either for portrait or a landscape half pages or for a full page.

transient data item

traceunit REQ.TRANSIENT_DAT A.DEF

A transient data item is any item of information held by CDIS which is updated in real-time.
Included in airport information is data relating to runways and meteorological information.

traceunit REQ.TRANSIENT_DAT A.ID

transient data id

Transient data items could be identifi ed by a name and a source. The name would reflect
the kind of data involved, for example callsign, wind direction, or approach sequence
number. The source would indicate the flight or airport (and possibly runway) to which
the data relates.

domain: A record consisting of name and source identifi ers.

107

© 2005 Praxis High Integrity Systems

[value]

This attribute indicates the current value of the data item, if a value has been assigned.
domain: A natural number, real number, free text, or null.

[manually entered]

Transient data from airports, ie airport operational information, must be marked to
indicate whether the current value has been manually entered.

domain: Boolean for airport information; null for flight data or approach sequence data.

[last update]

This attribute indicates when airport information or departures information was last
updated, allowing old information to be marked as out of date.

domain: A date and time for airport information; null for flight data or approach sequence
data.

user position

See entity defi nition in section 2.9.

Relation descriptions

layout descriptor to transient data item

traceunit REQ.TRANSIENT_DAT A.MULTIPLE_LAYOUTS

A half page layout descriptor may reference many transient data items. Conversely, a transient
data item may be referenced by many layout descriptors.

page to user position

A page must be displayable at one or more user positions. Conversely, there may be many pages
which can be displayed at a user position. In fact, all pages must be displayable at all user
positions.

split screen page to half page

A split screen page must comprise two half pages.

traceunit REQ.HALF_PAGE.MULTIPLE_USE

The inverse relation is: a half page may appear on many split screen pages.

full screen page or half page to layout descriptor

108

© 2005 Praxis High Integrity Systems

traceunit REQ.TRANSIENT_DAT A.MULTIPLE_PAGES

A a full screen page or a half page may use one layout descriptor. Conversely, a half page layout
may format many transient data pages.

3.2.1 Invariant properties

traceunit REQ.PAGE.NOT_SYS_CONSOLE

1. Pa g es cannot be displayed at the system console.

traceunit REQ.PAGE.VERSIONS_OK

2. If there exists a backup version of a page, there also exists a current version.

traceunit REQ.TRQ.RELEASE_DATE

3. A release date must be specified for a page whose version is pending (ie the page is on
the TRQ).

traceunit REQ.TRQ.MAX_FUTURE

4. The release date for a page is never more than 32 days later than the current (ie system)
date.

5. A split screen page comprises either two portrait half pages, or two landscape half pages.

109

© 2005 Praxis High Integrity Systems

traceunit REQ.HALF_PAGE.LAYOUT_ORIENTATION

6. A transient data half page and its layout are either both portrait or both landscape
format.

traceunit REQ.HALF_PAGE.CONSISTENT_LAYOUT

7. The layout descriptor for a transient data half page must be consistent with the referenced
transient data items, ie it must define a valid format for each item.

3.2.2 Assumptions

1. There can be TRQ or backup versions of half pages.

2. A half page can be edited whether or not it is referenced by other pages.

3. At least airport information can be manually updated on-line.

4. Pages can be displayed at the Engineer’s position but not at the system console.

Data flow diagram 2 with description

110

© 2005 Praxis High Integrity Systems

CDIS_time

page_
display_
req

page_display

user

trans_data_item

page_edit

TRQ_update

layout

page

layout

page
user

edit

display_
page

layouts

pages

manage_
TRQ

.3

.2

.1

Data flow diagram description:

2.1 manage_TRQ

inputs:

CDIS_time
To time queue releases.

outputs:

TRQ_update
The time release queue updates to the pages database. On release of a TRQ page, the
current page becomes the reserve; the old reserve page is lost; and the TRQ version of
the page becomes the current page.

2.2 edit

input/outputs:

page
The page being edited; TRQ, current or reserve versions may all be updated as a
consequence of user edits supported by this process.

111

© 2005 Praxis High Integrity Systems

traceunit REQ.PAGE_EDIT.VERSION

The user may edit the current or the TRQ versions.

traceunit REQ.PAGE_EDIT.LAYOUT

layout
The user may edit a layout.

inputs:

page_edit
The editor interface offered the user.

trans_data_item
Required as input to allow page display.

2.3 display_page

inputs:

page
Read from the page database.

layout
As used to build up displays of pages which use some transient data.

trans_data_item
As required to prepare for display pages containing one or more transient data items.

page_display_req
Input by the user requesting that a particular page be displayed at
the user position.

outputs:

page_display
The page displayed at the user position.

112

© 2005 Praxis High Integrity Systems

3 Maintain transient data

In this section we describe the facilities to update, maintain and display so-called ‘transient data’;
that is, data received from other CCF systems which is to be maintained and displayed in real-
time by CDIS on certain of the display information pages.

Principles

• Transient data is automatically maintained by CDIS in response to update messages received
from other systems.

• All transient data can be displayed on pages.

• CDIS should be able to display information which is updated in real-time, either in response
to an update message received from another system, or in response to manual entry of
information.

• The most important kinds of automatically updated information are airport operational data .

• CDIS must allow certain transient data to be maintained manually by editing staff. It should
be possible to manually enter transient data values to emulate an ADIS system for airports
such as Luton which may not be connected to CDIS.

Text Overview

CDIS receives regular updates of certain special types of data from the ADIS systems by means
of asynchronous messages across the CDIS:ADIS interfaces.

This is some of the main operational data needed by the ATCOs in performing the ATCO roles.
It includes data about airports, including met and runway data.

This data is expected to be confi gured for display on a number of (particularly half-size) CDIS
support information pages. Generally, users of CDIS may confi gure any page to show a number
of ‘dynamic’ or ‘transient’ fi elds, each linked to one of the transient data values, and each, when
the relevant page is being displayed, updated in real time.

Certain attributes of transient data reception and storage are to be confi gurable/adaptable; refer to
the separate section in chapter 3.

113

© 2005 Praxis High Integrity Systems

Data flow diagram 3 with description

user

manage_
airport_
data

distribute_
trans_
data

trans_
data_edit

airport_
data_
edit

airport_
data_update

trans_data_item

airport_
data

trans_data_
msg

CDIS_time

.2

.1

Process specifi cation:

The process specifi cation is divided into two parts:

• management of user-defi ned data;
• management of airport data.

3.1 distribute_trans_data
Distribution of transient data to/from external systems (ADIS).

input/outputs

trans_data_msg
Message received from the manage system interfaces process

outputs

airport_data_update
Met, runway, etc. data.

3.2 manage_airport_data
Airport data management; includes met and runway data, and ageing of airport data; also
substitute airport data input by the users.

inputs

airport_data_update
See above.

114

© 2005 Praxis High Integrity Systems

CDIS_time
Airport data has to be aged.

input/outputs

airport_data_edit

traceunit REQ.AIRPORT_DAT A.ALLOWED_USER_UPDATE

Editing of the airport data by the user; for use when an ADIS is unavailable for some
reason, or some of its data is not available via the ADIS-CDIS link.

airport_data
Updates to the transient database.

115

© 2005 Praxis High Integrity Systems

3.2 Manage airport data

Principles

• Airport operational information held by CDIS is updated either manually by data entry staff
or in response to messages received from ADIS systems.

