
Project IST-511599

RODIN

“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable 3.2

Event-B Language

C. Métayer (ClearSy) J.-R. Abrial, L. Voisin (ETH Zürich)

Public Document

31st May 2005

http://rodin.cs.ncl.ac.uk

http://rodin.cs.ncl.ac.uk

(I) Event-B: Informal Presentation

J.-R. Abrial

April 2005

Version 1.1

(I) Event-B: Informal Presentation

1 Introduction

It is our belief that the people in charge of the development of large and complex computer systems
should adopt a point of view shared by all mature engineering disciplines, namely that of using an artifact
to reason about their future system during its construction. In these disciplines, people useblue-printsin
the wider sense of the term, which allows them to reason formally during the very construction process.

Most of the time, in our discipline, we do not use such artifacts. This results in a very heavy testing
phase on the final product, which is well known to happen quite often too late. The blue-print drawing of
our discipline consists ofbuilding modelsof our future systems. But in no way is the model of a program
the program itself for the simple reason that the model, like the blue-print, must not be executable: you
cannot drive the blue-print of a car. But the model of a program and more generally of a complex computer
system, although not executable, allows you to clearly identify the properties of the future system and to
prove that they will be present in it.

Building models of large systems however is not an easy task. First of all because we lack experience in
this activity. Such a discipline does not exist in Academia, where quite often model building is confused
with using a very high level programming language where execution is thus still present. Moreover, rea-
soning means ensuring that the properties which define the future system can beprovedto be consistent.
As a matter of fact, doing a proof on a model replaces an impossible execution. But again, the mastering
of formal proving techniques has not yet entered the standard curriculum of our discipline. As a conse-
quence, people are quite reluctant to adopt such an approach, simply because they do not know how to do
it.

We present here the way this approach can be encoded within a formal language, whose semantics is
simply given by formalizing what can be proved from a corresponding formal text.

In this introduction, we state in very general terms the problems we want to address. We are essentially
concerned with the development of complex systems (section 1.1), which behave in a discrete fashion
(section 1.2). We are interested in exhibiting some form of reasoning which definitely departs from that
implied by testing in the broad sense of the term (section 1.3). We shall then give (section 2) an informal
view of the notion of discrete model which is called hereEvent-B.

This document is the first one of five companion documents describing different facets of Event-B. The
other documents are the following:

- (II) Event-B: Structure and Laws. This document describes the way Event-B models can be defined
and also the rules that must be followed in order to guarantee that an Event-B model is coherent.

- (III) Event-B: Mathematical Model. This document gives a mathematical model of Event-B thus
justifying the laws that were given in the previous document. The reading of this document can be skipped
without losing the full understanding of the others.

- (IV) Event-B: Examples. This document provides a number of simple examples in order to illustrate
the material presented in the previous documents.

- (V) Event-B: Mathematical Language. This document presents the mathematical language we are
going to use: First Order Predicate Calculus extended with Set Theory.

- (VI) Event-B: Syntax of Mathematical Language. This document covers in detail the syntactic struc-
ture of the Mathematical Language presented in the previous document. It also shows how the type check-
ing is done. Finally, it shows what is to be proved in order to ensure the well-definedness of a mathematical
text.

1

1.1 Complex Systems

Here are the kinds of questions we might ask to begin with. What is common to, say, an electronic circuit, a
file transfer protocol, an airline seat booking system, a sorting program, a PC operating system, a network
routing program, a nuclear plant control system, a SmartCard electronic purse, a launch vehicle flight
controller, etc.? Does there exist any kind of unified approach to in depth study and formal proof of the
requirements, the specification, the design and the implementation ofsystemsthat are so different in size
and purpose?

We shall only give for the moment a very general answer. Almost all such systems arecomplexin that
they are made of many parts interacting with a highly evolving and sometimes hostile environment. They
also quite often involve several concurrent executing agents. They require a high degree of correctness.
Finally, most of them are the result of a construction process which is spread over several years and which
requires a large and talented team of engineers and technicians.

1.2 Discrete Systems

Although their behavior is certainly ultimately continuous, the systems which were listed in the previous
section are most of the time operating in adiscrete fashion. This means that their behavior can be faith-
fully abstractedby a succession of steady states intermixed with jumps which make their state suddenly
change to others. Of course, the number of such possible changes is enormous, and they are occurring in
a concurrent fashion at an unthinkable frequency. But this number and this high frequency do not change
the very nature of the problem: such systems are intrinsically discrete. They fall under the generic name
of transition systems. Having said this does not make us moving very much towards a methodology, but
it gives us at leasta common point of departure.

Some of the examples envisaged above are pure programs. In other words, their transitions are essen-
tially concentrated inone mediumonly. The electronic circuit and the sorting program clearly fall into this
category. Most of the other examples however are far more complex than just pure programs because they
involve many different executing agents and also a heavy interaction with their environment. This means
that the transitions are executed by different kinds of entities acting concurrently. But, again, this does not
change the very discrete nature of the problem, it only complicates matters.

1.3 Test Reasoning versus Model (Blue Print) Reasoning

A very important activity, at least in terms of time and money, concerned with the construction of such
discrete systems is certainly that consisting of verifying that their final implementations are operating in a,
so called,correctfashion. Most of the time nowadays, this activity is realized during a very heavy testing
phase, which we shall call a “laboratory execution”.

The validation of a discrete system by means of such “laboratory executions” is certainly far more com-
plicated to realize, if not impossible in practice, in the multiple medium case than in the single medium
one. And we already know however that program testing, used as a validation process in almost all pro-
gramming projects, is by far an incomplete process. Not so much, in fact, because of the impossibility
to achieve a total cover of all executing cases. The incompleteness is rather, for us, the consequence of
the frequentlack of oracleswhich would give,beforehandand independently of the tested objects, the
expected results of a future testing session.

It is nevertheless the case that today the basic ingredients for complex system construction still are a
very small design team of smart people, managing an army of implementers, eventually concluding the
construction process with a long and heavy testing phase. And it is a well known fact that the testing cost
is at least twice that of the pure development effort. Is this a reasonable attitude nowadays? Our opinion
is that a technology using such an approach is still in its infancy. This was the case at the beginning of last
century for some technologies, which have now reached a more mature status (e.g. avionics).

2

The technology we consider in this short presentation is that concerned with the construction ofcomplex
discrete systems. As long as the main validation method used is that of testing, we consider that this
technology will remain in an underdeveloped state. Testing does not involve any kind of sophisticated
reasoning. It rather consists ofalways postponing any serious thinkingduring the specification and design
phase. The construction of the system will always be re-adapted and re-shaped according to the testing
results (trial and error). But, as one knows, it is quite often too late.

In conclusion, testing always gives a shortsighted operational view over the system in construction: that
of execution. In other technologies, say again avionics, it is certainly the case that people eventually do
test what they are constructing, but the testing is just theroutine confirmationof a sophisticated design
process rather than a fundamental phase in it. As a matter of fact, most of the reasoning is donebefore
the very construction of the final object. It is performed on various “blue prints”, in the broad sense of the
term, by applying on them some well defined practical theories.

The purpose of this study is to incorporate such a “blue print” approach in the design of complex
discrete systems. It also aims at presenting a theory able to facilitate the elaboration of someproved
reasoningon such blue prints. Such reasoning will thus take place far before the final construction. In the
present context, the “blue prints” are calleddiscrete models. We shall now give a brief informal overview
of the notion of discrete model.

2 Informal Overview of Discrete Models

In this section, we give an informal description of discrete models. A discrete model is made of a state
and a number of transitions (section 2.1). For the sake of understanding, we then give an operational
interpretation of discrete models (section 2.2). We then present the kind of formal reasoning we want
to express (section 2.3). Finally we briefly address the problem of mastering the complexity of models
(section 2.4) by means of three concepts: refinement (section 2.5), decomposition (section 2.6) and generic
development (section 2.7),

2.1 State and Transitions

Roughly speaking, a discrete model is made of astaterepresented by some significant constants and
variables at a certain level of abstraction with regards to the real system under study. Such variables are
very much the same as those used in applied sciences (physics, biology, operational research) for studying
natural systems. In such sciences, people also build models. It helps them to infer some laws on the reality
by means of some reasoning, which they undertake on these models.

Besides the state, the model also contains a number oftransitionsthat can occur under certain circum-
stances. Such transitions are called here “events”. Each event is first made of aguard, which is a predicate
built on the state constants and variables. It represents thenecessaryconditions for the event to occur.
Each event is also made of anaction, which describes the way certain state variables are modified as a
consequence of the event occurrence.

2.2 Operational Interpretation

As can be seen, a discrete dynamical model thus indeed constitutes a kind of state transition machine. We
can give such a machine an extremely simpleoperational interpretation. Notice that such an interpretation
should not be considered as providing any operational semantics to our models (this will be given later by
means of a proof system), it is just given here to support theirinformal understanding.

First of all, the execution of an event, which describes a certain observable transition of the state vari-
ables, is considered to takeno time. As an immediate consequence, no two events can occur simultane-
ously. The execution is then the following:

3

– When no event guard is true, then the model execution stops:it is said to have deadlocked.

– When some event guards are true, then one of the corresponding events necessarily occurs and the
state is modified accordingly, finally the guards are checked again, and so on.

This behavior clearly shows some possible non-determinism (called external non-determinism) as sev-
eral guards might be true simultaneously. We makeno assumptionconcerning the specific event which is
indeed executed among those whose guards are true. When only one guard is true at a time, the model is
said to be deterministic.

Note that the fact that a model eventually deadlocks isnot at all mandatory. As a matter of fact, most
of the systems we study never deadlock: they run for ever.

2.3 Formal Reasoning

The very elementary machine we have described in the previous section, although primitive, is neverthe-
less sufficiently elaborate to allow us to undertake some interesting formal reasoning. In the following we
envisage two kinds of discrete model properties.

The first kind of properties that we want to prove about our models, and hence ultimately about our real
systems, are, so called,invariant properties. An invariant is a condition on the state variables that must
hold permanently. In order to achieve this, it is just required toprovethat, under the invariant in question
and under the guard of each event, the invariant still holds after being modified according to the transition
associated with that event.

We might also consider more complicated forms of reasoning involving conditions which, in contrast
with the invariants, do not hold permanently. The corresponding statements are calledmodalities. In our
approach we only consider a very special form of modality calledreachability. What we would like to
prove is that an event whose guard is not necessarily true now will nevertheless certainly occur within a
certain finite time.

2.4 Managing the Complexity of Closed Models

Note that the models we are going to construct will not just describe the control part of our intended
system. It will also contain a certain representation of the environment within which the system we build
is supposed to behave. In fact, we shall quite often essentially constructclosed modelsable to exhibit
the actions and reactions which take place between a certain environment and a corresponding, possibly
distributed, controller, which we intend to construct.

In doing so, we shall be able to plunge the model of the controller within an abstraction of its environ-
ment, which is formalized as yet another model. The state of such a closed system thus contains physical
variables, describing the environment state, as well as logical variables, describing the controller state.
And, in the same way, the transitions will fall into two groups: those concerned by the environment and
those concerned by the controller. We shall also have to put into the model the way these two entities
communicate.

But as we mentioned earlier, the number of transitions in the real systems under study is certainly
enormous. And, needless to say, the number of variables describing the state of such systems is also
extremely large. How are we going to practically manage such a complexity? The answer to this question
lies in three concepts:refinement(section 2.5),decomposition(section 2.6), andgeneric instantiation
(section 2.7). It is important to notice here that these concepts are linked together. As a matter of fact, one
refines a model to later decompose it, and, more importantly, one decomposes it to further more freely
refine it. And finally, a generic model development can be later instantiated, thus saving the user of redoing
almost similar proofs.

4

2.5 Refinement

Refinement allows us to build a modelgraduallyby making it more and more precise, that is closer to the
reality. In other words, we are not going to build a single model representing once and for all our reality
in a flat manner: this is clearly impossible due to the size of the state and the number of its transitions.
It would also make the resulting model very difficult to master, if not just to read. We are rather going to
construct an ordered sequence of embedded models, where each of them is supposed to be a refinement
of the one preceding it in that sequence. This means that a refined, more concrete, model will have more
variables than its abstraction: such new variables are the consequence of a closer look at our system.

A useful analogy here is that of the scientist looking through a microscope. In doing so, the reality is the
same, the microscope does not change it,our look at it is only more accurate: some previously invisible
parts of the reality are now revealed by the microscope. An even more powerful microscope will reveal
more parts, etc. A refined model is thus one which is spatially larger than its previous abstractions.

And correlatively to thisspatial extension, there is a correspondingtemporal extension: this is because
the new variables are now able to be modified by some transitions, which could not have been present in
the previous abstractions simply because the variables concerned did not exist in them. Practically this is
realized by means ofnew eventsinvolving the new variables only. Such new events refine some implicit
events doing nothing on the abstraction. Refinement will thus result in a discrete observation of our reality,
which is now performed using afiner time granularity.

Refinement is also used in order to modify the state so that it can be implemented on a computer by
means of some programming language. This second usage of refinement is calleddata-refinement. It is
used as a second technique, once the model has been gradually constructed.

2.6 Decomposition

Refinement does not solve completely the mastering of the complexity. As a model is more and more
refined, the number of its state variables and that of its transitions may augment in such a way that it
becomes impossible to manage the whole. At this point, it is necessary to cut our single refined model
into several almost independent pieces.

Decomposition is precisely the process by which a single model can be split into various component
models in a systematic fashion. In doing so, we reduce the complexity of the whole by studying, and thus
refining, each part independently of the others. The very definition of such a decomposition implies that
independent refinements of the parts could always be put together again to form a single model that is
guaranteed to be a refinement of the original one. This decomposition process can be further applied on
the components, and so on. Note that the decomposed model could already exist and be developed, thus
allowing to mix a top down approach with a bottom up one.

2.7 Generic Development

Any model development done by applying refinement and decomposition, is parameterized by some car-
rier sets and constants defined by means of a number of properties.

Such a generic model could then be instantiated within another development in the same way as a
mathematical theory like, say, group theory, can be instantiated in a more specific mathematical theory.
This can be done provided one has been able to prove that the axioms of the abstract theory are mere
theorems in the second one.

The interest of this approach of generic instantiation is that it saves us redoing the proofs already done
in the abstract development.

5

(II) Event-B: Structure and Laws

J.-R. Abrial

April 2005

Version 2

(II) Event-B: Structure and Laws

1 Introduction

This document contains a complete description of the structure ofEvent-B. It also contains the rules that
must be proved in order to ensure that an Event-B development is correct. It is decomposed into four
sections dealing with models and contexts (section 2), refinements (section 3), decomposition (section 4),
and generic instantiation (section 5).

2 Models and Contexts

This section contains the description of an Event-B model and of the associated context. In section 2.1,
the state and event structures of a model are described. Then in sections 2.2, 2.3, and 2.4 you will find
a description of generalized substitutions defining the transition associated with an event. In section 2.5,
the notion of context, allowing us to define the parametric structure of a model, is described. Finally, in
section 2.6 you will find the consistency rules which must be proved for an event model to be correct.

2.1 State and Events.

A formal discrete modelis made of four elements: (1) a name, (2) a list of distinct state variables, collec-
tively denoted byv, (3) a list of named predicates, the invariants, collectively denoted byI(v), and (4) a
collection of transitions (here called events). This is illustrated in Fig. 1. The invariantI(v) yields the laws
that the state variablesv must always fulfil. These laws are formalized by means of predicates expressed
within the language of First Order Predicate Calculus with Equality extended by Set Theory.

Named Invariants

Variables

Name

Events

Fig. 1.A Model

An event, is made of three elements: (1) a name, (2) a list of named predicates, the guards, collec-
tively denoted byG(v), and (3) a generalized substitution denoted byS(v). This is illustrated in Fig.

1

Named Guards

Generalized Substitution

Name

Fig. 2.An Event

2. The guardsG(v) state the necessary conditions for the event to occur, and the generalized substitu-
tion S(v) defines the state transition associated with the event. Among these events, a special one, called
initialization, allows one to define an initial situation for a model: this event has no guard. For later con-
venience, an eventE with guardG(v) and generalized substitutionS(v) can be given the syntactic form
shown in Fig. 3.

E =̂ when G(v) then S(v) end

Fig. 3.Syntactic form of an event

Events can be grouped to form, so-called, arrays of events. Besides the normal elements of an events
(name, guards, and generalized substitution), an array of events has two more elements: (1) a list of local
distinct indices, collectively denoted byi, and (2) a list of array conditions, collectively denoted byC(i).
This is illustrated in Fig. 4.

Name

Generalized Substitution

Named Guards

Indices

Array Conditions

Fig. 4.An array of events

In Fig. 5, is shown the syntactic form of an array of events.

2

E =̂

array i where
C(i)

then
when G(i, v) then S(i, v) end

end

Fig. 5.Syntactic form of an array of events

2.2 Generalized Substitutions.

We have three kinds of generalized substitutions for expressing the transition associated with an event: (1)
the deterministic multiple substitution, (2) the empty substitution, and (3) the non-determinitistic multiple
substitution. The shapes of these constructs are shown in Fig. 6

Kind Generalized Substitution

Deterministic x := E(v)

Empty skip

Non-deterministic

any t where
P (t, v)

then
x := F (t, v)

end

Fig. 6.Kinds of Generalized Substitutions

In the deterministic and non-deterministic cases,x denotes a list of variables ofv which are all distinct.
In the deterministic case,E(v) denotes a number of set-theoretic expressions corresponding to each of the
variables inx. In the non-deterministic case,t denotes a collection of distinct fresh variables which are
local to the generalized substitution,P (t, v) denotes a conjoined list of predicates, andF (t, v) denotes a
number of set-theoretic expressions corresponding to each of the variables inx. As can be seen, not all
variables inv are necessarily assigned in a substitution sincex does not necessarily coverv.

The variables that are placed on the left hand side of the assignment operator “:=” in a generalized
substitution are called theleft variablesof that substitution. The ones occurring on the right hand side are
called theright variables. Some state variables can be left and right variables at the same time in a given
substitution. In the generalized substitutionskip, the variablesv are all, by convention, left as well as right
variables.

In the initialization event mentioned in section 2.1, all state variables are left variables only (thus the
generalized substitutionskip is not possible).

3

2.3 Generalized Substitutions Syntactic Facilities

In this section, we define a number of syntactic facilities allowing us to denote generalized substitutions
in a way which is slightly different from the one used in the previous section. All such new forms however
are defined in terms of the ones we introduced in the previous section. They are just proposed here as
shorthands and can thus always be eliminated.

We first introduce two constructs by means of the operators:| and:∈. They are shown in Fig. 7 under
the form of two rewriting rules.

New Construct Rewritten

x :| P (x0, x, y)

any z where
P (x, z, y)

then
x := z

end

New Construct Rewritten

x :∈ S(v)

any z where
z ∈ S(v)

then
x := z

end

Fig. 7.Rewriting Rules for the:| and:∈ operators

The first one is to be read “x becomes such that the predicateP (x0, x, y) holds”, wherex denotes some
distinct variables ofv, y denotes those variables ofv that are distinct fromx, andx0 denotes the values of
the variablesx before the substitution is applied. The second one is to be read “x becomes a member of
the setS(v)”. In both rewritten generalized substitutions,z denotes a number of distinct fresh variables.
Each of them corresponds to the variables ofx.

The next series of constructs allows one to define the different substitutions of an event in a separate
manner: this is done by means of the parallel operator “‖”. The definition of this operator takes the form
of a number of rewriting rules corresponding to the combination of the two basic generalized substitutions
presented in section 2.2 (skip is not concerned by these rewriting rules). These rewriting rules are shown
in Fig. 8 and 9. In all cases,x andy denote distinct variables ofv. In the last case of Fig. 9, the fresh
variables int andu must be distinct. Thanks to these rewriting rules, it is possible to completely eliminate
the ‘‖’ operator.

Combination Rewritten

x := E(v) ‖ y := F (v) x, y := E(v), F (v)

any t where
P (t, v)

then
x := E(t, v)

end

‖ y := F (v)

any t where
P (t, v)

then
x, y := E(t, v), F (v)

end

Fig. 8.Rewriting Rules for the Parallel Operator (1)

4

Combination Rewritten

x := E(v) ‖

any t where
P (t, v)

then
y := F (t, v)

end

any t where
P (t, v)

then
x, y := E(v), F (t, v)

end

any t where
P (t, v)

then
x := E(t, v)

end

‖

any u where
Q(u, v)

then
y := F (u, v)

end

any t, u where
P (t, v) ∧ Q(u, v)

then
x, y := E(t, v), F (u, v)

end

Fig. 9.Rewriting Rules for the Parallel Operator (2)

2.4 Before-After Predicates Associated with a Generalized Substitution.

The before-after predicate of a generalized substitution denotes the condition defining thebinary relation
associated with the corresponding transition. It is expressed in terms of the state variable values connected
by this relation. By convention, the before values of the variablesv are also denoted byv and the after
values are denoted byv′. More generally, ifx denotes a number of state variables of the model, we
collectively denote byx andx′ their values before and after the transition. The before-after predicate is
defined in Fig. 10 for the three basic generalized substitutions presented in section 2.2.

Generalized Substitution Before-after Predicate

x := E(v) x′ = E(v) ∧ y′ = y

skip v′ = v

any t where P (t, v) then x := F (t, v) end ∃ t· (P (t, v) ∧ x′ = F (t, v)) ∧ y′ = y

Fig. 10.Before-after Predicates

In the table of Fig. 10, the lettery denotes the set of variables ofv which are distinct from those inx.
As can be seen, such variables are not modified by the substitution, as shown by the equalitiesy′ = y in
the before-after predicates. It is thus important to note that the before-after predicate of the substitution
of an event isnot a universal propertyof that substitution: it depends on the variables of the model where
the event resides. The most obvious case is that of the empty substitution.

Note that since the generalized substitution of theinitialization event has no right variables (see end of
section 2.2), the before-after predicate of its generalized substitution is rather simply an after predicate.

5

2.5 Contexts

In the previous sections, we have considered that a discrete model was made of a number of variables,
invariants, and events. There is a need for a secondary component besides the models envisaged so far,
it is called acontext. As we shall see in section 5, contexts will play a very important rôle in the generic
instantiation mechanism. In fact, the contexts associated with a given model define the way this model is
parameterizedand can thus be instantiated.

A context is made of the following elements: (1) a name, (2) a list of distinct carrier sets, collectively
denoted bys, (3) a list of distinct constants, collectively denoted byc, and (4) a list of named properties,
collectively denoted byP (s, c). This is illustrated in Fig. 11

Name

Carrier Sets

Constants

Named Properties

Fig. 11.Context

The carrier sets are just represented by their name. The different carrier sets of a context are completely
independent. The only requirement concerning such sets is that they are supposed to be non-empty. The
constants are defined, usually non-deterministically, by means of the propertiesP (s, c), which are predi-
cates.

Each model may reference a context. When it is the case, a model is said to “see” that context. When
a modelM sees a contextC, then all carrier sets and constants defined inC can be used inM. In Fig.12,
you can see the contents of models and contexts and their relationship.

Name

Variables

Events

MODEL CONTEXT

sees

Named Invariants

Name

Carrier Sets

Constants

Named Properties

Fig. 12.Model and Context Relationship

6

2.6 Consistency Proofs for an Event System: Feasibility and Invariance Preservation

Let M be a model with variablesv, seeing a contextC with carrier setss and constantsc. The prop-
erties of constants are denoted byP (s, c) and the invariant byI(s, c, v). Let E be an event ofM with
guardsG(s, c, v) and before-after predicateR(s, c, v, v′). When dealing with an array of events, the guards
G(s, c, v) are extended with corresponding array conditions.

We first have to express that, under the propertiesP (s, c), the invariantI(s, c, v), and the guardG(s, c, v),
the before-after predicate indeed yields at least one after valuev′ defined by the before-after predicate
R(s, c, v, v′). This is the feasibility statementFIS. We then express that the invariant is maintained. This
is the invariant preservation statementINV. These two statements are shown in Fig. 13.

P (s, c) ∧ I(s, c, v) ∧ G(s, c, v) ⇒ ∃v′ ·R(s, c, v, v′) FIS

P (s, c) ∧ I(s, c, v) ∧ G(s, c, v) ∧ R(s, c, v, v′) ⇒ I(s, c, v′) INV

Fig. 13.Feasibility and Invariant Preservation Statements

In Appendix 1, we give the special forms of these laws for the various kinds of event we may have
(deterministic or non-deterministic).

There is a special rule for theinitialization event. LetRI(s, c, v′) denote the after predicate of the
generalized substitution associated with this event. The two simplified statements to prove,INI_FIS and
INI_INV, are given in Fig. 14.

P (s, c) ⇒ ∃ v′ ·RI(s, c, v′) INI_FIS

P (s, c) ∧ RI(s, c, v′) ⇒ I(s, c, v′) INI_INV

Fig. 14.Feasibility and Invariant Preservation Statements for the Initialization

It is sometimes useful to state that the model which has been defined is deadlock free, that it can run
for ever. This is very simply done by stating that the disjunction of the event guards always hold under the
properties of the constant and the invariant. This is shown on Fig. 15 whereG1(s, c, v), . . . , Gn(s, c, v)
denote the guards of the events.

P (s, c) ∧ I(s, c, v) ⇒ G1(s, c, v) ∨ . . . ∨ Gn(s, c, v) DLKF

Fig. 15.Deadlock Freeness

7

3 Refinement

In this section we define the refinement of models and contexts. This is first described in section 3.1.
In sections 3.2, 3.3, 3.4, and 3.5 we present in more detail the refinement of events and the rules to be
followed in order to prove that a refinement is correct. Finally, in sections 3.6 and 3.7 we study a number
of extra concepts related to refinements.

3.1 Model and Context Refinements

From a given modelM, a new modelN can be built and asserted to be a refinement ofM. Model M will
be said to be anabstractionof N, and modelN will be said to be arefinementof M or aconcrete version
of it. Likewise, contextC, seen by a modelM, can be refined to a contextD, which may be seen byN.

Variables

Invariants

Events

Sets

Constants

Properties

sees

Variables

Invariants

Events

Sets

Constants

Properties

sees

refines refines

ABSTRACT

MODEL

ABSTRACT

CONTEXT

CONCRETE

MODEL

CONCRETE

CONTEXT

M C

DN

Fig. 16.Model and Context Refinements

This is represented in Fig. 16. Note that it is not necessary to refine contextC when refining modelM. In
this restricted case, modelN just sees contextC as does its abstractionM. This is illustrated in Fig. 17.

The sets and constants of an abstract context are kept in its refinement. In other words, the refinement of
a context just consists of adding new carrier sets and new constants to existing sets and constants. These
are defined by means of new properties. In the case illustrated on Fig 16, modelN, which sees contextD,
can thus use all carrier sets and constants defined inD as well as inC. From now on, to simplify matters,s
will denote theaccumulatedcarrier sets, andc will denote theaccumulatedconstants seen from a model
refinement.

The situation is not the same when refining models. The concrete modelN (which supposedly sees con-
crete contextD) has a collection of state variablesw, which must becompletely distinct(in first approxi-
mation) from the collectionv of variables in the abstractionM. ModelN also has an invariant dealing with

8

Variables

Invariants

Events

Sets

Constants

Properties

sees

refines

ABSTRACT

MODEL

ABSTRACT

CONTEXT

CONCRETE

MODEL

M C

N

Variables

Invariants

Events

sees

Fig. 17.Special Case of Model and Context Refinements

these variablesw. But contrary to the case of abstract modelM where the invariant exclusively depended
on the variablesv of this model, this time it is possible to have the invariant ofN, not only depending on
variablesw of N, but also on the variablesv of its abstractionM. This is the reason why we collectively
name this invariant ofN thegluing invariantJ(s, c, v, w): it “glues” the state of the concrete modelN to
that of its abstractionM.

