
Project IST-511599

RODIN

“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable 3.1

Final Decisions

C. Métayer (ClearSy) S. Hallerstede, F. Mehta, L. Voisin (ETH
Zürich)

Public Document

28th February 2005

http://rodin.cs.ncl.ac.uk

http://rodin.cs.ncl.ac.uk


Contents
1 Introduction 1

2 Modelling Process 1
2.1 Sequential Modelling Process . . . . . . . . . . . . . . . . . . 1
2.2 Reactive Modelling Process . . . . . . . . . . . . . . . . . . . 2
2.3 Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Task 3.5: Database Manager 4
3.1 Connection Language . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Database Manager . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Task 3.6: Project Manager 6

5 Task 3.7: Open Platform 8
5.1 Eclipse Platform . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Programming Language . . . . . . . . . . . . . . . . . . . . . 10

6 Conclusion 10

A Programming language study 11
A.1 The Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 11
A.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . 12
A.2.2 The resulting code . . . . . . . . . . . . . . . . . . . . 13
A.2.3 Ease of programing . . . . . . . . . . . . . . . . . . . . 13
A.2.4 Integration with the complete tool . . . . . . . . . . . 13

A.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

i



1 Introduction
This document is the first deliverable of Work package 3: Open Tool Kernel.
It complements the Description of Work [DoW] of the RODIN project by
stating how the issues, that were left open in that document, are solved.

We first examine which Modelling Process we will support, then for each
task that has open issues, we justify and state our decisions. Finally, a
conclusion sums up all decisions taken.

2 Modelling Process
In this document, the term modelling process means the activity of modelling
a system using a the open kernel tool. The output of this activity is a set of
event-B models which are fully proved.

We first present the Sequential Modelling Process which was envisioned in
the document Description of Work [DoW]. Then, we introduce the Reactive
Modelling Process. Finally, we state which Modelling Process we want the
RODIN Platform to support.

2.1 Sequential Modelling Process
The modelling process used with Atelier B (the classical tool supporting the
genuine B Method, now termed classical B) can be sketched as follows:

1. The user first writes its model in a source text file.

2. Then, the user runs several tools, one after the other, to produce proof
obligations.

3. Finally, the user attempts to discharge these proof obligations using
automated and interactive provers.

The main advantage of this process is that it is very simple, and there-
fore straightforward to implement and use. Tools can mostly be developed
independently. All that is needed to support this process is

• a Connection Language allowing tools to share common information;

• a Project Manager that links up the tools, ensuring they are run one
after the other and in the correct order;

• a Platform that gathers all parts behind a user interface.

1



However, the main drawback of this process is that it is not adapted to
the way people actually work. In the process described above, if all proof
obligations can be discharged, then the model is correct and the work is
finished. But most of the time, while trying to discharge proof obligations,
the user will find out that the model is incorrect in some respect. The
user subsequently fixes the model and starts the whole process from the
beginning. This is very disruptive and, even for a slight change of the model,
the user will need to wait for the tools to process repeatedly the whole model.
Typically, when designing an average model, the initial writing of the model
will represent 20 % of user time, while fixing it and discharging all proof
obligations will represent 80 %. Moreover, that latter phase is disrupted
quite often by several launches of tools to generate new proof obligations
when the model has been changed.

And the situation is even worse due to the use of refinement. In fact, the
user seldom works on a single model, but rather on a refinement chain. For
instance, Figure 1 shows a development comprising four models that refine
each other. Model M1 is the top-level model. It is refined by model M2, which
is itself refined by model M3, and so on.

M1

M2

M3

M4

Figure 1: Example of a refinement chain.

In this example, it is quite possible that, when trying to discharge the
proof obligations for model M4, the user finds out that there is an error
in model M2 and fixes it. The consequence of the changes in model M2 is
that all proof obligations of models M2, M3 and M4 have to be generated and
discharged again. In the traditional modelling process, this entails that these
three models need to be processed entirely again, which takes a lot of time.

2.2 Reactive Modelling Process
Fortunately, there exists another approach for designing the modelling pro-
cess which is more user-centered and therefore more efficient.

2



The key idea is that the user’s goal is well-known: it is to discharge
all proof obligations generated for models. Moreover, proof obligations can
usually be generated independently of each other. Hence, there is no reason
why the different tools should wait for the user to have finished editing. The
tools could start generating proof obligations while the user is still editing a
model. In the same vein, as soon as a proof obligation has been generated,
an automatic prover could try to discharge it. The main difference with the
previous sequential modelling process is that, now, the tools are not launched
on the user’s demand anymore, but run permanently in the background,
reacting to changes entered by the user.