• Airport information will be marked to indicate whether it has been manually entered, is
unavailable, or is out of date.

• A privileged user will be able to enter time parameters, used by the system to determine
whether data is to be regarded as old or out of date.

Data flow diagram 3.2 with description

air port_data_edit

age_
airport_
data

update_
airport_
data

edit_
airport_
data

user

airport_data_edit

air port_data

airport_data_
update

airport_data_age

CDIS_time

airport_data_update

.3

.2

.1

Process specifi cation:

3.2.1 edit_airport_data
User editing of airport data. Data so edited is displayed differently to distinguish it from
live data.

input/ouputs

airport_data_edit
Commands from the user and corresponding changes to the database; plus database

116

© 2005 Praxis High Integrity Systems

displays to the user.

3.2.2 update_airport_data
Updates transient database following receipt of a message from an ADIS system.

inputs

airport_data_update
Updates on receipt of input from ADIS.

outputs

airport_data_update
Updates on receipt of input from ADIS.

3.2.3 age_airport_data
Airport data is aged; as time passes and no new airport data messages are receievd from
ADIS, the state of the data moves from current/live to out-of-date, then to some extra-
out-of-date status. Not relevant when the data has been manually input.

inputs

CDIS_time
To age the data.

outputs

airport_data_age
Causing the data to be labelled with the appropriate status indication.

3.3 Error & exception handling

CDIS shall offer a systematic treatment of error and exceptional conditions. This shall include
timely, accurate recording of properly-identifi ed error information. An interface to a separate,
special purpose alarms system, EMC, shall be offered by CDIS.

3.4 System configuration/adaptation

The CDIS system must be adaptable in a number of respects, including at least the following
areas:

• The facilities available at user positions, in terms of hardware and software.
• Various timing parameters, such as for ageing transient data, sending broadcasts on shutdown,

removing broadcasts from the system, timeout parameters such as for flights landing and
departing.

• Valid ranges for selected transient data.
• Transient data to be flagged on change, and roles required to acknowledge the change.

117

© 2005 Praxis High Integrity Systems

4 PERFORMANCE AND SIZING REQUIREMENTS

4.1 Performance

The following are the performance requirements for CDIS.

For all the performance requirements, in 95% of cases they will fall within the required time.

4.1.1 System Start-Up

4.1.1.1

traceunit REQ.PERF.COLD_START

The time to cold start CDIS, when no more than thirty pages are out of date on the PS/2s, shall be
no more than fi fteen minutes, measured from giving the start CDIS command to the point where
all user interfaces are displayed and call attempts have been made to all ADIS systems.

4.1.2 Workstation User Interface

The following are the maximum delays. They include transmission delays within CDIS where
applicable.

a.

traceunit REQ.PERF.CURSOR

Time from initiating a cursor movement to the movement being visible on the screen:
- no perceptible delay under peak loading.

b.

traceunit REQ.PERF.MENU

Time from initiating a menu selection to a visible indication of the selection being given:
- 100ms under peak loading

NOTE: ‘Visible indication of a selection’ is be any change in the display which indicates

4 PERFORMANCE & SIZING

118

© 2005 Praxis High Integrity Systems

that the operation has started, and not completion of the associated operation.

c.

traceunit REQ.PERF.DAT A_ENTRY

Time from entry of data to its display on the screen at the entry position:
- 200ms under peak loading

d.

traceunit REQ.PERF.TEXT_DISPLAY

Time from completing the selection of a text page at a position to the display being
complete at that position:

- 2 seconds

NOTE: This requirement is to be tested on a page agreed between the contractor and
CAA.

e.

traceunit REQ.PERF.GRAPHICS_DISPLAY

Time from completing the selection of a graphics page at a position to the display being
complete at that position:

- 2 seconds

NOTE: This requirement is to be tested on a page agreed between the contractor and
CAA.

f.

traceunit REQ.PERF.UPDATE_DAT A

Update of textual airport data following receipt of data from ADIS:

4 PERFORMANCE & SIZING

119

© 2005 Praxis High Integrity Systems

- 2 seconds

g.

traceunit REQ.PERF.UPDATE_GRAPHIC

Update of graphical airport data following receipt of data from ADIS:
- 3 seconds

NOTE: This requirement is to be tested on a page agreed between the contractor and
CAA.

4 PERFORMANCE & SIZING

120

© 2005 Praxis High Integrity Systems

A APPENDIX: Glossary of Terms

ATIS Airfi eld Terminal Identifi cation Service
ADIS Airport Display Information System
Alarm system The system which monitors the health of CDIS hardware elements.
ASA Approach Sequence Allocator
ASNo Approach Sequence Number
ATC Air Traffi c Control
ATCA (Same as ATSA)
ATCO Air Traffi c Control Offi cer
ATSA Air Traffi c Support Assistant
Bandboxing Grouping several ATC responsibilities at one suite.
CAA Civil Aviation Authority
CAP Common Approach Point
CAPS CDIS Administrational Processing Subsystem
CAPSIN Civil Aviation Packet Switching Integrated Network
CASOR Civil Airspace Operations Room
CCF Central Control Function
CCPS CDIS Central Processing Subsystem
CCTV Closed Circuit Television System
CDIS CCF Display and Information System
CERD Computer Entry and Readout Device
CERDI Computer Entry and Readout Device Interface
CLAN CDIS Local Area Network
CQF CDIS Query Form
COPS CDIS Operational Processing Subsystem
CSIS CCF Support Information System
CTS Central Time Source (same as TIMEON)
CID Computer Identifi er (of a flight)
DM Departure Message
EDD Electronic Data Display
EDDUS Electronic Data Display and Update System
E-R Entity-Relationship
ETA Estimated Time of Arrival
Fastkey A PSD key bound to a predefi ned page, giving single key-stroke recall
FIN Final (approach) director
FIR Flight Information Region
GMC Ground Movement Control
HCS Host Computer System
ICD Interface Control Document
ILS Instrument Landing System
INT Intermediate (approach) director
IRVR Instrument Runway Visual Range
LATCC London Air Traffi c Control Centre
LTMA London TMA
MAC Major Airport Complex
EMC Equipment Maintenance Control
MTBF Mean Time Between Failures

GLOSSARY OF TERMS

121

© 2005 Praxis High Integrity Systems

MTTR Mean Time To Restoration
NAS National Airspace System (same as HCS)
NATS National Air Traffi c Services
NDB Non-Directional Beacon
PSD Page Selection Device
PSDI Page Selection Device Interface
SADIE Sequence Allocator and Director Interface Equipment
SCA Speed Control Advice
SID Standard Instrument Departure
SIRS Support Information Retrieval System
TIMEON same as CTS
TMA Terminal Manoeuvering Area
TRQ Timed Release Queue
TSD Terminal Stack Delay
VDM Vienna Development Method
VOR VHF Omnidirectional Radio-beacon