The development process we have seen so far was limited to two levels: an abstraction and its refine-
ment. Of course, this process can be extended to more refinements as shown in Fig. 18. Note however that
a gluing invariant links two successive models only. In other words, the variables mentioned in a gluing
invariant are only those of the corresponding model and of its abstraction.

3.2 Refinement of Existing Events

The new modelN has a number of events. Each event in the abstract modelM has to be refined by one
or several events in the concrete modelN. This is illustrated in Fig. 19. It means that when proposing an
event in a concrete model one must say explicitely which event it is supposed to refine (if any).

Suppose we have an abstract event with guardG(s, c, v) and before-after predicateR(s, c, v, v′) and
a refining concrete event with guardH(s, c, w) and before-after predicateS(s, c, w, w′). The refinement
statements to prove are shown in Fig. 20. The first law,FIS_REF, expresses that the refined event is fea-
sible. The second and third laws,GRD_REF andINV_REF express the correct refinement of the concrete
event with respect to the corresponding abstract one. InAppendix 2 we give the various simplifed forms
of these laws fort the various cases of event refinement.

9

M1

M2

C1

C2

sees

refines refines

Mn Cn

refines refines

Fig. 18.Model and Context Refinements

Named Guards

Generalized Substitution

Name

Named Guards

Generalized Substitution

Name

Named Guards

Generalized Substitution

Name

refinesrefines

concrete events

abstract event

Fig. 19.An abstract event is refined by one or several concrete events

10

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w)
⇒
∃w′ · S(s, c, w, w′)

FIS_REF

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w)
⇒
G(s, c, v)

GRD_REF

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w) ∧ S(s, c, w, w′)
⇒
∃ v′ · (R(s, c, v, v′) ∧ J(s, c, v′, w′))

INV_REF

Fig. 20.Refinement laws

3.3 Merging and Refining Existing Events

It is also possible for several abstract events to be merged before being refined to a single concrete event.
This is shown in Fig. 21. For this to be possible however, the abstract merging events must fulfil a special
constraint: all their generalized substitutions must be identical.

This process of merging and refining is made of two phases. The merging events are first implicitly
transformed into a single abstract merged event. This event has a guard formed by taking the disjunction
of the guards of the merging events. It has the same generalized substitution as the ones of the merging
events. This is indicated in Fig. 22. Then this abstract merging event is refined as explained in section 3.2.

Note that the merging of two arrays of events require that they have tha same indices and the same array
conditions.

3.4 Introducing New Events in a Refinement

New events can be introduced in a refinement. In this case, the refinement mechanism is slightly different
from the one described in sections 3.2 and 3.3 for events already existing in the abstraction. This kind
of refinement has two special constraints which are the following: (1) each new event refines an implicit
skip event, and (2) the new events shouldnot together diverge(run for ever) since then the abstract events
could possibly never occur.

We now formalize these two constraints. Suppose we have an abstract modelM seeing a contextC as
above. This model is refined to a more concrete modelN seeing the refinementD of contextC, again as
above. In the refined modelN, we supposedly have a new event with guardH(s, c, w) and before-after
predicateS(s, c, w, w′). The first constraint (refiningskip) leads to refinement statements as indicated in
Fig. 23. Note that these laws are just special cases of similar laws given in Fig. 20.

The second constraint (non-divergence of the new events), imposes to exhibit a variantV (s, c, w),
which is a well-founded structure (e.g.N,≤). And it is then necessary to prove that each new event
decreases thatsamevariant. This leads to a non-divergence statement as indicated in Fig. 24. Note that
more generally, the variant could be any expression whcih is proved to be decreased by a well-founded
relation.

11

Named Guards

Generalized Substitution

Name

Named Guards

Generalized Substitution

Name

Named Guards

Generalized Substitution

Name

abstract events

merge−refines

concrete event

merge−refines

Fig. 21.Several abstract events are merged and then refined to a concrete event

Abstract merging events Abstract merged event

E =̂ when G(v) then S(v) end

F =̂ when H(v) then S(v) end
EF =̂ when G(v) ∨ H(v) then S(v) end

Fig. 22.Abstract merging of two events

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w)
⇒
∃w′ · S(s, c, w, w′)

FIS_REF

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w) ∧ S(s, c, w, w′)
⇒
J(s, c, v, w′)

INV_REF

Fig. 23.Refinement statement of a new event

12

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w) ∧ S(s, c, w, w′)
⇒
V (s, c, w) ∈ N ∧ V (s, c, w′) < V (s, c, w)

WFD_REF

Fig. 24.Non-divergence statement

3.5 Relative Deadlock Freeness

The relative deadlock freeness is the property which says that a concrete model cannot deadlock more
often than its abstraction. There are two kinds of relative deadlock freeness: the weak one and the strong
one. For each abstract eventEi, we can state one or the other.

The weak relative deadlock freeness expresses that the guardGi(s, c, v) of an abstract eventEi implies
the disjunction of the concrete guardsH1(s, c, w), . . . ,Hm(s, c, w) of the refined abstract events dis-
jointed with the disjunction of the guardsN1(s, c, w), . . . , Nn(s, c, w), of the new events. This is stated
in Fig. 25.

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ Gi(s, c, v)
⇒
H1(s, c, w) ∨ . . . ∨ Hm(s, c, w) ∨ N1(s, c, w) ∨ . . . ∨ Nn(s, c, w)

W_DLK_Ei

Fig. 25.Weak relative deadlock freeness

The strong relative deadlock freeness expresses that the guardGi(s, c, v) of an abstract eventEi implies
the disjunction of the guardHi(s, c, w), of the eventFi refining Ei, and of those guards,N1(s, c, w),
. . . , Nn(s, c, w), of the new events. This is stated in Fig. 26. Note that when eventEi is refined by several

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ Gi(s, c, v)
⇒
Hi(s, c, w) ∨ N1(s, c, w) ∨ . . . ∨ Nn(s, c, w)

S_DLK_Ei

Fig. 26.Strong relative deadlock freeness

concrete events as explained in section 3.2, thenHi(s, c, w) in Fig. 26 stands for the disjunction of the
guards of these events. Arrays of events (see section 2.1) always follow strong relative deadlock freeness.

3.6 Anticipating New Events

Some of the new events introduced in a modelN are said to beanticipating events. Such events are refining
the implicit eventskip as other non-anticipating new events do. But they can keep the variant introduced
with N either smaller (as other new event do) orunchanged. This constraint of anticipating events must

13

hold in further refinements with regards to the introduced variants. At some refining stage however, sayP,
a previous anticipating event can become “new”. Its only constraint then is to strictly decrease the variant
introduced at this stage, but it is not required that it refinesskip.

3.7 External Variables and External Events

In this section, we introduce external variables and external events. These features will play an important
rôle in the mathematical justification of refinement and in the decomposition mechanism (section 4).

In each modelM, the variables are partitioned in two categories: theexternal variables, e, and the
internal variables,i. Let modelN be a refinement of modelM, and letf be the external variables ofN
andj its internal variables. The nature of the external variablese of M just implies that these variables are
functionally dependentof the external variablesf of N in the gluing invariant linking both models. This
is expressed by means of the following gluing invariant whereh is supposed to be a function which does
not depend on the internal variablesi or j:

J(s, c, i, j) ∧ e = h(s, c, f)

Besides external variables, there exist someexternal events. Such events only depend on the external
variables. In other words, their guards and generalized substitutions do not use internal variables. External
events are refined to other external events in the most general terms. Suppose we have an external event
in modelM with guardG(s, c, e) and before-after predicateR(s, c, e, e′). It is then refined to an exter-
nal event with guardG(s, c, h(f)) and before-after predicateR(s, c, h(f), h(f ′)). The latter is indeed a
refinement of the former since we can prove the three lawsFIS_REF, FIS_GRD, andFIS_INV of Fig. 20:

P (s, c) ∧ I(s, c, v) ∧ J(s, c, i, j) ∧ e = h(s, c, f) ∧ G(s, c, h(f)) ⇒ ∃f ′ ·R(s, c, h(s, c, f), h(s, c, f ′))

P (s, c) ∧ I(s, c, v) ∧ J(s, c, i, j) ∧ e = h(s, c, f) ∧ G(s, c, h(s, c, f)) ⇒ G(s, c, e)

P (s, c) ∧ I(s, c, v) ∧ J(s, c, i, j) ∧ e = h(s, c, f) ∧ G(s, c, h(f)) ∧R(s, c, h(s, c, f), h(s, c, f ′))
⇒
∃e′ · (R(s, c, e, e′) ∧ J(s, c, i, j) ∧ e′ = h(s, c, f ′))

The second and third laws are easily provable. The first one however, the feasibility law, imposes that we
have the following extra law:

P (s, c) ∧ I(s, c, v) ∧ G(s, c, e) ∧ R(s, c, e, e′) ⇒ ∃f ′ · (e′ = h(s, c, f ′))

Now the feasibility is easily provable since we supposedly already have the feasibility of event inM with
guardG(s, c, e) and before-after predicateR(s, c, e, e′) according toFIS on Fig. 13:

P (s, c) ∧ I(s, c, v) ∧ G(s, c, e) ⇒ ∃e′ ·R(s, c, e, e′)

14

4 Decomposition

4.1 Partitioning the events and the Variables

At some point in a development, it is appropriate to decompose a modelM into several sub-models. For
the sake of simplicity, we suppose that we only have two sub-models,N andP. The decomposition is done
by partitioning the events ofM in two groups: those going intoN and those going intoP.

Likewise, we must partition the variables ofM in two groups: those going intoN and those going into
P. However, this partitioning is in general not possible since we always have some variables that must be
shared by both sub-models.

4.2 External Variables and Events

The shared variables mentioned in the previous section are present in both sub-models under the form
external variables, which we have introduced in section 3.7. Together with the external variables, we must
also introduce someexternal events, which simulate in each sub-model the way the external variables are
handled in the other. This is illustrated in Fig. 27. As can be seen, variablev2 is external. We also have
external eventse3_ext in N ande2_ext in P.

invariant

decomposesdecomposes

invariant invariant

internal internal
event

external
event

external

external
variable

external
variable

internal
variable

internal
variable

variables

v1
v2

v3

events

MODEL M

MODEL N MODEL P

e1, e2, e3, e4

v1, v2, v3

v2

events
e1, e2 e3, e4e3_ext e2_ext

events

Fig. 27.Decomposition

4.3 Possible Recomposition

Once the decomposition is accomplished, the sub-models can be refined independently. For example,
modelN is refined to modelNR with internal variablesw1 and external variablesw2. And modelP is re-
fined to modelPR with internal variablesw3 and external variablesw2. There are some constraints which

15

must be observed however: the shared variablesv2 which are external and common in both decomposed
models must berefined in the same way. This is very simply accomplished by having thesame functional
gluing invariantv2 = h(w2) in both sub-models.

It is then possible to re-compose modelsNR andPR to form modelMR. This is done by conjoining
the invariants of both models and removing the external events. But we now have to prove that the re-
composed modelMR is indeed a refinement of the original modelM. In order to do so, it is sufficient to
prove the following:

External eventse3_ext in N ande2_ext in P are refined to eventse3 ande2 in M.

Decomposition thus appears to be just an abstraction as indicated on Fig. 28.

5 Generic Instantiation

Generic instantiation is another proposal for solving the difficulties raised by the construction of large
models. Suppose we have done an abstract developmentA with modelsM1 to Mn and corresponding
contextsC1 to Cn as shown on Fig. 29.

This development is in fact parameterized by the carrier setss and the constantsc that have been
accumulated in contextsC1 to Cn. This development is said to begenericwith regards to such carrier sets
and constants. Remember that such sets are completely independent of each other and have no properties
except that they are supposed to be non-empty. The constants are defined by means of some properties
P (s, c), which stand here for all properties accumulated in contextsC1 to Cn. In fact, in all our proofs of
this development,s andc appear asfree variables. Moreover, the constants propertiesP (s, c) appear as
assumptions in all statements to be proved, which are thus of the following form as can be seen in proof
obligationsFIS and INV (Fig. 13),FIS_REF, FIS_REF, andINV_REF (Fig. 20),WFD_REF (Fig. 24),
W_DLK_Ei andS_DLK_Ei (Fig. 25 and 26):

P (s, c) ∧ A(s, c, . . .) ⇒ B(s, c, . . .)

Suppose now that in another developmentB, we reach a situation with modelN seeing a certain context
D (after some model and context refinements), as shown on Fig. 30.

The accumulated sets and constants in contextD are denoted byt and d respectively. And the ac-
cumulated properties in contextD are denoted byQ(t, d). We might figure out at this point that a nice
continuation of DevelopmentB would simply consist inreusingDevelopmentA with someslight changes
consisting of instantiating setss and constantsc of DevelopmentA with expressionsS(t, d) andC(t, d)
depending on sets and constantst andd of DevelopmentB.

Let M1′, . . .Mn′ be the models of DevelopmentA after performing the instantiations on the various
invariants and events which can be found inM1 to Mn. The effective reuse is that shown in Fig. 31.

As can be seen, instantiated modelsM1′, . . .Mn′ implicitly “see”contextD. It remains, of course, to
prove now that modelM1′ refines modelN. Once this is successfully done, we would like to resume De-
velopmentB afterMn′. To do so, it is then necessary to prove that all feasibility, invariant, and refinement
proofs performed in the DevelopmentA are still valid after the instantiation. Remember that all statements
proved in the DevelopmentA were of the following form:

P (s, c) ∧ A(s, c, . . .) ⇒ B(s, c, . . .)

16

event

invariant

internal

external

external
event

variables

internal
variables

v2
v1

e1, e2 e3_ext

invariant

internal
eventevent

external

external
variables

internal
variables

v2
v3

e3, e4e2_ext

event

invariant

internal

external

external
event

variables

internal
variables

refines

e1r, e2r

w1

e3_ext_r

w2
invariant

internal
eventevent

external

external
variables

internal
variables

w2
w3

refines

e3r, e4re2_ext_r

invariant

variables

events
e1r, e2r, e3r

w1, w2, w3

invariant

variables

events

v1, v2, v3

e1, e2, e3, e4refines refines

refines refines

refines

Fig. 28.Recomposition

17

M1 C1
sees

refines refines

Mn Cn
sees

Fig. 29.DevelopmentA

sees
N D

refines refines

Fig. 30.DevelopmentB

D
sees

refines

seesrefines

refines

N

refines

M1’

Mn’

sees

Fig. 31.Generic Instantiation of DevelopmentA as a continuation of DevelopmentB

18

As a consequence, they all look as follows after instantiation:

P (S(t, d), C(t, d)) ∧ A(S(t, d), C(t, d), . . .) ⇒ B(S(t, d), C(t, d), . . .)

But we have now to removeP (S(t, d), C(t, d)), since contextsC1 to Cn have disappeared as shown on
Fig. 31, and replace it by the new set and constant propertiesQ(t, d), namely:

Q(t, d) ∧ A(S(t, d), C(t, d), . . .) ⇒ B(S(t, d), C(t, d), . . .)

In order to prove this statement from the previous one, it is just sufficient thatQ(t, d) impliesP (S(t, d), C(t, d)).
In other words and quite intuitively, the instantiated properties of the constants of DevelopmentA should
become mere theorems in DevelopmentB. This is indicated as follows:

Q(t, d) ⇒ P (S(t, d), C(t, d)) INS

Appendix 1: Special Cases of the Invariant Laws

We instantiate the general forms of the lawsINV andFIS of section 2.6, namely:

P (s, c) ∧ I(s, c, v) ∧ G(s, c, v) ⇒ ∃v′ ·R(s, c, v, v′) FIS

P (s, c) ∧ I(s, c, v) ∧ G(s, c, v) ∧ R(s, c, v, v′) ⇒ I(s, c, v′) INV

to the various shapes of the generalized substitutions involved in an event. We have two cases to consider
(sinceskip trivially maintains an invariant).

(1) Given a deterministic event of the form:

when G(s, c, v) then x := E(s, c, v) end

then lawFIS is trivially true and lawINV simplifies to the following:

P (s, c) ∧ I(s, c, v) ∧ G(s, c, v) ⇒ [x := E(s, c, v)] I(s, c, v) INV_1

(2) Given a non-deterministic event of the form

when G(s, c, v) then
any t where P (t, s, c, v) then x := E(t, s, c, v) end

end

19

then lawFIS andINV becomes the following:

I(s, c, v) ∧ G(s, c, v) ⇒ ∃ t·P (t, s, c, v) FIS_2

I(s, s, v) ∧ G(s, c, v) ∧ P (t, s, c, v) ⇒ [x := E(t, s, c, v)]I(s, c, v) INV_2

Appendix 2: Special Cases of the Refinement Laws

We instantiate the general forms of the refinement lawsFIS_REF, GRD_REF, andINV_REF given
in section 3.2, namely:

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w)
⇒
∃w′ · S(s, c, w, w′)

FIS_REF

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w)
⇒
G(s, c, v)

GRD_REF

P (s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ H(s, c, w) ∧ S(s, c, w, w′)
⇒
∃ v′ · (R(s, c, v, v′) ∧ J(s, c, v′, w′))

INV_REF

to the various cases of event refinements. In fact, we have four cases to consider. In what follows in order
to simplify things, we omit to mention the carrier setss and the constantsc.

(1) Here is the first special case where the abstract and refined events are as follows :

when G(v) then x := E(v) end when H(w) then y := F (w) end

ThenFIS_REF is trivially true and the other two laws are as follows:

I(v) ∧ J(v, w) ∧ H(w) ⇒ G(v) GRD_REF_1

I(v) ∧ J(v, w) ∧ H(w) ⇒ [x, y := E(v), F (w)]J(v, w) INV_REF_1

(2) The second special case of abstract and concrete events is as follows:

20

when
G(v)

then
any t where

P (t, v)
then

x := E(t, v)
end

end

when H(w) then y := F (w) end

Again lawFIS_REF is trivially true and the other two laws are as follows:

I(v) ∧ J(v, w) ∧ H(w) ⇒ G(v) GRD_REF_2

I(v) ∧ J(v, w) ∧ H(w) ⇒ ∃t·(P (t, v) ∧ [x, y := E(t, v), F (w)]J(v, w)) INV_REF_2

Note that lawINV_REF_2 can still be simplified provided the user gives somewitnessW (w) for the
existentially quantified variablet. This yields:

I(v) ∧ J(v, w) ∧ H(w) ⇒ P (W (w), v) ∧ [x, y := E(W (w), v), F (w)]J(v, w)

(3) The next special case of abstract and concrete events is the following:

when G(v) then x := E(v) end

when
H(w)

then
any u where

Q(u, w)
then

w := F (u, w)
end

end

In that case, the three laws are simplified as follows:

I(v) ∧ J(v, w) ∧ H(w) ⇒ ∃u ·Q(u, w) FIS_REF_3

I(v) ∧ J(v, w) ∧ H(w) ∧ Q(u, w) ⇒ G(v) GRD_REF_3

I(v) ∧ J(v, w) ∧ H(w) ∧ Q(u, w) ⇒ [x, y := E(v), F (u, w)]J(v, w) INV_REF_3

21

(4) The final special case of abstract and concrete events is then the following:

when
G(v)

then
any t where

P (t, v)
then

v := E(t, v)
end

end

when
H(w)

then
any u where

Q(u, w)
then

w := F (u, w)
end

end

In that case, the three laws are simplified as follows:

I(v) ∧ J(v, w) ∧ H(w) ⇒ ∃u ·Q(u, w) FIS_REF_4

I(v) ∧ J(v, w) ∧H(w) ⇒ G(v) GRD_REF_4

I(v) ∧ J(v, w) ∧ H(w) ∧ Q(u, w) ⇒ ∃t · (P (t, v) ∧ J(E(t, v), F (u, w))) INV_REF_4

Notice that one may provide somewitnessfor the existentially quantified variablest. For example a
witnessW (u, w) for t, would transform lawINV_REF_4 into the following, which can be further de-
composed:

I(v) ∧ J(v, w) ∧ H(w) ∧ Q(u, w) ⇒ P (W (u, w), v) ∧ J(E(W (u, w), v), F (u, w))

22

(III) Event-B: Mathematical Model

J.-R. Abrial

April 2005

Version 1

Event-B: Mathematical Model

1 Introduction

This document contains the mathematical justification of the laws which have been proposed in the com-
panion document entitledEvent-B: Structure and Laws. The laws of model and refinement consistencies
are presented in section 2 and 3 under the form of a set-theoretic model and corresponding proofs. The
laws of decomposition are then justified in section 4 under the forms of a proof performed within the First
Order Predicate Calculus.

In this presentation to simplify matters, we suppose that we have models defined without contexts.

2 Initial Model Set-theoretic Representation

In this section our intention is toformally justify the invariant verification statements, namelyFIS and
INV, which were proposed in in section 2.6 of the document entitledEvent_B: Structure and Laws. For
this, we shall develop a set theoretic representation of the discrete models we have presented.

We suppose that the state variablesv are all together moving within a certain setS involving the invariant
I(v). Each event can be represented by a certain binary relationp. The fact that the invariantI(v) is
preserved by eventp is simply formalized by saying thatp is a binary relation built onS:

p ⊆ S × S

In order to link this set-theoretic representation to the previous verification statements, it suffices to for-
mally defineS andp. It involves the invariantI(v) for the setS, and the guardG(v) and before-after
predicateR(v, v′) for the relationp. This yields:

S = { v | I(v) }

p = { v 7→ v′ | I(v) ∧ G(v) ∧ R(v, v′) }

dom (p) = { v | I(v) ∧ G(v) }

The last equality states thatG(v) andI(v) together denote the genuine domain of the relationp. But the
domain ofp is defined to be the set

{ v | I(v) ∧ G(v) ∧ ∃ v′ ·R(v, v′) }

This leads to the following, which is exactlyFIS:

1

I(v) ∧ G(v) ⇒ ∃v′ ·R(v, v′) FIS

And the translation of the predicatep ⊆ S × S yields exactly the desired result,INV, namely:

I(v) ∧ G(v) ∧ R(v, v′) ⇒ I(v′) INV

3 Refinement Set-theoretic Representation

As in the previous section for invariants, our intention is to formallyjustify in this section the refinement
verification statements, namelyFIS_REF, GRD_REF, INV_REF, which have been proposed in section
3.2 of the document entitledEvent_B: Structure and Laws. For this, we shall extend the set theoretic
representation of section 2.

3.1 Sets and Relations

We suppose, as above, that the abstract state variables are within the setS. But we now have to make a
distinction between external and internal sets. So the setS is defined to be the cartesian product of the
setsE (standing for external set) andI (standing for internal set). The refined state variables are within
a certain setT , which is also decomposed as the cartesian product of setsF (refined external set) and
J (refined internal set). Letp represent an abstract event binary relation and letq be the corresponding
refined event relation. We have then the following typing constraints:

p ∈ E × I ↔ E × I

q ∈ F × J ↔ F × J

Let f andg denote the functions projecting the setE × I on the setE and the setF × J on the setF
respectively. Formally

f ∈ E × I → E

g ∈ F × J → F

We have then the following:

∀ (e, i) · (e ∈ E ∧ i ∈ I ⇒ f(e 7→ i) = e)

∀ (f, j) · (f ∈ F ∧ j ∈ J ⇒ g(f 7→ j) = f)

2

The external setsE andF are related by a certaintotal functionh, which is thus typed as follows:

h ∈ F → E

All this can be illustrated in the following diagram:

E x IE x I

E

F

F x J

p

q

f

g −1

h

F x J

F

E

f

g

−1
h

−1

3.2 Formal Definition of Refinement

In this section we present a formal definition of refinement, which is entirely based on the external sets.
This will result in a kind of ultimate definition of refinement. In the next section we shall however derive
somesufficient refinement conditionsimplying a formalization of the gluing invariant.

The previous diagram shows how one can link the external setF to itself by navigating either throughh,
f−1, p, f , andh−1 in the abstraction or throughg−1, q, andg in the refinement. These two compositions
result in two binary relations built onF . Let us call themα andβ respectively. The definition of refinement
follows: the event represented by the relationp is refined by that represented by the relationq if the relation
β is includedin the relationα. As can be seen, refinement is clearly definedrelative to the external sets.

g−1 ; q ; g︸ ︷︷ ︸
β

⊆ h ; f−1 ; p ; f ; h−1︸ ︷︷ ︸
α

REF

This means that every pair pertaining to the refined relationβ is also pertaining to the abstract relation
α. However, we have no equality between these relations because the refined relationβ might be more
deterministic than its abstractionα. We might have some loss of information between the refined model
and its abstraction. What is important to note here is that no pair of external values inβ can be outside the
abstractionα: this constitutes theessence of refinement. If a pair of external values is linked through the
refined eventq, it must also be linked through the abstract eventp. In other words, the refined event must
not contradict the abstract onefrom the point of view of the external sets.

3

3.3 Sufficient Refinement Conditions

We are now going to define a sufficient refinement condition for refinement. Letr be atotal binary relation
from the concrete setF ×J to the abstract setE×I. This relation formalizes the gluing invariant between
the refined state and the abstract one. Formally

r ∈ F × J ←↔ E × I

Note that the symbol “←↔” is used to define the set oftotal binary relationsfrom one set to another. The
relationr must becompatiblewith the functionh linking the external setsF andE. In other words, if
the pairc 7→ d is linked to the paira 7→ b throughr, thenc must be linked toa throughh, that is to say:
a = h(c). This can be formalised by means of the following condition:

r−1 ; g ⊆ f ; h−1 C1

The introduction of the relationr leads to the following diagram:

E x IE x I

E

F

F x J

p

q

f

g −1

h r r

F x J

F

E

f

g

−1
h

−1

We now suppose that the following two extra conditions hold:

r−1 ; q ⊆ p ; r−1 C2

g−1 ⊆ h ; f−1 ; r−1 C3

It is then easy to prove that these conditions aresufficient to ensure refinement, namely conditionREF
above. It relies on the monotonicity of composition with regards to set inclusion and also on the associa-
tivity of composition:

4

g−1 ; q ; g
⊆ C3

h ; f−1 ; r−1 ; q ; g
⊆ C2

h ; f−1 ; p ; r−1 ; g
⊆ C1

h ; f−1 ; p ; f ; h−1

But it happens that conditionC3 can be deduced from conditionC1 and from the totality ofr:

r−1 ; g ⊆ f ; h−1 C1
⇒ Set Theory

r ; r−1 ; g ⊆ r ; f ; h−1

⇒ id (T) ⊆ r ; r−1 since r ∈ T ←↔ S
g ⊆ r ; f ; h−1

⇔ Set Theory
g−1 ⊆ h ; f−1 ; r−1 C3

As a consequence, there only remains conditionC2. In order to translate this condition and thus establish
the verification statementsFIS_REF, GRD_REF, andINV_REF, it suffices to linkE × I, F × J , p, q,
andr with this new formulation. This yields:

E × I = { v | I(v) }

F × J = {w | ∃v · (I(v) ∧ J(v, w)) }

p = { v 7→ v′ | I(v) ∧ G(v) ∧ R(v, v′) }

q = {w 7→ w′ | ∃v · (I(v) ∧ J(v, w)) ∧ H(w) ∧ S(w,w′) }

r = {w 7→ v | I(v) ∧ J(v, w) }

dom (q) = {w | ∃v · (I(v) ∧ J(v, w)) ∧ H(w) }

Note that the domain of the binary relationr is F × J . The binary relationr is thus indeed a total relation
as required. The domain of the binary relationq is the set:

{w | ∃v · (I(v) ∧ J(v, w)) ∧ H(w) ∧ ∃w′ · S(w,w′) }

Thus our last constraint on the domain ofq leads to the following, which is exactlyFIS_REF:

I(v) ∧ J(v, w) ∧ H(w) ⇒ ∃w′ · S(w,w′) FIS_REF

The translation of conditionC2, namelyr−1 ; q ⊆ p ; r−1, yields the following:

5

I(v) ∧ J(v, w) ∧ H(w) ∧ S(w,w′) ⇒ G(v) ∧ ∃ v′ · (R(v, v′) ∧ J(v′, w′))

According to conditionFIS_REF it can be split as follows yielding exactlyGRD_REF andINV_REF

I(v) ∧ J(v, w) ∧ H(w) ⇒ G(v) GRD_REF

I(v) ∧ J(v, w) ∧ H(w) ∧ S(w,w′) ⇒ ∃ v′ · (R(v, v′) ∧ J(v′, w′)) INV_REF

4 Decomposition

In this section we justify the decomposition presented in section 4 of the document entitledEvent_B:
Structure and Laws. We recommend the reader to read again this short section as we shall use in what
follows the same convention as those used there.