The drawback of this approach is that it is more difficult to implement, as
one needs to coordinate carefully the tools and make them react to user ac-
tions. The control flow is turned inside out in comparison with the sequential
process.

Advantages are numerous:

• The tools now work in a differential way: they compute only the impact
of changes entered by the user, rather than processing again and again
the whole model. Hence, the tools work much faster and the user
spends less time waiting for them to finish their work. These is even
more relevant when working on a refinement chain as exemplified in
previous section.

• By having tools working greedily in the background, we can use all
the CPU time which is otherwise wasted waiting for the user to do
something.

2.3 Decision
In view of the previous discussion, we have decided to implement the reactive
modelling process for RODIN. As a consequence, some of the tasks of the
document Description of Work [DoW] must be adapted to the new process:

• Task 3.5: The Connection Language is replaced by a Database Man-
ager.

• Task 3.6: The Project Manager remains but its internals are very dif-
ferent: instead of launching tools on user demand, the Project Manager
will organize the reaction of tools to the changes entered by the user.

• Task 3.7: The Open Platform also remains, but it shall satisfy an
additional requirement: the Open Platform must provide support for
implementing the reactive modelling process.

3



In the sequel, we shall come back to each task and state decisions that
have been taken.

3 Task 3.5: Database Manager
In this section, we first describe the two approaches that have been studied for
solving that task. For each approach, we describe the pros and cons. Finally,
we state which approach will be followed and some additional implementation
decisions.

3.1 Connection Language
As stated in the Description of Work [DoW]:

The Connection Language is the "universal" means by which the
syntactic structure of Event-B texts can be exported to the plug-
in tools. It will be based on XML and the generation of this
syntactic structure will be performed by the low level basic tools
(after type checking).

This approach fitted very well with the Sequential Modelling Process,
where tools were working independently of each other and were taking en-
tire models as input. However in the Reactive Modelling Process advocated
above, this approach doesn’t work anymore, as the input of tools is not the
syntactic structure of models, but rather the changes on the model that the
user has entered.

3.2 Database Manager
As a consequence, we need a different means for feeding tools with their
input. Moreover, we also want that this input remains easy to compute, as
it will be computed quite often. In this respect, having the user entering a
model in a flat file is not very efficient. It would be better if the way data
are stored would allow us to compute efficiently the changes entered by the
user.

To this end, the use of a database approach seems to be what we need.
Then, a database manager will know precisely what the changes to the model
are and tools will be fed directly with these changes. There is no need for a
special computation trying to figure out what changes the user has made to
his model by comparing two entire models.

4



Another advantage of this database approach is that, when new plug-ins
need additional input from the user, these new inputs can also be stored in
the database. One just needs to extend the database schema (and the user
interface). This is much easier to do compared to with extending the syntax
of models for allowing these additional inputs. Thus, the database approach
also brings us more versatility and reinforces the openness of the platform.

Moreover, in the Connection Language approach, one would have needed
two languages: one for describing the model and another one for describing
the proof obligations generated by the tools. In the database approach, we
can store both the model and the proof obligations in the same database,
thus providing a unified interface between the data being manipulated and
the tools.

3.3 Decisions
In view of the previous discussion, we have decided to implement the database
approach for RODIN. This choice creates another issue, which is to define
how the database will be implemented. Basically, there are two ways to
implement it:

• Use of a classical database management system (DBMS) off the shelf,
then define our schema on top of it. Tools would then use standard
means (such as JDBC) to interact with the database.

• Use of a more pragmatic approach, retaining the database concept,
but using an ad-hoc implementation with a small memory footprint
and tailored to our needs.

The advantage of the first approach is that it allows for reuse of software
and minimizes a priori development time. Its main drawback is that it is
quite heavy compared to our needs. For instance, DBMS provide a lot of
features such as concurrent access, transactions, etc. that we don’t need
in our special case. Another cause of heaviness, is that DBMS are built
for handling efficiently vast amounts of data (typically millions of records),
while, in our case, we have relatively small amounts (in the order of tens of
thousands, at most). So, a DBMS-based approach seems to be a big hammer
to pound a small nail.