GLOSSARY OF TERMS

122

© 2005 Praxis High Integrity Systems

B APPENDIX: INDEX OF TRACEUNITS

REQ.ADIS.EN ... 7
REQ.ADIS.NAS_LINK ... 10
REQ.AIRPORT.ADIS ... 10
REQ.AIRPORT.EN ... 8
REQ.AIRPORT.RUNWAY ... 9
REQ.AIRPORT_DAT A.ALLOWED_USER_UPDATE ... 48
REQ.DEVICE.EN ... 17
REQ.DEVICES.ATCO ... 19
REQ.DEVICES.EDITOR ... 19
REQ.DEVICES.ENGINEER ... 19
REQ.DEVICES.SYS_CONSOLE ... 19
REQ.EDD.EN ... 18
REQ.EDD.USER_POSN ... 19
REQ.ENGINEER.DUPLICATION ... 14
REQ.ENGINEER.FUNCTIONS ... 15
REQ.HALF_PAGE.CONSISTENT_LAYOUT ... 43
REQ.HALF_PAGE.CONTENTS ... 37
REQ.HALF_PAGE.LAYOUT_ORIENTATION ... 43
REQ.HALF_PAGE.MULTIPLE_USE ... 41
REQ.HALF_PAGE.ORIENTATION ... 38
REQ.HALF_PAGE.RELEASE_DATE ... 38
REQ.HALF_PAGE.UNIQUE_ID ... 37
REQ.HALF_PAGE.VERSION ... 38
REQ.KEYBOARD.EN ... 18
REQ.MOUSE.EN ... 18
REQ.PAGE.BACKUP_VERSION ... 35
REQ.PAGE.CURRENT_VERSION ... 35
REQ.PAGE.FIXED_DAT A ... 37
REQ.PAGE.FIXED_DAT A_UPDATE ... 32
REQ.PAGE.LAYOUT_DESCRIPTOR ... 39
REQ.PAGE.LAYOUT_DESCRIPTOR_USE ... 39
REQ.PAGE.NOT_SYS_CONSOLE ... 42
REQ.PAGE.NUMBER ... 35
REQ.PAGE.PENDING_VERSION ... 35
REQ.PAGE.RELEASE_DATE ... 36
REQ.PAGE.SELECTION ... 35
REQ.PAGE.TRANSIENT_DAT A ... 40
REQ.PAGE.TRANSIENT_VERIFICATION ... 40
REQ.PAGE.TRQ_RELEASE ... 36
REQ.PAGE.UNIQUE_ID ... 36
REQ.PAGE.VERSION ... 36
REQ.PAGE.VERSIONS_OK ... 42
REQ.PAGE.VIEW_POSNS ... 32
REQ.PAGE_EDIT.LAYOUT ... 45
REQ.PAGE_EDIT.POSNS ... 32
REQ.PAGE_EDIT.VERSION ... 45
REQ.PAGE_TYPE.FULL_SCREEN ... 36
REQ.PAGE_TYPE.HALF_PAGE ... 37

GLOSSARY OF TERMS

123

© 2005 Praxis High Integrity Systems

REQ.PAGE_TYPE.SPLIT_SCREEN ... 38
REQ.PERF.COLD_START ... 51
REQ.PERF.CURSOR ... 51
REQ.PERF.DAT A_ENTRY ... 52
REQ.PERF.GRAPHICS_DISPLAY ... 52
REQ.PERF.MENU ... 51
REQ.PERF.TEXT_DISPLAY ... 52
REQ.PERF.UPDATE_DAT A ... 52
REQ.PERF.UPDATE_GRAPHIC ... 53
REQ.POSN.ATCO ... 14
REQ.POSN.EDITOR ... 15
REQ.POSN.ENGINEER ... 15
REQ.POSN.SYS_CONSOLE ... 15
REQ.PROCESSOR.EN ... 18
REQ.PSD.EN ... 18
REQ.ROLE.EDITOR ... 12
REQ.ROLE.EN ... 13
REQ.ROLE.ENGINEER ... 12
REQ.ROLE.SUITABLE_POSN ... 16
REQ.ROLE.TMA ... 12
REQ.ROLE.USERS ... 16
REQ.RUNWAY.EN ... 8
REQ.SPLIT_SCREEN_PAGE.RELEASE_DATE ... 39
REQ.SPLIT_SCREEN_PAGE.VERSION ... 39
REQ.SYS.INITIAL_STARTUP ... 28
REQ.SYS.STARTOVER ... 29
REQ.SYS.STARTUP ... 28
REQ.SYS.STARTUP_RAPID ... 27
REQ.SYS.STARTUP_VALID ... 30
REQ.SYS_IF.ADIS_CDIS_MSG ... 27
REQ.SYS_IF.ADIS_TRANS_DAT A_MSG ... 27
REQ.TAPE.NO_OVERWRITE ... 29
REQ.TRANSIENT_DAT A.AGING ... 33
REQ.TRANSIENT_DAT A.DEF ... 40
REQ.TRANSIENT_DAT A.FLAG_CHANGES ... 33
REQ.TRANSIENT_DAT A.ID ... 40
REQ.TRANSIENT_DAT A.MARK_MANUAL ... 33
REQ.TRANSIENT_DAT A.MULTIPLE_LAYOUTS ... 41
REQ.TRANSIENT_DAT A.MULTIPLE_PAGES ... 42
REQ.TRQ.MAX_FUTURE ... 42
REQ.TRQ.RELEASE_DATE ... 42
REQ.USER.MULTIPLE_ROLES ... 16
REQ.USER_POSN.EN ... 14
REQ.USER_POSN.ROLES ... 16

GLOSSARY OF TERMS

124

SECTION 6. REQUIREMENTS DOCUMENT FOR CASE STUDY 5:
AMBIENT CAMPUS – THE LECTURE SCENARIO

6.1. Introduction

This case study captures several main characteristics of the ambient intelligence applications,
which are to be built as open and dynamic pervasive systems involving people that carry
handheld devices to help them in their daily activities.

The chief objectives of the Ambient Campus case study are to

• elucidate the specific fault tolerance and modelling techniques appropriate for the
application domain

• validate the methodology developed in WP2, the basic kernel plug-ins from WP3 and the
model checking plug-in supporting verification based on partial-order reductions

• document the experience in the forms of guidelines and fault tolerance templates.

The case study will be investigated as a series of scenarios. This section describes the
requirements for the first scenario (i.e. the lecture scenario) in which we propose and evaluate
initial development techniques, develop the first prototype, accumulate experience in dealing
with fault tolerance and mobility during rigorous system development and gain first experience
with the use of mobile computing devices and wireless networks.

In this scenario we deal with a number of faults. In our analysis of the environment and of the
system, we have identified these faults as being typical for the ambient intelligence (AmI)
systems of this type. Dealing with this representative set of faults in this scenario will allow us to
generalise our experience and to produce fault tolerance and mobility templates and guides
assisting the developers of the future AmI applications.

In this section, the term users denotes people actively participating in our scenario (i.e. teachers
and students) and the term agents refers to software running on personal digital assistants
(PDAs) or desktop computers. We will also differentiate between actions of users and agents. In
the context of the agents, we refer to services that these agents and Ambient Campus
Environment (ACE) provide to users. Users, in turn, are involved in activity when they are using
agent services.

We assume that users’ activities are defined before the the system is defined and developed (for
example, teachers deliver lecture material, and students attend lectures, among others) although
they do not include additional services provided by agents. Our goals are to define and
implement agent services that assist the users in performing the activities defined in this section.
One of the results of this work will be the development of software that implements the agents
used in the scenario described in this section.

125

6.2. Requirements Taxonomy

The requirements are classified into several categories that represent the taxonomy.