4.1 Decomposing ModelM into modelsN and P

We shall carry out the proof based on the example shown in Fig. 26 of the previous document which we
reproduce here:

invariant

decomposesdecomposes

invariant invariant

internal internal
event

external
event

external

external
variable

external
variable

internal
variable

internal
variable

variables

v1
v2

v3

events

MODEL M

MODEL N MODEL P

e1, e2, e3, e4

v1, v2, v3

v2

events
e1, e2 e3, e4e3_ext e2_ext

events

Suppose that the usage of the variablesv1, v2 andv3 in modelM is as follows:

6

variable events

v1 e1, e2

v2 e2, e3

v3 e3, e4

events variables

e1 v1

e2 v1, v2

e3 v2, v3

e4 v3

Model M is then decomposed into modelsN andP. Model N uses variablev1 as an internal variable
and variablev2 as an external variable. It has eventse1 ande2 plus an extra external eventse3a (for
e3 abstracted) dealing with variablev2 only. Evente3a is supposed to be refined by evente3. In other
words, evente3a simulates in modelN the behavior of evente3 in modelP. This is summarized in the
following table:

model internal variables internal events external variables external events

N v1 e1, e2 v2 e3a

Similarly, modelP uses variablev3 as an internal variable and variablev2 as an external variable. It has
eventse3 ande4 plus an extra external eventse2a (for e2 abstracted) dealing with variablev2 only.
Evente2a is supposed to be refined by evente2. In other words, evente2a simulates in modelP the
behavior of evente2 in modelN. This is summarized in the following table:

model internal variables internal events external variables external events

P v3 e3, e4 v2 e2a

It can easily be seen that modelsN andP are both refined by modelM. This is so because eventse1
ande2 of N are clearly refined by eventse1 ande2 of M (they are the same); evente3a of N is refined
by constructionby evente3 of M; finally evente4 of M clearly refinesskip in N since it deals with
variablesv3 which does not exist inN. And similarly for P. More precisely, let the guards and before-
after predicates of the four events be the following in modelM:

7

events guards in M before-after predicates inM

e1 G1(v1) E1(v1, v1′)

e2 G2(v1, v2) E2(v1, v2, v1′, v2′)

e3 G3(v2, v3) E3(v2, v2′, v3, v3′)

e4 G4(v3) E4(v3, v3′)

And they are the following inN andP

events guards in N BA predicates inN

e1 G1(v1) E1(v1, v1′)

e2 G2(v1, v2) E2(v1, v2, v1′, v2′)

e3a G3a(v2) E3a(v2, v2′)

events guards in P BA predicates inP

e2a G2a(v2) E2a(v2, v2′)

e3 G3(v2, v3) E3(v2, v3, v2′, v3′)

e4 G4(v3) E4(v3, v3′)

The condition expressing that evente2 is a refinement of evente2a is the following:

G2(v1, v2) ∧ E2(v1, v2, v1′, v2′) ⇒ G2a(v2) ∧ E2a(v2, v2′)

4.2 Refining ModelsN and P to ModelsNR and PR

Suppose that we now refineN toNR. ModelNR has variablesw1 andw2 together with the gluing invariant
J(v1, w1, w2) ∧ v2=h(w2). ModelNR has eventse1r ande2r which are supposed to be refinements of
e1 ande2 respectively, and also evente3ar, which is a refinement of evente3a. This can be summarized
in the following table:

8

model int. variables int. events ext. variables ext. events gluing invariant

NR w1 e1r, e2r w2 e3ar J(v1, w1, w2) ∧ v2 = h(w2)

Similarly, we refineP to PR. Model PR has variablesw3 and w2 together with the gluing invariant
K(v3, w3, w2) ∧ v2=h(w2). ModelPR has eventse3r ande4r which are supposed to be refinements of
e3 ande4 respectively, and also evente2ar, which is a refinement of evente2a. Notice that both gluing
invariantsJ andK also depend on the external variablew2. This can be summarized in the following
table:

model int. variables int. events ext. variables ext. events gluing invariant

PR w3 e3r, e4r w2 e2ar K(v3, w3, w2) ∧ v2 = h(w2)

The guards and before-after predicates inNR andPR are as follows

events guards in NR BA pred. in NR

e1r G1r(w1) E1r(w1, w1′)

e2r G2r(w1, w2) E2r(w1, w2, w1′, w2′)

e3ar G3ar(w2) E3ar(w2, w2′)

events guards in PR BA pred. in PR

e2ar G2ar(w2) E2ar(w2, w2′)

e3r G3r(w2, w3) E3r(w2, w3, w2′, w3′)

e4r G4r(w3) E4r(w3, w3′)

Let us now construct a modelMR as follows. The state ofMR is made of the three variablesw1, w2 and
w3. The invariant ofMR is J(v1, w1w2) ∧ K(v3, w3, w2) ∧ v2 = h(w2). The events ofMR are
e1r, e2r, e3r ande4r. Notice thate2ar ande3ar have been thrown away. This can be summarized in the
following table:

model variables events gluing invariant

MR w1, v2, w3 e1r, e2r, e3r, e4r J(w1, w1, w2) ∧ K(v3, w3, w2) ∧ v2 = h(w2)

9

The guards and before-after predicates inMR are as follows:

events guards in MR before-after predicates inMR

e1r G1r(w1) E1r(w1, w1′)

e2r G2r(w1, w2) E2r(w1, w2, w1′, w2′)

e3r G3r(w2, w3) E3r(w2, w3, w2′, w3′)

e4r G4r(w3) E4r(w3, w3′)

Clearly NR andPR are refined byMR, but it is not obvious thatM is refined byMR, this is precisely
what we have to prove. The situation is illustrated in the following diagram, where the arrows indicate a
refinement relationship:

N P
↖ ↗

↑ M ↑

NR ↑ ? PR
↖ ↗

MR

In what follows we shall prove that, providede1r ande2r are refinements ofe1 ande2 respectively in
NR, then they also are correct refinements ofe1 ande2 in MR. Similar proofs can be conducted for the
other events ofMR.

4.3 Evente1r is a Refinement ofe1 in MR

The correct refinement condition ofe1 to e1r within NR is the following:

J(v1, w1, w2) ∧ v2 = h(w2) ∧ G1r(w1) ∧ E1r(w1, w1′)
⇒
G1(v1) ∧ ∃ v1′ · (E1(v1, v1′) ∧ J(v1′, w1′, w2) ∧ v2 = h(w2))

Under this hypothesis, the following correct refinement condition ofe1 to e1r within MR clearly holds:

J(v1, w1, w2) ∧ K(v3, w3, w2) ∧ v2 = h(w2) ∧ G1r(w1) ∧ E1r(w1, w1′)
⇒
G1(v1) ∧ ∃ v1′ · (E1(v1, v1′) ∧ J(v1′, w1′, w2) ∧ K(v3, w3, w2) ∧ v2 = h(w2))

10

As can be seen, conditionK(v3, w3, w2) can be extracted from the existential quantification in the
consequent of this implication (this is so becauseK(v3, w3, w2) does not contain any reference to the
quantified variablev1′). It is then easily discharged because it is already present in the antecedent of the
implication.

4.4 Evente2r is a Refinement ofe2 in MR

The situation is a bit different in the case of the evente2: this is because this event modifies variablev2.
Next is the correct refinement condition ofe2 to e2r within NR:

J(v1, w1, w2) ∧ v2 = h(w2) ∧ G2r(w1, w2) ∧ E2r(w1, w2, w1′, w2′)
⇒
G2(v1, v2) ∧ ∃ (v1′, v2′) · (E2(v1, v2, v1′, v2′) ∧ J(v1′, w1′, w2′) ∧ v2′ = h(w2′))

This can be simplified as follows:

J(v1, w1, w2) ∧ G2r(w1, w2) ∧ E2r(w1, w2, w1′, w2′)
⇒
G2(v1, h(w2)) ∧ ∃ v1′ · (E2(v1, h(w2), v1′, h(w2′)) ∧ J(v1′, w1′, w2′))

Under this hypothesis, the following correct refinement condition ofe2 to e2r within MR must hold:

J(v1, w1, w2) ∧ K(v3, w3, w2) ∧ v2 = h(w2) ∧ G2r(w1, w2) ∧ E2r(w1, w2, w1′, w2′)
⇒
G2(v1, v2) ∧ ∃ (v1′, v2′) · (E2(v1, v2, v1′, v2′) ∧ J(v1′, w1′, w2′) ∧ K(v3, w3, w2′) ∧ v2′ = h(w2′))

This can be simplified as follows:

J(v1, w1, w2) ∧ K(v3, w3, w2) ∧ G2r(w1, w2) ∧ E2r(w1, w2, w1′, w2′)
⇒
G2(v1, h(w2)) ∧ ∃ v1′ · (E2(v1, h(w2), v1′, h(w2′)) ∧ J(v1′, w1′, w2′) ∧ K(v3, w3, w2′))

As above withK(v3, w3, w2) in section 4.3, the conditionK(v3, w3, w2′) can be extracted from the
existential quantification in the consequent of this implication. But this time the situation is different
from the previous one in section 4.3 as we still have the conditionK(v3, w3, w2) in the antecedent, not
K(v3, w3, w2′), so that the proof is not trivial. Again, the presence ofw2′ in the consequent is due to the
fact thatv2 is modified bye2 andw2 by e2r. Fortunately, we have not yet exploited the fact that event
e2a of modelP is refined within modelN by evente2. The condition was stated at the end of section 4.1:

∀ (v2, v2′) · (G2(v1, v2) ∧ E2(v1, v2, v1′, v2′) ⇒ G2a(v2) ∧ E2a(v2, v2′))

11

But we also know that external evente2ar is themost general eventrefininge2a under the gluing invariant
v2 = h(w2). As a consequence we have:

G2ar(w2) ⇔ G2a(h(w2))

E2ar(w2, w2′) ⇔ E2a(h(w2), h(w2′))

From this, we deduce

G2(v1, h(w2)) ∧ E2(v1, h(w2), v1′, h(w2′)) ⇒ G2ar(w2) ∧ E2ar(w,w2′)

Finally, we also have not exploited the fact that evente2a of P is refined toe2ar in PR. This yields:

K(v3, w3, w2) ∧ v2 = h(w2) ∧ G2ar(w2) ∧ E2ar(w2, w2′)
⇒
G2a(v2) ∧ ∃v2′ · (E2a(v2, v2′) ∧ K(v3, w3, w2′) ∧ v2′ = h(w2′))

This can be simplified to the following:

K(v3, w3, w2) ∧ G2ar(w2) ∧ E2ar(w2, w2′) ⇒ K(v3, w3, w2′)

Putting all these conditions together yields the following to prove, which now holds “trivially”:

K(v3, w3, w2) ∧ G2ar(w2) ∧ E2ar(w2, w2′) ⇒ K(v3, w3, w2′)

G2(v1, h(w2)) ∧ E2(v1, h(w2), v1′, h(w2′)) ⇒ G2ar(w2) ∧ E2ar(w2, w2′)

J(v1, w1, w2) ∧ G2r(w1, w2) ∧ E2r(w1, w2, w1′, w2′)⇒
G2(v1, h(w2)) ∧ ∃ v1′ · (E2(v1, h(w2), v1′, h(w2′)) ∧ J(v1′, w1′, w2′))

J(v1, w1, w2) ∧ K(v3, w3, w2) ∧ G2r(w1, w2) ∧ E2r(w1, w2, w1′, w2′)

⇒

G2(v1, h(w2)) ∧ ∃ v1′ · (E2(v1, h(w2), v1′, h(w2′)) ∧ J(v1′, w1′, w2′) ∧ K(v3, w3, w2′))

12

(IV) Event_B: Examples

J.-R. Abrial

April 2005

Version 3

Event_B: Examples

1 Introduction

In this document, we provide some examples to illustrate what has been presented in the three other
companion documents. In the first of this examples in section 2 a small reactive system, whose goal is to
control cars on a bridge, is presented. The second example in section 4 shows how one can decompose a
system. And in the third example in section 5 the usage of generic instantiation is presented.

2 Cars on a Bridge

2.1 Requirements

The system we are going to build is a piece of software connected to some equipment. Its goal is to control
cars on a narrow bridge. This bridge is supposed to link the mainland to a small island.

The system is controlling cars on a bridge connecting the mainland to an island FUN-1

This controller is equipped with two traffic lights.

The system is equipped with two traffic lights with two colors: green and red EQP-1

One of the traffic lights is situated on the mainland and the other one on the island. Both are close to the
bridge.

The traffic lights control the entrance to the bridge at both ends of it EQP-2

Drivers are supposed to obey the traffic light by not passing when a traffic light is red.

Cars are not supposed to pass on a red traffic light, only on a green one EQP-3

There are also some car sensors situated at both ends of the bridge.

The system is equipped with four sensors with two states: on or off EQP-4

1

These sensors are supposed to detect the presence of cars intending to enter or leave the bridge. There are
four such sensors. Two of them are situated on the bridge and the other two are situated on the mainland
and on the island respectively.

The sensors are used to detect the presence of car entering or leaving the bridge EQP-5

The pieces of equipment which have been described are illustrated on the following figure:

Bridge Mainland
Island

This system has two main constraints: the number of cars on the bridge and island is limited,

The number of cars on bridge and island is limited FUN-2

and the bridge is one way.

The bridge is one way or the other, not both at the same time FUN-3

2.2 Initial Model: Limiting the Number of Cars

The first model we are going to construct is very simple. We do not consider at all the various pieces
of equipment, namely the traffic lights and sensors. Such equipment will be introduced in subsequent
refinements. Likewise, we do not even consider the bridge, only acompoundmade of the bridge and the
island together.

As a useful analogy, we suppose to see the situation from very high in the sky. Although we cannot
see the bridge, we suppose however that we can “see” the cars in the island-bridge and observe the two
transitions,ML_out andML_in, corresponding to cars entering and leaving the island-bridge compound.
All this is illustrated on the following figures:

2

M a i n l a n d
I s l a n d

+ b r i d g e

ML_out

ML_in

Formalizing the state. The state is first made of a simple context containing a constantd which is a
natural number denoting the maximum number of cars allowed to be in the island-bridge at the same
time. This is formalized by the property namedprp0_1.

The state is also made of a variablen denoting the actual number of cars in the island-bridge at a given
moment. Two invariants namedinv0_1 and inv0_2 are used to define the variablen. Invariant inv0_1
says thatn is a natural number. Thefirst basic requirementof our system, namelyFUN_2, is taken into
account at this stage by stating ininv0_2 that the numbern of cars in the compound is always smaller
than or equal to the maximum numberd. Here is the formal state:

constants: d

variables: n
prp0_1 : d ∈ N

inv0_1 : n ∈ N

inv0_2 : n ≤ d

Events. At this stage we can observe two transitions corresponding to cars entering the island-bridge
compound or leaving it. Here is an illustration of the situation just before and just after an occurrence of
the first event,ML_out. As can be seen, the number of cars in the compound is incremented as a result of
this event.

AfterBefore

Likewise, here is the situation just before and just after an occurrence of the second event,ML_in. As can
be seen, the number of cars in the compound is decremented as a result of this event.

AfterBefore

3

These two events can then be defined in a simple way as follows:

n := n + 1

ML_out

n := n− 1

ML_in

The before-after predicates corresponding to these event actions are straightforward, namelyn′ = n + 1
for ML_out, andn′ = n− 1 for ML_in.

Proving Invariant Preservation. Rule FIS applied to both events leads to the following, which holds
trivially:

d ∈ N
n ∈ N
n ≤ d
⇒
∃n′ · (n′ = n + 1)

d ∈ N
n ∈ N
n ≤ d
⇒
∃n′ · (n′ = n− 1)

Invariant preservation ruleINV applied to both events leads to the following statements:

d ∈ N
n ∈ N
n ≤ d
n′ = n + 1
⇒
n′ ∈ N

d ∈ N
n ∈ N
n ≤ d
n′ = n + 1
⇒
n′ ≤ d

d ∈ N
n ∈ N
n ≤ d
n′ = n− 1
⇒
n′ ∈ N

d ∈ N
n ∈ N
n ≤ d
n′ = n− 1
⇒
n′ ≤ d

The variablen′ can be eliminated by replacing it by its value, yielding:

d ∈ N
n ∈ N
n ≤ d
⇒
n + 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
⇒
n + 1 ≤ d

d ∈ N
n ∈ N
n ≤ d
⇒
n− 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
⇒
n− 1 ≤ d

We notice that in the second case,n + 1 ≤ d cannot be proved whenn is already equal tod. And in the
third case,n − 1 ∈ N cannot be proved whenn is already equal to 0. This is so because the proposed
eventsML_out andML_in are too primitive.

4

Improving the two Events We have to addguardsto our events. They denote the necessary conditions
for these events to be enabled. For eventML_out to be enabled, it is required thatn be strictly smaller
thand. And for eventML_in to be enabled, it is required thatn be strictly positive. All this is indicated in
the following new versions of these events:

ML_out
when

n < d
then

n := n + 1
end

ML_in
when

0 < n
then

n := n− 1
end

The statements to prove by applying ruleINV are modified accordingly and are now easily provable:

d ∈ N
n ∈ N
n ≤ d
n < d
⇒
n + 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
n < d
⇒
n + 1 ≤ d

d ∈ N
n ∈ N
n ≤ d
0 < n
⇒
n− 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
0 < n
⇒
n− 1 ≤ d

Proving Deadlock FreenessSince our events are now guarded, it means that our system might deadlock
when both guard are together false. Clearly, we want to avoid this happening. We have thus to prove rule
DLKF stating that one of the two guards is always true. In other words, cars can always either enter the
compound or leave it. This is to be proved under the property of the constant and under the invariant:

d ∈ N
n ∈ N
n ≤ d
⇒
n < d ∨ 0 < n

But we now discover that this statement cannot be proved whend is zero, which is quite obvious since then
no car can ever enter the compound nor, a fortiori, leave it. We have thus to add the following property,
namedprp0_2, which was obviously forgotten:

prp0_2 : 0 < d

Conclusion of the initial model As we have seen, the proofs (or rather the failures of the proofs) allowed
us to discover that our events were too primitive and also that one property was missing in the context for
the constantd.

5

2.3 First Refinement: Introducing the One Way Bridge

In this first refinement, we introduce the bridge. This means that we are able to observe our system
more accurately. Together with this more accurate observation, we can also see more events, namely cars
entering and leaving the island. These events are calledIL_in andIL_out. Note that eventsML_out and
ML_in which were present in the initial model still exist in this refinement: they now correspond to cars
leaving the mainland and entering the bridge or leaving the bridge and entering the mainland. All this is
illustrated in the following figures:

I s l a n d
Bridge

One Way

I s l a n d

Ml_outIl_in

Ml_inIl_out

Refining the state. The state which was defined by the constantd and variablen in the initial model
now becomes more accurate. The constantd remains, but the variablen is now replaced by three new
variables. This is because now we can see cars on the bridge and on the island, something which we could
not distinguish in the previous abstraction. Moreover, we can see where cars on the bridge are going:
either towards the island or towards the mainland.

For these reasons, the state is now represented by means of three variablesa, b, andc. Variablea
denotes the number of cars on the bridge and going to the island, variableb denotes the number of cars
on the island, and variablec denotes the number of cars on the bridge and going to the mainland. This is
illustrated on the following figure:

b

a

c

Formally the refined state is represented by a number of new invariants. First, variablesa, b, andc are
all natural numbers. This is stated in invariantinv1_1, inv1_2, andinv1_3. Then we express in the, so-
called, gluing invariant, that the sum of these variables is equal to the previous abstract variablen which
now disappears. This is expressed in invariantinv1_4. And finally, we state that the bridge is one way,
this is our basic requirementFUN-3, by saying thata or c is 0. Clearly they cannot be both positive since
the bridge is one way. Note that they can be both 0 however. This is expressed in invariantinv1_5. Here
is the formalization of these invariants:

constants: d

variables: a, b, c

inv1_1 : a ∈ N

inv1_2 : b ∈ N

inv1_3 : c ∈ N

inv1_4 : a + b + c = n ;

inv1_5 : a = 0 ∨ c = 0

6

Refining the Abstract Events. The two abstract eventsML_out and ML_in have now to be refined
as they are not dealing with variablen any more but with variablesa, b, andc. Here is the proposed
refinement of eventML_out, which is presented together with its abstraction.

abstract_ML_out
when

n < d
then

n := n + 1
end

concrete_ML_out
when

a + b < d
c = 0

then
a := a + 1

end

Likewise, here is the proposed refined version of eventML_in, which is also presented together with its
abstraction.

abstract_ML_in
when

0 < n
then

n := n− 1
end

concrete_ML_in
when

0 < c
then

c := c− 1
end

Proving that the Refinement of Abstract Events are Correct.Applying RuleFIS_REF to the refined
event holds trivially. Likewise, applying ruleGRD_REF to both refined events leads to the following,
which holds trivially:

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
⇒
n < d

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < c
⇒
0 < n

Applying ruleINV_REF to both events leads to the following after some simplifications. Both statements
hold trivially.

7

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
⇒
a + 1 ∈ N
a + 1 + b + c = n + 1
a + 1 = 0 ∨ c = 0

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < c
⇒
c− 1 ∈ N
a + b + c− 1 = n− 1
a = 0 ∨ c− 1 = 0

Introducing New Events. We now have to introduce some new events corresponding to cars entering
and leaving the island. Next are the proposed new events. A can be seen , such events indeed refineskip as
they only modify variablesa, b andc in such a way that the abstract variablen remains constant according
to invariantinv1_4.

IL_in
when

0 < a
then

a, b := a− 1, b + 1
end

IL_out
when

0 < b
a = 0

then
b, c := b− 1, c + 1

end

Proving that the New Events are Correct We leave it as an exercise to the reader to state and prove that
these events refineskip. We now have to prove that new events do not diverge. For this, we have to exhibit
a variant and prove that is decreased by both new events. The proposed variant is the following:

variant_1 : 2 ∗ a + b

Applying ruleWFD_REF leads to the following obvious statements to prove:

8

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < a
⇒
2 ∗ (a− 1) + b + 1 < 2 ∗ a + b

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < b
a = 0
⇒
2 ∗ a + (b− 1) < 2 ∗ a + b

No Deadlock. Finally, we have to prove that the refined events and new events do not together deadlock.
This is so because the abstraction did not deadlock. RuleW_DLK leads to the following to prove (it is
simplified because we already proved that the abstraction did not deadlock):

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
⇒
(a + b < d ∧ c = 0) ∨
c > 0 ∨
a > 0 ∨
(b > 0 ∧ a = 0)

2.4 Second Refinement: Introducing the Traffic Lights

At this point, the situation is a bit magic. It seems that car drivers can count cars and thus decide to enter
into the bridge from the mainland (eventML_out) or from the island (eventIL_out). In reality, as we
know, the drivers follows the indication of the traffic lights, they clearly do not the count of the cars,
which is impossible.

This refinement then consists in introducing first the two traffic lights, namedml_tl andil_tl, then the
corresponding invariants, and finally some new events that are able to change the colors of the traffic
lights. The next figure illustrates the new physical situation which can be observed:

9

M A I N L A N D

ml_tl

il_tl

I S L A N D

Refining the State Two new variables are introduced,ml_tl (for mainland traffic light) andil_tl (for
island traffic light). These variables take values 0 (for red) or 1 (for green): this is formalized in invariants
namedinv2_1 andinv2_2. Since drivers are allowed to pass when traffic lights are green (1), we better
ensure by two invariants namedinv2_3 and inv2_4 that whenml_tl is green then the guard of events
ML_out holds, and that whenil_tl is green then the guard of eventsIL_out holds. Here is the refined
state:

constants : d

variables : a, b, c,

ml_tl, il_tl

inv2_1 : ml_tl ∈ {0, 1}

inv2_2 : il_tl ∈ {0, 1}

inv2_3 : ml_tl = 1 ⇒ a + b < d ∧ c = 0

inv2_4 : il_tl = 1 ⇒ 0 < b ∧ a = 0

Refining Abstract Events EventsML_out andIL_out are now refined by changing their guards to the
test of the green value of the corresponding traffic lights. This is exactly what car drivers are doing. This is
here where we implicitly assume that drivers obey the traffic lights, as indicated by requirementsEQP-3.
Note that eventsIL_in andML_in are not modified in this refinement. Here is the new version of event
ML_out presented together with its abstraction:

abstract_ML_out
when

c = 0
a + b < d

then
a := a + 1

end

concrete_ML_out
when

ml_tl = 1
then

a := a + 1
end

And here is the new version of eventIL_out presented together with its abstraction:

10

abstract_IL_out
when

a = 0
0 < b

then
b, c := b− 1, c + 1

end

concrete_IL_out
when

il_tl = 1
then

b, c := b− 1, c + 1
end

Introducing New Events We have to introduce two new events to turn the value of the traffic lights
color to green when they are red and when the conditions are appropriate. The appropriate conditions,
once again, are exactly the guards of the abstract eventsML_out andIL_out. Here are the proposed new
events:

ML_tl_green
when

ml_tl = 0
a + b < d
c = 0

then
ml_tl := 1

end

IL_tl_green
when

il_tl = 0
0 < b
a = 0

then
il_tl := 1

end

Proving that the Events are Correct. Proving that the concrete events correctly refine their abstraction
is easily done and left to the reader. But we have some problems with proving that they maintain the
new invariants. For example, here is the statement to be proved (after some simplification) concerning the
preservation of invariantinv2_4 by eventML_out:

a ∈ N
il_tl = 1 ⇒ a = 0 ∧ 0 < b
ml_tl = 1
⇒
il_tl = 1 ⇒ a + 1 = 0 ∧ 0 < b

This statement cannot be proved whenil_tl is green (1). Likewise the following statement concerning the
preservation of invariantinv2_3 by eventIL_out cannot be proved whenml_tl is green (1):

c ∈ N
ml_tl = 1 ⇒ c = 0 ∧ a + b < d
il_tl = 1
⇒
ml_tl = 1 ⇒ c + 1 = 0 ∧ a + b− 1 < d

What these failures show is that both lights cannot be green at the same time, on obvious fact, which we
have forgotten to state. We thus now introduce it as an extra invariant:

11

inv2_5 : ml_tl = 0 ∨ il_tl = 0

But this new invariant has to be preserved and this is clearly not the case with the proposed new events
ML_tl_green andIL_tl_green unless we correct them by turning to red the other traffic light, yielding:

ML_tl_green
when

ml_tl = 0
a + b < d
c = 0

then
ml_tl := 1
il_tl := 0

end

IL_tl_green
when

il_tl = 0
0 < b
a = 0

then
il_tl := 1
ml_tl := 0

end

When trying to prove the preservation of invariantinv2_3 by eventML_out, we are again in trouble. Here
is the corresponding (simplified) statement to prove:

ml_tl = 1 ⇒ c = 0 ∧ a + b < d
ml_tl = 1
⇒
ml_tl = 1 ⇒ c = 0 ∧ a + 1 + b < d

As can be seen, this statement cannot be proved whena + 1 + b is equal tod unless ml_tl is set to red (0).
In fact, whena + 1 + b is equal tod, it means that the entering car is the last one allowed to enter at this
stage because more cars would violate requirementFUN_3, which says that there are no more thand cars
in the island and bridge. This indicates that eventML_out has to be split into two events (both refining
their abstraction however) as follows:

ML_out_1
when

ml_tl = 1
a + b + 1 6= d

then
a := a + 1

end

ML_out_2
when

ml_tl = 1
a + b + 1 = d

then
a := a + 1
ml_tl := 0

end

Likewise, invariantinv2_4 cannot be maintained by eventIL_out whenb is equal to 1. In this case the last
car is leaving the island. As a consequence the island traffic light has to turn red. Here is the simplified
statement which has to be proved:

il_tl = 1 ⇒ a = 0 ∧ 0 < b
il_tl = 1
⇒
il_tl = 1 ⇒ a = 0 ∧ 0 < b− 1

12

As for eventML_out, we have to split eventIL_out as follows:

IL_out_1
when

il_tl = 1
b 6= 1

then
b, c := b− 1, c + 1

end

IL_out_2
when

il_tl = 1
b = 1

then
b, c := b− 1, c + 1
il_tl := 0

end

No divergence of new eventsWe have now to prove that the new events cannot diverge for ever. For
this, we must exhibit a certain variant that must be decreased by the new events. In fact, it turns out to
be impossible. For instance, whena andc are both 0, meaning that there is no car on the bridge in either
direction then the traffic lights could freely change color for ever as one can figure out by looking at the
new eventsML_tl_green and IL_tl_green:

ML_tl_green
when

ml_tl = 0
a + b < d
c = 0

then
ml_tl := 1
il_tl := 0

end

IL_tl_green
when

il_tl = 0
0 < b
a = 0

then
il_tl := 1
ml_tl := 0

end

What could then happen is that the light colors are changing so rapidly that the drivers can never pass. We
have to make the color changing in a more disciplined way, that is only when some car has passed in the
other direction. For this we introduce two more variablesml_pass andil_pass. Each of them can take
two values 0 and 1. Whenml_pass is equal to 1 it means that one car at least has passed on the bridge
going to the island since mainland traffic light last turned green, and similarly whenil_pass is equal to 1.
These variables are formalized in the following invariants:

inv2_6 : ml_pass ∈ {0, 1}

inv2_7 : il_pass ∈ {0, 1}

We must now modify eventsML_out_1, ML_out_2, IL_out_1, and IL_out_2 to makeml_pass or
il_pass to 1 since a car has passed in the proper direction.