On the contrary, in an ad-hoc approach, we have to develop only the
functionality that we need. Moreover, as our needs are quite small, this
implementation will be lightweight. Basically, the database contents can
be realized using a set of Java objects in memory. We can then use the

5



1 edit model
2 save document
3 run static checker (in case of error stop with message)
4 run proof obligation generator
5 run automatic prover
6 run interactive prover

Figure 2: Typical sequence of batch commands

serialization mechanism provided by Java for making the data persistent in
files on the disk.

Furthermore, using an ad-hoc approach allows us to map parts of the
database to files, so that we can have a direct correspondence between a
model (or a context) in the database and a file on disk. This scheme al-
lows us to reuse the basic platform mechanisms for configuration manage-
ment and team collaboration support. It also allows us to implement easily
project archiving, where an archive groups a set of models and contexts that
together form a formal development. Archives can then be used for exchang-
ing developments. These two aspects are very important for allowing formal
development in teams.

Thus, we have chosen to take the ad-hoc approach for implementing the
Database Manager.

4 Task 3.6: Project Manager
The architecture of the tool has been changed to achieve improved respon-
siveness by operating on parts of the database rather than on full source
texts of modelling documents. The Project Manager will not exist anymore
as an independent component but will be tightly integrated into the tool in
the form of builders that process changes differentially. The Project Manager
would have worked in batch mode where the user would issue a sequence of
commands (perhaps in a make file) in order to analyze a modelling document
as shown in Figure 2. We refer to this user activity as edit-prove cycle.

Terminology: We use the term modelling document to refer to entities the
user perceives as a document. These can be models or contexts which are part
of the EventB notation, or corresponding concepts contributed by others. We
use the term modelling element to refer to entities that are contained in a
modelling document.

In this scenario the user spends a lot of time waiting for the tool to either

6



produce proof obligations to be discharged interactively or error messages.
Especially when creating new models, errors in a model are often found
during interactive proof sessions. As the model grows in size the user spends
more and more time waiting during each edit-prove cycle. If the tool would
work more differentially only checking those parts of the model that have
changed, the main modelling activity consisting of edit-prove cycles could be
carried out much faster. The sequence of commands of Figure 2 would only
be executed for the parts that have changed.

We have changed the architecture of the tool accordingly. The tool fol-
lows user changes and only performs necessary work on those parts of the
database that may be affected by a user change. Furthermore, the user will
not have to start any of the components like static checker or proof obliga-
tion generator or automatic prover by issuing some extra command. This will
happen in the background when changes to the database are committed by
the user. The different components are arranged in layers that are matched
by corresponding layers of the elements stored in the database. Different
parts of the database may belong to different layers, some may contain typ-
ing errors while others that do not depend on erroneous element may have
been proved correct.

In the list of actions mentioned in Figure 2 two are of real interest to the
user: edit model and run interactive prover. In the new architecture the user
will only see these.

We can associate modelling elements with different layers according to
whether they have passed the check of static properties by the static checker,
whether their proof obligations have been generated by the proof obligation
generator, or whether corresponding proof obligations have been discharged
by the automatic or interactive prover.

In the original Project Manager approach all modelling elements of a doc-
ument that has been edited would traverse all layers during each edit-prove
cycle. In the builder approach, modelling elements that are not affected by
some change are left untouched and do not need to be reanalyzed during each
cycle. In this approach, the analysis will happen more often but usually only
on a small part of the database of modelling elements. Different modelling
elements may belong to different layers. This can be used to give much better
feedback to the user already while editing a modelling document, and it will
improve general performance.

7



5 Task 3.7: Open Platform
We first describe the target platform and justify the choice of Eclipse. Then,
we show that this choice doesn’t restrict the way plug-ins can be written. Fi-
nally, we present the result of a small study for choosing our implementation
programming language.

5.1 Eclipse Platform
Eclipse is an open platform consisting of a consortium of information tech-
nology companies, including IBM, Red Hat, SuSE, Borland, HP, Telelogic,
Oracle, SAP, among its about 50 members. A non-profit organization called
Eclipse Foundation manages work around the Eclipse Platform, and hosts
Open Source projects around the platform.

Eclipse hosts at the moment 4 major Open Source projects in which
plug-ins for graphical editors, UML2, Java/C/C++, among others are being
developed. Plug-ins for Java development and C/C++ development exist
that can be used for the development of Eclipse plug-ins.