1. EN – Environment: statements about the required properties of users, agents and ACE.

2. FT - Fault tolerance: the system should be able to tolerate a number of abnormal situations

such as connectivity loss, failures of PDAs and desktop computers, violation of time
constraints and fire alarms. These requirements define a set of related abnormal situations.

3. ST – Agent state: statements defining how the agents change their states depending on the
role or activity they are performing at a particular time.

4. SV - Service requirements and restrictions: these requirements define the services provided
by agents and ACE.

5. QL - Service quality: for some of the services provided by the agents, this section sets
additional requirements related to the quality of service, such as performance and resource
usage.

6. SE – Security: these requirements capture all the issues related to access permission,
authorization and shared resource access.

7. TT – Delays and timeouts associated with various services or service quality requirements.

Some of the requirements are linked to other requirements. When this happens, a list pointers to
the relevant requirements is given after the description of that requirement.

6.3. Scenario Environment

At the high-level view of the scenario we have users, locations and ambient computing
environment (ACE).

EN. 1: The scenario is composed of users, locations and
ambient computing environment (ACE)

The term “user” denotes a person actively participating in our scenario; this could be a teacher or
a student.

EN. 2: A user is a teacher or a student

Location refers to a room on campus that has a hotspot which provides wireless connectivity.
Connectivity areas may reach beyond the room or even cover several rooms. Connectivity areas
may also overlap (see Figure 6.1).

126

EN. 3: Location is a room with a wireless connectivity
provided by a hotspot

Each location also has a desktop computer, which is to be used by the teacher to join the
scenario. This desktop computer (in conjunction with an overhead data projector – which will
also be available in the room, but is not of interest in our scenario) will also be used by the
teacher as a means to deliver the lecture materials such as slides, demos or videos.

EN. 4: Each location is equipped with a desktop computer
which is to be used by the teacher

At any moment any user can be in at most one location.

EN. 5: At any moment any user can be in at most one
location

ACE is composed of agents, hotspots that support wireless communication among agents,
personal digital assistants (PDAs) and desktop computers.

EN. 6: ACE is composed of agents, hotspots, personal
digital assistants (PDAs) and desktop computers

An “agent” is a piece of software that runs on PDAs or desktop computers, with a purpose to
support lecturing activity.

EN. 7: An agent is a piece of software running on PDAs or
desktop computer, supporting lecturing activity

The interactions among users (teacher and students) are done through agents. Each user will have
an agent associated with them in a one-to-one relationship.

Figure 6.1: Location and connectivity area

127

EN. 8: Each user has a unique agent representing them in
the interactions within the scenario

ACE is intended to provide additional services for effective communication between teacher and
students and among students during lectures. Each student user is given a PDA, through which
he/she is involved into the scenario. PDAs may also be used to write and run small programs, for
quiz taking and for collaboration between students.

EN. 9: Each student user has a PDA

Any agent can take one of the two roles: the teacher role or the student role.

EN. 10: An agent can take a role of a teacher or a student

The student agent interacts through a PDA while the teacher agent interacts through a desktop
computer.

EN. 11: Student agent interacts through a PDA (see EN.
9)

EN. 12: Teacher agent interacts through a desktop
computer (see EN. 4)

EN. 11 and EN. 12 above allow a teacher user (i.e. a person whose job is to teach) to act as a
student in some lecture by joining the scenario using a PDA; or a student user to give a lecture in
some special cases by using the desktop computer available in that lecture room.

To simplify the model, we only consider activities performed by the users through their agents
during lectures. However, we want to explicitly introduce the states that an agent can be in.
There are four top level states for an agent: lecture, free, migrating, outside and emergency.

ST. 1: The agents’ top-level states are lecture, free,
migrating, outside and emergency

For better scenario structuring, we allow states to have sub-states. A tree-structure is used, where
the sub-states are represented as branches of the parent or container state.

ST. 2: Top-level states may have sub-states

The sub-states serve as a logical boundary grouping several independent services. On entering a
sub-state, agent preserves access to all of the services of the containing state and acquires a new
set of services associated with this sub-state.

128

ST. 3: On entering a sub-state, an agent preserves the
services associated with the containing state, and
acquires a new set of services

When an agent enters a sub-state, it is still considered to be in all of the parent states. One of the
top-level states, as given in ST. 1, is always associated with each agent.

ST. 4: An agent is always associated with one of the top-
level states (see ST. 1)

Lecture state corresponds to a lecture-type joint activity involving students and teacher. This is
the most complex state in the scenario and it contains several sub-states. We will discuss the
lecture state in section 6.4 whereas the rest of the states will be discussed later in section 6.5.

6.4. Lecture State

Here we mostly focus on agent-related issues of in-lecture actions. ACE is intended to assist in
delivering a lecture and we will determine activities that can be most successfully supported by
ACE. We break the lecture activity into small functional blocks that are either lecture sub-states
or service requirements. These blocks may be dynamically composed to form a unique lecture
activity. The finer the block is, the more detailed and accurate lecture composition could be
achieved. To start with, a lecture involves a teacher and several students located in the same
location.

EN. 13: A lecture involves a teacher and several students
in the same location

It is not allowed to have more than one lecture happening in the same location at the same time.
It is possible to have no lecture happening in a given location at a given time.

EN. 14: At any moment, only up to one lecture can be
given in one location

Only teacher can deliver lectures.

EN. 15: Only teacher can deliver lectures

A user acts as a teacher by logging in to the desktop computer available in the lecture room. This
user’s agent then assumes the teacher role.

EN. 16: When a user logs in to the desktop computer in
the lecture room, its agent assumes the role of a teacher
(see EN. 4 and EN. 12)

129

A user coming to a lecture room with a PDA will assume the student role.

EN. 17: Agents of the users joining the lecture through
their PDAs will assume the role of a student (see EN. 9
and EN. 11)

It is not allowed for a user to participate in a given lecture with more than one role. We also
prevent a user from participating in several lectures at the same time while in one location when
there is an overlap of connectivity areas – see Figure 6.1.

EN. 18: Each user's agent can only take one role per
location

Once an agent is involved in a lecture and takes a particular role, it cannot change its role from
student to teacher or vice versa during that lecture.

EN. 19: Once an agent assumes a role in a lecture, it
cannot change its role throughout the duration of that
lecture

The teacher should be able to control the use of PDAs and wireless networks in that location.

EN. 20: Teacher has full control of the PDAs and wireless
networks at the location he/she is currently teaching

Each lecture is associated with a particular module. This is to allow scheduling and to make
distinction among lectures.

EN. 21: Each lecture is associated with a module

A module is equivalent to a course or class as defined by the university or a school within the
university. It represents a basic unit of study within a degree programme. We will not discuss it
further in this section.

Lecture state has two sub-states: individual state and group state.

ST. 5: Lecture state has two sub-states: individual state
and group state

Individual state is associated with the situation where the teacher gives individual task to the
students (see section 6.4.4), whereas the group state relates to the group task activities (see 6.4.5
and 6.4.3). Figure 6.2 shows the states involved in a lecture.

130

Figure 6.2: Lecture state and its sub-states

We will now discuss the activities (and their related services) that are performed by teacher and
students (through their agents) during a lecture.