13

ML_out_1
when

ml_tl = 1
a + b + 1 6= d

then
a := a + 1
ml_pass := 1

end

ML_out_2
when

ml_tl = 1
a + b + 1 = d

then
a := a + 1
ml_tl := 0
ml_pass := 1

end

IL_out_1
when

il_tl = 1
b 6= 1

then
b := b− 1
c := c + 1
il_pass := 1

end

IL_out_2
when

il_tl = 1
b = 1

then
b := b− 1
c := c + 1
il_tl := 0
il_pass := 1

end

But we must also modify eventML_tl_green and IL_tl_green to resetml_pass andil_pass and also
add in their guards the conditionsil_pass = 1 andml_pass = 1 respectively in order to be sure that
indeed a car has passed in the other direction. This yields the following:

ML_tl_green
when

ml_tl = 0
a + b < d
c = 0
il_pass = 1

then
ml_tl := 1
il_tl := 0
ml_pass := 0

end

IL_tl_green
when

il_tl = 0
0 < b
a = 0
ml_pass = 1

then
il_tl := 1
ml_tl := 0
il_pass := 0

end

Having done all that, we can now state what is to be proved in order to guarantee that there is no divergence
of the new events. The variant we can exhibit is the following:

variant_2 : ml_pass + il_pass

And the statements to be proved are the following:

ml_tl = 0
a + b < d
c = 0
il_pass = 1
⇒
il_pass < ml_pass + il_pass

il_tl = 0
b > 0
a = 0
ml_pass = 1
⇒
ml_pass < ml_pass + il_pass

At this point we figure out that it cannot be proved unlessml_pass = 1 in the first case andil_pass = 1
in the second one. We have two solutions: either to strengthen the guards of eventsML_tl_green and
IL_tl_green (adding to them the extra guardsml_pass = 1 and il_pass = 1 respectively) or adding
some extra invariants. The first solution seems to be the more economical one, yielding:

14

ML_tl_green
when

ml_tl = 0
a + b < d
c = 0
il_pass = 1
ml_pass = 1

then
ml_tl := 1
il_tl := 0
ml_pass := 0

end

IL_tl_green
when

il_tl = 0
0 < b
a = 0
ml_pass = 1
il_pass = 1

then
il_tl := 1
ml_tl := 0
il_pass := 0

end

No Deadlock It remains now to prove that we have no deadlock. The statement to prove is then the
disjunction of the various guards with some simplified assumption (we do not need all invariants):

d ∈ N
0 < d
ml_tl ∈ {0, 1}
il_tl ∈ {0, 1}
ml_pass ∈ {0, 1}
il_pass ∈ {0, 1}
a ∈ N
b ∈ N
c ∈ N
⇒
(ml_tl = 0 ∧ a + b < d ∧ c = 0 ∧ ml_pass = 1 ∧ il_pass = 1) ∨
(il_tl = 0 ∧ a = 0 ∧ b > 0 ∧ ml_pass = 1 ∧ il_pass = 1) ∨
ml_tl = 1 ∨
il_tl = 1 ∨
a > 0 ∨
c > 0

This statement can be simplified to the following:

d ∈ N
0 < d
b ∈ N
ml_tl = 0
il_tl = 0
⇒
(b < d ∧ ml_pass = 1 ∧ il_pass = 1) ∨
(b > 0 ∧ ml_pass = 1 ∧ il_pass = 1)

Unfortunately, this statement cannot be proved unless we add the following two extra invariants:

15

inv2_8 : ml_tl = 0 ⇒ ml_pass = 1

inv2_9 : il_tl = 0 ⇒ il_pass = 1

As a consequence, we can now remove the guardsml_pass = 1 andil_pass = 1 in eventsML_tl_green
andIL_tl_green since they are implied by the guardsml_tl = 0 andil_tl = 0. We figure out that our
choice of strengthening the guard of these events was the wrong one. We should have added the two
invariants. It remains for us to prove that the two new invariantsinv2_8 andinv2_9 are indeed preserved
by all events. We leave this as an exercise to the reader.

Conclusion of the Second Refinement.During this refinement, we have seen again how the proofs (or
rather the failures of the proofs) have helped us correct our mistake or enlarge our model. If fact, we
discovered 4 errors, we introduced several extra invariants, we corrected four events, and we introduced
two more variables.

3 Third Refinement: Introducing Car Sensors

Let us consider the eventsML_out_1, ML_out_2, IL_out_1, IL_out_2, ML_in, andIL_in:

ML_out_1
when

ml_tl = 1
a + b + 1 6= d

then
a := a + 1
ml_pass := 1

end

ML_out_2
when

ml_tl = 1
a + b + 1 = d

then
a := a + 1
ml_tl := 0
ml_pass := 1

end

IL_out_1
when

il_tl = 1
b 6= 1

then
b := b− 1
c := c + 1
il_pass := 1

end

IL_out_2
when

il_tl = 1
b = 1

then
b := b− 1
c := c + 1
il_tl := 0
il_pass := 1

end

ML_in
when

0 < c
then

c := c− 1
end

IL_in
when

0 < a
then

a := a− 1
b := b + 1

end

We can observe these events happening in the real world, but it is now important to have the controller
being aware of them. For this, we introduce in this refinement some sensors able to communicate these
transitions to the controllers, namely the passing of cars from the mainland to the bridge and vice-versa
and from the bridge to the island and vice-versa. For doing this, we put four such sensors at both ends of
the bridge as indicated on the following figure:

16

ML

IL

il_in_sr

ml_tl

il_tl

il_out_sr

ml_in_sr

ml_out_sr

A sensor can be in one of two states: either on or off. It is on when a car is “on” it, off otherwise.

As a consequence, we shall enlarge our state with four variables corresponding to each sensor state:
ml_out_sr, ml_in_sr, il_out_sr, andil_in_sr. They are defiined in invariantsinv3_1 to inv3_4:

constants : d

variables : a, b, c,

ml_tl, il_tl

ml_pass, il_pass

ml_out_sr, ml_in_sr,

il_out_sr, il_in_sr

inv3_1 : ml_out_sr ∈ {0, 1}

inv3_2 : ml_in_sr ∈ {0, 1}

inv3_3 : il_out_sr ∈ {0, 1}

inv3_4 : il_in_sr ∈ {0, 1}

We also clearly have the new invariants stating that when the stateil_in_sr is 1, thena is positive. In
other words, there is at least one car on the bridge, namely the one that sits on the sensoril_in_sr. We
have similar invariants foril_out_sr andml_in_sr, yielding:

inv3_5 : il_in_sr = 1 ⇒ a > 0

inv3_6 : il_out_sr = 1 ⇒ b > 0

inv3_7 : ml_in_sr = 1 ⇒ c > 0

3.1 Refining abstract events.

It is now easy to proceed with the refinement of abstract events. This is done in a straightforward fashion
as follows:

17

ML_out_1
when

ml_tl = 1
a + b + 1 6= d
ml_out_sr = 1

then
a := a + 1
ml_pass := 1
ml_out_sr := 0

end

ML_out_2
when

ml_tl = 1
a + b + 1 = d
ml_out_sr = 1

then
a := a + 1
ml_tl := 0
ml_pass := 1
ml_out_sr := 0

end

IL_out_1
when

il_tl = 1
b 6= 1
il_out_sr = 1

then
b := b− 1
c := c + 1
il_pass := 1
il_out_sr := 0

end

IL_out_2
when

il_tl = 1
b = 1
il_out_sr = 1

then
b := b− 1
c := c + 1
il_tl := 0
il_pass := 1
il_out_sr := 0

end

ML_in
when

ml_in_sr = 1
then

c := c− 1
ml_in_sr := 0

end

IL_in
when

il_in_sr = 1
then

a := a− 1
b := b + 1
il_in_sr := 0

end

ML_tl_green
when

ml_tl = 0
a + b < d
c = 0
il_pass = 1
ml_out_sr = 1

then
ml_tl := 1
il_tl := 0
ml_pass := 0

end

IL_tl_green
when

il_tl = 0
a = 0
ml_pass = 1
il_out_sr = 1

then
il_tl := 1
ml_tl := 0
il_pass := 0

end

As can be seen, we have added the guardsml_out_sr = 1 andil_out_sr = 1 to the eventsML_tl_green
andIL_tl_green since there is no point in turning a traffic light to green when there is no car willing to
pass. Note that this is adesign decisionas opposed to a requirement.

3.2 Correct Refinement

Proving that the previous events refine their abstract counterparts is left as an exercise to the reader.

3.3 Adding New Events

We now add four new events corresponding to cars arriving on the various sensors:

ML_out_arr
when

ml_out_sr = 0
then

ml_out_sr := 1
end

ML_in_arr
when

ml_in_sr = 0
c > 0

then
ml_in_sr := 1

end

IL_in_arr
when

il_in_sr = 0
a > 0

then
il_in_sr := 1

end

IL_out_arr
when

il_out_sr = 0
b > 0

then
il_out_sr := 1

end

18

3.4 Refinement of new events.

The new events clearly refineskip as they do not work with old variables. We leave it to the reader to
prove that they preserve the new invariants.

3.5 No divergence of new events.

We have to exhibit a variant which is decremented by all new events. Here it is:

variant_3: 4− (ml_out_sr + ml_in_sr + il_out_sr + il_in_sr)

We leave it as an exercise to the reader to prove that this variant is decreased by the new events.

3.6 No Deadlock

Again, we leave it to the reader to prove that this third refinement does not deadlock.

3.7 Conclusion of the Third Refinement

The final structure of the system is shown on the following figure:

ml_tlil_tl

ml_in_01
ml_in_10

ml_out_01
ml_out_10

il_in_01
il_in_10

il_out_01
il_out_10

Constant: d

Variables: a, b, c,

12 Events

il_pass, ml_pass
ml_in_sr, ml_out_sr,
il_in_sr, il_out_sr

As can be seen, we now have one constant, nine variables, eight input wires, two output wires and twelve
events.

4 Example with Decomposition: The Two-phase Handshake Protocol

Our next example is a presentation of the very classical two-phase handshake protocol. This protocol is
supposed to transfer a file from one agent, the Sender, to another one, the Receiver. These agents are
supposed to reside ondifferent sites, so that the transfer is not made by a simple copy of the file, it is
rather realized gradually by two distinct programs exchanging various kinds of messages on a network.
Such programs are working with different contexts and on different machines: the overall protocol is
indeed adistributed program.

19

4.1 Protocol Initial Specification

What we are going to develop here isnot directly the distributed program in question. We are rather
going to construct amodel of its distributed execution. In the context of thismodel, the file to transfer is
formalized by means of a constant total functionf from the interval 1 ton to some setD (wheren is a
constant positive natural number). The filef is supposed to “reside” at the Sender’s site. At the end of this
protocol execution, we want the filef to be copied without loss nor duplication on the Receiver’s site.

carrier sets: D

constants: n, f

variables: g

prp0_1 : n ∈ N1

prp0_2 : f ∈ 1 .. n→D
inv0_1 : g ∈ 1 .. n 7→D

The very global transfer action of the protocol can be abstracted by means of asingleevent calledtrm
as follows:

trm =̂ begin g := f end

This event does not “exist” by itself. In other words, it is not part of the protocol: it is just atime
snapshotthat we would like hopefully toobserve. In the “reality”, the transfer of the filef is not done
in one shot, it is made gradually. But, at this very initial stage of our approach, we are not interested in
this. In other words,as an abstraction, and regardless of what will happen in the details of the distributed
execution of the protocol, its final action must result in the possibility to observe that the filef has indeed
been copied in the fileg.

It should be noted that, at this point, we are not comitted with any particular protocol: this specification
is thus, in a sense, the most general one corresponding to a given class, namely that of file transfers.
Some more sophisticated specifications could have been proposed, in which the file might have only been
partially transfered.

4.2 Protocol First Refinement

We are now going torefine the file transfer done in one shot by the previousabstracteventtrm acting
“magically” on the Receiver’s side. For this, we have a number ofconcreteevents corresponding to the
variousphasesof the protocol. They are aiming at transfering the filepiece by piece. Of course, the
abstract eventtrm should not disappear: it will have a concrete counterpart in which the same observation
as in the abstraction must be possible.

These phases are informally behaving as follows: the Sender has a local counter,s, which records the
“index” of the next datum to be sent to the Receiver (initially,s is set to 1). When a transmission does
occur, the data itemd, which is equal tof(s), is sent to the Receiver, the counters is incremented, and
the new value ofs is also sent together withd to the Receiver (eventsnd). Notice that the Sender does
not immediately send the next item. It waits until it receives anacknowledgementfrom the Receiver. This
acknowledgement, as we shall see, will also take the form of a counter.

20

Data Channel

Ack. Channel

ReceiverSender

The Receiver is also supposed to have its own local counter,r, initially set to 1. When receiving a
pair “index-datum”, the Receiver compares the received counter withr and accepts the datum if the
counter it receives is different fromr (eventrcv). In this case,r is incremented and then sent back as an
acknowledgment. When the Sender receives a numberr which is equal to its own counters, it consider
that the acknowledgement is effective and proceeds with the next item, and so on.

The Sender and the Receiver are thus connected by means of two channels as indicated in the previous
figure: the data channel and the acknowledgement channel. The state variables are declared as follows:

carrier sets: D

constants: n, f

variables: g, s, r, d

inv1_1 : s ∈ 1 .. n + 1

inv1_2 : r ∈ 1 .. n + 1

inv1_3 : s ∈ r .. r + 1

inv1_4 : g = 1 .. r − 1 � f

Invariantsinv1_1 and inv1_2 correspond to the declarations ofs andr. Invariant inv1_3 states that
the counters is at most one more than the counterr. This invariant is the key of the protocol, since it will
allow us to replace in a subsequent refinements andr by their parities. Invariantinv1_4 states that the
result file corresponds exactly to ther − 1 first elements of the original filef . It remains now for us to
formalize the channels. For the moment (in this refinement) the data channel contains the counters of the
Sender and also some data itemd. As the counters has already been formalized,we only have to define
the invariants corresponding tod, formally:

inv1_5 : d ∈ D

inv1_6 : s 6= r ⇒ d = f(s− 1)

Invariant inv1_6 states that the transmitted datad is exactly the(s − 1)th element of the input filef
whens is different fromr. The Acknowledgment channel just contains the counterr of the Receiver. Next
are the various events. They encode the informal behavior of the protocol as described above:

21

snd =̂
when

s = r
s 6= n + 1

then
d := f(s)
s := s + 1

end

rcv =̂
when

s 6= r
then

g(r) := d
r := r + 1

end

trm =̂
when

s = r
s = n + 1

then
skip

end

4.3 Protocol Second Refinement

In this refinement, we shall give the final implementation of the two-phase handshake protocol. The idea
is to observe that it is not necessary to transmit the entire counterss andr through the data and acknowl-
edgment channels. This is so for three reasons: (1) the only tests made on both sites are equality tests
(s = r or s 6= r), as can be seen in the events defined at the end of the previous section), (2) the only
modifications of the counters are simple increments (again, this can be seen in the events defined in the
previous section), and (3) the difference betweens andr is at most 1 (look at invariantinv1_3). As a
consequence, these equality tests can be performed on theparitiesof these pointers only. These are thus
the quantities we are going to tranfer between the sites. Here are a few obvious definitions concerning the
parities of natural numbers

prp2_1: parity ∈ N→{0, 1}

prp2_2: parity(0) = 0

prp2_3: ∀x·(x ∈ N ⇒ parity(x + 1) = 1− parity(x))

It is then easy to prove the following result, which we are going to exploit. It says that the comparison
of two natural numbers is identical to the comparison of their parities when the difference between these
two numbers is at most one.

thm2_1: ∀x, y ·(x ∈ N ∧ y ∈ N ∧ x ∈ y .. y + 1 ∧ parity(x) = parity(y) ⇒ x = y)

We introduce two new variablesp andq defined to be the parities ofs andr respectively:

carrier sets: D

constants: n, f, parity

variables: g, s, r, d, p, q

inv2_1 : p = parity(s)

inv2_2 : q = parity(r)

The refined events are as follows:

22

snd =̂
when

p = q
s 6= n + 1

then
d := f(s)
s := s + 1
p := 1− p

end

rcv =̂
when

p 6= q
then

g(r) := d
r := r + 1
q := 1− q

end

trm =̂
when

p = q
s = n + 1

then
skip

end

It can be seen that each counters or r is now used on one site only. So the only data transmitted from
one site to the other ared andp from the Sender to the Receiver andq from the Receiver to the Sender.
We can also observe that the eventtrm does not do anything any more (although it refines its abstraction).
In fact, the transfer is now entirely made by the two other events. The validation of this little development
requires 19 proofs among which 4 had to be done interactively (easily).

4.4 Decomposition

Before decomposing, let us rename the two eventssnd andrcv as follows:

snd ; send_data

rcv ; send_ack

Our last refinement is now decomposed into two models called: Sender and Receiver.

The Sender has internal variables and external variabled, p, andq.

carrier sets: D

constants: n, f

internal variables: s

external variables: d, p, q

prpS0_1 : n ∈ N1

prpS0_2 : f ∈ 1 .. n→D

invS_0_1 : s ∈ 1 .. n + 1

invS_0_2 : d ∈ D

invS_0_3 : p ∈ {0, 1}

invS_0_4 : q ∈ {0, 1}

The internal event of Sender issend_data and its external event is calledreceive_ack.

send_data =̂
when

p = q
s 6= n + 1

then
d := f(s)
s := s + 1
p := 1− p

end

receive_ack =̂
when

p 6= q
then

q :∈ {0, 1}
end

23

The Receiver has internal variableg andr and external variabled, p, andq.

carrier sets: D

internal variables: g, r

external variables: d, p, q

invT_0_1 : g ∈ N 7→D

invT_0_2 : r ∈ {0, 1}

invT_0_3 : d ∈ D

invT_0_4 : p ∈ {0, 1}

invT_0_5 : q ∈ {0, 1}

The internal event of Receiver issend_ack and its external event is calledreceive_data.

send_ack =̂
when

p 6= q
then

g(r) := d
r := r + 1
q := 1− q

end

receive_data =̂
when

p = q
then

d :∈ D
p :∈ {0, 1}

end

Putting the two models next to each other shows the communication between them.

Sender Receiver

send_data =̂
when

p = q
s 6= n + 1

then
d := f(s)
s := s + 1
p := 1− p

end

d, p
=⇒

receive_data =̂
when

p = q
then

d :∈ D
p :∈ {0, 1}

end

⇑ ⇓

receive_ack =̂
when

p 6= q
then

q :∈ {0, 1}
end

q
⇐=

send_ack =̂
when

p 6= q
then

g(r) := d
r := r + 1
q := 1− q

end

24

In order to prove that the decomposition is correct, we have then to prove that the external eventre-
ceive_ack of Sender is an abstraction of the internal eventsend_ack of Receiver. And symetrically, we
have to prove that external eventreceive_data of Receiver is an abstraction of internal eventsend_data
of Sender. Such proofs are easy.

5 Example with Instantiation

In this example, we are going to perform three developments. The second will use an instantiation of
the first one. Then we shall refine the result of this instantiation. And the third development will use an
instantiation of the second one.

5.1 First Development

Initial Model of First Development

We are given a carrier setA and two constant subsetsW andS of it. Moreover, the intersection ofW and
S is supposed to be non-empty. We are asked to provide any elementx of W ∩S. Here is the formalization
of this problem.

carrier sets: A

constants: W,S

variables: x

prp_D1_0_1: W ⊆ A

prp_D1_0_2: S ⊆ A

prp_D1_0_3: W ∩ S 6= ∅

inv_D1_0_1: x ∈ A

init =̂
begin

x :∈ A
end

find =̂
begin

x :∈ W ∩ S
end

First Refinement of First Development

In this refinement, we introduce a second variableV . It is a subset ofW and its intersection withS is
supposed to be non-empty.V is equal toW initially.

carrier sets: A

constants: W,S

variables: x, V

inv_D1_1_1: V ⊆ W

inv_D1_1_2: V ∩ S 6= ∅

25

We introduce a new eventremove. Given two distinct elementsa andb of V such that eithera is in S
or b is not inS, then the action ofremove consists in removingb from V . Intuitively, if a is in S, then
removingb form V does not break the invariantV ∩ S 6= ∅ (a still is in V ∩ S). And if b is not inS, we
can remove it fromV whatever the status ofA. We leave the complete formal proof of this refinement as
an exercise to the reader.

init =̂
begin

x :∈ A
V := W

end

remove =̂
any a, b where

a ∈ V
b ∈ V
a 6= b
(a ∈ S ∨ b /∈ S)

then
V := V \ {b}

end

find =̂
any y where

y ∈ V
V = {y}

then
x := y

end

5.2 Second Development

Initial Model of Second Development

We are given a carrier setB and two constantsr andU . The constantr is supposed to be a binary relation
built on B. This relation is awell order: it is a partial order (propertiesprp_D2_0_2 to prp_D2_0_4),
such that any non-empty subsetV of B has a smallest element with respect tor (propertyprp_D2_0_5).
The constantU is a non-empty subset ofB. We are asked to find the smallest elementx of U .

carrier sets: B

constants: r, U

variables: x

prp_D2_0_1: r ∈ B ↔B

prp_D2_0_2: id(B) ⊆ r

prp_D2_0_3: r ∩ r−1 ⊆ id(B)

prp_D2_0_4: r ; r ⊆ r

prp_D2_0_5: ∀V ·

V ⊆ B
V 6= ∅
⇒
∃y · (y ∈ V ∧ V ⊆ r[{y}])


prp_D2_0_6: U ⊆ B

prp_D2_0_7: U 6= ∅

inv_D2_0_1: x ∈ B

init =̂
begin

x :∈ B
end

find =̂
begin

x :| (x ∈ U ∧ U ⊆ r[{x}])
end

26

First Refinement of Second Development

We instantiate the first development by giving values to the parametersA, W , andS in it. These values
are defined as follows in terms of the carrier setB and constantsr andU of the second development:

A = B

W = U

S = { z | z ∈ B ∧ U ⊆ r[{z}] }

And we now have to prove the three propertiesprp_D1_0_1, prp_D1_0_2, prp_D1_0_3 after instanti-
ating them as above, namely

U ⊆ B

{ z | z ∈ B ∧ U ⊆ r[{z}] } ⊆ B

U ∩ { z | z ∈ B ∧ U ⊆ r[{z}] } 6= ∅

The first one is exactlyprp_D2_0_6, the second is obvious, and the third is a direct consequence of
prp_D2_0_5 by instantiatingV with U . We now have to prove that eventfind in the second development
is refined by instantiated eventfind in the first development. This yields the following which trivially
holds:

x ∈ U ∩ { z | z ∈ B ∧ U ⊆ r[{z}] } ⇒ x ∈ U ∧ U ⊆ r[{x}]

As a consequence, we getfor freethe instantiated refinement of the first development:

carrier sets: B

constants: r, U

variables: x, V

inv_D2_1_1: V ⊆ U

inv_D2_1_2: { z | z ∈ B ∧ U ⊆ r[{z}] } ∩ V 6= ∅

init =̂
begin

x :∈ B
V := U

end

remove =̂
any a, b where

a ∈ V
b ∈ V
a 6= b
U ⊆ r[{a}] } ∨ U 6⊆ r[{b}]

then
V := V \ {b}

end

find =̂
any y where

y ∈ V
V = {y}

then
x := y

end

27

Second Refinement of Second Development

We now refineremove by strengthening its guard. We also splitremove in two events as follows:

remove_1 =̂
any a, b where

a ∈ V
b ∈ V
a 6= b
a 7→ b ∈ r

then
V := V \ {b}

end

remove_2 =̂
any a, b where

a ∈ V
b ∈ V
a 6= b
b 7→ a ∈ r

then
V := V \ {a}

end

Third Refinement of Second Development

As an extra data-refinement, we introduce a constantn, which is a natural number, and a bijective function
F from the interval0 .. n to the setU . We replace the variableV by two natural numbersi, initialised to
0, andj, initialised ton, both belonging to the interval0 .. n. The gluing invariantinv_D2_3_3 stipulates
thatV is the image of the intervali .. j underF .

carrier sets: B

constants: r, U, n, F

variables: x, i, j

prp_D2_3_1: n ∈ N

prp_D2_3_2: F ∈ 0 .. n �� U

inv_D2_3_1: i ∈ 0 .. n

inv_D2_3_2: j ∈ 0 .. n

inv_D2_3_3: V = F [i .. j]

init =̂
begin

x :∈ B
i := 0
j := n

end

remove_1 =̂
when

i 6= j
F (i) 7→ F (j) ∈ r

then
j := j − 1

end

remove_2 =̂
when

i 6= j
F (j) 7→ F (i) ∈ r

then
i := i + 1

end

find =̂
when

i = j
then

x := F (i)
end

5.3 Third Development

Initial Model of Third Development

In this development, we are given two constants: a natural numberp and an injective functionH from the
interval0 .. p to the set of natural numbers. And we are asked to find the minimumx of the range ofH.