Figure 3: Eclipse platform

8



The Eclipse Platform (see Figure 3) is a production quality environment
and plug-in architecture. Figure 3 shows the typical appearance of the plat-
form that will also be used by the RODIN Platform. On the left hand side
is the Resource View that shows documents and other resources used in a
development. The big window in the middle shows an Editor for a docu-
ment. On the right hand side is the Outline View that is used for quick
reference and navigation in the document. On the bottom is the Task View
that usually shows error messages created by builders that run in the back-
ground when a document is saved. All these views are connected to each
other. For instance, a mouse click on an error message jumps to the position
in the Editor where the error was found, and a mouse click in the Outline
View jumps to the corresponding position in the Editor. The infrastructure
to implement these features is readily available in Eclipse and will facilitate
the implementation of corresponding features in the RODIN Platform.

The Eclipse framework provides guidelines for plug-in development, user
interface design, and some general architectural guidelines that allow better
interoperability between plug-ins developed in different places. This frees
resources for development of the kernel tools of the RODIN platform, because
these things would have to be provided in order to achieve an open platform.

The Eclipse Platform is implemented mostly in Java. The RODIN Plat-
form will inherit this property profiting from the same benefits: It is not
dependent on a particular operating system, hence, easily portable, and the
RODIN Platform and all plug-ins can make use of Java extensive class li-
braries.

The large industrial support offers a good basis for dissemination of the
RODIN Platform. This is also true for the publication of results concerning
the tool because the audience already exists.

We expect that the Eclipse platform will exist for many years because of
the large existing commercial and non-commercial community that supports
it. This argument is enforced by a recent move of the Eclipse Foundation
to turn Eclipse into an application platform not restricted any more just on
programming related tasks.

Other alternative platforms that were considered are:

• NetBeans is a platform for developing Integrated Development Environ-
ments (IDE). Unfortunately, this platform is quite specialized for Web
and Java IDE development and seems much more difficult to reuse than
Eclipse. In particular, it provides much less support for developing new
plugins.

• Coral is a metamodel-independent software platform to create, edit
and transform new models and metamodels. It is being developed in

9



the context of a research project at CREST, the Centre for Reliable
Software Technology at Åbo Akademi University. The main drawbacks
of this platform are twofold: firstly, it lacks the notion of refinement
and proofs; secondly, it lacks portability and stability. Currently, this
platform is available natively only on Linux, not on Windows or Mac
OS X.

5.2 Plugins
There are two major ways of providing plug-ins for the Eclipse platform.
Firstly, newly written or existing Java code can be equipped with plug-in
interfaces as required in the Eclipse architecture. Secondly, legacy code for
which the first way is not available, either because their is no source or API
available, or because it is written in another programming language, requires
Java glue. Java offers various ways of linking foreign code like, e.g., the native
language interface to use C-APIs, or invocation of command-line tools. The
Java glue will access the database and exchange data with the tool that is
to be plugged into the platform.

5.3 Programming Language
A small study has been carried out to examine the programming language
that should be used for developing the kernel tools. This study appears in
Appendix A on the next page.

As a result of that study, we have decided to choose Java as the program-
ming language for implementing the RODIN platform, including the kernel
tools.

6 Conclusion
In summary, the decisions stated in this document are:

• The RODIN Platform supports the Reactive Modelling Process.

• Models and proof obligations are stored in a database. That database
is implemented in an ad-hoc manner, tailored to the specific needs of
the RODIN Platform.

• The Project Manager ensures that kernel tools process changes entered
by the user as soon as possible (i.e., in a greedy way).

10



• The RODIN Platform is based on the Eclipse Platform. The imple-
mentation language of choice is Java.

References
[Caml] Xavier Leroy and Pierre Weis. Manuel de référence du langage caml.

InterEditions, 1993. ISBN 2-7296-0492-8.

[DoW] Description of Work. First Annex of the RODIN Contract. April 27,
2004.

[ML] Laurence Paulson. ML for the working programmer. Cambridge,
1993. ISBN 0-521-39022-2.

[mP] Jean-Raymond Abrial. A simple prover specification. Internal re-
port, July 2004.

[PP] Jean-Raymond Abrial. Le prouveur de prédicat. Internal report,
August 1997.

[TOM] Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vit-
tek. A pattern matching compiler for multiple target languages.
In G. Hedin, editor, 12th Conference on Compiler Construction,
volume 2622 of LNCS, pages 61–76. Springer, May 2003.

A Programming language study
This appendix describes the results of some tests done in order to make an
informed decision on the implementation language for the new provers that
go into the new B environment developed as part of the RODIN project.
The case study involved implementing a ‘mini-prover’ for propositional logic
that closely resembles the one envisaged for the new predicate prover. The
results of this case study are presented and a conclusion is drawn from these
observations.