6.4.1. Lecture initiation

For a lecture to begin there should be a teacher and several students in the same location. Not all
of the students may have a PDA but there should be some minimal number of students with
working PDAs, otherwise ACE support for the lecture will be automatically halted. There may
be other start preconditions, including specific preconditions for teacher and lecture module, but
for now we will just keep it simple.

SV. 1: For ACE-supported lecture to begin, there should
be one teacher agent and several student agents in the
same location

A lecture begins with the teacher – through his/her agent – taking a register of all the students
present in the lecture room.

SV. 2: Lecture begins with the teacher agent requesting
registration of the students present in the lecture room

Students’ PDAs automatically submit student registration data (such as student’s login id, name
and course or module taken) upon the registration request raised by the teacher agent in SV. 2.

SV. 3: Upon registration request (see SV. 2), student
agents submit their registration data to the teacher agent

The teacher agent must assist the teacher in validating students’ registration data. Examples of
bogus data include copied student identification or unauthorized use of a borrowed PDA.

FT. 1: Student agent may send invalid, incomplete or
bogus registration data (see SV. 3)

lecture

individual state group state

131

The registration process should take finite time, as specified by the timeout TT. 1 (see section
6.8). The timeout delay will be found out experimentally so that use of ACE during registration
is comfortable for both teacher and students.

QL. 1: Registration phase should be completed within the
timeout TT. 1 (see SV. 2)

Some students for some reasons which we ignore in this scenario may be disallowed to attend a
particular module. The teacher then checks access rights for the students and rejects those who
cannot attend the lecture.

SV. 4: Teacher agent checks access rights for each
student agent

An obvious source of failures we have to take into account here is insufficient or lack of access
rights for some of the students.

FT. 2: Some students may not have proper access rights
to attend the lecture (see SV. 4)

All we have to do in this situation is to make sure that such student cannot participate in the
ACE-supported lecture activities, although they might be allowed to sit through the lecture.

SE. 1: Students without proper access rights cannot
participate in ACE-supported lecture (see FT. 2)

Teacher agent registers all students with proper access rights.

SE. 2: Only students with proper access rights are
registered to the ACE-supported lecture (see FT. 2 and
SE. 1)

When all the participating students are known, the lecture environment is configured as specified
by the teacher for the duration of the lecture.

SV. 5: Teacher agent configures lecture environment for
all registered student agents for the duration of the
lecture

There should be a feature that allows remote configuration and software update to the registered
student agents to be performed by the teacher. This might include enabling/disabling of certain
ACE services, uploading new agent software on student PDAs or restricting access to some
services on student PDAs.

132

SV. 6: There should be a feature to allow teacher agent to
perform remote configuration and software update on the
registered student agents (see SV. 5)

To enable closer and more synchronous cooperation with the students, the teacher issues a key
which allows the students to trigger services in the teacher agent. This enables addressed and
private communication between the students and the teacher. Only registered students are
allowed to communicate with the teacher through ACE support (see SE. 1)

SV. 7: Teacher agent distributes lecture key to the
registered student agents

SV. 8: Registered student agents wait for the lecture key
to come from the teacher agent

Key distribution must not take too long and should finish within some timeout TT. 2. Unlike TT.
1, TT. 2 timeout should be quite small as this stage does not require any attention from the users.

QL. 2: Lecture key distribution should finish within the
timeout TT. 2 (see SV. 7 and SV. 8)

It is a major security problem if the key is received and used by some unauthorized student or a
malicious agent. We must ensure that only eligible students can receive the lecture key.

SE. 3: Lecture key should only be received by the
registered student agents (see SV. 4, SE. 2, SV. 7)

A student without appropriate key cannot enter the ACE-supported part of a lecture. This is
another security measure on top of SE. 1.

SE. 4: Students without a lecture key cannot participate
in ACE-based lecture activities (see SV. 7, SE. 3)

We must account for the case when not all the students get the key within the timeout TT. 2.

FT. 3: Some registered students might not receive the
key during the timeout TT. 2 (see SV. 7, QL. 2)

Teacher agent must provide some assistance to the teacher in this situation.

Some students might turn up at the lecture late (i.e. after the registration process is completed
and lecture keys have been distributed).

133

FT. 4: Some students might turn up at the lecture late
(i.e. after the registration process is completed and
lecture keys have been distributed)

In this case, they might attempt to join the ACE-supported lecture by sending their registration
data to the teacher agent.

SV. 9: Late students might attempt to register to the
lecture (see FT. 4)

Teacher agent must be able to detect registration requests from late students and allow the
teacher to decide whether to let them join or not (for example, they might be too late to join a
group discussion).

SV. 10: Teacher agent must be able to handle registration
request from late students (see FT. 4 and SV. 9)

If the teacher allows the late students to join, teacher agent will send the lecture key to the
student agents of these late students.

SV. 11: Teacher agent might issue lecture key to the
agent of students arriving late to the lecture (see FT. 4)

6.4.2. Material dissemination

Teacher distributes the information related to the lecture, such as lecture notes or reading list,
directly onto student PDAs. Students can read this information during the lecture and save it in
their private storage space for later use.

SV. 12: Teacher distributes lecture material

SV. 13: Students wait for the lecture material and save it
on their PDA

Distribution of lecture material can happen several times during one lecture. However, students
must be prepared to respond to this action, which means that they might need to stop or suspend
their current activity. This may be initiated either by ACE tools or by the teacher (verbally)
asking the students to put their PDAs in a certain operation mode.

SV. 14: Teacher notifies the students to get prepared to
receive the lecture material

134

When the students are ready, the material can be sent out. Teacher agent sends the lecture
material and then waits for the acknowledgements from all the students through their agents.

SV. 15: Teacher agent sends out lecture material to
student agents

Students, through their agents save the lecture material on their PDAs.

SV. 16: Student agents receive the lecture material and
save it locally on student PDAs

Each student agent sends an acknowledgement back to the teacher agent that they have received
the lecture material.

SV. 17: Student agents send an acknowledgement to the
teacher agent on the receipt of the lecture material

The acknowledgements should arrive within the predefined timeout TT. 3 from the time the
teacher agent sent the lecture material. Since this procedure does not include any actions from
users the timeout should be quite small.

QL. 3: Lecture material receipt should be acknowledged
by all the student agents within the timeout TT. 3

It is possible that the lecture material or the acknowledgement receipt of lecture material do not
arrive within timeout TT. 3.

FT. 5: Lecture material may not arrive within the timeout
TT. 3

FT. 6: Lecture material receipt acknowledgement may not
arrive within the timeout TT. 3

As a consequence, the teacher agent might not receive all lecture material receipt
acknowledgements from all student agents within timeout TT. 3.

FT. 7: Teacher agent does not receive lecture material
receipt acknowledgements from all student agents within
timeout TT. 3 (see FT. 5, FT. 6)

If FT. 7 happens then something must have gone wrong and the users with the help from their
agents must handle the situation. The easiest way to handle this is by having the teacher agent to
re-send the lecture material.

135

QL. 4: In case of failure (FT. 7), service SV. 12 may be
restarted

6.4.3. Organization into groups

Students may be organized into groups to work on some task or for a group discussion.

SV. 18: Teacher organises students into groups

Student agents must be put into a certain mode to accept group organization request from the
teacher agent. Once again, this can be achieved either by ACE or oral communication between
the teacher and the students.