28

constants: p, H

variables: x

prp_D3_0_1: p ∈ N

prp_D3_0_2: H ∈ 0 .. p � N

inv_D3_0_1: x ∈ N

init =̂
begin

x :∈ N
end

find =̂
begin

x := min(ran(H))
end

First Refinement of Third Development

We instantiate the second development giving values to the parametersB, r, U ,n, andF in it. These
values are defined as follows in terms of the constantsp andH of the third development:

B = N

R = { a 7→ b | a ∈ N ∧ b ∈ N ∧ a ≤ b }

U = ran(H)

n = p

F = H

And we have to prove the seven propertiesprp_D2_0_1 toprp_D2_0_7 and the two proertiesprp_D2_3_1
andprp_D2_3_2 after instantiating them. This can be done easily. We now have to prove that the instan-
tiated eventfind of the initial model of second development is a refinement of eventfind of the initial
model of the third development. This yields the following, which holds trivially:

x ∈ ran(H) ∧ ∀y · (y ∈ ran(H) ⇒ x ≤ y) ⇒ x = min(ran(H))

As a consequence, we obtainfor free the instantiation of the third refinement of the second development,
that is

constants: p, H

variables: x, i, j

inv_D3_1_1: i ∈ 0 .. n

inv_D3_1_2: j ∈ 0 .. n

29

init =̂
begin

x :∈ N
i := 0
j := n

end

remove_1 =̂
when

i 6= j
H(i) ≤ H(j)

then
j := j − 1

end

remove_2 =̂
when

i 6= j
H(j) ≤ H(i)

then
i := i + 1

end

find =̂
when

i = j
then

x := H(i)
end

From these events, we can easily construct the following piece of code:

i, j := 0, n;
while i 6= j do

if H(i) ≤ H(j) then
j := j − 1

else
i := i + 1

end
end;
x := H(i)

30

(V) Event-B: Mathematical Language

J.-R. Abrial

April 2005

Version 3

Event-B: Mathematical Language

1 Introduction

This document contains the definition of theMathematical Languagewe are going to use in Event-B.
It is made of four sections introducing successively the Proposition Language (section 3), the Predicate
Language (section 4), the Set-theoretic Language (section 5), and the Arithmetic Language (section 6).
Each of these languages will be presented as an extension of the previous one. Before introducing these
languages however, we shall give a brief summary of the Sequent Calculus (section 2).

2 Sequent Calculus

2.1 Definitions

(1) A sequentis a generic name for “something we want to prove”. For the moment, this is just an infor-
mally defined notion, which we shall refine later. In what follows we shall use identifiers such asS1, S2,
etc. to denote sequents. The important thing to note at this point is that we can associate aproof with a
sequent. For the moment, we do not know what a proof is however. It will only be defined at the end of
this section.

(2) An inference ruleis a device used to construct proofs of sequents. It is made of two parts: thean-
tecedentpart and theconsequentpart. The antecedent denotes a finite set of sequents while the consequent
denotes a single sequent. The inference rule, namedr with antecendentA and consequentC is usually
written as follows:

A
r —-

C

It is to be read:

Ruler yields a proof of sequentC as soon as we have proofs of each sequent ofA

Note that the antecedentA might be empty. In this case, the inference rule, named sayx, is written as
follows:

x —-
C

And it is to be read:

1

Rulex yields a proof of sequentC

(3) A Theoryis a set of inference rules.

(4) It is now possible to give the definition of theproof of a sequentwithin a theoryT . It is simply a finite
tree with certain contraints. The nodes of such a tree have two components: a sequents and a ruler of the
theoryT . Here are the constraints for each node of the forms 7→ r: the consequent of the ruler is s, and
the sons of this node are nodes whose sequents are exactly all the sequents of the antecedent of ruler. As
a consequence, the leaves of the tree contain rules with no antecedent. Moreover, the top node of the tree
contains the sequent we want to prove. As an example, letT be the following theory:

r1 S2 r2 S7
S4 r3 S2 S3 S4

S1 r4 S5 r5 S5 S6
S3 r6 S6 r7 S7

Here is a proof of the sequentS1:

S1
r3

↙ ↓ ↘
S2 S3 S4
r1 r5 r2
↙ ↓ ↓

S5 S6 S7
r4 r6 r7

As can be seen, the root of the tree has sequentS1 which we want to prove. And it is easy to check
that each node, say nodeS3 7→ r5, is indeed such that the consequent of its ruler5 is the sequentS3.
Moreover, we can check that the sequents of the son nodes of nodeS3 7→ r5, namely,S5 andS6, are
exactly the sequents forming the antecedents of ruler5. This tree can be given another more vertical form,
which is the following, and which we shall adopt in the sequel:

S1 r3
S2 r1
S3 r5

S5 r4
S6 r6

S4 r2
S7 r7

2.2 Sequents for a Mathematical Language

We now refine our notion of sequent in order to define the way we shall make proofs with our Mathemat-
ical Language. Such a language contains constructs calledPredicates. For the moment this is all that we
know about our Mathematical Language. Within this framework, a sequent has the following form:

H ` G

2

whereH is a finite set of predicates called thehypotheses, and where G is a predicate called thegoal. Note
that the finite set of hypothesesH might be empty. This sequent is to be read as follows:

Under the hypotheses of the setH, prove the goalG

This is the sort of sequent we want to prove. It is also the sort of sequent we shall have in the theories
associated with our Mathematical Language.

2.3 Initial Theory

We now have enough elements at our disposal to define the first rules of our proving theory. Note again
that we still don’t know what a predicate is. We just know that predicates are constructs we shall be able
to define within our future Mathematical Language. We start with three basic rules which we first state
informally. They are calledHYP, MON , andCUT.

HYP: If the goalP of a sequent belongs to the set of hypothesesH of this sequent, then it is proved.

MON : Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved.

CUT: If you succeed in proving a predicateP under a set of hypothesesH, thenP can be added to the set
of hypothesesH for proving a goalQ.

These rules can be encoded as follows:

HYP
H, P ` P

MON
H ` Q

H, P ` Q
CUT

H ` P H, P ` Q

H ` Q

The previous theory can be given a more convenient tabular form, which we shall adopt in what follows.
We name itT 0:

Antecedents Consequent

HYP H, P ` P

MON H ` Q H, P ` Q

CUT
H ` P

H, P ` Q
H ` Q

T 0

Note that in the previous rules, the letterH, P andQ are, so-called,meta-variables. The letterH is a meta-
variable standing for a finite set of predicates, whereas the letterP andQ are meta-variables standing for
predicates. Clearly then, each of the previous “rules” stands for more than just one rule: it is better to call
it a rule schemaor a generic rule. This will always be the case in what follows.

3

3 The Proposition Language

In this section we present a first simple version of our Mathematical Language, it is called the Proposition
Language. It will be later refined to more complete versions.

3.1 Syntax

Our first version is built around three constructs calledconjunction, implication, andnegation. Given two
predicatesP andQ, we can construct their conjunctionP ∧Q and their implicationP ⇒Q. And given a
predicateP , we can construct its negation¬P . This can be formalized by means of the following syntax:

predicate ::= ¬ predicate
predicate ∧ predicate
predicate ⇒ predicate

SY1

This syntax is clearly ambiguous, but we do not care about it at this stage. This will be studied and solved
in another companion document namedEvent-B: Syntax of the Mathematical Language. In what follows,
in order to avoid ambiguities, we shall provide as many pairs of parentheses as needed.

3.2 Enlarging the Initial Theory

The initial theoryT 0 given in section 2.3 is enlarged with the following inference rules forming the
TheoryT 1:

Antecedents Consequent

R1 H ` P
H ` Q

H ` P ∧ Q

R2 H ` P ∧ Q H ` P

R3 H ` P ∧ Q H ` Q

R4 H, P ` Q H ` P ⇒ Q

R5 H ` P ⇒ Q H, P ` Q

R6 H, ¬Q ` P
H, ¬Q ` ¬P

H ` Q

R7 H, Q ` P
H, Q ` ¬P

H ` ¬Q

T 1

4

As can be seen, rulesR1, R2, andR3 are used to eliminate or introduce the∧ operator. RulesR4 and
R5 are used to eliminate or introduce the⇒ operator. And rulesR6 andR7 are used to do proofs by
contradiction.

3.3 Replacing the Previous Theory

The previous TheoryT 1 is very natural and clearly in full accordance with our intuitive understanding of
conjunction, implication and negation. But it suffers a very important drawback: it is not very convenient
to use it to construct practical proofs because it offers too many possibilities.

We shall then propose another Theory calledS1. TheoryS1 can be constructed systematically from
TheoryT 1 but we shall not do this construction here. TheoryS1 is certainly far less natural than Theory
T 1, but it offers the great advantage over TheoryT 1 to be almost deterministic. Almost only, but, at the
end of this section, we shall indicate a certain way of using it which makes it completely deterministic: it
means that at each step of the proof tree construction we shall have only one possibility of choosing an
applicable inference rule or no possibility at all in case of failure.

In fact, TheoryS1 defines a, so-called,proof procedurefor the simple Proposition Language so far de-
fined. It can be easily mechanized. But before doing this, we have to extend our proposition Language
with one predicate:⊥. This predicate is just used in this theory. In other words, users of the Mathematical
Language are not allowed to use it. Here is TheoryS1:

Antecedents Consequent

INI H ` ¬R ⇒ ⊥ H ` R

AXM H, P, ¬P ` R

AND1 H ` ¬Q ⇒ R
H ` ¬P ⇒ R

H ` ¬ (P ∧ Q) ⇒ R

AND2 H ` P ⇒ (Q ⇒ R) H ` (P ∧ Q) ⇒ R

IMP1 H ` P ⇒ (¬Q ⇒ R) H ` ¬ (P ⇒ Q) ⇒ R

IMP2 H ` Q ⇒ R
H ` ¬P ⇒ R

H ` (P ⇒ Q) ⇒ R

NEG H ` P ⇒ R H ` ¬¬P ⇒ R

DED H, P ` R H ` P ⇒ R

S1

This theory has to be used with a, so-called, tactic telling us in which order the rules have to be applied.
Here is the tactic, where RULES is one ofAXM , IMP1 , IMP2 , AND1, AND2, NEG:

5

INI ; (RULES? ; DED)?

This tactic has to be read as follows: First use ruleINI once. Then start the following process: use any
rule in RULES as long as it is possible, then useDED once, and finally re-start this process.

3.4 Example

Here is an example of using the previous proof procedure. It is used to prove the following sequent:

` (A ⇒ B) ⇒ ((A ∧ C) ⇒ (B ∧ C))

Proof

` (A ⇒ B) ⇒ ((A ∧ C) ⇒ (B ∧ C)) INI
` ¬ ((A ⇒ B) ⇒ ((A ∧ C) ⇒ (B ∧ C)))⇒ ⊥ IMP1
` (A ⇒ B) ⇒ (¬ ((A ∧ C) ⇒ (B ∧ C))⇒ ⊥) IMP2
` B ⇒ (¬ ((A ∧ C) ⇒ (B ∧ C))⇒ ⊥) DED

B ` ¬ ((A ∧ C) ⇒ (B ∧ C))⇒ ⊥ IMP1
B ` (A ∧ C) ⇒ (¬ (B ∧ C)⇒ ⊥) AND2

B ` A ⇒ (C ⇒ (¬ (B ∧ C)⇒ ⊥)) DED
B,A ` C ⇒ (¬ (B ∧ C)⇒ ⊥) DED

B,A,C ` ¬ (B ∧ C)⇒ ⊥ AND1
B,A, C ` ¬C ⇒ ⊥ DED

B,A,C,¬C ` ⊥ AXM
B,A, C ` ¬B ⇒ ⊥ DED

B,A,C,¬B ` ⊥ AXM
` ¬A ⇒ (¬ ((A ∧ C) ⇒ (B ∧ C))⇒ ⊥) DED
¬A ` ¬ ((A ∧ C) ⇒ (B ∧ C))⇒ ⊥ IMP1
¬A ` (A ∧ C) ⇒ (¬ (B ∧ C)⇒ ⊥) AND2
¬A ` A ⇒ (C ⇒ (¬ (B ∧ C)⇒ ⊥)) DED
¬A,A ` C ⇒ (¬ (B ∧ C)⇒ ⊥) AXM

As can be seen, this proof procedure must be mechanized: there is no point in doing such a proof manually.

3.5 Methodology

The method we are going to use to build our Mathematical Language will be very systematic. It consists
of subsequently augmenting our syntax, and correlatively augmenting our available inference rules. At
each step of the construction, we shall have anaturalTheoryTi and a correspondingpracticalTheorySj

which is derived fromTi.

We shall use two different approaches for extending our language. Either the extension corresponds to
a simple facility. In other words, the new construct can entirely be defined in terms of existing ones. In
that case, we shall only augment the current practical TheorySj . Or the new construct is definitely new
and not related to any previous construct. In that case, we shall proceed differently. We first augment the
current natural TheoryTi and then derive from it a corresponding augmentation of the current practical
TheorySj

6

3.6 Extending the Proposition Language

The Proposition Language is now extended by adding two more constructs calleddisjunctionandequiv-
alence. Given two predicatesP andQ, we can construct their disjunctionP ∨ Q and their equivalence
P⇔Q. We also add one predicate:>. As a consequence, our syntax is now the following, where we have
underlined the new constructs:

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate

SY2

Such extensions are defined in terms of previous ones by mere rewriting rules:

Predicate Rewritten

> ¬ ⊥

P ∨ Q ¬P ⇒ Q

P ⇔ Q (P ⇒ Q) ∧ (Q ⇒ P)

TheoryS1 can be extended with the following rules which can be established easily after applying the
previous rewriting rules:

Antecedents Consequent

OR1 H ` ¬P ⇒ (¬Q ⇒ R) H ` ¬ (P ∨Q) ⇒ R

OR2 H ` Q ⇒ R
H ` P ⇒ R

H ` (P ∨Q) ⇒ R

EQV1 H ` P ⇒ (¬Q ⇒ R)
H ` ¬P ⇒ (Q ⇒ R) H ` ¬ (P ⇔Q) ⇒ R

EQV2 H ` P ⇒ (Q ⇒ R)
H ` ¬P ⇒ (¬Q ⇒ R) H ` (P ⇔Q) ⇒ R

S2

7

4 The Predicate Language

In this section, we introduce the Predicate Language. The syntax is extended with a number of new
kinds of predicates and also with the introduction of two new syntactic categories calledexpressionand
variable. A variable is a simple identifier. Given a list of variablesx made of distinct identifiers and a
predicateP , the construct∀x·P is called auniversally quantified predicate. Given a list of variablesx
made of distinct identifiers, a list of expressionsE of the same size as that ofx, and a predicateP , the
construct[x := E]P is called asubstituted predicate. An expression is either a variable, asubstituted
expressionformed in exactly the same way as a substituted predicate, or else apaired expressionE 7→ F ,
whereE andF are two expressions. Note that substituted predicates and expressions are given here in
order to be able to define the inference rules of quantified predicates in section 4.5. In fact, such constructs
will never be used by users of the Mathematical Language. Here is this new syntax:

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀var_list · predicate
[var_list := exp_list] predicate

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression

variable ::= identifier

SY3

Note that we have not defined any syntactic structures for the two syntactic categoriesvar_list and
exp_list. They simply respectively denote finite sequences of variables and finite sequences of expres-
sions.

4.1 Predicates and Expressions

It might be useful at this point to clearly identify the distinction between a predicate and an expression. A
predicateP is a piece of formal text which can beprovedwhen embedded within a sequent as in:

` P

A predicate does not denote anything. This is not the case of an expression which always denotes an
object. An expression cannot be “proved”. Hence predicate and expression are incompatible. Note that for
the moment the possible expressions we can define are quite limited. This will be considerably extended
in the Set-theoretic Language defined in section 5.

4.2 Substitutions and Quantified Predicates

A construct such asx := E, embedded into the predicate[x := E]P , wherex is a list of variables,E
is a list of expressions of the same size asx, andP is a predicate, is called asubstitution. The construct

8

[x := E]P is a transformation of the predicateP obtained by replacing inP the free occurrencesof
the variables of the listx by the corresponding expression of the listE. In section 4.3, we shall formally
define what we mean by a free occurrence of a variable in a predicate or expression. And in section 4.4 we
define rules to be applied in order to systematically perform such a transformation. Similar substitutions
can be used in an expression.

A predicate such as∀x·P , wherex is a list of variables made of distinct identifiers andP is a predicate,
is called auniversally quantified predicate. The predicateP is the scopeof the variables inx in this
quantified predicate. The variables ofx are said to beboundin P . Other variables having occurrences
in P which are not bound are said to befree. Informally speaking for the moment, saying that such a
predicate is proved means that all predicates of the form[x := E]P are then also proved. This will be
formalized by two inference rules in section 4.5.

4.3 Free and Bound Variable Occurrences

The non-freeness of a list of variables in a formula can be calculated by means of a number of rules. These
rules are defined on the structure of our Predicate Language. More precisely, the rules give meaning to the
conditionl nfin K, wherel is a list of variables andK is a predicate or an expression. A construct such
asl nfin K is to be read “variables of the listl are not free (bound) inK”.

In the following table,x andy are meta-variables standing for a variable,l is a meta-variable standing
for a list of variables,P andQ are meta-variables standing for a predicate,E andF are meta-variables
standing for an expression, L is a meta-variable standing for a list of expressions, andK is a meta-variable
standing for a predicate or an expression.

Non-freeness Condition

NF1 x nfin y x and y are distinct
identifiers

NF2 (l, y) nfin P l nfin P and y nfin P

NF3 (l, y) nfin E l nfin E and y nfin E

NF4 x nfin (P ∧Q) x nfin P and x nfin Q

NF5 x nfin (P ⇒Q) x nfin P and x nfin Q

NF6 x nfin ¬P x nfin P

NF7 x nfin ∀x · P

NF8 x nfin ∀y · P x nfin y and x nfin P

NF1

9

Non-freeness Condition

NF9 x nfin (∀ l, y · P) x nfin (∀l · ∀y · P)

NF10 x nfin [x := E]K x nfinE

NF11 x nfin [y := E]K x nfin y and x nfinE and x nfin K

NF12 x nfin [l, x := L,E]K x nfin[l := L]K and x nfin E

NF13 x nfin [l, y := L,E]K x nfin y and x nfin[l := L]K and x nfin E

NF4 x nfin l, y x nfin l and x nfin y

NF15 x nfin L,E x nfin L and x nfin E

NF16 x nfin (E 7→ F) x nfin E and x nfin F

NF1 (cont’d)

4.4 Substitution Rules

Substituted predicates or expressions can be calculated by means of the following rules defined on the
structure of the Predicate Language. In this table, we use the same meta-variable conventions as in the
previous table.

Substitution Definition

SUB1 [x := E]x E

SUB2 [x := E] y y if x nfin y

SUB3 [x := E] (P ∧Q) [x := E]P ∧ [x := E]Q

SUB4 [x := E] (P ⇒Q) [x := E]P ⇒ [x := E]Q

SUB5 [x := E]¬P ¬ [x := E]P

SUB1

10

Substitution Definition

SUB6 [x := E]∀x · P ∀x · P

SUB7 [x := E]∀ y · P ∀ y · [x := E]P
if y nfin x and y nfin E

SUB8 [x := E]∀ l, y · P [x := E]∀ l · ∀ y · P

SUB9 [x := E] (F 7→ G) [x := E]F 7→ [x := E]G

SUB10 [l, x := L,E]F [z := E] [l := L] [x := z]F
if z nfin (l, x) and z nfin (L, E, F)

SUB1 (cont’d)

The application of these rules makes it possible to completely eliminate substitutions. Note that it is always
possible to transform a quantified predicate such as∀x · P into the following equivalent one∀y · [x :=
y]P providedy is not free inP . This transformation is called achange of variables.

4.5 Universally Quantified Predicate Inference Rules

We now enlarge the initial theoryT 1 of section 3.2 with the following specific rules for universally
quantified predicates:

Antecedents Consequent

R8
x nfin Q for eachQ in H
H ` P

H ` ∀x · P

R9 H ` ∀x · P H ` [x := E]P

T 2

4.6 Replacing the Previous Theory Extension

As for the case of the Proposition Language in section 3.3, we can replace the extension of previous section
by this one which is more convenient to use for mechanizing the proof construction of our Predicate
Language. Here is this extension of the practical TheoryS2:

11

Antecedents Consequent

ALL1
if x nfin R and x nfin H

H ` ¬P ⇒R
H ` ¬ (∀x · P)⇒R

ALL2 H ` (∀ l, y · P)⇒R H ` (∀l · ∀y · P)⇒R

INS H, ∀x · P ` [x := E]P⇒ ⊥ H, ∀x · P ` ⊥

S3

This theory has to be used with the following tactic, where RULES is one ofAXM , IMP1 , IMP2 , AND1,
AND2, NEG, OR1, OR2, ALL1 , andALL2 :

INI ; ((RULES? ; DED)?;INS)?

4.7 Extending the Predicate Language: Existential Quantification

The Predicate Language is now extended by introducingexistential quantificationof predicates. Given a
predicateP and a list of variablesx, made of distinct identifiers, we can construct the predicate∃x·P .
The new syntax is thus now as follows:

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate⇒ predicate
predicate⇔ predicate
∀var_list · predicate
∃var_list · predicate
[var_list := exp_list] predicate

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression

variable ::= identifier

SY4

This extension is defined as follows by a rewriting rule in terms of the universally quantified predicate:

12

Predicate Rewritten

∃x · P ¬∀x · ¬P

The previous practical TheoryS3 can then be extended as follows after applying the previous rewriting
rule:

Antecedents Consequent

XST1 H ` (∀x · ¬P) ⇒ R H ` ¬ (∃x · P) ⇒ R

XST2
if x nfin R and x nfin H

H ` P ⇒R
H ` (∃x · P)⇒R

S4

4.8 Extending the Predicate Language: Equality

The Predicate Language is once again extended by adding a new predicate, theequality predicate. Given
two expressionsE andF , we define the following constructE = F . Here is the extension of our syntax:

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀var_list · predicate
∃var_list · predicate
[var_list := exp_list] predicate
expression = expression

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression

variable ::= identifier

SY5

We extend in a similar manner the rules of non-freeness as follows:

13

Non-freeness Condition

NF17 x nfin (E = F) x nfin E and x nfin F

NF2

We also extend the substitution rules as follows:

Substitution Definition

SUB11 [x := C] (D = E) [x := C]D = [x := C]E

SUB2

The natural TheoryT 2 is extended with two inference rules for proving equality predicates:

Antecedents Consequent

R10 H ` E = F
H ` [x := E]P H ` [x := F]P

R11 H ` E = E

T 3

Finally, we extend accordingly our practical TheoryS4:

Antecedents Consequent

EQL1 H ` ¬ (E = E)⇒R

LBZ1 H, E = F, [x := E]P ` [x := F]P ⇒ ⊥ H, E = F, [x := E]P ` ⊥

LBZ2 H, E = F, [x := F]P ` [x := E]P ⇒ ⊥ H, E = F, [x := F]P ` ⊥

S5

5 The Set-theoretic Language

Our next language, the Set-theoretic Language is now presented as an extension to the previous Predicate
Language.

14

5.1 Syntax

We introduce another predicate themembership predicateand a new syntactic category:set. Given an
expressionE and a sets, the constructE ∈ s is a membership predicate. We also enlarge the expression
syntactic category by adding that a set is an expression. Finally, we introduce the sets constructs. Given
two setss andt, the constructs × t is a set called theCartesian productof s andt. Given a sets, the
constructP(s) is a set called thepower set ofs. Finally, given a list of variablesx with distinct identifiers,
a predicateP , and an expressionE, the construct{x · P |E} is called aset defined in comprehension.
Here is our new syntax:

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀ var_list · predicate
∃ var_list · predicate
[var_list := exp_list] predicate
expression = expression
expression ∈ set

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression
set

variable ::= identifier

set ::= set× set
P(set)
{ var_list · predicate | expression }
variable

SY6

5.2 Non-freeness and Substitution Rules

We first enlarge the non-freeness set of rules by adding the following ones:

Non-freeness Condition

NF18 x nfin (s× t) x nfin s and x nfin t

NF19 x nfin P(s) x nfin s

NF20 x nfin {l · P |E} x nfin (∀l · P ⇒ E = E)

NF3

15

Likewise, we add the following rules to the substitution ones:

Substitution Definition

SUB12 [x := E] (s× t) [x := E]s × [x := E]t

SUB13 [x := E] P(s) P([x := E]s)

SUB14 [x := E] {x · P |F} {x · P |F }

SUB15 [x := E] {y · P |F} { y · [x := E]P | [x := E]F }
if y nfin x and y nfin E

SUB16 [x := E] {l, x · P |F} {l, x · P |F}

SUB17 [x := E] {l, y · P |F} { l, y · [x := E]P | [x := E]F }
if x nfin y and l nfin x and l, y nfin E

SUB3 (cont’d)

5.3 Inference Rules

The inference rules for the set-theoretic Language are given under the form of equivalences to various
set memberships. They are all defined in terms of rewriting rules. Note that the first of this rule defines
equality for sets. It is called the extensionality axiom.

Operator Predicate Rewritten

Set equality s = t s ∈ P(t) ∧ t ∈ P(s)

Cartesian product E 7→ F ∈ s× t E ∈ s ∧ F ∈ t

Power set E ∈ P(s) ∀x · (x ∈ E ⇒ x ∈ s)
if x nfin E and x nfin s

Set comprehension E ∈ {x · P | F } ∃x · (P ∧ E = F)
if x nfin E

SET 1

As a special case, set comprehension can sometimes be written{F |P }, which can be read as follows:
“the set of objects with shapeF whenP holds”. However, as you can see, the list of variablesx has

16

now disappeared. In fact, these variables are thenimplicitly determinedas being all the free variables
in F . When we want thatx represent onlysome, but not all, of these free variables we cannot use this
shorthand.

A more special case is one where the expressionF is exactlyx, that is{x · P | x }. As a shorthand,
this can be written{x |P }, which is very common in informally written mathematics. But again, notice
that, contrary to intuition, the list of variablesx has disappeared. Again, it will be determined as the free
variables of expressionx. And thenE ∈ {x |P } becomes[x := E]P .

From now on, all extensions of the Set-theoretic Language will take the form of “simple facilities”, as
explained in section 3.5. And most of them are extensions of thesetsyntactic category. As a consequence,
the new syntax will be presented differently. The new constructs will be presented under the form of
rewriting rules. And since most of the new construct are sets, the rewriting rules will transform some set
membership predicates into simpler ones.

5.4 Elementary Set Operators

In this section, we introduce the classical set operators: inclusion, union, intersection, difference, exten-
sion, and the empty set.

predicate ::= . . .
set ⊆ set

. . .

set ::= . . .
set ∪ set
set ∩ set
set \ set
{exp_list}
∅

SY7

Operator Predicate Rewritten

Inclusion S ⊆ T S ∈ P(T)

Union E ∈ S ∪ T E ∈ S ∨ E ∈ T

Intersection E ∈ S ∩ T E ∈ S ∧ E ∈ T

Difference E ∈ S \ T E ∈ S ∧ E /∈ T

Set extension E ∈ {a, . . . , b} E = a ∨ . . . ∨ E = b

Empty set E ∈ ∅ ⊥

SET 2

17

5.5 Generalization of Elementary Set Operators

The next series of operators consists in generalizing union and intersection to sets of sets. This takes the
forms either of an operator acting on a set or of a quantifier.