A.1 The Case Study
The case study was to implement a mini-prover[mP] for propositional logic
in Java and Caml[Caml].

The mini-prover uses pattern matching and term rewriting to automati-
cally prove the truth or invalidity of a given formula in propositional logic.

11



Its specification[mP] is precise enough to be formally proven correct. It is a
simplified version of the predicate prover[PP] used currently. The new predi-
cate prover is planned to be an extension of this. The mini-prover is therefore
an ideal candidate for this case study.

The implementation languages chosen for comparison are Java and Caml.
Java is a simple, object-oriented, network-savvy, interpreted, robust, se-

cure, architecture neutral, portable, high-performance, multi-threaded, dy-
namic language (as described on Sun’s website). Moreover, it is the basic
implementation language of the Eclipse Platform.

Caml is a strongly typed functional programing language. It is a dialect of
ML[ML], a language initially designed with implementing theorem provers
in mind. ML and its variants have successfully been used to implement
many existing theorem proving systems such as Isabelle, Coq, HOL, and
LCF. Caml has gone over the Standard ML specification to provide greater
flexibility to the programmer. It comes with advanced compilers that can
generate machine independent byte-code or even highly optimized binaries.

A.2 Observations
The two implementations were compared with each other with regards to:

• time performance,

• code size,

• ease of programming,

• ease of integration and deployment.

A.2.1 Performance

A set of 31 tautologies (30 taken from the end of [mP], and one made from
their conjunction) was given to both provers 100 times and the time taken
on the same machine1 was measured.

Implementation Time taken
Java 3ms
Caml (byte-code) 17.4ms
Caml (executable) 4.8ms

1Tests were run on a Thinkpad T41p running Debian GNU/Linux (sarge) on an Intel
Pentium M 1.6 Mhz CPU.

12



At the byte-code level, the Java implementation severely outperforms its
Caml equivalent. When compiled to a machine optimized binary, the Caml
implementation nears the Java bite-code implementation but still does not
outperform it.

Java is the clear winner.

A.2.2 The resulting code

ML was thought of with implementing theorem provers in mind. Data is rep-
resented as recursive data types and the standard way of doing computation
is by pattern matching over these recursively defined data types. This makes
symbolic computation, which is what is mainly done here, much easier in
Caml than it is in Java. The resulting Caml code is compacter, more under-
standable, and much closer to the specification than its Java counterpart.

In order to make pattern matching easier in Java, a Pattern Matching Pro-
gramming Language preprocessor, TOM[TOM] was used, making the Java
code easier to write.

Implementation Code readability Lines of Code
Java(+TOM) less readable approx. 800
Caml more readable approx. 120

A.2.3 Ease of programing

Similarly, the time and energy needed to implement the Caml version of the
mini-prover which was less than that needed for the Java version.

Implementation Ease of programing Programming effort
Java harder approx. 2 days
Caml easier approx. 5 hours

A.2.4 Integration with the complete tool

At the end of the day the provers implemented have to communicate with the
rest of the B environment. In this respect the Java implementation has a clear
advantage since the rest of the tool will be implemented in Java. Keeping
all code in the same language has clear advantages with respect to ease of
use and maintainability of the entire system. Another important concern
is ease of deployment. Choosing Java allows seamless deployment, whereas
choosing Caml adds a burden on the deployment (one needs to install either
the Caml byte-code interpreter or the provers have to be deployed in binary
form which have to be produced separately for every target platform).

13



Implementation Integration
Java not an issue
Caml non-standard

A.3 Conclusion
Putting all together, we get the following simplistic overview:

Implementation Performance Shorter Ease of Ease of
code coding Integration

Java
√

× ×
√

Caml ×
√ √

×

Although Caml would be more appropriate from the implementation
point of view per se, since the goal of the RODIN project is to develop
an industrial tool, the need for better performance and smoother integration
carry a much larger weight. The language of choice should therefore be Java.

14


	Introduction
	Modelling Process
	Sequential Modelling Process
	Reactive Modelling Process
	Decision

	Task 3.5: Database Manager
	Connection Language
	Database Manager
	Decisions

	Task 3.6: Project Manager
	Task 3.7: Open Platform
	Eclipse Platform
	Plugins
	Programming Language

	Conclusion
	Programming language study
	The Case Study
	Observations
	Performance
	The resulting code
	Ease of programing
	Integration with the complete tool

	Conclusion