SV. 19: Teacher agent sends group organisation request
to all student agents

Upon this group organization request, the students must stop their current activity and set their
agents to get into the group state. This might require some state serialization or data backup for
any interrupted activities to be resumed later.

SV. 20: Having received group organization request (see
SV. 19), students must cease any other activity and
prepare to enter the group state

To differentiate between the groups, the teacher must assign names to them. Each student
receives the name of the group to which he/she belongs to.

SV. 21: Teacher agent sends to each student agent the
name of the group that they belong to

Each student agent sends a message back to the teacher agent to acknowledge that the group
name is received.

SV. 22: Each student agent sends an acknowledgement
on the receipt of their group name to the teacher agent

The teacher agent must receive the acknowledgements from all student agents that they have
received their group name within timeout TT. 4.

QL. 5: Teacher agent must receive the acknowledgements
from all student agents that they have received their
group name within timeout TT. 4

136

We must take into account the situation where some student agents are unable to enter their
allocated group because they did not receive the name of their group or something was wrong
with their PDA.

FT. 8: Teacher agent might not receive acknowledgement
of group name receipt from all student agents within
timeout TT. 4

If the teacher agent does not receive group name acknowledgement receipts from all student
agents within the timeout TT. 4 then some recovery actions must be taken by the teacher agent.
The teacher might decide to either drop ACE support for group organisation during this lecture
or organise students in a different way ignoring those problematic agents.

With a group name, student agents gain ability to send messages to other participants of the same
group.

SV. 23: Group name gives the ability to a student agent
communicate with other students within the same group

On the other hand, when in a group, a student cannot communicate with other students outside of
his/her group.

SV. 24: Student agents cannot communicate with other
student agents outside the current group they belong to

Student agent can always communicate with the teacher agent during the lecture, regardless of
the group organisation.

SV. 25: Student agents can always communicate with the
teacher agent during the lecture

At any given time during a lecture, each student agent can be only in one group.

SE. 5: Each student agent belongs to only one group at
any given time during a lecture

We must ensure that each student is really participating in the group to which they are assigned
to. There must be no way for the students to break this rule.

SE. 6: Teacher makes sure that each student is in the
right group

137

Group is a sub-state of the lecture state. If the whole lecture is abandoned then all the nested
groups and other nested states are automatically destroyed.

ST. 6: Group is a sub-state available to student agents
during a lecture

If no group is formed, students may be allowed to freely communicate with each other. At the
beginning of each lecture, all student agents are placed in the same group.

QL. 6: Lecture starts with all the student agents placed in
the same group

6.4.4. Individual task

Teacher may give individual task and collect the answers (using the ACE support) during the
lecture or sometime later. It is up to the teacher to determine when the students must present the
answer.

SV. 26: Teacher may give individual task

SV. 27: Students must be able to accept an individual
task given by the teacher

Before receiving the task, students must stop any other activities and prepare to receive the task.

SV. 28: Students prepare to take the individual task given
by the teacher

Teacher, through their agent, can send the individual task material to the students anytime during
the lecture.

SV. 29: Teacher agent sends the individual task material
to the student agents

Students, through their agents, must then accept the task material and save it locally on their
PDA.

SV. 30: Student agents receive the individual task
material and save it locally on their PDA

Students must acknowledge that the individual task material has actually arrived.

138

QL. 7: The individual task material receipt must be
acknowledged by each student within the timeout TT. 5

Teacher agent should provide some automatic or semi-automatic recovery in a case where some
students did not acknowledge the material receipt.

FT. 9: Not all student agents acknowledge the receipt of
the individual task material within timeout TT. 5 (see QL.
7)

In the case of FT. 9, recovery is required only for the students which have not received the
material.

QL. 8: In case of failure FT. 9, service SV. 29 may be
repeated

Each student must eventually send the answer to the task, although they might not be required to
do this during the lecture.

SV. 31: Each student must eventually send the answer to
the individual task

QL. 9: Student's answer to the individual task might be
sent after the end of the lecture (see SV. 31)

After some time, maybe after the lecture ends, the teacher receives the answers and checks their
correctness.

SV. 32: Teacher checks all of the submitted answers for
the individual task

There may be a case when student mistakenly sends an answer to a wrong teacher. Such situation
must be sorted out automatically by the teacher agent and must not take any of the teacher’s
time.

FT. 10: The individual task answer could be sent by
unauthorized student

FT. 11: The individual task answer could be sent to a
wrong teacher

We require that any recovery action should hide unauthorized messages from teacher agent user.

139

SE. 7: Teacher agent must silently ignore individual task
answers from unauthorized student agents (see FT. 10,
FT. 11)

Since answers may be used by teachers to assess student’s performance, special attention should
be paid to the detection of answers with faked credentials.

SE. 8: There must be no way for students to use fake
credentials when sending the answer to the individual
task

6.4.5. Group task

Teacher may also give a group task to the students. Students are arranged into groups and
students in each group work together to provide an answer to the task.

SV. 33: Teacher may give group task (see SV. 18)

SV. 34: Students must be able to accept a group task
given by the teacher

As in the case with individual task, we must ensure that each student in the group is ready to take
the task.

SV. 35: Students in each group prepare to take a group
task given by the teacher

Teacher agent sends the group task material to all groups.

SV. 36: Teacher agent sends the group task material to
student agents in each group

Student agents then accept the group task material and save it locally on their PDA.

SV. 37: Student agents in each group receive the group
task material and save it locally on their PDA

Each group must acknowledge the receipt of task material.

QL. 10: The group task material receipt must be
acknowledged by each group within the timeout TT. 6

140

Teacher agent must handle the situation when one or more groups do not send an
acknowledgement.

FT. 12: Not all the groups acknowledge the receipt of the
group task material within timeout TT. 6 (see QL. 10)

In the case of FT. 12 failure, the teacher might decide to resend the group task material to some
or all of the groups.

QL. 11: In case of failure FT. 10, service SV. 36 may be
repeated

Each group must present the group answer to the teacher sometime during the lecture.

QL. 12: The answer or indication of inability to answer the
group task must be received by the teacher before the
lecture ends

Teacher collects the answers from all the groups and checks their correctness.

SV. 38: Teacher checks all of the submitted answers for
the group task

It is possible that a group sends several answers for the same task. Teacher agent must detect
such situation and resolve this automatically or assist the teacher on this matter.

FT. 13: There may be more than one answer submitted
by a group

Just like in the case with individual tasks, correct credential for the group answers is an
important security issue.

SE. 9: There must be no way for groups to use fake group
credentials when sending the answer to the group task

6.4.6. Questions from students

There is one kind of activity that is initiated by the students. Students, through their agents, may
ask questions to the teacher any time during the lecture (even during an individual or a group
task). This is the main communication channel from students to the teacher.

141

SV. 39: Students may directly ask questions to the
teacher through their agents

Teacher agent must immediately detect any questions from students.

SV. 40: Teacher agent must be able to detect questions
raised by the students

Teacher may answer immediately or later during the lecture or after the lecture or never at all.
The answer may be private or public and can be given through ACE tools or in natural language
or both.

SV. 41: Teacher may answer the questions raised by the
students

SV. 42: Teacher's answer could be delivered through ACE
or by traditional means (orally)

Questions may arrive simultaneously from several students, so teacher agent should sort and
store these questions to be viewed and answered later by the teacher.