. . .

set ::= . . .
union(set)⋃

var_list · (predicate | set)
inter(set)⋂

var_list · (predicate | set)

SY8

Operator Predicate Rewritten

Generalized union E ∈ union (S) ∃s · (s ∈ S ∧ E ∈ s)
if s nfin S and s nfin E

Quantified union E ∈
⋃

x · (P | T) ∃x · (P ∧ E ∈ T)
if x nfin E

Generalized intersection E ∈ inter (S) ∀s · (s ∈ S ⇒ E ∈ s)
if s nfin S and s nfin E

Quantified intersection E ∈
⋂

x · (P | T) ∀x · (P ⇒ E ∈ T)
if x nfin E

SET 3

The last two rewriting rules require that the setinter(S) and
⋂

x · (P | T) be well defined. This is
defined in the following table:

Set construction Well-definedness condition

inter (S) S 6= ∅

⋂
x · (P | T) {x · P | T } 6= ∅

WF1

Note that well-definedness is studied in full details in the document entitledEvent-B: Syntax of Mathe-
matical Language.

18

5.6 Binary Relation Operators

We now define a first series of binary relation operators: the set of binary relations built on two sets, the
domain and range of a binary relation, and then various sets of binary relations.

. . .

set ::= . . .
set↔ set
dom(set)
ran(set)
set←↔ set
set↔→ set
set↔↔ set

SY9

Operator Predicate Rewritten

Set of binary relations r ∈ S↔ T r ⊆ S × T

Domain E ∈ dom (r) ∃y · (E 7→ y ∈ r)
if y nfin E and y nfin r

Range F ∈ ran (r) ∃x · (x 7→ F ∈ r)
if x nfin F and x nfin r

Set of total relations r ∈ S←↔ T r ∈ S↔ T ∧ dom (r) = S

Set of surjective relations r ∈ S↔→ T r ∈ S↔ T ∧ ran (r) = T

Set of total and surjective relations r ∈ S↔↔ T r ∈ S←↔ T ∧ r ∈ S↔→ T

SET 4

The next series of binary relations operators define the converse of a relation, various relation restrictions
and the image of a set under a relation.

19

. . .

set ::= . . .
set−1

set � set
set � set
set �− set
set �− set
set[set]

SY10

Operator Predicate Rewritten

Converse E 7→ F ∈ r−1 F 7→ E ∈ r

Domain restriction E 7→ F ∈ S � r E ∈ S ∧ E 7→ F ∈ r

Range restriction E 7→ F ∈ r � T E 7→ F ∈ r ∧ F ∈ T

Domain subtraction E 7→ F ∈ S �− r E /∈ S ∧ E 7→ F ∈ r

Range subtraction E 7→ F ∈ r �− T E 7→ F ∈ r ∧ F /∈ T

Image F ∈ r[w] ∃x · (x ∈ w ∧ x 7→ F ∈ r)
if x nfin F and x nfin r and x nfin w

SET 5

Our next series of operators defines the composition of two binary relations, the overriding of a relation
by another one, and the direct and parallel products of two relations.

. . .

set ::= . . .
set ; set
set ◦ set
set �− set
set⊗ set
set ‖ set

SY11

20

Operator Predicate Rewritten

Forward
composition E 7→ F ∈ p ; q ∃x · (E 7→ x ∈ p ∧ x 7→ F ∈ q)

if x nfin E and x nfin F and
x nfin p and x nfin q

Backward
composition E 7→ F ∈ q ◦ p E 7→ F ∈ p ; q

Overriding E 7→ F ∈ p �− q E 7→ F ∈ (dom (q) �− p) ∪ q

Direct product E 7→ (F 7→ G) ∈ p⊗ q E 7→ F ∈ p ∧ E 7→ G ∈ q

Parallel product (E 7→ F) 7→ (G 7→ H) ∈ p ‖ q E 7→ G ∈ p ∧ F 7→ H ∈ q

SET 6

5.7 Functional Operators

In this section we define various function operators: the sets of partial and total functions, partial and total
injections, partial and total surjections, and bijections. We also introduce the two projection functions as
well as the identity function.

. . .

set ::= . . .
set 7→ set
set→ set
set 7� set
set � set
set 7� set
set � set
set �� set
prj1(set)
prj2(set)
id(set)

SY12

21

Operator Predicate Rewritten

Set of partial functions f ∈ S 7→ T f ∈ S↔ T ∧
(f−1 ; f) = id (ran (f))

Set of total functions f ∈ S→ T f ∈ S 7→ T ∧ S = dom (f)

Set of partial injections f ∈ S 7� T f ∈ S 7→ T ∧ f−1 ∈ T 7→ S

Set of total injections f ∈ S � T f ∈ S→ T ∧ f−1 ∈ T 7→ S

Set of partial surjections f ∈ S 7� T f ∈ S 7→ T ∧ T = ran (f)

Set of total surjections f ∈ S � T f ∈ S→ T ∧ T = ran (f)

Set of bijections f ∈ S �� T f ∈ S � T ∧ f ∈ S � T

First projection (E 7→ F) 7→ G ∈ prj1(r) E 7→ F ∈ r ∧ G = E

Second projection (E 7→ F) 7→ G ∈ prj2(r) E 7→ F ∈ r ∧ G = F

Identity E 7→ F ∈ id (S) E ∈ S ∧ F = E

SET 7

5.8 Lambda Abstraction and Function Invocation

We now definelambda abstraction, which is a way to construct functions, and also function invocation,
which is a way to call functions. But first we have to define the notion ofpattern of variables. A pattern
of variables is either an identifier or a pair made of two patterns of variables. Moreover, all variables
composing the pattern must be distinct. For example, here are three patterns of variables:

abc

abc 7→ def

abc 7→ (def 7→ ghi)

Given a pattern of variablesx, a predicateP , and an expressionE, the constructλ x · (P |E) is a lambda
abstraction, which is a function. Given a functionf and an expressionE, the constructf(E) is an expres-
sion denoting a function invocation. Here is our new syntax

22

. . .

expression ::= . . .
set(expression)

set ::= . . .
λ pattern · predicate | expression

pattern ::= variable
pattern 7→ pattern

SY13

In the followig table,l stands for the list of variables in the patternL.

Operator Predicate Rewritten

Lambda abstraction F 7→ G ∈ λL · P |E F 7→ G ∈ {l · P |L 7→ E}

Function invocation F = f(E) E 7→ F ∈ f

SET 8

The function invocation constructf(E) requires a well-formedness condition, which is the following:

Expression Well-formedness condition

f(E) E ∈ dom(f)

WF2

6 Arithmetic Language

6.1 Syntax

We add a new syntactic category:number. A number is an expression. Numbers are either 0, the sum,
product, or power of two numbers. We also add the setsN and succ.

23

. . .

expression ::= . . .
number

set ::= . . .
N
succ

number ::= 0
number + number
number ∗ number
number ̂ number

SY14

6.2 Peano Axioms and Recursive Definitions

The following predicates are added systematically to the hypotheses of sequents to prove:

0 ∈ N

succ ∈ N �� N \ {0}

∀S ·

0 ∈ S
∀n · (n ∈ S ⇒ succ(n) ∈ S)
⇒
N ⊆ S


∀ a · (a ∈ N ⇒ a + 0 = a)

∀ a · (a ∈ N ⇒ a ∗ 0 = 0)

∀ a · (a ∈ N ⇒ a ̂ 0 = succ(0))

∀ a, b · (a ∈ N ∧ b ∈ N ⇒ a + succ(b) = succ(a + b))

∀ a, b · (a ∈ N ∧ b ∈ N ⇒ a ∗ succ(b) = (a ∗ b) + a)

∀ a, b · (a ∈ N ∧ b ∈ N ⇒ a ̂ succ(b) = (a ̂ b) ∗ a)

AR1

6.3 Extension of the Arithmetic Language

We introduce the classical binary relations on numbers, the finiteness predicate, the interval between two
numbers, and the subtraction, division, and modulo constructs.

24

. . .

predicate ::= . . .
number ≤ number
number < number
finite(set)

set ::= . . .
number .. number

number ::= . . .
number − number
number / number
number mod number
card(set)

SY15

Operator Predicate Rewritten

smaller than or equal a ≤ b ∃ c · (c ∈ N ∧ b = a + c)

smaller than a < b a ≤ b ∧ a 6= b

interval c ∈ a .. b a ≤ c ∧ c ≤ b

subtraction c = a− b a = b + c

division c = a/b ∃ r · (r ∈ N ∧ r < b ∧ a = c ∗ b + r)

modulo r = a mod b a = (a/b) ∗ b + r

finiteness finite(s) ∃n, f · (n ∈ N ∧ f ∈ 1 .. n �� s)

cardinality n = card(s) ∃f · f ∈ 1 .. n �� s

AR2

The subtraction, division, modulo, and cardinal constructs are subjected to some well-formedness condi-
tions, which are the following:

25

Number Well-definedness condition

a− b b ≤ a

a/b b 6= 0

a mod b b 6= 0

card(s) finite(s)

WF3

26

Event-B: Syntax of the Mathematical Language

Christophe Métayer (ClearSy)

Laurent Voisin (ETH Zürich)

May 31st, 2005

Contents

1 Introduction 1

2 Language Lexicon 2
2.1 Whitespace . 2
2.2 Identifiers . 2
2.3 Integer Literals . 3
2.4 Predicate symbols . 4
2.5 Expression symbols . 5

3 Language Syntax 7
3.1 Notation . 7
3.2 Predicates . 7

3.2.1 A first attempt . 7
3.2.2 Associativity of operators 8
3.2.3 Priority of operators . 9
3.2.4 Final syntax for predicates 10

3.3 Expressions . 11
3.3.1 Some Fine Points . 11
3.3.2 A First Attempt . 13
3.3.3 Operator Groups . 14
3.3.4 Priority of Operator Groups 16
3.3.5 Associativity of operators 16
3.3.6 Final syntax for expressions 19

4 Static Checking 21
4.1 Abstract Syntax . 21
4.2 Well-formedness . 22
4.3 Type Checking . 26

4.3.1 Typing Concepts . 26
4.3.2 Specification of Type Check 27
4.3.3 Examples . 35

5 Dynamic Checking 40
5.1 Predicate Well-Definedness . 40
5.2 Expression Well-Definedness . 40

i

1 Introduction

This document presents the technical aspects of the kernel mathematical lan-
guage of event-B. Beyond the pure syntax of the language, it also describes its
lexical structure and various checks (both static and dynamic) that can be done
on formulas on the language.

The main design principle of the language is to have intuitive priorities
for operators and to use a minimal set of parenthesis (except when needed
to resolve common ambiguities). So, the emphasis is really on having formulas
unambiguous and easy to read.

The first chapter describes the lexicon used by the language, then chapter
describes its (concrete) syntax. Chapter three introduces the notion of well-
formed and well-typed formula (static checks). Finally, chapter four gives the
well-definedness conditions for a formula (dynamic check).

1

2 Language Lexicon

This chapter describes the lexicon of the mathematical language, that is the
way that terminal tokens of the language grammar are built from a stream of
characters.

Here, we assume that the input stream is made of Unicode characters, as
defined in the Unicode standard 4.0 [4]. As we use only characters of the Basic
Multilingual Plane, all characters are designated by their code points, that is an
uppercase letter ‘U’ followed by a plus sign and an integer value (made of four
hexadecimal digits). For instance, the classical space character is designated by
U+0020.

Each token is formed by considering the longest sequence of characters that
matches one of the definition below.

2.1 Whitespace

Whitespace characters are used to separate tokens or to improve the legibility
of the formula. They are otherwise ignored during lexical analysis.

The whitespace characters of the mathematical language are the Unicode
4.0 space characters:

U+0020 U+00A0 U+1680 U+180E U+2000 U+2001
U+2002 U+2003 U+2004 U+2005 U+2006 U+2007
U+2008 U+2009 U+200A U+200B U+2028 U+2029
U+202F U+205F U+3000

together with the following control characters (these are the same as in the Java
Language):

U+0009 U+000A U+000B U+000C U+000D
U+001C U+001D U+001E U+001F

2.2 Identifiers

The identifiers of the mathematical language are defined in the same way as in
the Unicode standard [4, par. 5.15]. This definition is not repeated here. Basi-
cally, an identifier is a sequence of characters that enjoy some special property,
like referring to a letter or a digit.

Some identifiers are reserved for the mathematical language, where a prede-
fined meaning is assigned to them. These reserved keywords are the following

2

identifiers made of ASCII letters and digits:

BOOL FALSE TRUE
bool card dom finite id
inter max min mod pred
prj1 prj2 ran succ union

together with those other identifiers that use non-ASCII characters:

Token Code points Token name

N U+2115 set of natural numbers
N1 U+2115 U+0031 set of positive numbers
P U+2119 powerset
P1 U+2119 U+0031 set of non-empty subsets
Z U+2124 set of integers

2.3 Integer Literals

Integer literals consists of a non-empty sequence of ASCII decimal digits:

U+0030 U+0031 U+0032 U+0033 U+0034
U+0035 U+0036 U+0037 U+0038 U+0039

Note: There are two ways to tokenize integer literals: either signed or un-
signed. The first case as the advantage that it corresponds to classical usage
in mathematics. For instance, the string −1 is thought as representing a num-
ber, not a unary minus operator followed by a number. But, as we use the
same character to designate both unary and binary minus, this causes prob-
lems: the lexical analysis is no longer context-free, but depends on the syntax
of the language.

There are basically two solutions to this problem. One, taken in some func-
tional languages in the ML family and in the Z notation, is to use different
characters to represent the unary and binary minus operator. However, this
comes against mathematical tradition and is thus rejected. The second solution
is to consider that integer literals are unsigned. This second solution has been
chosen here.

3

2.4 Predicate symbols

The tokens used in the pure predicate calculus are:

Token Code point Token name

(U+0028 left parenthesis
) U+0029 right parenthesis
⇔ U+21D4 logical equivalence
⇒ U+21D2 logical implication
∧ U+2227 logical and
∨ U+2228 logical or
¬ U+00AC not sign
> U+22A4 true predicate
⊥ U+22A5 false predicate
∀ U+2200 for all
∃ U+2203 there exists
, U+002C comma
· U+00B7 middle dot

The symbolic tokens used to build predicates from expressions are:

Token Code point Token name

= U+003D equals sign
6= U+2260 not equal to
< U+003C less-than sign
≤ U+2264 less than or equal to
> U+003E greater-than sign
≥ U+2265 greater than or equal to
∈ U+2208 element of
/∈ U+2209 not an element of
⊂ U+2282 subset of
6⊂ U+2284 not a subset of
⊆ U+2286 subset of or equal to
6⊆ U+2288 neither a subset of nor equal to

4

2.5 Expression symbols

The following symbolic tokens are used to build sets of relations (or functions):

Token Code point Token name

↔ U+2194 relation
←↔ U+E100 total relation
↔→ U+E101 surjective relation
↔↔ U+E102 total surjective relation
7→ U+21F8 partial function
→ U+2192 total function
7� U+2914 partial injection

� U+21A3 total injection
7� U+2900 partial surjection

� U+21A0 total surjection
�� U+2916 bĳection

The following symbolic tokens are used for manipulating sets:

Token Code point Token name

{ U+007B left curly bracket
} U+007D right curly bracket
7→ U+21A6 maplet
∅ U+2205 empty set
∩ U+2229 intersection
∪ U+222A union
\ U+2216 set minus
× U+00D7 cartesian product

The following symbolic tokens are used for manipulating relations and func-
tions:

Token Code point Token name

[U+005B left square bracket
] U+005D right square bracket
7→ U+21A6 maplet
C− U+E103 relation overriding
◦ U+2218 backward composition
; U+003B forward composition
⊗ U+2297 direct product
‖ U+2225 parallel product
−1 U+223C tilde operator
C U+25C1 domain restriction
C− U+2A64 domain subtraction
B U+25B7 range restriction
B− U+2A65 range subtraction

5

The following symbolic tokens are used in quantified expressions:

Token Code point Token name

λ U+03BB lambda⋂
U+22C2 n-ary intersection⋃
U+22C3 n-ary union

| U+2223 such that

The following symbolic tokens are used in arithmetic expressions:

Token Code point Token name

.. U+2025 upto operator
+ U+002B plus sign
− U+2212 minus sign
∗ U+2217 asterisk operator
÷ U+00F7 division sign̂ U+005E exponentiation sign

6

3 Language Syntax

This chapter describes the syntax of the mathematical language, giving the
rationale behind the design decisions made.

We first present the notation we use to describe the syntax of the mathe-
matical language. Then, we present the syntax of predicates and of expressions.
In each case, we first present a simple ambiguous grammar, then we tackle with
associativity and priorities of operators, giving a rationale for each choice made.
Finally, we give a complete and non-ambiguous syntax.

3.1 Notation

In this document, we use an Extended Backus-Naur Form (EBNF) to describe
syntax. In that notation, non-terminals are surrounded by angle brackets and
terminals surrounded by single quotes. The other symbols are meta-symbols:

• Symbol ::= defines the non-terminal appearing on its left in terms of the
syntax on its right.

• Parenthesis (and) are used for grouping.

• A vertical bar | denotes alternation.

• Square brackets [and] surround an optional part.

• Curly brackets { and } surround a part that can be repeated zero or more
times.

3.2 Predicates

The point here is to define a grammar which is quite similar to the one used
commonly when writing mathematical formulae but that should also be non-
ambiguous to the (human) reader.

3.2.1 A first attempt
The grammar commonly used for predicates can loosely be defined as follows:

〈predicate〉 ::= ‘(’ 〈predicate〉 ‘)’
| 〈predicate〉 ‘⇔’ 〈predicate〉
| 〈predicate〉 ‘⇒’ 〈predicate〉
| 〈predicate〉 ‘∧’ 〈predicate〉

7

| 〈predicate〉 ‘∨’ 〈predicate〉
| ‘¬’ 〈predicate〉
| ‘>’
| ‘⊥’
| ‘∀’ 〈ident-list〉 ‘·’ 〈predicate〉
| ‘∃’ 〈ident-list〉 ‘·’ 〈predicate〉
| ‘finite’ ‘(’ 〈expression〉 ‘)’
| 〈expression〉 ‘=’ 〈expression〉
| 〈expression〉 ‘∈’ 〈expression〉
| 〈expression〉 ‘≤’ 〈expression〉
| . . .

〈ident-list〉 ::= 〈ident-list〉 ‘,’ 〈ident〉
| 〈ident〉

The ellipsis which appears at the end of the 〈predicate〉 production rule
means that there are still more alternatives combining two expressions into a
predicate. All those alternatives are not really relevant at this point of the doc-
ument, but will be fully listed in the final syntax (see section 3.2.4 on page 10).

3.2.2 Associativity of operators
In this document, we use the term associativity with somewhat two different Caution

meanings. In a mathematical context, when we write that an operator, say ◦, is
associative, we mean that it has a special mathematical property, namely that
(x ◦ y) ◦ z has the same value as x ◦ (y ◦ z). In a syntactical context, we say that
an operator is left-associative when formula x ◦ y ◦ z (without any parenthesis)
is parsed as if it would have been written (x ◦ y) ◦ z. To avoid any ambiguity,
we will always write associative in the algebraic sense when we refer to the first
meaning, the bare word associative always having the syntactical meaning.

Getting back to our predicate grammar defined above, we see that it is
somewhat ambiguous. A first point is that it doesn’t specify how one should
parse formulae containing twice the same binary predicate operator without any
parenthesis such as

P ⇒Q⇒R

P ∧Q ∧R

To solve that ambiguity, one specifies that each binary operator has a prop-
erty called associativity. The associativities defined for the event-B language
are the following:

Operator Associativity

⇔ none

⇒ none

∧ left

∨ left

8

As a consequence, formula P ⇒ Q⇒ R is considered as ill-formed and not
part of the event-B language, whereas formula P ∧Q∧R will be parsed as if it
actually were written as (P ∧Q) ∧R.

The rationale for these associativities is quite simple. Operator ∧ is associa-
tive in the algebraic sense, so formulae (P ∧Q) ∧ R and P ∧ (Q ∧ R) have the
same meaning. Hence, one can pick up either left or right associativity for this
operator. We arbitrarily chose left associativity as it is the most commonly used
to our knowledge. The same rationale explains the choice of left associativity
for operator ∨.

On the other hand, operator ⇒ is not associative in the algebraic sense
(P ⇒ Q)⇒ R is not the same as P ⇒ (Q⇒ R) (just suppose that predicates
P , Q and R are all ⊥). As a consequence, we keep it non associative in the
language, rather than choosing an arbitrary associativity.

The case of operator ⇔ is somewhat special. This operator is indeed as-
sociative in the algebraic sense. However, mathematicians often write formula
P ⇔ Q⇔ R when they actually mean (P ⇔ Q) ∧ (Q⇔ R). Hence, we chose
to make that operator non associative in the event-B language to avoid any
ambiguity.

Finally, for the operators that build a predicate from two expressions (such
as =, ∈, etc.), the grammar given above doesn’t allow formulae like x = y = z,
so those operator can not be associative.

3.2.3 Priority of operators
Another source of ambiguity is the case where formulae contain two different
predicate operators without any parenthesis such as

P ⇒Q⇔R

P ∧Q ∨R

¬P ∧Q

∀x·P ∨Q

This kind of ambiguity is generally resolved by defining priorities among
operators which define how much binding power each operator has. We will
use that mechanism here, retaining the most commonly used priorities. But,
with the addition that we want to forbid cases where those priorities are not so
well-accepted.

For instance, some people expect operators ‘∧’ and ‘∨’ to have the same
priority, while others expect operator ‘∧’ to have higher priority. So when faced
with formula P ∨Q ∧R, some people read it as (P ∨Q) ∧R while others read
it as P ∨ (Q∧R), which is quite different (just replace P and Q by > and R by
⊥ to convince yourself).

To solve that ambiguity, we decided that operators ‘∧’ and ‘∨’ indeed have
the same priority, but that one cannot mix them together without using paren-
thesis. So, P∧Q∨R is considered ill-formed. One should write either (P∧Q)∨R
or P ∧ (Q ∨R).

The priorities defined for the event-B language are the following (from lower

9

to higher priority)

∀x·P and ∃x·P (mixing allowed)

P ⇒Q and P ⇔Q (mixing not allowed)

P ∧Q and P ∨Q (mixing not allowed)

¬P

We choose to give quantified predicates the lowest priority in order to ease
their reading when embedded in long formulae. The main consequence of this
choice is that the scope of the variables introduced by a quantifier is the longest
sub-formula. For instance, in formula (∀x·P ⇒Q)⇒R, the scope of variable x
extends until predicate Q as can be easily seen by looking at matching paren-
thesis.

The following formulae show some examples of how those priorities are used
to replace parenthesis in some common cases:

P ∧Q⇒R is parsed as (P ∧Q)⇒R

∀x·∃y ·P is parsed as ∀x·(∃y ·P)

∀x·P ⇒Q is parsed as ∀x·(P ⇒Q)

∀x·P ∧Q is parsed as ∀x·(P ∧Q)

∀x·¬P is parsed as ∀x·(¬P)

¬P ⇒Q is parsed as (¬P)⇒Q

¬P ∧Q is parsed as (¬P) ∧Q

One should notice the difference with classical B [1] where ∀x·P ⇒ Q is
parsed as (∀x·P)⇒Q whereas, again, it is parsed here as ∀x·(P ⇒Q).

3.2.4 Final syntax for predicates
As a result, we obtain the following non ambiguous grammar for predicates:

〈predicate〉 ::= { 〈quantifier〉 } 〈unquantified-predicate〉

〈quantifier〉 ::= ‘∀’ 〈ident-list〉 ‘·’
| ‘∃’ 〈ident-list〉 ‘·’

〈ident-list〉 ::= 〈ident〉 { ‘,’ 〈ident〉 }

〈unquantified-predicate〉 ::= 〈simple-predicate〉 [‘⇒’ 〈simple-predicate〉]
| 〈simple-predicate〉 [‘⇔’ 〈simple-predicate〉]

〈simple-predicate〉 ::= 〈literal-predicate〉 { ‘∧’ 〈literal-predicate〉 }
| 〈literal-predicate〉 { ‘∨’ 〈literal-predicate〉 }

〈literal-predicate〉 ::= { ‘¬’ } 〈atomic-predicate〉

10

〈atomic-predicate〉 ::= ‘⊥’
| ‘>’
| ‘finite’ ‘(’ 〈expression〉 ‘)’
| 〈pair-expression〉 〈relop〉 〈pair-expression〉
| ‘(’ 〈predicate〉 ‘)’

〈relop〉 ::= ‘=’ | ‘6=’
| ‘∈’ | ‘/∈’ | ‘⊂’ | ‘6⊂’ | ‘⊆’ | ‘6⊆’
| ‘<’ | ‘≤’ | ‘>’ | ‘≥’

Please note that for relational predicates, we are using <pair-expression>
instead of <expression>. That change will only allow expressions without quan-
tifiers on each side of the relational operator. As a consequence, when one wants
to use a quantified expression on either side, one will have to surround it with
parenthesis. For instance, predicate λx·x ∈ Z | x = id(Z) is not well-formed,
one must write instead (λx·x ∈ Z | x) = id(Z).

3.3 Expressions

The design principle for the syntax of expressions is the same as that of pred-
icates, namely to enhance readability. To fulfill this goal, we use the same
techniques: minimize the need for parenthesis where they are not really needed
and prevent mixing operators when such a mix would be ambiguous.

3.3.1 Some Fine Points
Before presenting a first attempt of the syntax of expressions, we shall study
some fine points about pairs, set comprehension, lambda abstraction, quantified
expressions, and first and second projections.

Pair Construction. Pairs of expressions are constructed using the maplet
operator ‘ 7→’. Contrary to classical B [1], it is not possible to use a comma
anymore. This change is due to the ambiguity of using commas for two different
purposes in classical B: as a pair constructor and as a separator. For instance, set
{1, 2} can be seen as either a set containing the pair (1, 2) or as a set containing
the two elements 1 and 2. That was very confusing.

In event-B, a comma is always a separator and a maplet is a pair constructor.
Below are some examples showing the consequences of this new approach:

Classical-B Event-B

x, y ∈ S x 7→ y ∈ S

x, y = z, t x 7→ y = z 7→ t

f(x, y) f(x 7→ y)

The last example is particularly blatant of the confusion between separator
and pair constructor in classical B. When looking at formula f(x, y), one has
the impression that function f takes two separate arguments. But, this is not
always true. For instance, variable x could hide a non scalar value. For instance,

11

suppose that x = a 7→ b, then the function application could be rewritten as
either f(a 7→ b, y) or even as f(a, b, y). In that latter case, function f now
appears to take three arguments. This is clearly not satisfactory. In fact,
function f only takes one argument, which can happen to be a pair. In that
latter case, one should use a pair constructor to create that pair, that is use a
maplet operator.

Set Comprehension. There are now two forms of set comprehension. The
most general one is {x · P (x) | E(x)} which describes the set whose elements
are E(x), for all x such that P (x) holds. For instance, the set of all even natural
numbers can be written as {x · x ∈ N | 2 ∗ x}.

The second form is just a short-hand for the first-one, which allows to write
things more compactly. That second form is {E | P}. The difference with
the first form is that the variables that are bound by the construct are not
listed explicitly. They are inferred from the expression part. Continuing with
our previous example, the set of all even natural numbers can then be written
more compactly as {2 ∗ x | x ∈ N}, which corresponds more to the classical
mathematical notation.

The rule for determining the variables which are bound by this second form
is to take all variables that occur free in E. Thus, if we denote by x the list of the
variables that occur free in E, then the second form is equivalent to {x · P | E}.

Lambda Abstraction. For lambda abstraction, classical B [1] uses the form
(λx · P | E) where x is a list of variables, P a predicate and E an expression.
This notation is fine when x is reduced to only one variable. For instance,
expression (λx · x ∈ N | x + 1) denotes the classical succesor function on
natural numbers. It is equal by definition to the set {x · x ∈ N | x + 1}.

But things get more complicated when x represents more than one variable.
For instance, what is the meaning of expression (λa, b · P | E). In classical
B, the latter expression is defined as the set {a, b · P | a 7→ b 7→ E}. This is
clearly unsatisfactory for event-B, as it turns out that, in the former expression,
the comma that appears between a and b is not only a separator between two
variables, but also a hidden pair constructor, as one can see when writing the
equivalent set comprehension.

The crux of the matter is that the list of variables x introduced above, is
much more than a simple list. Indeed, it describes the structure of the domain of
the function defined by the lambda abstraction. For instance, when one writes,
in classical B, the expression (λa, b · P | E), one means that the domain of
that function is A×B (where A and B are the types of bound variables a and
b). Hence, the use of a comma is not appropriate here, as advocated in the
paragraph above about Pair Construction.

The cure is easy, just say that x is not a list of variables, but a pattern that
specifies the structure of the domain of the lambda abstraction. The example
above is then to be written as (λa 7→ b · P | E). Moreover, this can be
generalized to arbitrary domain structure by allowing arbitrary patterns after
the lambda operator. The only constraints are that those patterns should be
constructed out of distinct variables, pair constructors and parenthesis. The
definition of the lambda abstraction (λx · P | E) becomes {X · P | x 7→ E}
where X is the list of the variables that occur in x.

12

Other Quantified Expressions. The other quantified expressions are the
quantified union and intersection. In this paragraph, we shall only consider
quantified intersection, but everything will also apply to quantified union, mu-
tatis mutandis.

A quantified intersection expression has the form (
⋂

x · P | E) where x is a
list of variables, P a predicate and E an expression. It’s defined as being a short
form for the equivalent expression inter({x · P | E}) which mixes generalized
intersection and set comprehension. But, as we have seen above, we also have a
short form for writing set comprehension. The question then arises whether we
could also define a short form for generalized intersection. The answer is yes.
We then have a second form which is (

⋂
E | P) and which is defined has being

equal to inter({E | P}).

Projections. In classical B [1], the first and second projection operators take
two sets as argument, as for instance in the expression prj1(A,B). In that
expression, arguments A and B are used for two different purposes. On the one
end, they allow to infer the type associated to the instantiated operator. On
the other hand, they define the domain of the instantiated operator, which is
A×B.

This approach seems unnecessarily restrictive, as it puts a strong constraint
on the domain of the operator, namely that it must be a cartesian product.
So, in event-B, these operators become unary and take a relation as argument.
The argument is then their domain. The upgrade path from classical B is quite
straightforward, just replace prj1(A,B) by prj1(A×B).

3.3.2 A First Attempt
An ambiguous grammar for event-B expressions can loosely be defined as follows:

〈expression〉 ::= 〈expression〉 〈binary-operator〉 〈expression〉
| 〈unary-operator〉 〈expression〉
| 〈expression〉 ‘−1’
| 〈expression〉 ‘[’ 〈expression〉 ‘]’
| 〈expression〉 ‘(’ 〈expression〉 ‘)’
| ‘λ’ 〈ident-pattern〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉
| 〈quantifier〉 〈ident-list〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉
| 〈quantifier〉 〈expression〉 ‘|’ 〈predicate〉
| ‘{’ 〈ident-list〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉 ‘}’
| ‘{’ 〈expression〉 ‘|’ 〈predicate〉 ‘}’
| ‘bool’ ‘(’ 〈predicate〉 ‘)’
| ‘{’ [〈expression-list〉] ‘}’
| ‘(’ 〈expression〉 ‘)’
| ‘∅’
| ‘Z’ | ‘N’ | ‘N1’
| ‘BOOL’ | ‘TRUE’ | ‘FALSE’
| 〈ident〉
| 〈integer-literal〉

13

〈binary-operator〉 ::= ‘7→’ | ‘↔’ | ‘←↔’ | ‘↔→’ | ‘↔↔’ | ‘ 7→’ | ‘→’ | ‘ 7�’ | ‘�’ | ‘ 7�’
| ‘�’ | ‘��’ | ‘∪’ | ‘∩’ | ‘\’ | ‘×’ | ‘⊗’ | ‘‖’ | ‘◦’ | ‘;’ | ‘C−’ |
‘C’ | ‘C−’ | ‘B’ | ‘B−’ | ‘..’ | ‘+’ | ‘−’ | ‘∗’ | ‘÷’ | ‘mod’ | ‘̂’

〈unary-operator〉 ::= ‘−’ | ‘card’ | ‘P’ | ‘P1’ | ‘union’ | ‘inter’ | ‘dom’ | ‘ran’ |
‘prj1’ | ‘prj2’ | ‘id’

〈quantifier〉 ::= ‘
⋃

’ | ‘
⋂

’

〈ident-pattern〉 ::= 〈ident-pattern〉 ‘7→’ 〈ident-pattern〉
| ‘(’ 〈ident-pattern〉 ‘)’
| 〈ident〉

〈expression-list〉 ::= 〈expression-list〉 ‘,’ 〈expression〉
| 〈expression〉

As can be seen, there are many expression operators in the event-B language.
So, we’ll need to take a divide and conquer approach: to make things easier to
grasp, we will first try to group all those operators into some categories.

3.3.3 Operator Groups
Basically, there are several kinds of expressions. The most important ones are
shown in Figure 3.1. This figure reads as follows: there are three top-level kinds
of expressions: sets, pairs and scalars. Relations and sets of relations are some
special kinds of set. For instance, a relation between a set A and a set B is
a subset of A × B. The set of all relations between A and B is the set of all
subsets of A × B. Integers and booleans are also some special kind of scalar
expression.

�
�

�
�

expression

�
�

�
�

scalar�
�

�
�

set �
�

�
�

pair

�
�

�
�

relation �
�

�
�

boolean�
�

�
�

integer�
�

�
�

set of relations

!!!!!!!!!!

aaaaaaaaaa

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

Figure 3.1: Kinds of expressions

We now define groups of similar expression operators (see Table 3.1 on the
following page). The groups are defined by considering the shape of the operator
(binary, unary, quantified, etc.) but also the kind of operator arguments and

14

Group Description Repr.

Quantification
operators

Given a list of quantified identifiers,
a predicate and an expression, these
operators produce a new expression.

λx·P | E

Pair constructor Given two expressions, it produces a
pair. E 7→ F

Set of relations
constructors

Given two sets, these operators pro-
duce a set of relations. S 7→ T

Binary set
operators

Given two sets, these operators pro-
duce a new set. S ∪ T

Interval constructor Given two integers, this operator
produces a set. i .. j

Arithmetic
operators

Given one or two integers, these op-
erators produce a new integer. i + j

Relational and
functional image

Given a relation and an expression,
these operators produce a new ex-
pression.

r[s]

Unary relation
operator

Given a relation, this operator pro-
duces a new relation. r−1

Tightly bound
unary operators

Given an expression, these operators
produce another expression. P(S)

Predicate
conversion

Given a predicate, this operator pro-
duces a new boolean expression. bool(P)

Set enumeration
and comprehension

Given a list of expressions, or a list
of quantified variables, a predicate
and an expression, this operator pro-
duces a set.

{. . .}

Table 3.1: Groups of similar expression operators

15

result. For each group, we will give one operator which will be used in the sequel
as a distinguished representative of its group.

When examining that table, we can remark an interesting point: the oper-
ators that belong to the last three groups have the special property of being
bounded: when one encounters such an operator, one can find easily where the
expression involving that operator starts and where it ends: unary and ‘bool’
operators are always followed by a formula enclosed within parenthesis; set enu-
merations and comprehensions are enclosed within curly brackets. This is also
the case of atomic expressions like integer and boolean literals or identifiers.

On the other hand, the operators of the other groups are not bounded by
themselves, so one needs to define priorities and associativity laws for them in
order to resolve potential ambiguities. We will first start by defining priorities
between groups, then we will refine each group separately.

3.3.4 Priority of Operator Groups
We arbitrarily choose to define relative priorities such that groups of operators
are sorted by increasing priority in table 3.1 on the page before. As a conse-
quence, quantification operators have the lowest priority.

That order has been chosen because it reduces the number of needed paren-
thesis when writing most common expressions. Here are a few example to
illustrate this. Each expression is stated twice, first without parenthesis, then
fully parenthesized:

A ∪ B 7→ C is parsed as (A ∪ B) 7→ C

a + b 7→ c is parsed as (a + b) 7→ c

a .. b ∪ C is parsed as (a .. b) ∪ C

a + b .. c is parsed as (a + b) .. c

r−1 ∪ s is parsed as (r−1) ∪ s

r−1(s) is parsed as (r−1)(s)

Also, we give the lowest priority to quantification operators so that, when
embedded in a formula, they have to be written surrounded by parenthesis.
This is consistent with the choice made for quantified predicates. An example
formula is

(λx·x ∈ Z | x + 1)−1(3) = 2

3.3.5 Associativity of operators
Now, that priorities of groups have been defined, we will resolve remaining
ambiguities separately for each group, defining how operators of each group can
be mixed.

Quantification Operators. In this group, there is not much room for ambi-
guity, as when we encounter two quantification operators, it comes right from
their syntax that the second one will be embedded in the first one. The only op-
tion left is whether the second quantified expression should be enclosed within

16

parenthesis or not. We decide not to enforce parenthesis in this case. As a
consequence, formula ⋂

x · x ⊆ Z | λy ·y = x | y ∪ {0}

is parsed as ⋂
x · x ⊆ Z | (λy ·y = x | y ∪ {0}) .

Pair Constructor. This group contains only the maplet operator, so we only
have to define an associativity property for that operator. Although the maplet
operator is not associative in the algebraic sense, it is very common usage to
parse it as left-associative, so we shall keep that property. Then, an expression
of the form a 7→ b 7→ c will be parsed as (a 7→ b) 7→ c.

Set of Relations Constructors. No operator in this group is associative
in the algebraic sense. However, we decide to parse them as right-associative.
That choice is justified by the fact that we will parse function application as
left-associative (this will be stated when we reach the Relational and functional
image paragraph on the following page). As a consequence, one can write
f(a)(b) when one actually means (f(a))(b). Then, to be consistent, one should
also be able to describe properties of function f without parenthesis, so formula
f ∈ A 7→B 7→ C should be parsed as f ∈ A 7→ (B 7→ C).

Binary Set Operators. This group contains various operators which are
more or less compatible each with the other. So, let’s first see how one can
safely mix these operators in a formula, from a mathematical point of view.
Table 3.2 on the next page shows operator compatibility. We write a cross at
the intersection of a row and a column if the two operators are compatible in
the following sense: operator oprow is compatible with operator opcol if and only
if the following equality holds

(A oprow B) opcol C = A oprow (B opcol C).

For instance, the cross at the intersection of row two and column three tells us
that (A ∩ B) \ C = A ∩ (B \ C) and the cross at the intersection of row nine
and column seven tells us that (A C r)⊗ s = A C (r ⊗ s).

We can see that the shape is quite irregular and that there are not so many
cases where operators are compatible. So, to have an unambiguous language,
we should stick to that compatibility relation and forbid any unparenthesized
combination of incompatible operators. When two operators are compatible,
we parse them as left-associative. Otherwise, one needs to use parenthesis to
resolve ambiguities. For instance, formula S ∪ T ∪ U is parsed as (S ∪ T) ∪ U ,
while formula S ∪ T ∩ U is ill-formed and is rejected. One has to make precise
the meaning of that last formula, writing either (S ∪ T) ∩ U or S ∪ (T ∩ U).

There is only one case where we want to allow the combination of two incom-
patible operators: we parse the cartesian product operator as left-associative.
This exception to the above rule is justified by the fact that we want to be
consistent with the left-associativity we have given to the maplet operator.
Then, one can write a 7→ b 7→ c ∈ A × B × C when one actually means
(a 7→ b) 7→ c ∈ (A×B)× C.

17

∪ ∩ \ × ◦ ; ⊗ ‖ C− C C− B B−
∪ ×
∩ × × × ×
\
×
◦ ×
; × × ×
⊗
‖
C− ×
C × × × × × ×
C− × × × × × ×
B

B−

Table 3.2: Compatibility of binary set operators

Interval Constructor. This group contains only one operator: ‘..’. There is
no point in having this operator used twice in the same formula (which would
give the nonsensical formula a .. b .. c). So, this operator is parsed as non-
associative.

Arithmetic Operators. For these operators, we choose to retain the Ada
language specification for defining priorities and associativity: operators ‘+’ and
‘−’ both have the same priority and are parsed as left-associative, operators ‘∗’,
‘÷’ and ‘mod’ have higher priority and are also parsed as left-associative. Note
that this choice is different from the one made for instance in the C language,
where there is a special priority for unary ‘−’. We did not retain that last point
as it can lead to valid but hard to read expressions like a + − − − − b which
means a + b.

Finally, the exponentiation operator has the least priority and is parsed as
non-associative.

Relational and Functional Image. We choose to make these operations
left-associative, although they are not associative in the algebraic sense. This
follows common usage and is indeed important to have easy to read formulas.
If these operators were not associative, one would have to write quite intricate
formulas just to express successive function application: ((f(a))(b))(c). With
the left-associativity we’ve added, this becomes f(a)(b)(c).

Unary Relation Operator. This group contains only one operator ‘−1’,
which can be repeated, obviously, so that r−1−1 is parsed as (r−1)−1.

18

3.3.6 Final syntax for expressions
As a result, we obtain the following non ambiguous grammar for expressions. An
important point is that non-terminals are named after the group of the top-level
operators appearing in their production rule. This can be somewhat misleading
as, for instance, <pair-expression> can be derived as formula Z, which is clearly
not a pair. However, we didn’t find a better way to name non-terminals (just
numbering them 1, 2,. . . would miss some information).

〈expression〉 ::= ‘λ’ 〈ident-pattern〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉
| ‘

⋃
’ 〈ident-list〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉

| ‘
⋃

’ 〈expression〉 ‘|’ 〈predicate〉
| ‘

⋂
’ 〈ident-list〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉

| ‘
⋂

’ 〈expression〉 ‘|’ 〈predicate〉
| 〈pair-expression〉

〈ident-pattern〉 ::= 〈ident-pattern〉 { ‘ 7→’ 〈ident-pattern〉 }
| ‘(’ 〈ident-pattern〉 ‘)’
| 〈ident〉

〈pair-expression〉 ::= 〈relation-set-expr〉 { ‘ 7→’ 〈relation-set-expr〉 }

〈relation-set-expr〉 ::= 〈set-expr〉 { 〈relational-set-op〉 〈set-expr〉 }

〈relational-set-op〉 ::= ‘↔’ | ‘←↔’ | ‘↔→’ | ‘↔↔’
| ‘ 7→’ | ‘→’ | ‘ 7�’ | ‘�’ | ‘ 7�’ | ‘�’ | ‘��’

〈set-expr〉 ::= 〈interval-expr〉 { ‘∪’ 〈interval-expr〉 }
| 〈interval-expr〉 { ‘×’ 〈interval-expr〉 }
| 〈interval-expr〉 { ‘C−’ 〈interval-expr〉 }
| 〈interval-expr〉 { ‘◦’ 〈interval-expr〉 }
| 〈interval-expr〉 ‘‖’ 〈interval-expr〉
| [〈domain-modifier〉] 〈relation-expr〉

〈domain-modifier〉 ::= 〈interval-expr〉 (‘C’ | ‘C−’)

〈relation-expr〉 ::= 〈interval-expr〉 ‘⊗’ 〈interval-expr〉
| 〈interval-expr〉 { ‘;’ 〈interval-expr〉 }

[〈range-modifier〉]
| 〈interval-expr〉 { ‘∩’ 〈interval-expr〉 }

[‘\’ 〈interval-expr〉 | 〈range-modifier〉]

〈range-modifier〉 ::= (‘B’ | ‘B−’) 〈interval-expr〉

〈interval-expr〉 ::= 〈arithmetic-expr〉 [‘..’ 〈arithmetic-expr〉]

〈arithmetic-expr〉 ::= [‘−’] 〈term〉 { (‘+’ | ‘−’) 〈term〉 }

〈term〉 ::= 〈factor〉 { (‘∗’ | ‘÷’ | ‘mod’) 〈factor〉 }

〈factor〉 ::= 〈image〉 [‘̂’ 〈image〉]

19

〈image〉 ::= 〈primary〉 { ‘[’ 〈expression〉 ‘]’ | ‘(’ 〈expression〉 ‘)’ }

〈primary〉 ::= 〈simple-expr〉 { ‘−1’ }

〈simple-expr〉 ::= ‘bool’ ‘(’ 〈predicate〉 ‘)’
| 〈unary-op〉 ‘(’ 〈expression〉 ‘)’
| ‘(’ 〈expression〉 ‘)’
| ‘{’ 〈ident-list〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉 ‘}’
| ‘{’ 〈expression〉 ‘|’ 〈predicate〉 ‘}’
| ‘{’ [〈expression〉 { ‘,’ 〈expression〉 }] ‘}’
| ‘Z’ | ‘N’ | ‘N1’ | ‘BOOL’ | ‘TRUE’ | ‘FALSE’ | ‘∅’
| 〈ident〉
| 〈integer-literal〉

〈unary-op〉 ::= ‘card’ | ‘P’ | ‘P1’ | ‘union’ | ‘inter’ | ‘dom’ | ‘ran’ | ‘prj1’
| ‘prj2’ | ‘id’

20

4 Static Checking

This chapter describes how mathematical formulae (predicates and expressions)
are to be statically checked for being meaningful. We first describe an abstract
syntax for formulae. Then, we state the static checks that are to be done, based
on that abstract syntax:

• well-formedness,

• type-check.

4.1 Abstract Syntax

In this section, we specify an abstract syntax for mathematical formulae. This
abstract syntax is based on the concrete syntax described in Section 3.2.4 on
page 10 and Section 3.3.6 on page 19. The difference is that the abstract syntax
only conserves the essence of the concrete syntax. So, all concrete matter like
priorities and tokens do not appear anymore.

The abstract syntax is described using production rules. Each rule has its
own label. It is made of a left-hand part which denotes some kind of formula
(predicate, expression, identifier list, expression list) and a right hand part which
denotes a list of sub-formulae together with some attributes. To distinguish an
attribute from a sub-formulae, we enclose the former within square brackets.
Moreover, to make rules short, we use single letters, possibly subscripted, to
denote formulae: a P denotes a predicate, E an expression, L a list of identifiers,
I an identifier, M a list of expressions, and Q a pattern for lambda abstraction.

The production rules for predicates are:

pred-bin: P ::= P1 P2 [pred-binop]
pred-una: P ::= P1

pred-quant: P ::= L1 P1 [pred-quant]
pred-lit: P ::= [pred-lit]

pred-simp: P ::= E1

pred-rel: P ::= E1 E2 [pred-relop]

where

pred-binop ∈ {land, lor, limp, leqv}
pred-quant ∈ {forall, exists}
pred-lit ∈ {btrue, bfalse}

pred-relop ∈
{

equal, notequal, lt, le, gt, ge,
in, notin, subset, notsubset, subseteq, notsubseteq

}
.

21

The production rules for lists of identifiers and identifiers are:

ident-list: L ::= I1 I2 . . . In

ident: I ::= [name]

where
1 ≤ n
name is a string of characters.

The production rules for expressions are:

expr-bin: E ::= E1 E2 [expr-binop]
expr-una: E ::= E1 [expr-unop]

expr-lambda: E ::= Q1 P1 E1

expr-quant1: E ::= L1 P1 E1 [expr-quant]
expr-quant2: E ::= E1 P1 [expr-quant]

expr-bool: E ::= P1

expr-eset: E ::= M1

expr-ident: E ::= I1

expr-atom: E ::= [expr-lit]
expr-int: E ::= [int-lit]

pattern: Q ::= Q1 Q2

pattern-ident: Q ::= I1

expr-list: M ::= E1 E2 . . . En

where

expr-binop ∈



funimage, relimage, mapsto,
rel, trel, srel, strel,
pfun, tfun, pinj, tinj, psur, tsur, tbĳ,
bunion, binter, setminus, cprod, dprod, pprod,
bcomp, fcomp, ovl, domres, domsub, ranres, ransub,
upto, plus, minus, mul, div, mod, expn


expr-unop ∈

{
uminus, converse, card, pow, pow1,
union, inter, dom, ran, prj1, prj2, id

}
expr-quant ∈ {qunion, qinter, cset}
expr-lit ∈ {integer, natural, natural1, bool, true, false, emptyset}
int-lit is an integer number.

4.2 Well-formedness

Each occurrence of an identifier in a formula (that is a predicate or an expres-
sion) can be either free or bound. Intuitively, a free occurrence of an identifier
refers to a declaration of that identifier in a scope outside of the formula, while a
bound occurrence corresponds to a local declaration introduced by a quantifier
in the formula itself.

For a formula to be considered well-formed, we ask that, beyond being syn-
tactically correct, it also satisfies the two following conditions:

1. Any identifier that occurs in the formula, should have only free occurrences
or bound occurrences, but not both.

22

2. Any identifier that occurs bound in the formula, should be bound in ex-
actly one place (i.e., by only one quantifier).

These conditions have been coined so that any occurrence of an identifier in
a formula always denotes exactly the same data. This is a big win in formula
legibility.

For instance, the following formula is ill-formed (it doesn’t satisfy the first
condition)

(λx·x ∈ Z | x + 1) (x) = x + 1

it should be written

(λy ·y ∈ Z | y + 1) (x) = x + 1 .

And the following formula is also ill-formed (failing to satisfy the second
condition)

(λx·x ∈ Z | x + 1) = (λx·x ∈ Z | x + 1)

it should be written

(λx·x ∈ Z | x + 1) = (λy ·y ∈ Z | y + 1) .

The rest of this section formalizes these well-formedness conditions using an
attribute grammar formalism on the abstract syntax of formulae. For that, we
add three attributes to the nodes of the abstract syntax tree:

• Attribute bound is synthesized and contains the set of identifiers that occur
bound in the formula rooted at the current node.

• Attribute free is synthesized and contains the set of identifiers that occur
free in the formula rooted at the current node.

• Attribute wff is synthesized and contains a boolean value which is TRUE
if and only if the formula rooted at the current node is well-formed.

The value of these three attributes are given by the following set of equations
on the production rules of the abstract syntax:

pred-bin: P ::= P1 P2 [pred-binop]
P.bound = P1.bound ∪ P2.bound

P.free = P1.free ∪ P2.free

P.wff = bool


P1.wff = TRUE

∧ P2.wff = TRUE
∧ P1.free ∩ P2.bound = ∅
∧ P1.bound ∩ P2.free = ∅
∧ P1.bound ∩ P2.bound = ∅


pred-una: P ::= P1

P.bound = P1.bound
P.free = P1.free
P.wff = P1.wff

23

pred-quant: P ::= L1 P1 [pred-quant]
P.bound = P1.bound ∪ L1.free

P.free = P1.free \ L1.free

P.wff = bool

 L1.wff = TRUE
∧ P1.wff = TRUE
∧ P1.bound ∩ L1.free = ∅


pred-lit: P ::= [pred-lit]

P.bound = ∅
P.free = ∅
P.wff = TRUE

pred-simp: P ::= E1

P.bound = E1.bound
P.free = E1.free
P.wff = E1.wff

pred-rel: P ::= E1 E2 [pred-relop]
P.bound = E1.bound ∪ E2.bound

P.free = E1.free ∪ E2.free

P.wff = bool


E1.wff = TRUE

∧ E2.wff = TRUE
∧ E1.free ∩ E2.bound = ∅
∧ E1.bound ∩ E2.free = ∅
∧ E1.bound ∩ E2.bound = ∅


ident-list: L ::= I1 I2 . . . In

L.bound = ∅
L.free = {k ·k ∈ 1 .. n | Ik.name}
L.wff = bool(∀i, j ·i ∈ 1 .. n ∧ j ∈ 1 .. n ∧ i 6= j⇒ Ii.name 6= Ij .name)

expr-bin: E ::= E1 E2 [expr-binop]
E.bound = E1.bound ∪ E2.bound

E.free = E1.free ∪ E2.free

E.wff = bool


E1.wff = TRUE

∧ E2.wff = TRUE
∧ E1.free ∩ E2.bound = ∅
∧ E1.bound ∩ E2.free = ∅
∧ E1.bound ∩ E2.bound = ∅


expr-una: E ::= E1 [expr-unop]

E.bound = E1.bound
E.free = E1.free
E.wff = E1.wff

expr-lambda: E ::= Q1 P1 E1

24

E.bound = P1.bound ∪ E1.bound ∪ Q1.free
E.free = (P1.free ∪ E1.free) \Q1.free

E.wff = bool



Q1.wff = TRUE
∧ P1.wff = TRUE
∧ E1.wff = TRUE
∧ P1.free ∩ E1.bound = ∅
∧ P1.bound ∩ E1.free = ∅
∧ P1.bound ∩ E1.bound = ∅
∧ P1.bound ∩ Q1.free = ∅
∧ E1.bound ∩ Q1.free = ∅


expr-quant1: E ::= L1 P1 E1 [expr-quant]

E.bound = P1.bound ∪ E1.bound ∪ L1.free
E.free = (P1.free ∪ E1.free) \ L1.free

E.wff = bool



L1.wff = TRUE
∧ P1.wff = TRUE
∧ E1.wff = TRUE
∧ P1.free ∩ E1.bound = ∅
∧ P1.bound ∩ E1.free = ∅
∧ P1.bound ∩ E1.bound = ∅
∧ P1.bound ∩ L1.free = ∅
∧ E1.bound ∩ L1.free = ∅


expr-quant2: E ::= E1 P1 [expr-quant]

E.bound = P1.bound ∪ E1.bound ∪ E1.free
E.free = P1.free \ E1.free

E.wff = bool


E1.wff = TRUE

∧ P1.wff = TRUE
∧ P1.bound ∩ E1.bound = ∅
∧ P1.bound ∩ E1.free = ∅


expr-bool: E ::= P1

E.bound = P1.bound
E.free = P1.free
E.wff = P1.wff

expr-eset: E ::= M
E.bound = M.bound

E.free = M.free
E.wff = M.wff

expr-ident: E ::= I1

E.bound = ∅
E.free = {I1.name}
E.wff = TRUE

expr-atom: E ::= [expr-lit]
E.bound = ∅

E.free = ∅
E.wff = TRUE

25

expr-int: E ::= [int-lit]
E.bound = ∅

E.free = ∅
E.wff = TRUE

pattern: Q ::= Q1 Q2

Q.bound = ∅
Q.free = Q1.free ∪ Q2.free
Q.wff = TRUE

pattern-ident: Q ::= I1

Q.bound = ∅
Q.free = {I1.name}
Q.wff = TRUE

expr-list: M ::= E1 E2 . . . En

M.bound = (
⋃

k ·k ∈ 1 .. n | Ek.bound)
M.free = (

⋃
k ·k ∈ 1 .. n | Ek.free)

M.wff = bool


(∀k ·k ∈ 1 .. n⇒ Ek.wff = TRUE)

∧
(
∀i, j ·i ∈ 1 .. n ∧ j ∈ 1 .. n ∧ i 6= j
⇒Ei.bound ∩ Ej .bound = ∅

)
∧

(
∀i, j ·i ∈ 1 .. n ∧ j ∈ 1 .. n ∧ i 6= j
⇒Ei.bound ∩ Ej .free = ∅

)


4.3 Type Checking

Type checking consists of checking, statically, that a formula is meaningful in a
certain context. For that, we associate a type with each expression that occurs
in a formula. This type is the set of all values that the expression can take.
Then, we check that the formula abides by some type checking rules. Those
rules enforce that the operators used can be meaningful. Unfortunately, type
checking, as it is a static check, can not, by itself, prove that a formula is
meaningful. For some operators, like integer division, we will also need to check
some additional dynamic constraints (e.g., that the denominator is not zero).
This will be specified in the well-definedness dynamic checks (see chapter 5 on
page 40).

The result of type checking is twofold. Firstly, it says whether a given
formula is well-typed (that is abides by the type checking rules). Secondly,
it computes an enriched context that associates a type with every identifier
occurring free in the formula.

In the sequel of this section, we shall first specify more formally concepts such
as type, type variable, typing environment and typing equation. Then, we shall
specify type checking using an attribute grammar formalism as was done for
well-formedness. Finally, we give some illustrating examples of type-checking.

4.3.1 Typing Concepts
As said previously, a type denotes the set of values that an expression can take.
Moreover, we want this set to be derived statically, based on the form of the

26

expression and the context in which it appears. As a consequence, a type can
take one of the three following forms:

• a basic set, that is a predefined set (Z or BOOL) or a carrier set provided
by the user (i.e., an identifier);

• a power set of another type, such as P(Z);

• a cartesian product of two types, such as Z× BOOL.

A type variable is a meta-variable that can denote any type. In the sequel,
we shall use lowercase Greek letters (α, β, γ, . . .) to denote type variables.

A typing environment represents the context in which a formula is to be
type checked. A typing environment is a partial function from the set of all
identifiers to the set of all possible types. For instance, the typing environment

{‘a’ 7→ Z, ‘b’ 7→ P(Z× BOOL), ‘c’ 7→ α}

says that identifier ‘a’ has type Z, identifier ‘b’ has type P(Z × BOOL) (i.e.,
is a relation between integers and booleans) and identifier ‘c’ is typed by type
variable α.

If an identifier i has been defined as a carrier set, then it will appear in the
typing environment as the pair i 7→ P(i).

A typing equation is a pair of types. In the sequel, we will write typing
equations as τ1 ≡ τ2, instead of the more classical pair τ1 7→ τ2. This is mere
syntactical sugar to enhance legibility.

A typing equation is said to be satisfiable if, and only if, there exists an
assignment to the type variables it contains such that, when replacing these
type variables by their value, the two components of the pair are equal (i.e.,
denote the same type). For instance, typing equation α × BOOL ≡ Z × β is
satisfiable (take Z for α and BOOL for β). In contrast, type equation P(α) ≡ Z
and Z ≡ ‘S’ are unsatisfiable (in the last sentence, remember that ‘S’ denotes a
carrier set).

Similarly, a typing equation is said to be uniquely satisfiable if, and only if,
there exists a unique assignment of type variables that satisfies it. For instance,
α ≡ Z is uniquely satisfiable (the only assignment that satisfies it is to take
Z for α), while the type equation α ≡ β, although satisfiable, is not uniquely
satisfiable (to satisfy it, we only need that α and β are assigned the same type,
but that type is arbitrary).

These two notions of satisfiability are extended to sets of type equations,
with the additional proviso, that the satisfying assignment of type variables
is done globally for all type equations in the set. For instance, the set {α ≡
Z, β ≡ BOOL} is (uniquely) satisfiable, while the set {α ≡ Z, α ≡ BOOL} is
not satisfiable, although each equation, taken separately, is satisfiable.

4.3.2 Specification of Type Check
The abstract grammar of expressions is extended with the following attributes:

• Attribute ityvars (resp. styvars) is inherited (resp. synthesized) and con-
tains the set of type variables that have been used so far.

27

• Attribute ityenv (resp. styenv) is inherited (resp. synthesized) and con-
tains the current typing environment.

• Attribute ityeqs (resp. styeqs) is inherited (resp. synthesized) and contains
the set of typing equations that have been collected so far.

• Attribute type is synthesized and contains a type.

These attributes are added to all non-terminals, except type which is not
defined for predicates (there is no type associated with a predicate) nor list of
identifiers.

Type checking then consists of initializing the attribute grammar by giving
values to inherited attributes of the root R of the tree and then evaluating
the attribute grammar. Type check succeeds iff, after evaluation, the set of
typing equations R.styeqs is uniquely satisfiable. Moreover, in case of success,
the resulting typing environment is R.styenv, where all type variables have been
replaced by the values that satisfy the latter set of typing equations.

Initialization of the attribute grammar consists of the following three equa-
tions (where R denotes the root of the tree):

R.ityvars = ∅
R.ityenv = initial typing environment
R.ityeqs = ∅

Please note that the initial typing environment must not contain any type
variable.

The rest of this section describes the equations for each production rule of
the attribute grammar. In some places, we use a shortcut to denote some set of
equations. The notation

A.inherited = B.synthesized

means
A.ityvars = B.styvars
A.ityenv = B.styenv
A.ityeqs = B.styeqs

We also use the term fresh type variable to denote a type variable which
doesn’t occur in attribute ityvars of the left hand side of a production rule. For
instance, in the equations of production rule pred-rel, α denotes a type variable
such that α /∈ P.ityvars.

The set of equations of the attribute grammar is:

pred-bin: P ::= P1 P2 [pred-binop]
P1.inherited = P.inherited
P2.inherited = P1.synthesized

P.synthesized = P2.synthesized

pred-una: P ::= P1

P1.inherited = P.inherited
P.synthesized = P1.synthesized

28

pred-quant: P ::= L1 P1 [pred-quant]
L1.inherited = P.inherited
P1.inherited = L1.synthesized

P.synthesized = P1.synthesized

pred-lit: P ::= [pred-lit]
P.synthesized = P.inherited

pred-simp: P ::= E1

Let α be a fresh type variable in
E1.ityvars = P.ityvars ∪ {α}
E1.ityenv = P.ityenv
E1.ityeqs = P.ityeqs
P.styvars = E1.styvars
P.styenv = E1.styenv
P.styeqs = E1.styeqs ∪ {E1.type ≡ P(α)}

pred-rel: P ::= E1 E2 [pred-relop]
Let α be a fresh type variable in

E1.ityvars = P.ityvars ∪ {α}
E1.ityenv = P.ityenv
E1.ityeqs = P.ityeqs

E2.inherited = E1.synthesized
P.styvars = E2.styvars
P.styenv = E2.styenv
P.styeqs = E2.styeqs ∪ E

where E is defined in the following table.

P.pred-relop E

equal, notequal

{
E1.type ≡ α
E2.type ≡ α

}
lt, le, gt, ge

{
E1.type ≡ Z
E2.type ≡ Z

}
in, notin

{
E1.type ≡ α
E2.type ≡ P(α)

}
subset, notsubset,

subseteq, notsubseteq

{
E1.type ≡ P(α)
E2.type ≡ P(α)

}

ident-list: L ::= I1 I2 . . . In

I1.inherited = L.inherited
I2.inherited = I1.synthesized

...
In.inherited = In−1.synthesized

L.synthesized = In.synthesized

29

ident: I ::= [name]
if I.name ∈ dom(I.ityenv) then

I.synthesized = I.inherited
I.type = I.ityenv(I.name)

else let α be a fresh type variable in
I.styvars = I.ityvars ∪ {α}
I.styenv = I.ityenv ∪ {I.name 7→ α}
I.styeqs = I.ityeqs

I.type = α

expr-bin: E ::= E1 E2 [expr-binop]
Let α, β, γ and δ be distinct fresh type variables in

E1.ityvars = E.ityvars ∪ {α, β, γ, δ}
E1.ityenv = E.ityenv
E1.ityeqs = E.ityeqs

E2.inherited = E1.synthesized
E.styvars = E2.styvars
E.styenv = E2.styenv
E.styeqs = E2.styeqs ∪ E

E.type = τ
where E and τ are defined in Table 4.1 on the next page.

expr-una: E ::= E1 [expr-unop]
Let α and β be distinct fresh type variables in

E1.ityvars = E.ityvars ∪ {α, β}
E1.ityenv = E.ityenv
E1.ityeqs = E.ityeqs
E.styvars = E1.styvars
E.styenv = E1.styenv
E.styeqs = E1.styeqs ∪ E

E.type = τ
where E and τ are defined in Table 4.2 on page 32.

expr-lambda: E ::= Q1 P1 E1

Q1.inherited = E.inherited
P1.inherited = Q1.synthesized
E1.inherited = P1.synthesized

E.synthesized = E1.synthesized
E.type = P(Q1.type× E1.type)

30

E.expr-binop E τ

funimage

{
E1.type ≡ P(α× β)
E2.type ≡ α

}
β

relimage

{
E1.type ≡ P(α× β)
E2.type ≡ P(α)

}
P(β)

mapsto ∅ E1.type× E2.type

rel, trel, srel, strel, pfun,
tfun, pinj, tinj, psur, tsur,

tbĳ

{
E1.type ≡ P(α)
E2.type ≡ P(β)

}
P(P(α× β))

bunion, binter, setminus

{
E1.type ≡ P(α)
E2.type ≡ P(α)

}
P(α)

cprod

{
E1.type ≡ P(α)
E2.type ≡ P(β)

}
P(α× β)

dprod

{
E1.type ≡ P(α× β)
E2.type ≡ P(α× γ)

}
P(α× (β × γ))

pprod

{
E1.type ≡ P(α× γ)
E2.type ≡ P(β × δ)

}
P((α× β)× (γ × δ))

bcomp

{
E1.type ≡ P(β × γ)
E2.type ≡ P(α× β)

}
P(α× γ)

fcomp

{
E1.type ≡ P(α× β)
E2.type ≡ P(β × γ)

}
P(α× γ)

ovl

{
E1.type ≡ P(α× β)
E2.type ≡ P(α× β)

}
P(α× β)

domres, domsub

{
E1.type ≡ P(α)
E2.type ≡ P(α× β)

}
P(α× β)

ranres, ransub

{
E1.type ≡ P(α× β)
E2.type ≡ P(β)

}
P(α× β)

upto

{
E1.type ≡ Z
E2.type ≡ Z

}
P(Z)

plus, minus, mul, div,
mod, expn

{
E1.type ≡ Z
E2.type ≡ Z

}
Z

Table 4.1: Typing equations and resulting type for binary expressions.

31

E.expr-unop E τ

uminus
{

E1.type ≡ Z
}

Z

converse
{

E1.type ≡ P(α× β)
}

P(β × α)

card
{

E1.type ≡ P(α)
}

Z

pow, pow1
{

E1.type ≡ P(α)
}

P(P(α))

union, inter
{

E1.type ≡ P(P(α))
}

P(α)

dom
{

E1.type ≡ P(α× β)
}

P(α)

ran
{

E1.type ≡ P(α× β)
}

P(β)

prj1
{

E1.type ≡ P(α× β)
}

P(α× β × α)

prj2
{

E1.type ≡ P(α× β)
}

P(α× β × β)

id
{

E1.type ≡ P(α)
}

P(α× α)

Table 4.2: Typing equations and resulting type for unary expressions.

32

expr-quant1: E ::= L1 P1 E1 [expr-quant]
Let α be a fresh type variable in

L1.ityvars = E.ityvars ∪ {α}
L1.ityenv = E.ityenv
L1.ityeqs = E.ityeqs

P1.inherited = L1.synthesized
E1.inherited = P1.synthesized

E.styvars = E1.styvars
E.styenv = E1.styenv
E.styeqs = E1.styeqs ∪ E

E.type = τ
where E and τ are defined in the following table.

E.expr-quant E τ

qunion, qinter
{

E1.type ≡ P(α)
}

P(α)

cset ∅ P(E1.type)

expr-quant2: E ::= E1 P1 [expr-quant]
Let α be a fresh type variable in

E1.ityvars = E.ityvars ∪ {α}
E1.ityenv = E.ityenv
E1.ityeqs = E.ityeqs

P1.inherited = E1.synthesized
E.styvars = P1.styvars
E.styenv = P1.styenv
E.styeqs = P1.styeqs ∪ E

E.type = τ
where E and τ are defined in the following table.

E.expr-quant E τ

qunion, qinter
{

E1.type ≡ P(α)
}

P(α)

cset ∅ P(E1.type)

expr-bool: E ::= P1

P1.inherited = E.inherited
E.synthesized = P1.synthesized

E.type = BOOL

expr-eset: E ::= M
M.inherited = E.inherited

E.synthesized = M.synthesized
E.type = P(M.type)

33

expr-ident: E ::= I1

I1.inherited = E.inherited
E.synthesized = I1.synthesized

E.type = I1.type

expr-atom: E ::= [expr-lit]
Let α be a fresh type variable in

E.styvars = E.ityvars ∪ {α}
E.styenv = E.ityenv
E.styeqs = E.ityeqs

E.type = τ
where τ is defined in the following table.

E.expr-lit τ

integer, natural, natural1 P(Z)

bool P(BOOL)

true, false BOOL

emptyset P(α)

expr-int: E ::= [int-lit]
E.synthesized = E.inherited

E.type = Z

pattern: Q ::= Q1 Q2

Q1.inherited = Q.inherited
Q2.inherited = Q1.synthesized

Q.synthesized = Q2.synthesized
Q.type = Q1.type×Q2.type

pattern-ident: Q ::= I1

I1.inherited = Q.inherited
Q.synthesized = I1.synthesized

Q.type = I1.type

34

expr-list: M ::= E1 E2 . . . En

E1.inherited = M.inherited
E2.inherited = E1.synthesized

...
En.inherited = En−1.synthesized

M.styvars = En.ityvars
M.styenv = En.ityenv

M.styeqs = En.ityeqs ∪


E1.type ≡ E2.type
E2.type ≡ E3.type

...
En−1.type ≡ En.type


M.type = En.type

4.3.3 Examples
In this subsection, we present a few examples of the type-checking algorithm in
action on various formulae.

Formula x ∈ Z ∧ 1 ≤ x. Figure 4.1 shows the dataflow for the type-checking
of this formula. Each step of the type-checking algorithm is shown as a circled
number, with edges relating them. The numbers appearing on the left of a node
corresponds to the computation of inherited attributes, numbers on the right to
the computation of synthesized attributes.

pred-bin
[land]1 18

pred-rel
[in]2 9 pred-rel

[le]10 17

expr-ident3 6 expr-lit
[integer]7 8 expr-int

[1]11 12 expr-ident13 16

ident
[x]4 5 ident

[x]14 15

Figure 4.1: Type-check of formula x ∈ Z ∧ 1 ≤ x.

Assuming that the typing environment is initially empty, the initial compu-
tation at step 1 is:

1:

∣∣∣∣∣∣
ityvars = ∅
ityenv = ∅
ityeqs = ∅

35

Then, we process down the tree, adding a type variable at the ∈ operator:

2:

∣∣∣∣∣∣
ityvars = ∅
ityenv = ∅
ityeqs = ∅

3, 4:

∣∣∣∣∣∣
ityvars = {α}
ityenv = ∅
ityeqs = ∅

Examining the first occurrence of variable x, we find that it is not present in
the environment, so we create a new type variable for it. This is then propagated
in the tree:

5, 6:

∣∣∣∣∣∣∣∣
styvars = {α, β}
styenv = {x 7→ β}
styeqs = ∅
type = β

7:

∣∣∣∣∣∣
ityvars = {α, β}
ityenv = {x 7→ β}
ityeqs = ∅

8:

∣∣∣∣∣∣∣∣
styvars = {α, β}
styenv = {x 7→ β}
styeqs = ∅
type = P(Z)

We now reach the ∈ operator again, where we add our first type equations
and propagate the attribute values:

9:

∣∣∣∣∣∣∣∣
styvars = {α, β}
styenv = {x 7→ β}

styeqs =
{

β ≡ α,
P(Z) ≡ P(α)

} 10, 11:

∣∣∣∣∣∣∣∣
ityvars = {α, β, γ}
ityenv = {x 7→ β}

ityeqs =
{

β ≡ α,
P(Z) ≡ P(α)

}
Continuing our traversal of the tree, we get:

12:

∣∣∣∣∣∣∣∣∣∣
styvars = {α, β, γ}
styenv = {x 7→ β}

styeqs =
{

β ≡ α,
P(Z) ≡ P(α)

}
type = Z

13, 14:

∣∣∣∣∣∣∣∣
ityvars = {α, β, γ}
ityenv = {x 7→ β}

ityeqs =
{

β ≡ α,
P(Z) ≡ P(α)

}

We now reach the second occurrence of variable x and, now, it is present in
the typing environment, so we just read its type from there, and propagate it:

15, 16:

∣∣∣∣∣∣∣∣∣∣
styvars = {α, β, γ}
styenv = {x 7→ β}

styeqs =
{

β ≡ α,
P(Z) ≡ P(α)

}
type = β

Reaching operator ≤, we add two new typing equations and propagate them
to the root:

17, 18:

∣∣∣∣∣∣∣∣∣∣∣∣

styvars = {α, β, γ}
styenv = {x 7→ β}

styeqs =


β ≡ α,
P(Z) ≡ P(α)
Z ≡ Z
β ≡ Z


In the end, we obtain a system of four typing equations with two type vari-

ables. This system is uniquely satisfiable by taking α = Z and β = Z. Hence,
the formula type checks. Moreover, its resulting typing environment is {x 7→ Z}.

36

pred-rel
[equal]1 6

expr-lit
[emptyset]2 3 expr-lit

[emptyset]4 5

Figure 4.2: Type-check of formula ∅ = ∅.

Formula ∅ = ∅. The type-checking dataflow for this formula is given in
Figure 4.2.

The attribute values computed by the algorithm are (supposing that the
initial typing environment is empty):

1:

∣∣∣∣∣∣
ityvars = ∅
ityenv = ∅
ityeqs = ∅

2:

∣∣∣∣∣∣
ityvars = {α}
ityenv = ∅
ityeqs = ∅

3:

∣∣∣∣∣∣∣∣
styvars = {α, β}
styenv = ∅
styeqs = ∅
type = β

4:

∣∣∣∣∣∣
ityvars = {α, β}
ityenv = ∅
ityeqs = ∅

5:

∣∣∣∣∣∣∣∣
styvars = {α, β, γ}
styenv = ∅
styeqs = ∅
type = γ

6:

∣∣∣∣∣∣∣∣
styvars = {α, β, γ}
styenv = ∅

styeqs =
{

β ≡ α,
γ ≡ α

}
In the end, we obtain a system of two typing equations with three typing

variables. This system is satisfiable, but not uniquely. Hence formula ∅ = ∅
does not type-check.

Formula x ⊆ S ∧ ∅ ⊂ x. The type-checking dataflow for this formula is
given in Figure 4.3.

pred-bin
[land]1 20

pred-rel
[subseteq]2 11 pred-rel

[subset]12 19

expr-ident3 6 expr-ident7 10 expr-int
[emptyset]13 14 expr-ident15 18

ident
[x]4 5 ident

[S]8 9 ident
[x]16 17

Figure 4.3: Type-check of formula x ⊆ S ∧ ∅ ⊂ x.

Here, we assume that variable S denotes a given set. Thus, our initial

37

typing environment is {S 7→ P(S)}. The attribute values computed by the
type-checking algorithm are:

1, 2:

∣∣∣∣∣∣
ityvars = ∅
ityenv = {S 7→ P(S)}
ityeqs = ∅

3, 4:

∣∣∣∣∣∣
ityvars = {α}
ityenv = {S 7→ P(S)}
ityeqs = ∅

5, 6:

∣∣∣∣∣∣∣∣∣∣
styvars = {α, β}

styenv =
{

S 7→ P(S),
x 7→ β

}
styeqs = ∅
type = β

7, 8:

∣∣∣∣∣∣∣∣
ityvars = {α, β}

ityenv =
{

S 7→ P(S),
x 7→ β

}
ityeqs = ∅

9, 10:

∣∣∣∣∣∣∣∣∣∣
styvars = {α, β}

styenv =
{

S 7→ P(S),
x 7→ β

}
styeqs = ∅
type = P(S)

11:

∣∣∣∣∣∣∣∣∣∣
styvars = {α, β}

styenv =
{

S 7→ P(S),
x 7→ β

}
styeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

}

12:

∣∣∣∣∣∣∣∣∣∣
ityvars = {α, β}

ityenv =
{

S 7→ P(S),
x 7→ β

}
ityeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

} 13:

∣∣∣∣∣∣∣∣∣∣
ityvars = {α, β, γ}

ityenv =
{

S 7→ P(S),
x 7→ β

}
ityeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

}

14:

∣∣∣∣∣∣∣∣∣∣∣∣

styvars = {α, β, γ, δ}

styenv =
{

S 7→ P(S),
x 7→ β

}
styeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

}
type = P(δ)

15, 16:

∣∣∣∣∣∣∣∣∣∣
ityvars = {α, β, γ, δ}

ityenv =
{

S 7→ P(S),
x 7→ β

}
ityeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

}

17, 18:

∣∣∣∣∣∣∣∣∣∣∣∣

styvars = {α, β, γ, δ}

styenv =
{

S 7→ P(S),
x 7→ β

}
styeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

}
type = β

19, 20:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

styvars = {α, β, γ, δ}

styenv =
{

S 7→ P(S),
x 7→ β

}

styeqs =


β ≡ P(α),
P(S) ≡ P(α),
P(δ) ≡ P(γ),
β ≡ P(γ)


In the end, we obtain a system of four typing equations with four typing

variables. This system is uniquely satisfiable taking α = γ = δ = S and
β = P(S). Hence formula x ⊆ S ∧ ∅ ⊂ x type-checks and the resulting typing
environment is {S 7→ P(S), x 7→ P(S)}.

Formula x = TRUE. The type-checking dataflow for this formula is given in
Figure 4.4 on the following page.

Assuming that initially x denotes an integer (non empty initial typing envi-

38

pred-rel
[equal]1 8

expr-ident2 5

ident
[x]3 4

expr-lit
[true]6 7

Figure 4.4: Type-check of formula x = TRUE.

ronment), we obtain the following values for attributes:

1:

∣∣∣∣∣∣
ityvars = ∅
ityenv = {x 7→ Z}
ityeqs = ∅

2, 3:

∣∣∣∣∣∣
ityvars = {α}
ityenv = {x 7→ Z}
ityeqs = ∅

4, 5:

∣∣∣∣∣∣∣∣
styvars = {α}
styenv = {x 7→ Z}
styeqs = ∅
type = Z

6:

∣∣∣∣∣∣
ityvars = {α}
ityenv = {x 7→ Z}
ityeqs = ∅

7:

∣∣∣∣∣∣∣∣
styvars = {α}
styenv = {x 7→ Z}
styeqs = ∅
type = BOOL

8:

∣∣∣∣∣∣∣∣
styvars = {α}
styenv = {x 7→ Z}

styeqs =
{

Z ≡ α
BOOL ≡ α

}
In the end, we obtain a system of two typing equations with one typing

variable. This system is not satisfiable, therefore the formula does not type-
check (remember that we initially assumed that variable x denotes an integer).
If the initial typing environment would have been empty, then the formula would
type-check.

39

5 Dynamic Checking

Static checks are not enough to ensure that a formula is meaningful. For in-
stance, expression x÷y passes all the static checks described above, nevertheless
it is meaningless if y is zero. The aim of dynamic checking [2, 3] is to detect these
kind of meaningless formulas. This is done by generating (and then proving)
some well-definedness lemma.

The rest of this chapter specifies how to produce these well-definedness lem-
mas. This is done by specifying a WD operator that takes a formula as argument
and the result of which is the well-definedness lemma of that formula.

5.1 Predicate Well-Definedness

Table 5.1 on the next page specifies the WD operator for predicates. In that
table, letters P and Q denote arbitrary predicates, letters E and F denote
expressions, and letter L denotes a list of identifiers.

5.2 Expression Well-Definedness

Tables 5.2 on page 42 and 5.3 on page 43 specify the WD operator for expres-
sions. In these tables, letter P denotes an arbitrary predicate, letters E and F
denote expressions, letter Q denotes a lambda pattern, letter L denotes a list
of identifiers, letter I denotes an identifier, letter n denotes a literal integer.
We also denote by FE the list of the free variables that appear in expression E
(that is E.free) and by FQ the list of the free variables that appear in pattern
Q. Finally, letter x denotes a fresh variable (that is a variable that does not
occur free in the formula for which we compute the well-definedness lemma).

40

Predicate WD Lemma

P ∧Q P ⇒Q WD(P) ∧ (P ⇒WD(Q))

P ∨Q WD(P) ∧ (P ∨WD(Q))

P ⇔Q WD(P) ∧WD(Q)

¬P WD(P)

∀L·P ∃L·P ∀L·WD(P)

> ⊥ >

finite(E) WD(E)

E = F E 6= F
E ∈ F E /∈ F
E ⊂ F E 6⊂ F
E ⊆ F E 6⊆ F

WD(E) ∧WD(F)

Table 5.1: WD lemmas for binary and unary expressions.

41

Expression WD Lemma

F (E)
WD(F) ∧WD(E) ∧ E ∈ dom(F)
∧ F−1; ({E}C F) ⊆ id(ran(F))

E[F] E 7→ F
E↔ F E←↔ F
E↔→ F E↔↔ F
E 7→ F E→ F
E 7� F E � F
E 7� F E � F
E �� F E ∪ F
E ∩ F E \ F
E × F E ⊗ F
E ‖ F E ◦ F
E ; F E C− F
E C F E C− F
E B F E B− F
E .. F E + F
E − F E ∗ F

WD(E) ∧WD(F)

E ÷ F E mod F WD(E) ∧WD(F) ∧ F 6= 0

E ̂ F WD(E) ∧ 0 ≤ E ∧WD(F) ∧ 0 ≤ F

−E E−1

P(E) P1(E)
dom(E) ran(E)
prj1(E) prj2(E)
id(E) union(E)

WD(E)

card(E) WD(E) ∧ finite(E)

inter(E) WD(E) ∧ E 6= ∅

Table 5.2: WD lemmas for binary and unary expressions.

42

Expression WD Lemma

λQ · P | E ∀FQ · WD(P) ∧ (P ⇒WD(E))

⋃
L · P | E
{L · P | E} ∀L · WD(P) ∧ (P ⇒WD(E))

⋃
E | P

{E | P} ∀FE · WD(P) ∧ (P ⇒WD(E))

⋂
L · P | E (∀L · WD(P) ∧ (P ⇒WD(E)))

∧ (∃L · P)

⋂
E | P (∀FE · WD(P) ∧ (P ⇒WD(E)))

∧ (∃FE · P)

bool(P) WD(P)

{E1, E2, . . . , En} WD(E1) ∧WD(E2) ∧ · · · ∧WD(En)

I Z
N N1

BOOL TRUE
FALSE ∅

n

>

Table 5.3: WD lemmas for other expressions.

43

Bibliography

[1] Abrial, J.-R. (1996). The B-Book. Assigning Programs to Meanings. Cam-
bridge University Press.

[2] Abrial, J.-R and Mussat, L. (2002). On Using Conditional Definitions in
Formal Theories. In D. Bert et al. (Eds), ZB2002: Formal Specification and
Development in Z and B, LNCS 2272, pp. 242–269, Springer-Verlag.

[3] Burdy, L. (2000). Traitement des expressions dépourvues de sens de la
théorie des ensembles. Application à la méthode B. Thèse de doctorat. Con-
servatoire National des Arts et Métiers.

[4] The Unicode Consortium (2003). The Unicode Standard 4.0. Addison-
Wesley.

44

	Informal Presentation
	Structure and Laws
	Mathematical Model
	Examples
	Mathematical Language
	Syntax of the Mathematical Language
	Introduction
	Language Lexicon
	Whitespace
	Identifiers
	Integer Literals
	Predicate symbols
	Expression symbols

	Language Syntax
	Notation
	Predicates
	A first attempt
	Associativity of operators
	Priority of operators
	Final syntax for predicates

	Expressions
	Some Fine Points
	A First Attempt
	Operator Groups
	Priority of Operator Groups
	Associativity of operators
	Final syntax for expressions

	Static Checking
	Abstract Syntax
	Well-formedness
	Type Checking
	Typing Concepts
	Specification of Type Check
	Examples

	Dynamic Checking
	Predicate Well-Definedness
	Expression Well-Definedness