QL. 13: Teacher agent should be capable of handling
multiple questions at the same time

Teacher agent must ignore any questions originating from students not participating in the
current lecture.

SE. 10: Questions from students not participating in the
lecture must be ignored by the teacher agent

6.4.7. Lecture ending

Lecture ends when certain conditions are broken. If most of the students or the teacher has left
the lecture then we assume that there is no need to provide agent-level support for lecture
activity.

SV. 43: Lecture ends when there are less than N students
or there is no teacher in the location

When lecture ends, all users might still stay in the same location but without any joint activity.
They can either migrate to other location or organize a new lecture in the same location.

142

ST. 7: When a lecture ends or a user leaves the lecture
location, the user's agent’s state is changed to free (see
ST. 18)

ST. 7 above mentions “free” state. The meaning of this state is described in section 6.5.1.

6.5. Other states

Lecture state is the largest part of the scenario. To simplify its description we decided to focus
only on the lecture part and present a simplified view on the scenario for the readers. However it
is impossible to build a complete system with an obscure and undefined “not-in-lecture” state.

Not-in-lecture is an abstract state solely used to enable transition to/from the lecture part of the
scenario from/to the rest. As shown in the Figure 6.3 below, not-in-lecture state corresponds to
two states: free and migration.

Figure 6.3: New look at state transition between lectures

“Free” state is an intermediate state which is used to give agents a choice of whether to
participate in a lecture or migrate somewhere else or stay in the current location. An agent can
stay in a free state for as long as it wants.

“Migration” state is a situation where an agent is in the process of moving from one location to
another. It was introduced to explicitly deal with physical migration problems present in mobile
software. Migration process takes some time, during which many events and failures may occur
and we want to explicitly introduce migration state, as connectivity-related failures are important
to us.

There are two other top level states: outside and emergency (see ST. 1)

“Outside” state represents the state of those agents currently not participating in the scenario but

Lecture Not-In-Lecture Lecture

Lecture Free Lecture Migration Free

Outside

Full version

Simplified
version

143

can join the scenario. Agents also leave the scenario by changing their state to outside.

“Emergency” state is used to coordinately handle local or global emergency situations, such as
fire alarm or electricity loss. This state is somewhat a special case here, where it is used to
coordinate agents and users during recovery actions that require location-wide or even global
recovery actions. There may be a transition to this state from any other states except outside
state.

The full diagram of the states present in the scenario is shown on the Figure 6.4.

Figure 6.4: Full diagram of the scenario states

Failures may lead to transition to emergency state from lecture, free and migration states. For the
sub-states of lecture state we require the nested activities to be finished prior to transition to
emergency state. Effectively it is means usage of state-specific recovery procedures for the sub-
states.

States are also classified by the quality of ACE support. To simplify the scenario we do not deal
we disconnection and other connectivity problems in free and lecture states. The focus on that is
made in migration state, where we expect agents to experience repeated disconnections. Agents
in outside state are not part of the scenario and even if they in a hotspot coverage area, there is no
ACE support for them.

6.5.1. Free State

A user’s agent is in a “free” state when the user is located in an ACE supported location but is
not participating in a lecture. Under normal circumstances, a user’s agent that is currently in a
“free” state can only change its state to either migration or lecture.

Lecture

Free Migration Outside

Group w. Test

Full Intermittent None ACE Support:

Emergency

144

ST. 8: User’s agent in free activity state can migrate to a
different location

ST. 9: User’s agent in free activity state can register in a
lecture happening in the location where the user is
currently located

When global emergency state is activated, the state of every user’s agent in a given location must
also be changed to emergency state.

ST. 10: User’s agent’s free activity state is changed to
emergency state when emergency state is globally
activated

6.5.2. Migration State

Migration state captures details of the physical migration of the users, and along with that, the
migration of the users’ agents in term of the connectivity area. This stage may include network
disconnections and partial or total loss of ACE support.

FT. 14: Migration activity must tolerate wireless network
disconnection and loss of ACE support

Network connection must be automatically reestablished when an agent enters into area covered
by a wireless hotspot.

QL. 14: Agent must reestablish the network connection as
soon as it enters wireless hotspot connectivity area

Agent must be able to continue its operation despite some operations may be interrupted by
disconnection.

FT. 15: Any operations in migration stage must be able to
tolerate permanent and temporary disconnections

When an agent enters an area of another hotspot or reestablishes connectivity with the original
location, the agent’s state is changed to the “free” state.

ST. 11: Migration state changes to free state when the
migrating agent appears in one of the scenario locations

145

An agent in migration state can change its state to outside at any moment, independent of the
ACE or connectivity state. When agent changes its state to outside, it effectively leaves the
scenario.

ST. 12: Agents currently in migration state may change
their state to outside

If a global emergency is activated, all currently migrating agents must be switched into
emergency state. However it is impossible to do it if there is no ACE support. In this case,
emergency state for the agent is triggered later when the user with this agent comes to an area
with ACE support. If ACE support is reestablished after the emergency situation is resolved then
no emergency state transition is required for the particular agent.

ST. 13: Agents in migration state and with active ACE
support will change their state to emergency when a
global emergency is activated

6.5.3. Outside State

Outside state is a way to represent the state of those agents whose users are currently not
participating in the scenario. We are not concerned with their particular sub-states or activities
and do not provide any services to them.

ST. 14: New agents appear and disappear in the scenario
by changing their state from/to outside state

We are not concerned with the problem of how new agents are selected and when they should
appear. This is left to the agents’ users and not specified in the scenario.

6.5.4. Emergency State and Failures

In defining the fault tolerance requirements, we rely on the general framework for dependability
engineering from [6.1]. This framework defines the process of development of these
requirements in terms of identifying the fault assumptions, i.e. the events that might have
unacceptable consequences on the system and its environment if not tolerated. In the Ambient
Campus case study, these events come from both the system itself and its environment. Where
appropriate, we augment the description of the failure assumption with the description of the
required degraded operation mode.

6.5.4.1. ACE Support

Due to the possibility of failures in ACE during a lecture, there may be cases where ACE support
for some or all of the students or for the teacher is not available. We consider this as if the
student or the teacher leaves the lecture. In the case where a considerable number of students

146

leave or if the teacher leaves, ACE support for the rest of the participants is stopped. However,
the lecture may continue in the traditional way. We assume that only one fault can happen at a
time.

6.5.4.2. Failures

There could be cases where one or more student experiences PDA failure or their ACE support is
temporary halted. There should be some recovery procedure to allow PDAs to be quickly
configured so that they are ready to be used in ACE.

FT. 16: Student’s PDA may fail on some operations

If recovery for the student agent participating in the lecture activity succeeds then ACE support
for that agent will be restored.

QL. 15: Student’s agent should recover, if possible, from
a PDA failure during the lecture (see FT. 16)

QL. 16: Upon successful recovery, ACE support for the
failed PDA can be restored (see FT. 16, QL. 15)

Students with a completely failed PDA should try to continue following the lecture without ACE
support. In some cases, this event may drop ACE support for the whole lecture.

FT. 17: Student’s PDA may completely stop working

Note that in some cases, FT. 16 and FT. 17 may result in the whole ACE support for the lecture
to be stopped (see requirement SV. 43).

Fire alarm can be toggled automatically in all the locations of the scenario. We assume that ACE
support can be operational for long enough to be used to help the students and the teacher to
leave the building.

FT. 18: Fire alarm may be activated in all the scenario
locations at the same time

In the case of such an event, all users within the scenario must leave the building. Recovery
action for fire alarms attempts to change the state of all the agents in the scenario to emergency.
Note that for lecture sub-states we do not allow direct transition to any emergency state, thus
lecture sub-states are first aborted (with their own recovery procedure) and only then the agents
are put into emergency state.

147

ST. 15: In the case of fire alarm, state of all the agents is
changed to emergency (see FT. 18)

This state transition is referred-to in this section as a global emergency event.

PDAs should be used to guide users to the nearest fire exits. Since we do not expect the use of
GPS or any other kind of navigation system, guidance provided is basically a map that shows
nearest fire exits, based on the user’s current location.

QL. 17: In case of fire, PDAs should guide users to the
nearest fire exits (see FT. 18)

If fire alarm is de-activated, users can return to their interrupted activities. This means that they
will return to the state from which the transition to emergency state was made.

ST. 16: If fire alarm is de-activated, the emergency state
is changed to the most recent interrupted state (see FT.
18)

In the case of electricity failure, there is no wireless network. However PDAs with their
independent power source may continue to operate.

FT. 19: Electricity failure may affect any location

Individual PDAs must backup their state so that the interrupted activity can be resumed later.

QL. 18: In case of electricity failure in the location,
student agents must backup their state (see FT. 19)

When there is no wireless network there is effectively no location defined. This means that the
agents must switch to migration state and either look for other locations in the scenario or leave
the scenario altogether.

ST. 17: In case of electricity failure in the location, agents
switch to migration state

If most of the agents, including the teacher agent, recovered then the lecture can be continued
with ACE support.

QL. 19: If a minimal required number of students have
recovered from FT. 19 then ACE support for the lecture
can be reestablished

148

Generally this failure cannot be handled automatically by the agents and some assistance from
the users is required.

6.6. Summary of the states

Now we can outline possible state transitions in the scenario. Only major states are included and
transition for the lecture sub-states are discusses in lecture state section.

ST. 18: The following top-level states transitions are
allowed:
 lecture free migration outside emergency

lecture ST. 7 ST. 17 ST. 15

free ST. 9 ST. 8 ST. 10, ST. 15

migration ST. 11 ST. 14 ST. 13, ST. 15

outside ST. 14

emergency ST. 16

Requirement names given in the boxes provide additional explanation on the particular
state change. The first column is for the initial states and the rows are for the destination.
Blank boxes correspond to prohibited state changes or those state changes that are beyond
our interest. Referenced requirements provide additional explanations of the transition.

6.7. Dynamicity and reconfigurability

To capture some dynamic aspects, the case study is modelled as an open system where the
number of students and teachers can change dynamically. This is possible when each agent is
somehow compatible with other agents. Agents in outside state do not have an ACE support,
cannot participate in any activities and cannot be addressed by the members of the scenario.

EN. 22: ACE is disabled for agents in outside state

However, when an agent changes its state from outside to migration and appears in one of the
scenario locations this is considered as appearance of a new participant in the scenario. Agents
can temporary leave the scenario and later return back (see ST. 14).

Any agent that implements the functionality required by the scenario can join the scenario as a
new participant. Also there must be a way to inspect agent capabilities to ensure that the
agent/user pair can take part in the scenario and with the properly assigned role.

EN. 23: All agents in outside state have required
functionality to participate in the scenario

For any agent with currently active ACE support it is possible to identify its physical location. It

149

is assumed that a user is always in the same location as his/her agent.

EN. 24: Location is known for any agent with currently
active ACE support

When a user is migrating and is not connected to any hotspot, we cannot associate them with any
of the locations.

ST. 19: User location is undefined during the migration
stage when there is no ACE support

We cannot determine the routes for migrating users and they can finally show up in any location
or leave the scenario. This is not a restriction since migration corresponds to users walking with
their PDAs across campus and we cannot control their behavior.

EN. 25: Users migration behaviour is non-detereministic

All locations have the same functionality. For simplicity we assume that any location can support
any lecture type and users have no preference for any particular location.

EN. 26: All the locations have the same functionality

However the number of locations is not fixed. We might introduce new locations in the scenario.

EN. 27: New locations might be added to the scenario

Certain locations may be removed from the scenario, for example we might decide to drop ACE
support in a particular lecture room.

EN. 28: Existing locations might be removed from the
scenario

6.8. Timeouts

This is the list of timeouts used in the scenario, they are all part of lecture state description. See
the referenced requirements for further explanations of the timeouts.

TT. 1: Lecture registration timeout, counting from SV. 2
(see QL. 1)

TT. 2: Lecture key distribution timeout, counting from SV.
7 (see QL. 2)

150

TT. 3: Lecture material distribution timeout, counting
from SV. 15 (see QL. 3)

TT. 4: Group name organisation timeout, counting from
notification SV. 21 (see QL. 5)

TT. 5: Individual task distribution timeout, counting from
SV. 29 (see QL. 7)

TT. 6: Group task distribution timeout, counting from SV.
36 (see QL. 10)

6.9. Acknowledgements

We would like to thank Jean-Raymond Abrial and Stéphane Lo Presti for their feedback.

6.10. References

[6.1] M. Kaaniche, J.-C. Laprie, J.-P. Blanquart. A framework for dependable engineering of

critical systems. Safety Science 40, pp. 731-752, 2002

151

	D4withoutTitlePage.pdf
	D4withoutTitlePage.pdf
	Rodin CS2_Reqmnts_v111.pdf
	Rodin CS2_Reqmnts_v111.pdf
	Introduction
	Overview of Sub-System Functionality
	Taxonomy
	Environment
	Subsystem Interface
	Failure Management
	Test Conditions
	Types of Test
	Single Sensor Input Tests
	Multiple Homogenous Input Tests
	Multiple Heterogeneous Input Tests
	Test Scheduling
	Test Input Status Confirmation

	Test Result Actions
	Confirmed Failure Actions

	Performance Constraints
	Specific Requirements for Fm1 Application
	Inputs
	Outputs
	Conditions
	Confirmation Mechanisms
	Magnitude tests
	Rate tests
	Multiple Sensor Tests
	Latch (Pseudo) Tests
	Healthy Actions
	Temporary (Unconfirmed Failure) Actions
	Confirmed Failure Actions

	rodinCS3requirements.pdf
	SECTION 4. REQUIREMENTS DOCUMENT FOR CASE STUDY 3: MITA END-TO-END ARCHITECTURE REQUIREMENTS
	4.1 Introduction
	4.2 Work Plan
	4.2.1 Requirements
	4.2.2 Concept Modelling Process
	4.2.3 Test Case

	4.3 Ambient Campus
	4.4 MITA End-to-End Requirements
	4.4.1 E2E Segments
	4.4.2 The Mobile Device Segment
	4.4.3 The Server Segment
	4.4.4 The Adjacent Device Segment
	4.4.5 E2E Layers
	4.4.6 Application Layer
	4.4.7 Connectivity and Driver Layer
	4.4.8 Enabler Layer And E2E Service Enabler
	4.4.9 Formal Properties of E2E Segments

	4.5 Security Architecture
	4.6 Base Requirements

	S: SECTION 5. REQUIREMENTS FOR CASE STUDY 4
	Text3:
	Text4:

