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This Deliverable is made of the following parts:

1. The Architecture of the Rodin Platform

2. The Event-B Static Checker

3. The Event-B Proof Obligation Generator

4. The Event-B Kernel Prover

It also contains an appendix distributed in a separate file: the Event-B model
of the Graph Checker. Let us quickly describe these five parts in turn.

The “Architecture of the Rodin Platform” contains the description of the
framework within which the three basic Event-B tools (described in docu-
ments 2, 3, and 4) will be implemented as plug-ins. Of course, this platform
is not devoted to these tools only: in fact, it is conceptually thought to accept
a variety of other plug-ins, which could be defined either within the Rodin
project or later outside the current Rodin envelope.

This Platform is not by itself a stand-alone body. It was out of the question
to “re-invent the wheel” in 2005 while lots of efforts had already been devoted
in projects with similar goals (although less ambitious than ours), namely
the construction of developments tools.

Let us recall the genesis of our previous choice as already explained in De-
liverable D3.1. We had two main constraints to take into account at this
difficult decision making mile stone: (1) One of the main philosophy of Rodin
is its openness, we had thus to choose an existing basis adhering to this phi-
losophy, and (2) for obvious perenity reasons, we did not want to be too much
tied to an existing basis, which might later be replaced by another one. As
usual, the result is a compromise. We thus choosed Eclipse for coping with
the first constraints (openness) while being very careful to not too deeply
depend on it in order to cope with the second constraints (perenity). As
a result, we shall do some development on our own on top of the Eclipse
platform: the so-called Builder (scheduler) in the Eclipse terminology.

The “Event-B Static Checker” is the most difficult and novel part of our
Event-B tools. By Static Checking, we mean, lexical, syntactic, and type
analysis of mathematical texts, but also a large number of well-formedness
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laws that must be obeyed: naming, visibility, absence of cycles, etc. It im-
plements the idea of a Development Database which is in constant evolution
while users are in the design phase of a large system development. We want
to definitely depart from the notion of the ‘source code” of a program (in
our case, of a mathematical model) being entirely written and then and only
then analyzed. The idea of a Development Database is that the user must be
given the possibility to have elements of its development and of its successive
refinements being analyzed and statically checked as early as possible while
the entire system development is not yet completely entered, or even defined.
The Static Checker must then always work in a differential fashion and build
the Development Database under the form of two complementary parts: one
that is considered correct because all static checks are positive, and thus
ready for further treatments (proof obligation generations and then proofs),
while the other is still in an unstable incorrect situation because some static
checks have failed.

Of course, the user might at any moment enter new elements, remove previous
elements, or modify them. Such changes could be performed in the still
incorrect part of the Development Database, but also in the correct one.
Immediate consequences on these two parts have to be taken into account
right away and a number of differential actions have to be taken: this is the
essential task of the Static Checker.

As a result, the Static checker is in close contact with the user interface, since
it is where the resulting error or warning messages will be provided to the
user.

The “Event-B Proof Obligation Generator” works on the correct part of the
Development Database as constructed by the Static Checker. For this reason,
it is not supposed to provide any error messages: it is thus not in contact
with the user interface. Under this very important assumption of the correct
elements of the Event-B mathematical models, of their constant structure, of
their dynamic parts, and of their respective refinements, the proof obligation
generator construct the various statements to be proved in order to ensure
the mathematical consistency of the proposed model. Such proof obliga-
tions are then passed to the next tool, namely the prover. As for the Static
Checker, the Proof Obligation Generator works in a completely automatic
and differential fashion as soon as it receives some changes generated by the
Static Checker in the correct Development Database.

The proof obligations generated by the Proof Obligation Generator are con-
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structed in the most atomic way in order to generate the smallest statements
to be proved rather than huge formal pieces of texts which are difficult to
handle by automatic provers and even more difficult to treat in an interactive
proof session. The Proof Obligation Generator determine which statements
are to be proved by applying the mathematical laws that are defined as the
semantics of the mathematical language of Event-B. A very important part
of these laws has to do with the handling of, so-called, witnesses, whose role
is to avoid as much as possible to generate existential proof statements which
are reputed to be difficult to handle in an automatic prover.

This document contains the complete proof of the correct transformations of
the theoretical proof obligations into a number of well defined practical proof
obligations.

The “Event-B Kernel Prover” contains the definitions of the proof manager
and the various connections to the external prover plug-ins. The proof man-
ager receives the new proof obligations to be proved from the previous tool,
namely the Proof Obligation Manager. Any proof obligation that has already
been treated by the proof manager and that reappears from the input pro-
vided by the Proof Obligation Generator is analyzed to check whether it has
to be reproved or not. Proofs of proof obligations that must disappear are
not thrown away however since they might be reused later. As can be seen,
the proof manager also works in a differential fashion like the two previous
tools.

The proof manager is in charge of handling the proof tree of each proof
that is constructed. But note that it is not in charge of performing a proof
step. It rather checks that the proof steps proposed by the external plug-ins
provers are indeed consistent with the proof tree. One of its important role
is also to provide some navigating commands on the proof tree. Another
role of the proof manager is to find out as much as possible whether part or
all of previous proofs can be reused in a proof. Among the external prover
plug-ins, there are several completely automatic provers but also some proof
commands (inference) which are provided by an interactive user acting from
an external interface.

The “Event-B model of the Graph Checker” is a very technical document,
presented as a technical Appendix. It contains the mathematical model of
an important part of the Static Checker, namely that devoted to the well-
formedness of the proposed models and refinements. Normally such a study
would have been performed within the next phase of the project (design)
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only but we found it very important to anticipate this study quite early
as this part is very difficult and novel. All mathematical proofs have been
performed. It can be considered as a formal bootstrapping. As the Rodin
Platform is not yet operational, this technical appendix is delivered as an
archive for the Click’n’Prove tool 1, although most of its contents are simple
text files.

1see http://www.loria.fr/~cansell/cnp.html
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1 Introduction

This document specifies the architecture of the Rodin platform. We first de-
scribe how the platform is decomposed into smaller parts and the architectural
relationships between them. We then specify the contents of the core plugin
which contains the basic software of the Rodin Platform. Next, we explain in
great detail how the incremental project building facility works and give the
design decisions that lead to this organization. Finally, we specify the User
Interfaces of the Rodin platform.

2 Platform Decomposition

The Rodin Platform is decomposed into three sets of tools:

• Eclipse Platform,

• kernel (or core) plugins,

• external plugins.

This decomposition (at a slightly finer grain) is shown on Fig. 1.

Eclipse IDE

Eclipse UI

Eclipse Runtime

External plugins

Core plugin (incl DB)

Eclipse

Kernel plugins

Rodin

Figure 1: Rodin Platform Architecture

The Eclipse Platform, provides the basic tools for constructing an IDE (Inte-
grated Development Environment). It is language neutral and can be customised
to support any particular development process. In Rodin, we use Eclipse to sup-
port the modelling and proving process used in event-B.

From the Rodin perspective, the most notable aspects of Eclipse are the
basic services provided by the platform and which are fully reused in the Rodin
Platform:

Platform Runtime and Plugin Architecture. Eclipse provides a general
framework for decomposing the platform functions into small modules
called plugins. The platform discovers automatically which plugins are
present and link them together through extension points. The platform
provides also an update function for fetching and installing new plugins.
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Workspace. This set of services allows to manipulate projects, folders and files
(collectively termed as resources). It also provides a framework for per-
forming automatic or manual builds (e.g., to run automatically a compiler
on a set of source files).

Workbench and User Interface Toolkits. The Eclipse Platform User In-
terface (UI) is built around a workbench that provides the overall struc-
ture and presents an extensible UI to the user. It comes with two toolkits
(SWT and JFace) that provide a set of widgets and a graphics library.

Team Support. The Eclipse Platform allows a project in the workspace to
be placed under version and configuration management with an associ-
ated team repository. This function is very important when modelling
in an industrial environment where configuration management of models
becomes a key issue.

Integrated Help. The Eclipse Platform Help mechanism allows tools to define
and contribute documentation to one or more online books.

The kernel plugins provide the basic facilities for modelling using event-B.
It can be decomposed into a set of plugins that are plugged into the Eclipse
Platform:

Core This plugin provides general routines together with the Database Man-
ager. The database is used to store everything that is related to event-B
models, including proof obligations and proofs.

Static Checker This plugin contains all the routines that are needed to check
that the contents of the database is meaningfull event-B (checking links
between models and contexts, namescopes, well-formedness of formulas,
etc.) This plugin also contains a parser for the mathematical formulas
together with an abstract syntax tree (AST) representation of those for-
mulas.

Proof Obligation Generator This plugin generates the proof obligations for
models and contexts.

Prover This plugin provides a mechanical prover which is used to discharge
proof obligations. It is decomposed in two parts: a Proof Manager and
Prover plugins.

Modelling UI This plugin provides the User Interface for writing event-B
models. It is tightly coupled with the database manager.

Proof UI This plugin provides the User Interface for discharging proof obliga-
tions. It is tightly coupled with the Proof Manager.

The first four plugins are purely procedural and do not provide any kind of
user interface. The user interface is provided only by the last two plugins.

Finally, the external plugins are all the other plugins that can be used in
the Rodin Platform. Some of them will be developed in the course of the Rodin
Project (UML to B translator, ProB model checker, etc.) while others might be
developed later on.
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3 Core Plugin

The Eclipse Platform is designed for building integrated development environ-
ments (IDEs) that can be used to create applications as diverse as web sites,
Java or C++ programs. Hence, it is quite general and needs to be customized
to fulfill the requirements for the Rodin Platform. This customization is im-
plemented by the Core Plugin. This plugin provides the basic services that are
needed by the other Rodin Plugins:

• a database manager,

• compare and search facilities,

• a project builder.

The first two kind of services are described below. The last one is described
in the next chapter on page 8.

3.1 Database Manager
As stated in Deliverable D3.1 Final Decisions [1], the Database Manager pro-
vides a uniform interface to Rodin plugins for manipulating data, such as mod-
els, proof obligations and proofs. Firstly, the Database Manager provides an
abstraction of the filesystem in which data are stored. This is similar to what
is already present in the Eclipse IDE Platform (Resource Management). But,
the Database Manager goes even further: it provides a structured view of the
contents of data files.

We first describe the way the Database is organized, stressing that its schema
is generic and extensible. We then how its contents is made persistent across
sessions. Finally, the two (low-level and high-level) set of services provided by
the database manager are specified.

3.1.1 Database Schema

The Database is organized in a hierarchical way (tree structure). The pieces
of data that are stored in it are called items. Two categories of items are
distinguished:

• elements participate in the structuring of data. Each element, except the
workspace which is the root element, is contained in a parent element.
It also can contain other elements, called children elements. Children
elements are ordered in a list-like structure.

• attributes decorate elements by adding auxiliary information to them. An
attribute is attached to exactly one element. It consists in a pair of a
name together with a value. It can’t contain any other item.

Each element of the database has an element type which describes its static
properties: what parent and children element, and what attributes, it can have.
Among element types, some are special in that their corresponding elements
can’t contain any child element, but rather have a special attribute called con-
tents which stores an arbitrary string of characters. These special element types
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are called leaf element types. Examples of leaf element types are predicates and
substitutions.

The top-level element types of the database are fixed and correspond to
the Eclipse resource types (except files): workspace, projects and folders. The
customization of Eclipse thus starts with file elements, that is the elements
that represent files in the underlying filesystem. The Rodin database allows
for having various types of file elements. Some initial types of file element are
event-B models and event-B contexts. Additional types of file element are also
needed for kernel plugins, such as the Static Checker (see 4.1.3 on page 10).

Elements that appear below (are descendants of) a file element are called
internal elements. They correspond to the contents of the corresponding file.
Examples of internal element types are invariant, event and local variable.

An important point is that the database schema exposed above is not fixed.
Plugins can contribute new types of file and internal elements and new at-
tributes, using the extension mechanism of Eclipse.

3.1.2 Persistence

As said before, top-level elements correspond to resources of Eclipse. Hence,
they’re implemented directly inside the underlying filesystem: The workspace,
projects and folders are directories of the filesystem. File elements also have a
corresponding file stored in the filesystem. The contents of this file is organized
using the XML format [3]. For each internal element contained in the file, there
is a corresponding XML element in the physical file.

The Database Manager provides a uniform interface for accessing all ele-
ments, whatever there implementation. In particular, there is no special com-
mand to load the contents of a file. This is done transparently by the Database
Manager, as soon as some plugin tries to access an internal element.

As concerns modifications, there are two schemes. For top-level elements,
modifications are reflected in the filesystem as soon as they are operated by
a plugin. There is no caching of modifications for top-level elements. On the
contrary, modifications to internal elements are cached in memory. They’re
made persistent only on explicit request to commit all changes made to their
containing file element. This difference of treatment is justified by the following
considerations:

• Changes to top-level elements are easy to operate on the underlying filesys-
tem and are quite seldom in usual operation.

• On the contrary, changes to internal elements will happen very often and
can become quite expensive to translate in the physical file (which is noth-
ing more than a string of bytes). So, to be efficient, we need to have a
caching mechanism for modifications.

• The committing of changes to a file is also used to trigger the automatic
build of the enclosing project (see Section 4 on page 8). It is important,
then, that plugins can choose the point in time when this happens, so
that no incremental building is attempted on an inconsistent state of a file
(e.g., in between a batch of internal element modifications).
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3.1.3 Low-level Services

The database manager provides a low-level interface that allows a plugin to di-
rectly manipulate the internal elements of a given file. This interface is primarily
intended for kernel plugins. Indeed, these plugins need to have a fast access to
internal elements of intermediate files (checked models and proof obligations).
Moreover, it is known, by construction, that these elements are accessed only
by these plugins and in a timely manner (no concurrent access). Hence, there
is no need for a complex interface to manipulate them. We will see in the next
subsection, that for other files a more elaborate interface is needed.

In this low-level interface, plugins access directly to the internal representa-
tion of internal elements. Each internal element type is mapped to a Java class,
the instances of which represent internal elements of that type. The fields of the
Java class correspond to attributes of the element. The Java class also provides
the classical methods for manipulating their instances. The services provided
are the following:

• creation of a new internal element (that is a Java object);

• addition/removal of an element as a child of another element;

• permutation of the order of children elements;

• modification of an element attribute.

3.1.4 High-level Services

As written earlier, the low-level interface is only appropriate for intermediate
files. One needs a more elaborate interface for manipulating (unchecked) models
and proofs: these elements are not only manipulated by kernel plugins (like the
Static Checker) but also by the user through the user interface. Hence, there
is now a need for managing concurrent access. Moreover, user interfaces need
new ways two interact with the database manager. For instance, to build a
decent user interface, one needs to implement an undo/redo mechanism and
some support for it should be provided by the database manager.

All these additional services are provided in the high-level interface of the
database manager. This interface is built on top of the low-level one and hides
it completely.

The first and main difference is that plugins do not manipulate directly
the internal representation of elements anymore. Instead, interactions with the
database are done through handles, which act like keys for elements. This
indirection is already used by Eclipse for manipulating resources. Here, it is
extended by the database manager to all elements. The use of handles has
several advantages:

• Handles are immutable, hence they can be used in hashed data structures.

• Handles do not store the information attached to the corresponding ele-
ment. They only store the key to access this information. Hence, in case
of concurrent access to an element, there is no risk that a plugin works
with a stale state of the element.
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Besides this indirection, the services provided for manipulating elements are
the same as those provided by the low-level interface, with the addition of a test
of existence of the element associated to a handle.

Another service provided by the database manager is that of change listening.
This service implements the Observer design pattern. It works in the following
way: plugins can register an observer with the database manager. Then, each
time a change (or set of changes) occurs in the database, the registered observer
will be run by the database manager. During this run, the observer will be
provided with a detailed set of the modifications that occurred in the database,
in the form of hierarchical change deltas. As for handles, this service is an
extension to all elements of the change listening mechanism provided by Eclipse
for resources.

The database manager also provides an undo/redo facility to user interface
plugins. This facility is implemented by recording all changes that are operated
on the database. Two functions allow to replay them either in a backward way
(undo) or in a forward way (redo).

3.2 Compare and Search Facilities
These two facilities are provided by the core plugin to allow for a smooth integra-
tion into the Eclipse platform. The compare facility concerns the computation
of differences between file elements, while the search facility provides navigation
means across elements.

3.2.1 Compare Facility

The core plugin provides a service for computing the differences between the
contents of two file elements. This service is notably needed to implement
version and configuration management, where one of the key questions is: what
has changed between two versions of an Event-B model?

Of course, the user doesn’t want an answer in the form of a classical difference
between the two physical XML files. That would be unreadable and to far from
the element-based view provided by the graphical user interface.

So, a more elaborate answer is needed. It will states which elements have
changed and how their hierarchical arrangement has changed. This answer will
be provided in the form of change deltas (that is the same data structure that
is used for change listening exposed above).

3.2.2 Search Facility

As for file comparison, a direct search inside the physical XML file would be
much impractical. As a consequence, the core plugin provides a customized
search facility.

The search services is queried with a string and returns the list of all elements
and attributes where this string occurs. The scope of the search can be limited
in several ways:

• by providing a search scope (whole workspace, some project or a set of file
elements);
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• by asking the search engine to limit the matches to some predefined kind
(declaration, references, refinements, etc.)

4 Incremental Project Building

The main activity of users of the Rodin Platform is, beyond writing models,
proving them correct. As a consequence, the Rodin Platform shall be tailored
to provide excellent support for that proving activity.

Proving a model correct means doing two tasks: Firstly, one needs to derive
proof obligations from the model. Secondly, these proof obligations must be dis-
charged using a mechanical theorem prover. Most of these tasks is quite tedious
and can be automated using adequate tools. Moreover, to achieve the afore-
mentioned goal, we want that this tedious work is almost completely hidden.
The user should only see his models and the interesting proof obligations that
are derived from them, i.e., the proof obligations that can not be automatically
discharged.

Hence, the following architecture has been devised:

• There are three building tools: the Static Checker, the Proof Obligation
Generator (POG), and the Prover (run in automatic or reuse mode).

• Each tool takes as input a set of files and produces one file. The granularity
of these files is the component (model or context). From the previous ver-
sion of its output file (if any), each plugin can compute the modifications
that took place in its input since its last run, and thus work incrementally.

• Tools are launched in the background by a global scheduler, the Project
Builder. A plugin is launched only when it needs to (that is when one of
its input file has changed).

This architecture is shown graphically in Fig. 2 on the following page. In this
schema, stacked miter squares represent files, while rounded squares represent
tools. The plain arrows show the dataflow between files and tools, while dotted
arrows represent the control flow between tools.

In the rest of this chapter, we will explain why this architecture has been
chosen and then expose its fine details, separately for each tool and the builder.

4.1 Rationale
Here, we expose the design decisions that lead us to devise the architecture
described above. We first justify why we need reactive and incremental tooling,
then we study how it can be decomposed in three tools and what input each
tool needs. Finally, we justify the need for a Project Builder.

4.1.1 Reactive and Incremental Tooling

In order to hide the tedious computation that derives interesting proof obliga-
tions from a model, we don’t even want the user saying I want to see the proof
obligations of my model. These proof obligations should just be there, ready
to be reviewed and discharged. As a consequence, proof obligations should be
derived and automatically discharged (as much as possible) in a reactive way:
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Figure 2: Building Architecture.

the tooling that performs these tasks should react to the changes to models
made by the user.

Moreover, the tooling should operate in the background, so that the user
is not even aware of them. Finally, as we don’t want the user interface to
get frozen, or out of date, while some computation takes place, we want our
tooling to operate in a very efficient way. This can be achieved by having our
tooling working incrementally: only what needs to be recomputed to reflect
user’s changes is actually recomputed.

To sum up, we need to have incremental and reactive tooling that computes
the proof obligations and attempts to discharge them automatically.

4.1.2 Decomposition in Tools

A first natural decomposition of the tooling is to separate proof obligation gen-
eration from proving. This design decision is justified by the following two
considerations:

• Two proof obligations derived from the same model have some common
hypotheses. In the most usual cases, the set of common hypotheses is
even dominant. As a consequence, it seems wise to compute all the proof
obligations of a model at the same time, so that the computation of these
common hypotheses is done only once.

• Generation of proof obligations is a definite process. It always terminates
in a delay which is a function of the size of its input. On the contrary,
automated proving is much less well-behaved. There is no guarantee that
it will terminate (although this can be solved by using timeout delays).
Moreover, it is very sensitive, not only to the size of its input, but also to
the actual contents of its input.
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The second decomposition concerns proof obligation generation. For each
proof obligation to be generated, one needs to check that some side-conditions
are met to ensure that it is meaningful. For instance, all free occurrences of
an identifier in the proof obligation should denote the same data. Then, as
proof obligations usually share a great deal of common hypotheses, most of
these checks are common to all proof obligations derived from a given model. It
then seems wise to perform those checks only once, rather than separately and
repeatedly for each proof obligation.

This consideration then leads to the design decision of separating checks from
actual generation of proof obligation. We then have two tools: a Static Checker
and a Proof Obligation Generator. The Static Checker ensures that the input
models are statically sound, which means that meaningful proof obligations can
be derived from them. In case some check fails, the Static Checker provides
the user with an appropriate error message. The Proof Obligation Generator
actually generates the proof obligations from a statically sound model, without
performing any check nor producing any error message.

In summary, we have three tools:

• a Static Checker,

• a Proof Obligation Generator (POG),

• a Prover.

4.1.3 Tool Input

As said before many proof obligations share a lot of common hypotheses. When
looking closely to this sharing, it happens that it is strongly related to the de-
composition of the development into components (models and contexts). For
instance, all proof obligations of a given model contain in hypotheses the prop-
erties of the context seen by this model, and all its abstractions.

As a consequence, if we want to effectively share common computations for
these proof obligations, we have to decompose our work along the same line as
the decomposition in models and contexts. Hence, the input of our tools should
be directly related to the decomposition into components. This means that each
tool will work separately on each component.

Then, in order to reuse the Resource Management Plugin of Eclipse, it is
quite natural to store the input and output of our tools in files. This leads to
having four kind of files:

• Unchecked components (models and contexts initially entered by the user),

• Checked components (output of the Static Checker),

• Proof Obligations (output of the Proof Obligation Generator),

• Proofs (output of the Prover).

4.1.4 Project Builder

Now that we have decomposed out automated tasks in small pieces, we need
to put things back together. This is achieved by introducing an additional tool
called the Project Builder. This new tool is responsible for scheduling the other
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tools on each component. Of course, to enforce incrementality, a tool should be
launched only when one of its inputs has changed.

Also, we need that the Project Builder lies in the background, listening to
changes made by the user and reacting to them. Fortunately, the Eclipse IDE
provides a framework for running such a tool: Incremental Project Building.
To use this framework, a plugin contributes a Builder class. Then, the build
method of that class will be called each time the IDE detects a file modification
in a project or on user request for a full build of a project. Dependencies between
projects are managed by the Eclipse IDE, while dependencies within projects
must be managed by the Builder class. This framework is notably used by the
Java Development Tooling to incrementally compile Java source files.

Using this framework, our Project Builder is always started on a whole
project. Its input is a hierarchical list of files that have been modified since the
last build (resource change delta in Eclipse terms).

In summary, we have a Project Builder that schedules the run of the three
tools, taking care to run a tool on a component only when it is needed.

4.2 Static Checker Dependencies
To design the Project Builder, we need to define precisely the input and output
of each tool and the dependency between them. As concerns static checking, the
refines and sees clauses introduce dependency links between components. For
instance, to check a context, one needs to access not only to that context but
also to its abstractions, following abstraction links recursively. This is shown on
a simple example. Fig. 3 on the next page shows a typical event-B development
consisting of three models (labeled Mi) and two contexts (labelled Cj). Solid
arrows denote refines relations and dashed arrows sees relations. Then, the
dependency graph induced for that model is given on Fig. 4 on the following
page, where each edge reads as depends on. This graph is just the transitive
closure of the previous one.

Computing a transitive closure is quite cumbersome and it makes the depen-
dency graph grow exponentially. So, let’s see if we can make it simpler. Let’s
consider more closely the three models of the previous example. When checking
model M3, one needs to have access to the variables and invariants of models
M2 and M1. However, the events of model M1 are not used at all when check-
ing model M3. Hence, the dependency graph, if taken on the original models, is
too coarse and could lead to rechecking models when it is not actually needed.

Also, the output of static checking is a consistent component, which is a
subset of the input component. So, we can imagine to compile within this output
the closure of the information gathered in components on which it depends on.
Then, using these compiled information as input, one do not need anymore
to walk recursively along the dependency links. This makes the dependency
graph much simpler (although doubling the number of nodes). This is shown
in Fig. 5 on the next page, where labels ending with a c denote the output of
the static checker for the corresponding component. For instance, label M1c
denotes the output of the static checker for model M1.

To sum up, this dependency graph using output from previous static checks
as input doesn’t have the exponential growth of the previous graph. The in-
degree of each node is only one more that the in-degree of the corresponding
node in the sees and refines graph. For instance, in Fig. 3 on the following page,
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Figure 3: Simple event-B development.
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Figure 4: Full dependency graph of a simple development.
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Figure 5: Final dependency graph of a simple development.
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node M3 has 2 incoming edges, whereas in Fig. 3 on the page before, node M3c
has 3 incoming edges.

Another advantage of compiling in recursively dependent components is that
the static checker can take advantage of the previous version of a consistent com-
ponent when computing a new version of it. This allows to check a component
in a differential way, even for its internal elements. For instance, suppose that
the example development above has been checked (all checked components have
been produced) and that the user modifies model M1 by adding a new invariant
to it. Then, the builder will launch a static check of M1 to produce a new ver-
sion of M1c. During that launch, the static checker can have access to both M1
and the previous version of M1c. It then can infer that the only modification of
model M1 was the addition of that invariant and produce a new version of M1c
that will contain that new invariant (provided it is well-formed and well-typed).
Then, the builder will call the static checker on the M2 model. By comparing
M1c with the previous value of M2c and M2, the static checker can infer that
a new invariant was added in the abstraction and then just produce an updated
version of M2c, without needing to do any actual check on M2.

In conclusion, the static checker takes has input an (unchecked) component,
several checked components and produces a checked component. The input
checked components are the previous version of the output to produce and the
checked versions of the abstract component and seen context (if any). Another
output of the static checker is problem markers on the unchecked input compo-
nent, in case one or several errors have been encountered during checking.

4.3 POG Dependencies
For generating proof obligations of a context, the proof obligation generator
only needs to read the corresponding checked context. Its output is then a
set of proof obligations gathered into a file. For a model, the proof obligation
generator also needs to read the checked model of the abstraction model (if
any). So, in summary, the proof obligation generator takes at most two checked
components as input and produces a file containing proof obligations for one of
these components (the refinement one).

As for the static checker, as the output file contains substantially the same
formulas as the input files (although organized in a different way), the proof
obligation generator can take advantage of it by working in a differential way
at the formula level. This allows for faster generation when the changes in the
input files are small.

4.4 Prover Dependencies
As concerns the prover, things are very simple: the prover takes as input a
proof obligation file and produces a file containing proofs. Moreover, the prover
stores a copy of the input proof obligations in the proof file. This allows then
the prover to compute the difference between two successive version of proof
obligations submitted to it, and thus to work in a differential way. This is
particularly important when attempting to reuse previous proofs.
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4.5 Scheduling
Scheduling is realized by the Project Builder. For that, it maintains internally
a dependency graph. This graph is directed. Its vertices are the component
files described above (four files for each component, see § 4.1.3 on page 10). Its
edges are dependency relationships between files: an edge with label T from file
F to file G means that file F depends on file G, that is file F is produced by
tool T using file G among its input files.

The algorithm of our Project Builder is quite straightforward:

1. From the set of modified files, the Builder first updates its internal de-
pendency graph (modified files can introduce changes to the dependency
graph),

2. Then, the builder propagates these modifications through the dependency
graph by launching appropriate tools on inputs that have changed.

The extraction of dependencies out of initial source file (step 1 of the al-
gorithm) is part of the Project Builder. However, it should not be completely
hard-coded in the tool, but rather be open to extensions, using the Eclipse
Extension Point Mechanism.

Also, there is no guarantee that the dependency graph doesn’t contain any
cycle. Indeed, in case of faulty models, it is very possible that the user introduces
cyclic dependencies between his components. So, the Project Builder should be
ready to work on cyclic dependency graphs and should never enter an infinite
loop.

Finally, there can be more than one way of propagating changes in the
dependency graph. For instance, consider the small dependency graph shown
on Fig. 6 on the next page. This graph concerns two models named M1 and
M2. Each vertex is labeled after the name of the corresponding model, with
an additional suffix indicating the kind of the associated file (u for unchecked
model, c for checked model, po for proof obligations and pr for proofs).

Suppose that the user modifies model M1. Then, vertex M1u becomes
new and the project Builder launches the Static Checker to produce a new
version of M1c. There are now two options: either run the Static Checker to
produce M2c or run the Proof Obligation Generator to produce M1po. Here,
the Project Builder will always choose the second option. This choice is guided
by the following consideration: if the user modifies model M1, its focus is on
this model. So, we should produce the proof obligations of this model at first.
Processing model M2 is considered auxiliary. Using this principle, tools will be
launched in the following order in the example:

Tool Target
SC M1c

POG M1po
Prover M1pr

SC M2c
POG M2po

Prover M2pr
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Figure 6: Small Dependency Graph

5 User Interfaces

As described in Section 2 on page 2, the Rodin platform provides two user
interfaces: the Modelling UI and the Proving UI. We successively present these
two interfaces in this chapter.

5.1 The Modelling Interface
The screen part of the Modelling Interface is derived from the classical Eclipse
user interface. It is made of four distinct parts as illustrated in the following
figure:

Database Outline

Messages

Projects

Here is a brief description of this interface

• The Project area contains a tree-structured list of the projects which
are currently developed, together with their contents (folders and compo-
nents). Double-clicking on a component opens it in both the Outline and
Database areas.

Other commands are provided to create a new projects, folders or re-
sources, remove one, or export one outside of the Platform (e.g., to send
it by mail to another user).

• The Outline area contains the tree-structured list of the elements of the
current component. We remind the reader that for Event-B such elements
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are the following: carrier set, constant, elementary property of constants,
variable, elementary invariant of variables, event, elementary event guard,
elementary event action, variant, elementary proof obligation. All such
elements are named and there exists some cycle-free relationships between
them. For example, a context is related to one or several models, a model
or a context is related to some corresponding abstractions, a guard is
inside an event, and an invariant is inside a model, etc.

Other elements corresponding to external plug-ins handled by the platform
can be added to this list in a very simple manner so that this part of the
interface is easily extendable.

Classical zooming and navigation commands are provided to the user in
order to have an easy access to such elements. Selecting one or sev-
eral elements has the effect of selecting the corresponding elements in
the Database area.

• The Database area is the main area with which one is working when
developing models. The user can add some new elements, modify the
internal attributes of existing elements, change their relationships with
others, remove some elements, etc.

Note that some elements have formal text attributes corresponding to
some set-theoretic predicates and expressions. For example, this is the
case for elementary constant properties, elementary variable invariant, el-
ementary guard, elementary action, and variant. Such formal texts are
the only part of the elements for which there is an external syntax: this
is the set-theoretic syntax. The user directly enters such formal texts on
the screen with the help of an integrated text editor.

After entering, modifying or removing a (usually small) number of such
elements, the user can issue a “save” command which has the direct effect
of launching an automatic build of the current project (see section 4 on
page 8). This build runs the Static Checker, Proof Obligation Generator
and Provers in a differential fashion behind the interface.

As can be seen, the Database interface is specially tailored to give the user
a dynamic way for handling the development of complex models. The user
does not see a sequential “source file” any more, and he does not submit
such a source file to a compiler or any tool acting on the entire product.
He rather act has an engineer gradually modeling a complex system by
working in different “zones” of it, which are under constant changes until
reaching a stabilized form.

• The Message area displays the error and warning messages that have
been produced (usually asynchronously) by plugins.
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5.2 The Proving Interface
The screen part of the Interactive Prover Interface is structured very much in
the same way as was the previous interface. It is made of five distinct parts as
illustrated in the following figure:

Messages

Database

Proof
OutlineProof

List
Obligation

Here is a brief description of this interface

• The Proof Obligation List area contains, as its name indicates, a dictio-
nary of all the proof obligation that are of interest in the selected project
(a project is selected by using the Database Interface presented in the
previous section).

By selecting one of the proposed proof obligation the Proof area is loaded.

• The Proof area is the main area with which the user is working when
doing an interactive proof. It presents the status of the current sequent
that the user tries to discharge interactively.

It contains a number of commands associated with various parts of the
sequent on which the user can act. Some of these commands are just
there for enlarging the sequent (for example, adding a hidden hypothesis).
Some other are performing some elementary proof steps. It also contains
commands to dynamically change the sequent on which to perform a proof
step (this might be the case when there are several pending sequents in
the proof). Some proof steps can be directly handled by the interface (for
instance starting a proof by case) while some others are handled by some
automatic provers which can be invoked directly from the interface. The
user can also freely navigate on the proof, moving from one proof branch
to another. Finally, a command allows to backtrack one or more proof
steps. The user can also insert in the current proof part of some other
proofs that have already being done.

• The Outline and Database areas have exactly the same purpose as that
presented in the previous section. The idea is the following: while doing
a proof, one may often figure out that it cannot be discharged simply
because that part of the model concerned with it is either bugged or not
rich enough. We would like then to be able to update (debug) the model
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while staying within the current proof, so that the interaction cycle be-
tween proving and modeling can be made as short and efficient as possible.
By allowing the user to do so, we are at the heart of our interface: re-
placing the classical debugging cycle: code, test and debug, by the more
sophisticated one: model, prove and debug.
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1 Introduction
All modelling items used in a formal B development are kept in the database
kernel-component. This database is analysed by the static checker with respect
to various properties the collection of modelling items must satisfy. When the
static checker has accepted the database as being consistent, its items can be
submitted to proof obligation generation and subsequent proof. In addition
to marking modelling items as consistent the static checker computes auxiliary
data structures to improve performance of all tasks that involve using items
stored in the database.

Before we discuss the static checker in more detail we introduce some nec-
essary terminology. Some of the definitions we make are left abstract here and
refined in other places.

We refer to all entities that are contained in a formal development as mod-
elling item. The following is a complete list of all modelling items.
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simple modelling items:
identifier, predicate,
expression, substitution

complex modelling items:
elements:

model, context,
carrier set, constant,
property, variable,
invariant, variant,
event, guard,
local variable, action,
witness, theorem,

relations:
model has abstraction, context has abstraction,
model sees context, event has abstraction,
context contains carrier set, context contains constant,
context contains property, model contains variable,
model contains invariant, model contains variant,
model contains event, event contains guard,
event contains local variable, event contains substitution,
event contains witness, model contains theorem,
context contains theorem,

attributes:
new event, model name,
context name, variable name,
carrier set name, constant name,
property name, invariant name,
event name, guard name,
local variable name, theorem name
property predicate, invariant predicate,
guard predicate, theorem predicate,
variant expression, action substitution,
witness substitution

Modelling items that are atomic and self-contained are called simple modelling
items. Non-atomic modelling items whose structure is known to the database
are called complex modelling items.

Among the simple modelling items predicates, expressions, and substitutions
are also called formulas. The user enters simple items usually in textual form.
Complex modelling items are entered by creating forms that need to be filled
in subsequently. In the predicates and invariants are not the same thing: a
predicate is a piece of unformatted text and an invariant is a database item
that has a predicate and a name as attributes. In the full database complex
modelling items are further distinguished into elements, attributes, and relations.
The static checker is not aware of this distinction: it verifies all complex items
in the same manner. Hence, we only use the generic term item in this text.

All modelling items must conform with the data structures used in the
database. We call these the minimal requirements imposed on each modelling
element. For instance, a model can only have one abstraction. Minimal require-
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ments really define B developments as data-types, e.g. tree, or more generally
hierarchical structures. A modelling item that satisfies the minimal require-
ments expressed in the meta-model is called unchecked. The term unchecked
alludes to an item not yet having been verified by the static checker. The mini-
mal requirements have a major impact on the GUI. The GUI must provide that
the user can only enter items that satisfy the minimal requirements. If some
items would not satisfy them, these items could not be stored in the database.

2 Architecture of the Static Checker
The static checker consists of three parts called parser, graph-checker, and type-
checker (see Figure 1). The parser reads formulas that are given in textual form,

parser graph−checker

type−checker
well−typed

well−formed

unchecked

ST
A

T
IC

 C
H

E
C

K
IN

G
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A

T
IC

 C
H

E
C

K
IN

G

Figure 1: Layers of the static checker

and produces corresponding abstract syntax trees. The graph-checker analyses
structural properties of, and relations of, modelling items such as models and
contexts. The parser and the graph-checker are different components although
they both check well-formedness of modelling items. Nonetheless, the partition
into two components arose naturally: the parser only analyses formulas and does
not have any knowledge of complex modelling items, and the graph-checker does
not know anything about formulas or abstract syntax trees. The corresponding
concepts are abstracted in the parts of the meta-model for the parser and the
graph-checker respectively. The type-checker analyses and computes the types
of all formulas that occur in the database. Modelling items that have passed
static-checking are well-formed and well-typed and can be used by the proof
obligation generator. Well-formedness is checked by the parser and the graph
checker, and the type-checker checks whether modelling elements are well-typed.
Initially all items are said to be unchecked. The following relationship must
be maintained by the database between well-formed and well-typed modelling
items: All well-typed modelling items are well-formed. Hence, the well-typed
items are a subset of the well-formed items, and the well-formed items are a
subset of the unchecked items.

2.1 Parts
We have specified the different parts of the static checker in formalisms that
seemed best suited to express required properties, reason about them, and pro-
vide models that have an appropriate level for implementing the corresponding
part of RODIN platform kernel-component.
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The parser is modelled using the EBNF notation as is customary. There
are standard implementation techniques and parser generators that can be used
directly with EBNF notation. The parser also contains a feature to compute
free and bound identifiers. This is expressed by means of an attributed grammar
that can be used with the same standard tools as the EBNF notation.

The graph-checker is modelled in EventB. This has proven to be advanta-
geous for expressing well-formedness properties and derivation of dependencies
among the modelling items.

Scoping rules for identifiers are checked across the boundary between the
parser and the graph-checker. The parser checks scoping rules within, say, a
predicate, computing the sets of free and bound identifiers. The graph-checker
uses the set of free identifiers computed by the parser to check if the correspond-
ing item declarations are in the scope of the predicate.

The type-checker is also modelled by means of an attributed grammar. As
opposed to the parser and the graph-checker, the type-checker uses all items of
the database, i.e. simple modelling items and complex modelling items.

The static checker has two layers that group the three components parser,
graph-checker, and type-checker. The boundaries of the layers describe the state
of modelling items. Figure 1 shows the layers of the static checker. We identify
the possible states of a modelling item with the boundaries in the layer schema
of Figure 1. We say:

• An item that has not been parsed or graph-checked is in state unchecked ;
• an item that has been parsed or graph-checked but not yet type-checked

is in state well-formed ;
• an item that has been type-checked is in state well-typed.

Hence, in the database each modelling item can be in one of three states:
unchecked, well-formed, or well-typed. Remember, that being in state unchecked
means, in fact, satisfying the minimal requirements. The boundaries shown in
Figure 1 are only conceptual. It is possible (and intended) that different mod-
elling items are in different states. However, each modelling item can only be
in one state at a time. For this purpose modelling items are tagged with their
state. Although different modelling items may carry different tags (but each
item only one), the tags can not be attached arbitrarily marking progression of
single modelling items through the three layers. The reason is that there are
structural dependencies between modelling items. Structural dependencies are
described in the minimal requirements, the well-formedness requirements, and
well-typedness requirements of the meta-model.

2.2 Checked models
The file describing the checked model contains copies of invariants and theorems
of abstractions and properties and theorems seen contexts and abstractions. In
addition, it contains typing information produced by the type-checker together
with the variables, carrier sets, and constants being typed.

2.3 Example
We give a simple example where modelling items are hierarchical, i.e. contain
other modelling items. We use the following items: predicates “P”, invariants
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“I”, events “E”, and guards “G”. The capital letters are used in the figure to
represent items of the corresponding type. The state tags are represented by
“u” for unchecked, “f” for well-formed, and “t” for well-typed. In the small
example database of predicates, invariants, events, and guards we assume the
following dependencies: invariant contains predicate, event contains guard, and
guard contains a predicate. We read “contains” as “depends on”.

We require that a modelling item X may only pass from one state
to the next state if all modelling items that X depends on have at
least reached the next state.

I1
u P1

u
oo

Eu G1
u

oo P11
u

oo

G2
u

ccHHH
P21

u
oo

I2
u P2

u
oo

Figure 2: Items tagged unchecked and dependencies

In the database of items shown in Figure 2 the tags are shown as subscripts
of the database items. We have given numbers to the items as superscripts
in order to be able to distinguish them. The arrows signify “is contained in”.
Modelling items that are checked by the parser are enclosed by dotted boxes,
and items that are checked by the graph-checker by solid boxes.

We present a sequence of valid states (leaving out some intermediate states)
and comment on activities performed by the static checker. In state shown in

I1
u P1

u
oo

Eu G1
u

oo P11
f

oo

G2
u

bbFFF
P21

f
oo

I2
u P2

f
oo

Figure 3: Predicates P11, P21, and
P2 are well-formed
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u
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f

oo P11
f
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G2
f

bbFFF
P21

f
oo

I2
u P2

f
oo

Figure 4: Guards G1 and G2 are
well-formed

Figure 2 only the parser can be active because all predicates are unchecked and
all other items depend on them directly or transitively. In Figure 3 the parser
has succeeded checking predicates P11, P21, and P2. The parser also creates
abstract syntax trees for these predicates. But this is not shown in the figure.
We assume parsing P1 would fail. As a consequence the parser would produce
a corresponding error message.

The graph-checker can now check the guards G1 and G2, and the invariant
I2. We assume checking I2 would fail (and the graph-checker would produce an
error message). Figure 4 shows the state of the database where checking G1

and G2 has succeeded.
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In the next state (shown in Figure 5) we assume that graph-checking event
E would have failed (and an error message would have been produced). Fur-
thermore, we assume type-checking P21 and P2 would have succeeded, and
type-checking P11 failed (and an error message produced). Finally the type-

I1
u P1

u
oo

Eu G1
f

oo P11
f

oo

G2
f

bbFFF

P21
t

oo

I2
u P2

t
oo

Figure 5: Predicates P21 and P2 are
well-typed
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I2
u P2
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oo

Figure 6: Guard G2 is well-typed

checker marks also the guard G2 as type-checked. This is all that is possible in
this state because parsing predicate P1 has failed, graph-checking event E and
invariant I2 has failed, and type-checking predicate P11 has failed. Figure 6
shows the final state. Note, that marking database items like guards, events, or
even models as type-checked free us from searching through the database when
this information is required. E.g. to find out whether all items in a model have
passed type-checking, we need only look at the modelling item representing the
model.

The proof obligation generator can only generate proof obligations for in-
variants and events that carry the subscript “t”, i.e. none in the database shown
in Figure 6.

3 Graph-Checker Specification
EventB developments, i.e. all items contained in it, form an acyclic graph-
structure. This an properties related to the graph structure like use of variable
names is verified by the graph-checker. The graph-checker takes into account
formulas that have been parsed. Type-checking takes place after graph-checking
has finished.

The graph-checker is specified in EventB. The graph structure is described in
the invariant of the EventB model. The graph-checking is described by means of
events commit that attempt to add items to a database DBwf of well-formed ele-
ments, where items that satisfy the minimal requirements are kept in a database
DBun of unchecked items. We require that DBwf is a subset of DBun. That
is, the graph-checker only works with items entered by the user; it does not add
items or change the contents of DBun. All failures to add an item to DBwf

result in error messages to the user. The error messages are described in the
guards of the events commit that attempt to insert items into DBwf . Depen-
dencies between items in DBwf are described by events retract that attempt
to remove items from DBwf maintaining well-formedness of DBwf . The graph-
checker works incrementally, i.e. it permits parts of a model to be unchecked
while others are well-formed. The user interacts with DBun being able to add
or remove items to or from it.
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3.1 Minimal Requirements
We state the minimal requirements for contexts and models as an example.

MIN 1 (CTX) The contexts form a directed graph without self-loops where
each node has exactly one outgoing edge.

MIN 2 (MDL) The models form a directed graph without self-loops where each
node has exactly one outgoing edge.

MIN 3 (MDL) Models are related to contexts by the sees relationship. A
model sees at most one context.

...

3.2 Well-formedness Requirements
WFD 1 (CTX) The contexts form a collection of disjoint trees.

DEF 1 (CTX) The child of a context C in a context tree is called a refinement
of C. The parent of a context C in a context tree is called an abstraction of C.

WFD 2 (MDL) The models form a collection of disjoint trees.

DEF 2 (MDL) The child of a model M in a context tree is called a refinement
of M . The parent of a model M in a context tree is called an abstraction of M .

Contexts seen by models must be related to each other properly, i.e. have a
similar the tree structure to the seeing models:

WFD 3 (MDL) If a model sees some context C then the abstraction of the
model must see the same context C or some abstraction of C.

...

3.3 Implementation of Graph-Checking
The EventB model is used to implement the graph-checker. However, instead of
manipulating a database shared by all models and contexts, it simply constructs
a local copy of all necessary items (see Section 2.2) and inserts them into the
well-formed database for the particular model or context. The advantage of
this is that subsequent kernel components like the proof obligation generator
can work concurrently on different models and contexts without interference.

4 Type-Checker Specification
Deliverable D3.2 specifies the notion of a well-typed formula [1, part VI, sec. 4.3]
and states that a ill-typed formula is meaningless. As a consequence, we want
that all the proof obligations that are generated from a model or a context are
well-typed. Then, every generated proof obligation could be type-checked at
generation time.
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However, that would be very inefficient, as proof obligations usually share
a lot of common sub-formulae. For instance, all proof obligations of a model
contain the properties and theorems of seen contexts in hypothesis. Therefore,
it seems wiser to check that the elements of a context (or model) satisfy some
sufficient conditions to ensure that, later on, proof obligations generated there-
from are well-typed. It is the essence of the type-checker to check these sufficient
conditions.

In the sequel, we first give these sufficient type-checking conditions, explain-
ing from which proof obligation they are derived. We then expose the behavior
of the type-checker when errors are encountered while type-checking.

4.1 Conditions to check
Firstly, as stated in the static-checker specification, type-checking is only at-
tempted on well-formed models and contexts. That means that, when specify-
ing type-checking conditions, one can rely on the model or context satisfying
well-formedness conditions.

Secondly, as stated in [1], formula type-checking takes as input a typing envi-
ronment (a function that maps identifiers to types). Its output is an indication of
success or failure. In case of success, formula type-checking also produces a new
typing environment which is a superset of the input typing environment. This
output typing environment then contains type mapping for all identifiers that
occur (free or bound) in the formula. In the sequel, we will call resulting typing
environment the typing environment synthesized by formula type-checking, but
with all bound variable types removed.

We will first define the type-checking conditions for a context. Then, we
will examine models, looking first at global clauses (invariants, theorems and
variant) and then at events.

4.1.1 Type-Checking a Context

Let’s start with the simplest proof obligation (the one that contains the least
number of predicates). This proof obligation is the well-definedness (WD) of
the first property of a top-level context (labeled CTX_PRP_WD in the Proof
Obligation Generator Specification). It contains no hypothesis and the goal is
the WD lemma of the property.

As the property is well-formed, we know that the only identifiers that can oc-
cur free in it are carrier sets and constants declared in the same context. Then,
in the worst case, its WD proof obligation contains the same free identifiers.
Hence, to ensure that this proof obligation is well-typed, a sufficient condition
is that the property is well-typed. That entails that the input typing environ-
ment for type-checking the property must contain the carrier sets defined in
the context (each set is mapped to its powerset) and that the resulting typing
environment contains the types for all constants that occur free in the property.

When examining the WD proof obligation of the second property, a similar
reasoning leads us to use the previous resulting typing environment as input
(because the first property appears in the hypothesis of the proof obligation) and
then to apply formula type-checking to the second property, obtaining a maybe
new typing environment as result. Applying the same scheme to successive
properties of the context, we build incrementally larger typing environment.
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Then, as the context is well-formed, we know that all constants occur free
in some property. Hence, when the last property has been type-checked, our
resulting typing environment will map all constants to a type.

As concerns theorems of a context, things are much simpler. In every proof
obligation related to a theorem (CTX_THM_WD and CTX_THM), all prop-
erties occur in hypothesis. As a consequence, these properties define through
type-checking the types of sets and constants, which are the only identifiers that
can occur free in the theorem proof obligations. So, to ensure that the theorem
proof obligations are well-typed, one just needs to type-check every theorem,
using as input typing environment the one produced by the type-checking of
the last properties.

Now, let’s examine the case of a non top-level context, that is a context that
refines another (abstract) context. Then, all properties and theorems of the
abstract context (and its abstractions) will occur in hypothesis in our current
context proof obligations. As a consequence, we will use for type-checking the
full typing environment of the abstract context (that is the one obtained after
type-checking all properties and theorems of the abstraction). This is the only
change that we have to the above reasoning for specifying type-checking in a
context.

We now have all what is needed to specify type-checking of a context, so
let’s formalize it. Assume we have a context Cn which refines a context Cn−1.
For a top-level context, we denote it as C1, assuming that it refines a dummy
empty context C0 to streamline things. Also, let’s use TE (Cn) to denote the
typing environment obtained as the result of type-checking context Cn.

Finally, let’s denote the objects of our Cn context as follows:

Sets: S1, S2, . . . , Sk

Constants: c1, c2, . . . , cl

Properties: P1, P2, . . . , Pm

Theorems: T1, T2, . . . , Tp

Then, type-checking of context Cn looks like the following:

τ0 = TE (Cn−1)
τ1 = τ0 ∪ {x 7→ P(x) | x : {S1, S2, . . . , Sk}}
τ2 = result of type-checking P1 with τ1

τ3 = result of type-checking P2 with τ2

...
TE (Cn) = result of type-checking Pm with τm

type-check T1 with TE (Cn)
type-check T2 with TE (Cn)
...
type-check Tp with TE (Cn)
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The formulae above read as follows:

• First start with the typing environment of this context abstraction (τ0).

• Then add the types for the carrier sets defined in this context, this gives
τ1.

• Then, type-check each property, collecting new types while proceeding
(τ2, . . . , τm).

• The typing environment obtained after type-checking the last property is
the typing environment of this context (TE (Cn)).

• Finally, type-check each theorem with the typing environment of this con-
text.

4.1.2 Type-Checking Global Clauses of a Model

type-checking of global clauses (invariants, theorems, and variant) of a model
is pretty similar to type-checking of properties and theorems of a context. The
reasoning for proof obligations only related to global clauses is exactly the same.
The proof obligations considered are:

MDL_INV_WD MDL_THM_WD MDL_THM
REF_INV_WD REF_THM_WD REF_THM REF_VAR_WD

We denote a model to type-check by Mm. It supposedly refines another
model Mm−1 (with the convention that an initial model is denoted M1 and
refines a dummy empty model M0). Furthermore, model Mm sees a context Cn

(with the convention that it sees C0 in case of the absence of a SEES clause).
Finally, we denote by TEMm the typing environment obtained as the result of
type-checking model Mm.

The contents of model Mm are:

Variables: v1, v2, . . . , vk

Invariants: I1, I2, . . . , Il

Theorems: U1, U2, . . . , Up

Variant: V

Events: E1, E2, . . . , Eq
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Then, the type-checking of global clauses of model Mm is formalized as
follows:

τ0 = TE (Mm−1)
τ1 = τ0 ∪ TE (Cn)
τ2 = result of type-checking I1 with τ1

τ3 = result of type-checking I2 with τ2

...
TE (Mm) = result of type-checking Il with τl

type-check U1 with TE (Mm)
type-check U2 with TE (Mm)
...
type-check Up with TE (Mm)
type-check V with TE (Mm)

Note: Typing environment τ1 is well-formed (i.e., a function) due to the well-
formedness restrictions on the architectural links between models and contexts,
and to the way typing environments are incrementally built for models and
contexts.

4.1.3 Type-Checking Events of a Model

Events do not share common identifiers beyond those introduced at the model
level (i.e., sets, constants and variables). As a consequence, every event can be
type-checked in isolation. Also, the proof obligations for the model initialization
are a subset of the proof obligations of regular events. Hence, in this section,
we will consider the initialization to be a special kind of event and do not treat
it specially.

The simplest proof obligations of an event concern well-definedness of guards
(MDL_GRD_WD and REF_GRD_WD). Using the same reasoning as before,
we induce that guards must be type-checked in their order of appearance and
that, when all guards have been type-checked, the resulting typing environ-
ment shall contain the type of all local variables of the event (because the
well-formedness of the event implies that every local variable appears in at least
one guard).

Another kind of proof obligations that concerns guards is guard refinement
(REF_GRD_REF). In these proof obligations, both the guards of the concrete
event and those of the abstract event(s) appear. Moreover, the abstract and
concrete events can declare local variables with the same name. In that case,
these common variables are considered to represent the same data. As a con-
sequence, they should have the same type. So, to ensure that relationship, the
type-checking of concrete guards shall be started using the typing environment
of the abstract event.

In the case of a merging of events (REF_GRD_MRG), well-formedness
ensures that all abstract events declare the same local variables. However, one
needs to check that the typing environment of the abstract events are compatible
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(that is every local variable has the same type in all abstract events). Then, the
common abstract typing environment is used when type-checking the concrete
guards.

Then, to ensure that proof obligations about substitution well-definedness
(MDL_EVT_WD and REF_EVT_WD) are well-typed, one needs to type-
check every substitution using the typing environment obtained after type-
checking all guards (as the latter appear in hypothesis of these proof obliga-
tions). Type-checking of a substitution consists in type-checking its before-after
predicate. For that, one needs to add to the typing environment the type of the
after variables (primed variables). Their type is the same as the type of their
corresponding before variable (the unprimed one).

Finally, one needs also to type-check the witnesses provided within an event.
Each witness is made of two parts. Its left-hand side contains the name of a local
variable of the abstract event(s) or a double primed variable which corresponds
to the after value of a variable in the abstract event(s). Its right-hand side is
an expression the free identifiers of which are sets, constants, concrete global
and local variables. So, to type-check witnesses one needs to build a typing
environment made of the concrete and abstract events typing environment plus a
typing environment that associates double primed variable to their type. Under
this typing environment, a simple equality between the left-hand side and right-
hand side is type-checked.

Now, let’s formalize all that. Assume we have in model Mm an event F which
refines abstract events E1, E2, . . . , Ep. We denote by L the set which contains
all the local variables of the abstract events Ei (well-formedness ensures that
they all declare the same local variables) and by K the set of the local variables
of the concrete event. The set of global variables of model Mi is denoted by Vi.
The guards of event F are denoted as G1, G2, . . . , Gg, its substitutions by S1,
S2, . . . , Ss and its witnesses have left-hand side l1, l2, . . . , ll and right-hand side
r1, r2, . . . , rl. Finally, we denote by TE (F ) the typing environment of event F .
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The type-checking of event F is formalized as:

τ0 = TE (Mm)
check that ∀i, j · TE (Ei) = TE (Ej)

τ1 = τ0 ∪ ((K ∩ L) C TE (E1))
τ2 = result of type-checking G1 with τ1

τ3 = result of type-checking G2 with τ2

...
TE (F ) = result of type-checking Gg with τg

θ = TE (F ) ∪ (prime−1 ; (Vm C TE (Mm)))
type-check BA(S1) with θ

type-check BA(S2) with θ

...
type-check BA(Ss) with θ

ζ = TE (F ) ∪ (K C TE (E1)) ∪ (dprime−1 ; (Vm−1 C TE (Mm−1)))
type-check l1 = r1 with ζ

type-check l2 = r2 with ζ

...
type-check ll = rl with ζ

where BA maps a substitution to its before-after predicate, prime (resp. dprime)
is a relation that maps an unprimed identifier to its primed (resp. double primed)
variant.

4.2 Error Recovery
In the previous sections, we described type-checking with the implicit assump-
tions that all elements were found correct. But, it can happen that some element
produce a type-check error. We examine here the consequence of such an error.

When looking to the calls to the formula type-checker that appear above, one
can easily see two kinds of calls. In one kind, type-checking produces an output
typing environment which is used later on (e.g., type-checking of a context
property). In the other kind, one only checks a formula but no new typing
environment is produced (e.g., type-checking of a theorem). Let’s first examine
the second case, as it is the easier one to tackle with.

When no new typing environment is expected, the output of formula type
checking is either success or failure. In case of success, the type-checked element
is added to the type-checked database. In case of failure, the element is just
ignored. It is thus not added to the type-checked database. This approach is
sound, as there is no dependence on this element in proof obligations generated
afterwards.

When a new typing environment is expected, the output of formula type-
checking is twofold. Firstly, it can be either success or failure. Secondly, and
only in case of success, an output typing environment is also produced. So, if
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type-check succeeds, the checked element is added to the type-checked database
and type-checking proceeds on with the new typing environment just obtained.
In case of failure, the element is ignored and not added to the type-checked
database.

However, if a single failure is encountered when type-checking a set of el-
ements like the properties of a context, the final typing environment (the one
obtained after type-checking the last property) must be checked for complete-
ness (all constants must occur in it): Because of that failure, relying on the
well-formedness of the context to ensure that all constants have a type doesn’t
work anymore, so an additional check is needed. In addition, the untyped con-
stants are marked with an error flag and not added to the type-checked database.
Subsequently, any element in which an erroneous constant occurs is considered
to fail type-check. It will not be added to the type-checked database.

In fact, what was described for constants (whose typed are inferred from
properties), applies as well to global variables (typed by invariants) and local
variables (typed by guards). In the specification above, everywhere the TE
operator is defined for some element, this typing environment must be checked
for completeness and all data names which should occur in it but do not are
flagged as erroneous.

This approach allows for generating as many well-typed proof obligations as
possible, despite some type errors. Most of the times, these proof obligations
will be incomplete, lacking some hypothesis, but, hopefully, they will contain
enough information to be discharged by the prover.
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1 Introduction

This text describes a proof obligation generator for EventB. Most of the document describes
the actual generated proof obligations and justification of their correctness. The algorithm
for their generation is very simple.

We distinguish generated proof obligations from theoretical ones. Theoretical proof obliga-
tions are well-suited for hand-written mathematical proofs but less suited for machine-assisted
proof. In particular, generated proof obligations have be obtained by decomposing theoreti-
cal proof obligations as far as possible so that they are as simple as possible; and hopefully
provable by an automatic prover. Substitutions produced by the proof obligation generator
are left unevaluated. These are applied in a preprocessing step of the proof manager. The
reason for this is to keep the design of the proof obligation generator distinct from the actual
provers. By using witnesses in models a part of the proof has been moved into modelling
itself. The price to pay is that one has to think about proving while modelling. The advan-
tage is that proofs are decomposed and almost all existential quantifiers are removed from
the consequents of proof obligations.

There are three main sections on contexts, initial models, and refined models. Each of
these contains three subsections: the description subsection introduces the notation used in
the section; the theory subsection presents the theoretical proof obligations and derives the
generated proof obligations by proof; the generated proof obligations subsection contains the
list of proof obligations to be generated by the proof obligation generator. This last section
also contains proof obligations for well-definedness. On first reading well-definedness proof
obligations should be ignored. These are necessary but are actually not derived from the
theoretical proof obligations.
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1.1 Naming Conventions

Throughout this document we use the following conventions to name items occurring in B
developments. The names are used with arbitrary subscripts and superscripts.

contexts B , C
context names CTX
carrier set names s
constant names c
property names PRP
property predicates P
context theorem names THM
context theorem predicates Q
models M , N
model names MDL, REF
variables o, v , w , x , y
external variables ×o, ×v, ×w, ×x, ×y
invariant names INV
invariant predicates I , J , K
model theorem names THM
model theorem predicates Q
variant expressions D
events e
event names EVT , EVM , EVN
guard names GRD , GRM , GRN
guard predicates G
local variables t
substitutions R, S , T , Ξ
witnesses U , V , W

1.2 Context and Model Relationships

We denote by C1 v C2 that context C1 is refined by context C2. Similarly, M1 v M2 denotes
that model M1 is refined by model M2. We use this notation also to represent chains of
refinements

C1 v C2 v . . . v Cm , resp.
M1 v M2 v . . . v Mn .

We denote by M → C that model M sees context C .
Using this notation we define a set of abstract operators on the structure of models and

contexts. We must also show that these operators create proper sets of hypotheses, i.e.
do not create type-conflicts. We must show that they are well-defined. Each definition is
accompanied by an informal proof. We add an empty C0 at the beginning of the refinement
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chains in order to simplify subsequent definitions and assume the following sees relationships
between models and contexts:

C0 v . . . v Ck1 v . . . v Ck2 v . . . v Ckn−1 v . . . v Ckn

↑ ↑ ↑ ↑ ↑

M0 v M1 v M2 v . . . v Mn−1 v Mn

Instead of saying that a model sees an empty context we usually say that it sees no context.
The operator t used in the definitions joins two sets of predicates. Logically it corresponds
to conjunction. Operator P yields the properties of a context C`:

P(C`) =̂ (properties of context C`)

Property 1 P is well-defined.

Operator Q yields the properties and theorems of a context C` and of all its abstractions:

Q(C0) =̂ >
Q(C`) =̂ (properties and theorems of context C`) t Q(C`−1)

Property 2 Q is well-defined.

Operator J yields the invariants a model M`:

J (M`) =̂ (invariants of model M`)

Property 3 J is well-defined.

Operator I yields the invariants and theorems of a model M` and of all its abstractions:

I(M0) =̂ >
I(M`) =̂ (invariants and theorems of model M`) t I(M`−1)

Property 4 I is well-defined.

Operator U yields the invariants and theorems of a model M` and of all its abstractions and
the the properties and theorems of the seen context Ck`

and of all its abstractions:

U(M`) =̂ I(M`) t Q(Ck`
)

Property 5 U is well-defined.
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1.3 Proof Obligations

Each proof obligation is described by the following structure:

Proof Obligation: REF

FOR obj WHERE

cnd

ID “NN ”

GPO Σ ` Γ

where the entry GPO can be repeated for case distinction. REF is a symbolic name for
the proof obligation. The structure has three entries FOR, ID, and GPO. The field FOR
denotes the object (or the objects) obj for which the proof obligation is generated, and the
condition cnd under which it is generated. The field ID contains the name NN of a generated
proof obligation. Usually, NN is a compound name that contains some information about the
generated proof obligation itself. Finally, the generated proof obligation in form of a sequent
Σ ` Γ is stated in field GPO. The typing environment E associated with each sequent is not
stated explicitly in the proof obligations. It can be added to the hypothesis of the sequent:
E ;Σ ` Γ. Note, that E depends on the items of the B model from which the proof obligation
was generated. For instance, local variables may have different types in different events. The
typing environment is provided to the proof obligation be the proof manager.

Note that the statement to be proved is the generated proof obligation GPO. By the
term proof obligation we refer to the entire structure. All generated proof obligations must
be uniquely identifiable by their name stated in field ID:

Property 6 (UNIQUE) The name NN of a generated proof obligation is a unique name
for that proof obligation.

Furthermore, they must be well-defined:

Theorem 1 (WDEF) Let

Σ ` Γ

be a generated proof obligation. Then the formula Γ and all formulas in Σ are well-defined.

The operator WD used to express well-definedness of predicates and expressions is defined
in Deliverable D3.2 (D7): The Event-B Language. The proof of Theorem 1 is split across
all proof obligations. That is, we argue for its truth with each proof obligation stated. We
use the property of WD that predicate WD(A) for some predicate A, respectively WD(E ) for
some expression E , is well-defined.
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1.4 Derivation of Proof Obligations.

In order to show soundness, completeness, and necessity of the generated proof obligations
we proceed as follows. We pretend to give a theoretical proof of correctness of a particular
context, initial model or refined model. We rely on the static properties of Event-B models
and the generated proof obligations. Static properties (e.g. well-definedness of P, Q, J , I,
and U) have been verified before the context, initial model or refined model is submitted for
proof obligation generation. Hence, we can assume they hold. Conceptually, we assume we
had proven all generated proof obligations as lemmas and then use them in the theoretical
proofs. A proof obligation is called necessary if it is required by at least one theoretical proof.
A collection of generated proof obligations is called complete if it is sufficient to discharge all
theoretical proofs.

Soundness and completeness ensure that once all generated proof obligations have been
discharged, the theoretical proof for context, initial model, or refined model have been
achieved.

Necessity serves to verify that we do not generate too many proof obligations. This is
needed for efficiency and practicality of proof obligation generator to be implement.

1.5 Differential Proof Obligation Generation

For each proof obligation there are four possibilities when comparing two sets of proof obli-
gations of some context, initial model, or refined model:

it may be unchanged;
it may have been changed;
it may have been added;
it may have been removed.

We say a generated proof obligation depends directly on some item (e.g. an invariant or
substitution) if the item occurs directly in its sequent (perhaps as a parameter of an abstract
operator). A proof obligation depends indirectly on some item if the item is contained in a
sequent but does not occur directly. For example, this is the case for properties contained in
P(C ). Note, however, that C itself occurs directly in the sequent and so it depends directly
on C . The following algorithm is used to generate proof obligations differentially:

for all items of the context, initial model or refined model:
generate the unique identifier NN of the associated proof obligation Σ ` Γ;
if there is already a proof obligation with the same identifier,

then
if the proof obligation depends directly on a changed item,

then
generate new proof obligation and remove old;
mark (new) proof obligation

otherwise
mark (old) proof obligation
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otherwise
generate new proof obligation;
mark (new) proof obligation

finally, remove all unmarked proof obligations

This algorithm ensures that when items on which a particular proof obligation depends di-
rectly have been changed or added, the proof obligation is regenerated or generated. And if
such an item has been removed the proof obligation is removed too. Proof obligations that
do not refer, or only indirectly, to items that have changed are not regenerated. (They may
still have to be reproved, though.)

This algorithm ensures also that we do not keep unnecessary proof obligations. It assumes
that items that have changed have been marked as such before. This is done by a preproces-
sor that compares the items on which the old proof obligations are based with the items on
which the new proof obligations will be based. The proof obligation generator keeps a copy
of the old checked model (or context) for this purpose.

The decision whether a proof for a particular proof obligation is still valid or not lies with
the proof manager. The proof obligation generator ignores this issue.

We note on the predicate set operators P, Q, J , I, and U :

Theorem 2 The sets P(C ), Q(C ), J (M ), I(M ), and U(M ) do not depend on the order
in which properties, context theorems, invariants, and model theorems appear in contexts and
models.

Proof: This follows directly from the way these sets are constructed. We only rely on the
structure of contexts and models among each other. �

The validity of Theorem 2 is important for the efficiency of the proof obligation generator.
Proof obligations refer symbolically to these sets and would have to be regenerated more often
if the order was important. Assume we used parameterised versions, say, P`(C ) of operator
P(C ) containing the first ` properties of context C . Then P`(C ) would rely on the order
in which the properties appear in C , and whenever we would make a change to that order
we would have to replace P`(C ) in many proof obligations. In this case, we could put the
properties contained in P`(C ) directly in the corresponding sequents. In fact, this is what we
do in situations where the order is important, e.g., in well-definedness proof obligations for
properties.

1.6 Operators

We use a number of terms and abstract operators to express the theoretical and the generated
proof obligations. These are higher-order constructs that cannot be defined in terms of the
B mathematical language.

Well-definedness Operator. The WD operator expresses a well-definedness condition for
a predicate A or an expression E , written: WD(A) and WD(E ), respectively.
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Substitution. A substitution R has either of the following forms:

skip u := E u :∈ E u :| A

where E is an expression that may contain occurrences of before-values v , and A is a predicate
that may contain occurrences of before values v and after-values v ′. A substitution of the
form u := E is called simple if u is a singleton, and simultaneous if u is a list with several
variables.

Frame Operator. The frame frame(R) of a substitution R is the list of variables occurring
on the left hand side of R. Each variable may only occur once in a frame. We use set-theoretic
notation with frames: ∪ for union, ∩ for intersection, \ for difference, ∅ for the empty frame.

Multiple Substitution. Lists of substitutions are written R1 ‖ . . . ‖ Rn and are allowed
to be empty. Such a list is called a multiple substitution. The frames of all component
substitutions must be disjoint. The multiple substitution R1 ‖ . . . ‖ Rn should be read like
a parallel composition of the component substitutions R`, i.e. a simultaneous substitution.
The frame frame(R) of a multiple substitution R is the union of the frames of the component
substitutions.

Substitution Operator. For deterministic substitutions R of the form u := E and multiple
substitutions with deterministic components we introduce extra notation. In order to apply
a multiple substitution R to a predicate A or expression E we define an operator [R]: we
denote R applied to A by [R]A and R applied to E by [R]E . If R is empty then [R] is the
identity. Substitution operators can be composed (sequentially), denoted by [R1] [R2] . . . [Rn ].
We refer to substitution operators as substitutions too, because it is always clear from the
context (and notation) what is meant.

Guard Operator. The guard of an event e is the necessary condition under which it may
occur. The guard operator yields this guard for event e. It is written GD(e).

Direct Before-After Operator. The BA operator returns the before-after predicate of
a multiple substitution. For an empty multiple substitution R we define BA(R) = >. The
before-after predicate of a substitution is defined by

BA(skip) =̂ >
BA(u := E ) =̂ u ′ = E ,

BA(u :∈ E ) =̂ u ′ ∈ E ,

BA(u :| A) =̂ A .

The before-after predicate of a non-empty multiple substitution R1 ‖ . . . ‖Rn is defined to be
the conjunction of the before-after predicates of the components:

BA(R1 ‖ . . . ‖ Rn) =̂ BA(R1) ∧ . . . ∧ BA(Rn) .
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Relative Before-After Operator. The BAv operator returns the before-after predicate
of a multiple substitution R relative to the variable list v . The frame of R must be contained
in v . We define:

BAv (R) =̂ BA(R) ∧ BA(Ξ) ,

where Ξ equals u := u with u = v \frame(R) which is similar to skip except that frame(Ξ) = u.

Feasibility Operator. By FIS(R) we denote the feasibility condition of a substitution R.
It is defined by:

FIS(skip) =̂ >
FIS(u := E ) =̂ > ,

FIS(u :∈ E ) =̂ E 6= ∅ ,

FIS(u :| A) =̂ ∃ u ′ ·A .

The operator FIS(R) is undefined for multiple substitutions.

Aside. An event is called feasible if all substitutions of its action are feasible. Because
all events are required to be feasible in an event model, the term GD(e) corresponds to the
formula (∃ t ·G1 ∧ .. ∧ Gg) where t are the local variables of e and G1, ..,Gg are the explicitly
stated guards of event e. We often use directly the formula (∃ t ·G1 ∧ .. ∧ Gg) instead of
GD(e) for the guard of event e.

Freeness Operator. The free operator yields the list of free variables of a predicate A or an
expression E , written: free(A) and free(E ), respectively. Given a multiple substitution R the
term free(R) denotes the variables occurring free in the right hand sides of the substitutions
in R. If R is the empty multiple substitution, then free(R) is empty.

Primed Free Variables. We define the operator primed(X ) where X is an expression E ,
a predicate A, or a substitution S , by: u ∈ primed(X )⇔ u ′ ∈ free(X ).

Not-free-in Operator. The not-free-in operator nfin describes a relation between identifier
lists z and predicates A or expressions E . We write z nfin A, respectively z nfin E , to say
that z does not occur free in A, respectively E .

Local variables. In an event of the form any z where . . . then . . . end, z are called its
local variables.

Property 7 (LOCAL) Let z be local variables of some event e of some model M . Then

z nfin U(M ) .

11



2 Proof Obligations of Contexts

We first describe the structure of contexts, in the followings section we present the theoretical
proof obligations. These are proven assuming that the generated proof obligations have
already been proved. I.e. the generated proof obligations (plus the static properties) imply
the theoretical proof obligations. The last section lists the generated proof obligations.

2.1 Description

This section presents the definitions required for formulating the theory and the proof obli-
gations for contexts.

Let C be a context with name CTX with carrier sets s and constants c, and containing
the following sequence of property and theorem declarations:

property PRP1 P1

...
property PRPm Pm

theorem THM1 Q1

...
theorem THMn Qn

Let B be an abstraction of C , i.e. B v C .

2.2 Theory

There is no relevant difference between initial contexts and refined contexts. Hence, they are
treated uniformly in the theory and the proof obligations.

2.2.1 Context Theorems

We must prove that each theorem Q` is implied by properties of C and properties and
theorems of its abstractions.

Theorem 3

Q(B); P(C ); Q1; . . . ; Q`−1 ` Q`

Proof: This is trivially implied by CTX THM. �

2.3 Generated Proof Obligations

2.3.1 Well-definedness of Properties

Proof Obligation: CTX PRP WD

FOR property P` of C WHERE

` ∈ 1 ..m

ID “CTX /PRP`/WD”

GPO Q(B); P1; . . . ; P`−1 ` WD(P`)
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Proof of WDEF: (See Theorem 1) The sequent is well-defined because context abstraction
is an acyclic directed graph, and we can assume that we have shown well-definedness of Q(B),
and P1 . . .P`−1 before by CTX PRP WD. �

2.3.2 Well-definedness of Theorems

Proof Obligation: CTX THM WD

FOR theorem Q` of C WHERE

` ∈ 1 .. n

ID “CTX /THM`/WD”

GPO Q(B); P(C ); Q1; . . . ; Q`−1 ` WD(Q`)

Proof of WDEF: The sequent is well-defined because context abstraction is an acyclic
directed graph, and we can assume that we have shown well-definedness of Q(B) and P(C ),
and Q1 . . .Q`−1 before by CTX THM WD. �

2.3.3 Context Theorems

Proof Obligation: CTX THM

FOR theorem Q` of C WHERE

` ∈ 1 .. n

ID “CTX /THM`/THM”

GPO Q(B); P(C ); Q1; . . . ; Q`−1 ` Q`

Proof of WDEF: The sequent is well-defined because context abstraction is an acyclic
directed graph, and we can assume that we have shown well-definedness of Q(B) and P(C ),
and Q1 . . .Q` before by CTX THM WD. �

3 Proof Obligations of Initial Models

3.1 Description

Let M be an initial model with name MDL. Assume M sees context C with name CTX (or
no context at all). Let v be the variables of M . Let M contain the following sequences of
invariants and theorems:

invariant INV1 I1
...
invariant INVm Im

theorem THM1 Q1

...
theorem THMn Qn
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Initialisation of M is partitioned into two parts corresponding to internal and external ini-
tialisation. The initialisations of M have the form:

R1

...
Rr

for some r ≥ 1, i.e. they have the form of an unguarded action R1 ‖ . . . ‖Rr . All other events
e (with name EVT ) have the form

any
t1, . . . , tj

where
GRD1 G1

...
GRDg Gg

then
R1

...
Rr

end

for some r ≥ 1 where t1, . . . , tj are the local variables (possibly none), G1, . . . ,Gg the guards
(possibly none), and R1 ‖ . . . ‖ Rr is the action of event e.

Remark. The various definitions should rather be read to specify patterns. Reusing place
holder names and indices allows us to treat modelling items in a uniform way, thus, simplifies
subsequent definitions. Still, the names and indices have been chosen such that we do not need
to rename when using them in the theory (Section 3.2) and the proof obligations (Section 3.3).

3.1.1 Internal and External

Variables. We refer to external variables u of M by ×u.

Initialisation. Internal and external initialisation assign only to internal or external vari-
ables respectively. The combined initialisation R1 ‖ . . . ‖ Rk is defined by the list combining
the internal and the external initialisation of M , i.e. it equals Rε

1‖ . . .‖Rε
rε
‖Rι

1‖ . . .‖Rι
rι

where
we use superscript ε to indicate external and superscript ι to indicate internal initialisation.
This means the combined initialisation is the parallel composition of internal and external
initialisation.

Events. External events only assign to external variables, and internal events to either kind
of variable. We do not use special notation to distinguish internal and external events.
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Remark. In initial models the distinction between internal and external has no significance
with the exception of deadlock-freedom.

3.1.2 Actions

Whenever convenient we abbreviate an action R1 ‖ . . . ‖ Rr by R.

Components. Let R1‖. . .‖Rr be an action. Each component R` (` ∈ 1..r) is a substitution
of either form:

skip u` := E` u` :∈ E` u` :| A`

where for ` ∈ 1 .. r the u` are all distinct. No variable occurs in more than one u`. A
substitution u`(F ) := E` is to be rewritten into

u` := u` C− {F 7→ E`}

before it is subjected to proof obligation generation. We use the notation R ∼ X to say that
R resembles substitution X , where X is one of the substitutions skip, u` := E`, u` :∈ E`, or
u` :| A`.

Partitioning. We can partition the action R1 ‖ . . . ‖ Rr into S and T such that S =
Rk1 ‖ . . . ‖ Rkp is a multiple substitution with components of R of the form wk`

:= Ek`
for

` ∈ 1 .. p; and T = Ri1 ‖ . . . ‖Riq is a multiple substitution with components of R of the form
wi` :∈ Ei` or wi` :| Ai` for ` ∈ 1 .. q . Let vX be the variables occurring on the left hand side
of X , where X is one of R, S , or T . Note, that S or T , or both, can be empty. Note also,
that R is the identity substitution on all variables that occur neither in vS nor in vT .

Restriction. For a substitution R and a list of variables z we define the restriction R|z of
R to z by

R|z = all substitutions R` where a member of z appears on the left hand side of R`

Note, that R|z can be the empty multiple substitution.

Primed Substitutions. For substitution (or witness) S of the form u := E the primed
variant S ′ is defined by u ′ := E . This generalises component-wise to multiple substitutions
(and combined witnesses). Witnesses are defined in Section 4.1.3.

3.2 Theory

The theory of initial models is considerably simpler than the theory of refined models that
is presented in Section 4. The simple reason is that initial models do not have refinement
related proof obligations.

We must prove that the initial model M is consistent.
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3.2.1 Model Theorems

We must prove that each theorem Q` is implied by properties of C and properties and
theorems of its abstractions and the invariants of M .

Theorem 4

Q(C ); J (M ); Q1; . . . ; Q`−1 ` Q`

Proof: This is trivially implied by MDL THM. �

3.2.2 Feasibility of Initialisation

We must show that the combined initialisation of M is feasible assuming that only properties
(and theorems) of the context C hold. Let R be the combined initialisation of M .

Theorem 5

Q(C ) ` ∃ v ′ ·BAv (R)

Proof: Because vR equals v in the combined initialisation we can replace BAv by BA:
Q(C ) ` ∃ v ′ ·BA(R). Each after-value u ′ only appears on one conjunct of BA(R). This allows
us to move the existential quantifiers into each conjunct: Q(C ) ` FIS(R1) ∧ . . . ∧ FIS(Rr ).
We decompose this sequent into r sequents of the form Q(C ) ` FIS(R`) where ` ∈ 1 .. r .
Applying the definition of FIS this means we have nothing to prove in case R` ∼ skip or
R` ∼ u` := E`. In the remaining two cases we have to prove Q(C ) ` E` 6= ∅ if R` ∼ u` :∈ E`,
and Q(C ) ` ∃ u ′` ·A` if R` ∼ u` :| A`. This corresponds to proving MDL INI FIS for all `. �

3.2.3 Invariant Establishment

We have to show that after initialisation of M the invariant holds assuming only properties
(and theorems) of the context C . Let R be the combined initialisation of M .

Theorem 6

Q(C ); BAv (R) ` [v := v ′] (I1 ∧ . . . ∧ Im)

Proof: Note that vR equals v in the combined initialisation, hence, we can rewrite the sequent
replacing BAv by BA: Q(C ); BA(R) ` [vR := v ′R] (I1 ∧ . . . ∧ Im). First we decompose the
sequent into m sequents: Q(C ) ` BA(R)⇒ [vR := v ′R] I`. We partition R into a deterministic
part S and a non-deterministic part T : Q(C ) ` BA(T ) ∧ BA(S ) ⇒ [vR := v ′R] I`. The
predicate BA(S ) consists of a set of equations of the form v ′S = . . ., hence, we can apply the
equalities to the conclusion, Q(C ) ` BA(T ) ⇒ [S ′] [vR := v ′R] I`. Now we know that S and
T do have disjoint left hand sides, thus, we can rewrite the conclusion once more to yield:
Q(C ) ` BA(T ) ⇒ [S ] [vT := v ′T ] I`. Finally, we can restrict the substitutions S and T to
the variables z occurring free in I`. This gives: Q(C ) ` BA(T|z )⇒ [S|z ] [vT|z

:= v ′T|z ] I` , i.e.
MDL INI INV. �
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3.2.4 Feasibility of Event Actions

We must show that all events of M are feasible assuming that all of U(M ) hold. For each
event we must prove:

Theorem 7

U(M ) ` ∀ t ·G1 ∧ . . . ∧ Gg ⇒∃ v ′ ·BAv (R)

Proof: We eliminate all after-values v ′Ξ of variables outside the frame of R by applying
the one-point rule: U(M ) ` ∀ t ·G1 ∧ . . . ∧ Gg ⇒ ∃ v ′R ·BA(R), and move the existential
quantifiers into the conjuncts: U(M ) ` ∀ t ·G1 ∧ . . . ∧ Gg ⇒ FIS(R1) ∧ . . . ∧ FIS(Rr ). Using
Theorem 7 (Section 1.6) rewriting yields: U(M ); G1; . . . ; Gg ` FIS(R1) ∧ . . . ∧ FIS(Rr ).
We decompose this sequent into r sequents of the form U(M ); G1; . . . ; Gg ` FIS(R`) where
` ∈ 1 ..r . Applying the definition of FIS this means we have nothing to prove in case R` ∼ skip

or R` ∼ u` := E`. In the remaining two cases we have to prove U(M ); G1; . . . ; Gg ` E` 6= ∅
if R` ∼ u` :∈ E`, and U(M ); G1; . . . ; Gg ` ∃ u ′` ·A` if R` ∼ u` :| A`. This corresponds to
proving MDL EVT FIS for all `. �

3.2.5 Invariant Preservation

We must show that all events of M preserve the combined invariant. We must prove for each
event:

Theorem 8

U(M ); (∃ t ·G1 ∧ . . . ∧ Gg); (∀ t ·G1 ∧ . . . ∧ Gg ⇒ BAv (R)) ` [v := v ′] (I1 ∧ . . . ∧ Im)

Proof: Using Theorem 7 rewriting yields:

U(M ); G1; . . . ; Gg ; (∀ t ·G1 ∧ . . . ∧ Gg ⇒ BAv (R)) ` [v := v ′] (I1 ∧ . . . ∧ Im) .

We instantiate t and apply modus ponens to produce the simpler sequent:

U(M ); G1; . . . ; Gg ; BAv (R) ` [v := v ′] (I1 ∧ . . . ∧ Im) .

Using the one-point rule on Ξ (where BAv (R) ⇔ BA(R) ∧ BA(Ξ)) we can replace BAv by
BA, yielding: U(M ); G1; . . . ; Gg ; BA(R) ` [vR := v ′R] (I1 ∧ . . . ∧ Im). We decompose
this sequent into m sequents: U(M ); G1; . . . ; Gg ` BA(R) ⇒ [vR := v ′R] I`. We parti-
tion R into a deterministic part S and a non-deterministic part T , and rewrite the claim:
U(M ); G1; . . . ; Gg ` BA(T ) ∧ BA(S )⇒ [vR := v ′R] I`. The predicate BA(S ) consists of a
set of equations of the form v ′S = . . ., hence, we can apply the equalities to the conclusion,
U(M ); G1; . . . ; Gg ` BA(T ) ⇒ [S ′] [vR := v ′R] I`. Now we know that S and T do have
disjoint left hand sides, thus, we can rewrite the conclusion once more to yield:

U(M ); G1; . . . ; Gg ` BA(T )⇒ [S ] [vT := v ′T ] I` .

Finally, we can restrict the substitutions S and T to the variables z occurring free in I`. This
gives: U(M ); G1; . . . ; Gg ` BA(T|z )⇒ [S|z ] [vT|z

:= v ′T|z ] I`, i.e. MDL EVT INV. �
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3.2.6 Deadlock Freedom (Optional)

To show deadlock-freedom we must show that the disjunction of the guards of all internal
events e1, . . . , ek of M is true.

Theorem 9

U(M ) ` GD(e1) ∨ . . . ∨ GD(ek )

Proof: By MDL DLK. �

3.2.7 (Internal) Anticipated Events

In an initial model anticipated events do not cause any different or additional proof obligations.
The differences only appear in refinements (where new events are introduced).

3.2.8 Internal and External Events

All proof obligations must be proven for all events, internal and external. In a refinement
external events can only be refined in a more constrained way. In an initial model there are
no extra constraints on external events.

3.3 Generated Proof Obligations

3.3.1 Well-definedness of Invariants

Proof Obligation: MDL INV WD

FOR invariant I` of M WHERE

` ∈ 1 ..m

ID “MDL/INV`/WD”

GPO Q(C ); I1; . . . ; I`−1 ` WD(I`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C ), and I1 . . . I`−1 before by MDL INV WD. �

18



3.3.2 Well-definedness of Theorems

Proof Obligation: MDL THM WD

FOR theorem Q` of M WHERE

` ∈ 1 .. n

ID “MDL/THM`/WD”

GPO Q(C ); J (M ); Q1; . . . ; Q`−1 ` WD(Q`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of J (M ), and Q1 . . .Q`−1 before by MDL THM WD. �

3.3.3 Model Theorems

Proof Obligation: MDL THM

FOR theorem Q` of M WHERE

` ∈ 1 .. n

ID “MDL/THM`/THM”

GPO Q(C ); J (M ); Q1; . . . ; Q`−1 ` Q`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of J (M ), and Q1 . . .Q` before by MDL THM WD. �

3.3.4 Well-definedness of Initialisation

Proof Obligation: MDL INI WD

FOR substitution R` of combined initialisation of M WHERE

` ∈ 1 .. r AND u` = frame(R`)

ID “MDL/INIT/u`/WD”

GPO > (if R` ∼ skip)

GPO Q(C ) ` WD(E`) (if R` ∼ u` := E`)

GPO Q(C ) ` WD(E`) (if R` ∼ u` :∈ E`)

GPO Q(C ) ` WD(A`) (if R` ∼ u` :| A`)
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Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C ). �

3.3.5 Feasibility of Initialisation

Proof Obligation: MDL INI FIS

FOR substitution R` of combined initialisation of M WHERE

` ∈ 1 .. r AND u` = frame(R`)

ID “MDL/INIT/u`/FIS”

GPO > (if R` ∼ skip)

GPO > (if R` ∼ u` := E`)

GPO Q(C ) ` E` 6= ∅ (if R` ∼ u` :∈ E`)

GPO Q(C ) ` ∃ u ′` ·A` (if R` ∼ u` :| A`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C ), and of E`, respectively A`, by MDL INI WD. �

3.3.6 Invariant Establishment

Proof Obligation: MDL INI INV

FOR combined initialisation of M and invariant I` of M WHERE

` ∈ 1 ..m AND z = free(I`)

ID “MDL/INIT/INV`/INV”

GPO Q(C ) ` BA(T|z )⇒ [S|z ] [vT|z
:= v ′T|z ] I`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C ), and T and S by MDL INI WD, and I` by MDL INV WD. �
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3.3.7 Well-definedness of Guards

Proof Obligation: MDL GRD WD

FOR guard G` of e of M WHERE

` ∈ 1 .. g

ID “MDL/EVT/GRD`/WD”

GPO U(M ); G1; . . . ; G`−1 ` WD(G`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(M ), and G1 . . .G`−1 before by MDL GRD WD, and t1, . . . tj nfin U(M ) by Theorem 7.
�

3.3.8 Well-definedness of Event Actions

Proof Obligation: MDL EVT WD

FOR substitution R` of e of M WHERE

` ∈ 1 .. r AND u` = frame(R`)

ID “MDL/EVT/u`/WD”

GPO > (if R` ∼ skip)

GPO U(M ); G1; . . . ; Gg ` WD(E`) (if R` ∼ u` := E`)

GPO U(M ); G1; . . . ; Gg ` WD(E`) (if R` ∼ u` :∈ E`)

GPO U(M ); G1; . . . ; Gg ` WD(A`) (if R` ∼ u` :| A`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(M ), and G1 . . .Gg before by MDL GRD WD, and t1, . . . tj nfin U(M ) by Theorem 7.
�
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3.3.9 Feasibility of Event Actions

Proof Obligation: MDL EVT FIS

FOR substitution R` of e of M WHERE

` ∈ 1 .. r AND u` = frame(R`)

ID “MDL/EVT/u`/FIS”

GPO > (if R` ∼ skip)

GPO > (if R` ∼ u` := E`)

GPO U(M ); G1; . . . ; Gg ` E` 6= ∅ (if R` ∼ u` :∈ E`)

GPO U(M ); G1; . . . ; Gg ` ∃ u ′` ·A` (if R` ∼ u` :| A`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(M ), and G1 . . .Gg has be shown by MDL GRD WD, and that of E` (respectively A`)
by MDL EVT WD, and t1, . . . tj nfin U(M ) by Theorem 7. �

3.3.10 Invariant Preservation

Proof Obligation: MDL EVT INV

FOR event e of M and invariant I` of M WHERE

` ∈ 1 ..m AND z = free(I`) AND R|z is not empty

ID “MDL/EVT/INV`/INV”

GPO U(M ); G1; . . . ; Gg ` BA(T|z )⇒ [S|z ] [vT|z
:= v ′T|z ] I`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(M ), and T and S by MDL EVT WD, and I` by MDL INV WD, and G1 . . .Gg has be
shown by MDL GRD WD, and t1, . . . tj nfin U(M ) by Theorem 7. �

Remark. If R|z is the empty multiple substitution, this proof obligation should not be
generated because I` would appear in the antecedent and the consequent. This holds when
the free variables of I` are not in the frame of R.

Remark. We cannot reduce the number of guards in the hypotheses because they can be
transitively dependent. So we could render a provable proof obligation unprovable.
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3.3.11 Deadlock Freedom (Optional)

Proof Obligation: MDL DLK

FOR model M WHERE

e1, . . . , ek are all internal events of M

ID “MDL/DLK”

GPO U(M ) ` GD(e1) ∨ . . . ∨ GD(ek )

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(M ), and GD(e1) . . .GD(ek ) follows from MDL GRD WD and the fact that the local
variables te`

of each event e` are bound by an existential quantifier in GD(e`). �

Remark. We could equivalently generate the proof obligation:

U(M ); ¬ GD(e1); . . . ; ¬ GD(ek−1) ` GD(ek ) .

Remark. This proof obligation should only be generated when all guards of all events of
the model M are well-formed and well-typed. It should be avoided to present the user with
proof obligations that may not be stable. For this proof obligation we know that if some
evnets have not passed static-checking, then it will certainly change. If the user would prove
a such proof obligation before it is stable, this would be nuisance.

Remark. The user who is creating a model has to decide whether or not to prove deadlock
freedom. The corresponding information must be available to the proof obligation generator.

4 Proof Obligations for Refinements

4.1 Description

Let M be a model and N a refinement of M , i.e. M v N . Assume N sees context C with name
CTX (or no context at all). Let x be the variables that appear only in M , y be the variables
that appear only in N , v all variables of M , and w all variables of N . In other words, x are
the variables that disappear in the refinement step, and y are the newly introduced variables.
Furthermore, let o be the variables occurring in M and N .

M
v

x o y
w
N
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Let N contain the following sequences of invariants and theorems:

invariant INV1 I1
...
invariant INVm Im

theorem THM1 Q1

...
theorem THMn Qn

One part of the invariant I1 ∧ . . . ∧ Im is called external invariant, denoted by J1 ∧ .. ∧ Jσ.
An external invariant can only refer to external variables of the refined and the abstract
model. The remaining part of the invariant I1 ∧ . . . ∧ Im is called internal, and can refer to
all variables of the refined model and the abstract model except the disappearing abstract
external variables. Initialisation of M and N is partitioned into two parts corresponding to
internal and external initialisation. The initialisations of have the form:

RM1

...
RMp

RN1

...
RNq

for some p ≥ 1 and q ≥ 1. All other events eM (with name EVTM ), respectively eN (with
name EVTN ), have the form

any
tM1 , . . . , tMi

where
GRM1 G1

...
GRMg Gg

then
RM1

...
RMp

end

any
tN1 , . . . , t

N
j

where
GRN1 H1

...
GRNg Hh

then
RN1

...
RNq

end

for some p ≥ 1 and q ≥ 1; where tM1 , . . . , tMi are the local variables (possibly none), G1, . . . ,Gg

the guards (possibly none), and RM1 ‖ . . . ‖RMp is the action of event eM ; and tN1 , . . . , t
N
j are

the local variables (possibly none), H1, . . . ,Hh the guards (possibly none), and RN1 ‖ . . .‖RNq

is the action of event eN .

External Variables. We refer to external variables u of M or N by ×u.

4.1.1 Actions

We use similar conventions an notations as described in Section 3.1.2. The only difference is
that we propagate the subscripts M and N , for instance, partitioning RM into SM and TM .
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4.1.2 Split and Merge

Split. For a split refinement of an event we do not need special notation. In fact, we treat
this as the standard case of refinement.

Merge. For a merge refinement of a set of events eM
1 , . . . , eM

k we need some more compli-
cated notation for their guards. We let G`,1, . . . ,G`,g`

be the guards of event eM
` for ` ∈ 1 .. k .

There is no need for further extra notation for merge refinements because all the events
eM
1 , . . . , eM

k are required to have identical local variables (in particular, identically typed)
and identical actions (except for permutation of substitutions). Furthermore, no explicit use
of guard names of eM

1 , . . . , eM
k is made.

4.1.3 Witnesses

Witnesses serve to instantiate existential quantifiers in consequents. They are an important
technique for decomposing complex proof obligations. We distinguish explicit and default
witnesses.

Explicit Witnesses. Explicit witnesses are associated with events. The are two kinds of
explicit witnesses, called local and global, used with events in a refined model:

Local witnesses of the form tM` := E , where tM` is a local variable of the cor-
responding abstract event eM , and E is an expression over constants, sets,
local variables tN , and global variables w of the refined model and their
post-values w ′;

Local witnesses of the form tN` := E , where tN` is a local variable of the cor-
responding refined event eN , and E is an expression over constants, sets,
local variables tM , and global variables v of the abstract model and their
post-values v ′;

Global witnesses of the form u := E , where u is contained in the disappearing
abstract variables x , and E is an expression over constants, sets, variables w
of the refined model and their post-values w ′, and local variables tN of the
event of the refined model (to which the witness belongs).

Abstract and Concrete Local Witnesses. Witnesses for abstract local variables tM are
used in the guard strengthening proof obligation. Witnesses for concrete local variables tN

are used in the guard equivalence proof obligation of external events (REF GRD EXT).

Derived Witnesses. The user interface could suggest certain invariants and theorems to
be global witnesses if they are equations of the form u = E where expression E must be an
expression over constants, sets, and variables w of the refined model. This equation could
be turned into a global witness by renaming the variables and rewriting the equation into a
substitution: u := E ′. The proof obligation generator does not do this. Similarly, the user
interface could search for equalities in guards to suggest local witnesses.
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Witnessed Variable. We call the variable occurring on the left hand side of a witness (i.e.
its frame) the witnessed variable.

Default Local Witnesses. If local variables are repeated in a refined event, then they are
required to be the same, i.e. the default local witness

u := u

is assumed. Note, that in order for this to be well-defined, the types of identically named
local variables must also have identical types.

Default Global Witnesses. If global variables are repeated in a refined model, then they
are required to be the same, i.e. the default global witness

u := u

is assumed. This corresponds just to the glueing invariant for identically named global vari-
ables (that is not stated explicitly in the refined model). Note, that in order for this to be
well-defined, the types of identically named global variables must also have identical types.
(This is checked by the static-checker.) This must be true transitively along the chain of ab-
stractions of a model (as is already required for I(M ) for some model M to be well-defined).

Use of Default Witnesses. Because default witnesses are identity substitutions they do
not need to be explicitly part of generated proof obligations. However, if a default witness
exists, it is not possible for the user to provide another witness for the concerned local or
global variable.

Combined Local Witness. For local variables tM of the abstract model M the combined
local witness is defined to be the multiple substitution consisting of all non-default local
witnesses tM` := E . The combined witness for abstract local variables is denoted by VtM .
The combined witness for the local variables tN of the concrete model VtN is defined similarly.

Combined Global Witness. For (disappearing) global variables x of the abstract model
M the combined global witness is defined to be the multiple substitution consisting of all non-
default global witnesses u := E . The combined witness for disappearing abstract variables
ids denoted by Wx .

4.2 Theory

We have to prove that model N is a refinement of model M .
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4.2.1 Model Theorems

We must prove that each theorem Q` is implied by properties of C and properties and
theorems of its abstractions, and the invariants of M and the invariants and theorems of
the abstractions of M . This proof obligation is similar to that for initial models.

Theorem 10

Q(C ); I(M ); J (N ); Q1; . . . ; Q`−1 ` Q`

Proof: This is trivially implied by REF THM. �

4.2.2 External Invariant

The external invariant J1 ∧ . . . ∧ Jσ must be functional from concrete to abstract disappearing
variables, total, and surjective. Theorem 11 shows that it is functional, Theorem 12 shows
that it is total, and Theorem 13 shows that it is surjective.

Theorem 11

Q(C ); [×x := ×x ] J1; . . . ; [×x := ×x ] Jσ; [×x := ×x ′] J1; . . . ; [×x := ×x ′] Jσ ` ×x = ×x ′

Proof: The claim just corresponds to REF EXT FUN. �

Theorem 12

Q(C ) ` ∀×x · ∃×y ·J1 ∧ . . . ∧ Jσ

Proof: The claim just corresponds to REF EXT TOT. �

Theorem 13

Q(C ) ` ∀×y · ∃×x ·J1 ∧ . . . ∧ Jσ

Proof: The claim just corresponds to REF EXT SRJ. �

4.2.3 Feasibility of Initialisation

We must show that the combined initialisation of N is feasible assuming that only properties
(and theorems) of the context C hold. This is the same proof obligation as for initial models.

Theorem 14

Q(C ) ` ∃w ′ ·BAw (RN )

Proof: Similarly to Theorem 5 it is sufficient to prove: Q(C ) ` FIS(RN1) ∧ . . . ∧ FIS(RNr ).
We decompose this sequent into r sequents of the form Q(C ) ` FIS(RN`

) where ` ∈ 1 .. r .
Applying the definition of FIS this means we have nothing to prove in case RN`

∼ skip

or RN`
∼ u` := E`. In the remaining two cases we have to prove Q(C ) ` E` 6= ∅ if

RN`
∼ u` :∈ E`, and Q(C ) ` ∃ u ′` ·A` if RN`

∼ u` :| A`. This corresponds to proving
MDL INI FIS for all `. �
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4.2.4 Simulation of Initialisation and Invariant Establishment

This proof obligation comprises simulation of initialisation and invariant establishment. We
have to show that the combined initialisation of M can simulate the combined initialisation of
N and that invariant of N holds after initialisation assuming only properties (and theorems)
of the context C and its abstractions. Let RM be the combined initialisation of M , and RN be
the combined initialisation of N . We use v ′′ to denote the after-state of abstract initialisation,
and w ′ to denote the after-state of the refined initialisation.

Theorem 15

Q(C ); BAv (RN ) `
∃ v ′′ ·[v ′ := v ′′]BAv (RM ) ∧ o ′ = o ′′ ∧ [x := x ′′][w := w ′] (I1 ∧ . . . ∧ Im)

Proof: Note that vRM
equals v (resp. wRN

equals w) in a initialisation, hence, we can
rewrite the sequent replacing BAv by BA:

Q(C ); BA(RN ) `
∃ v ′′RM

·[v ′RM
:= v ′′RM

]BA(RM ) ∧ o ′ = o ′′ ∧
[x := x ′′] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im) .

First we apply the one-point rule for the common variables o:

Q(C ); BA(RN ) `
∃ x ′′ ·[x ′ := x ′′]BA(RM ) ∧

[x := x ′′] [wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im) .

The abstract action RM can be split into a deterministic part SM and a non-deterministic
part TM :

Q(C ); BA(RN ) `
∃ x ′′ ·[x ′ := x ′′] (BA(SM ) ∧ BA(TM )) ∧

[x := x ′′] [wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im) .

Application of the one-point rule for SM |x yields:

Q(C ); BA(RN ) `
∃ x ′′TM

·[x ′TM
:= x ′′TM

]BA(TM ) ∧ BA(SM |o) ∧
[S ′′

M |x ] [x := x ′′] [wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im) .

Now we instantiate the remaining disappearing variables x ′′TM
using the global witness Wx .

We assume the global witnesses have been chosen for the proof to succeed.

Q(C ); BA(RN ) `
[W ′′

x ] [x ′TM
:= x ′′TM

]BA(TM ) ∧ BA(SM |o) ∧
[W ′′

x ] [S ′′
M |x ] [x := x ′′] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im) .
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This simplifies to:

Q(C ); BA(RN ) `
[W ′

x ]BA(TM ) ∧ BA(SM |o) ∧
[Wx ] [SM |x ] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im) .

We partition RN into a deterministic part SN and a non-deterministic part TN , and rewrite
the claim: Q(C ); BA(SN ); BA(TN ) ` . . .. The predicate BA(SN ) consists of a set of
equations of the form w ′

SN
= . . ., hence, we can apply the equalities to the conclusion,

Q(C ); BA(TN ) `
[S ′

N ] ([W ′
x ]BA(TM ) ∧ BA(SM |o)) ∧ (1)

[S ′
N ] [Wx ] [SM |x ] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im) . (2)

In order to prove (1) we rewrite it to:

Q(C ); BA(TN ) ` [S ′
N ] [W ′

x ] (BA(TM ) ∧ BA(SM |o)) .

This possible because x ′ does not occur free in BA(SM |o). We decompose this sequent into
the sequents: Q(C ); BA(TN ) ` [S ′

N ] [W ′
x ]BA(RM`

), where RM`
is not in SM |x . Note, that

(primed) abstract disappearing variables x ′ do not occur free in BA(SM |o). Finally, with f =
frame(RM`

) and z = primed(Wx |f ), it is sufficient to prove:

Q(C ); BA(TN |f ∪z ) ` [S ′
N |f ∪z ] [W

′
x |f ]BA(RM`

) ,

i.e. REF INI SIM. In order to prove (2), we decompose the sequent

Q(C ); BA(TN ) ` [S ′
N ] [Wx ] [SM |x ] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im)

into m sequents of the form Q(C ); BA(TN ) ` [S ′
N ] [Wx ] [SM |x ] [wRN

:= w ′
RN

] I` for ` ∈ 1 ..m.
Letting z = free(I`) and θ = primed(Wx |z ) ∪ primed(SM |x∩z ), it is thus sufficient to prove

Q(C ); BA(TN |θ∪z ) ` [S ′
N |θ∪z ] [Wx |z ] [SM |x∩z ] [(wRN

:= w ′
RN

)|z ] I` ,

i.e. REF INI INV. �

4.2.5 Equivalent External Initialisation

We have to prove that the refined external initialisation is not less non-deterministic than the
abstract external initialisation.

Theorem 16

Q(C ); [×v ′ := ×v ′′]BA×
v
(RM );

×o ′ = ×o ′′; [×x := ×x ′′] [×y := ×y ′] J1; . . . ; [×x := ×x ′′] [×y := ×y ′] Jσ `
BA×

w
(RN )
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Proof: We apply the equalities ×o ′ = ×o ′′:

Q(C ); [×x ′ := ×x ′′]BA×
v
(RM );

[×x := ×x ′′] [×y := ×y ′] J1; . . . ; [×x := ×x ′′] [×y := ×y ′] Jσ `
BA×

w
(RN ) .

Because x and w are distinct, we can rename x ′′ to x ′:

Q(C ); BA×
v
(RM );

[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `
BA×

w
(RN ) .

We replace the relative before-after operators by relative before-after operators which is pos-
sible because external initialisations assign to all external variables (and only those).

Q(C ); BA(RM );
[×xRM

:= ×x ′RM
] [×y := ×y ′] J1; . . . ; [×xRM

:= ×x ′RM
] [×y := ×y ′] Jσ `

BA(RN ) .

We split RM into the deterministic part SM and the non-deterministic part TM , and apply
the equalities BA(SM ):

Q(C ); BA(TM );
[SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[SM |o ]BA(RN ) .

We split this sequent into q sequents:

Q(C ); BA(TM );
[SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[SM |o ]BA(RN`
) .

where ` ∈ 1 .. q . For all ` it is sufficient to prove

Q(C ); BA(TM |x∪f );

[SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[SM |f ]BA(RN`

) .

where f = frame(RN`
), i.e. REF INI EXT. �

4.2.6 Feasibility of Events

We must show that all events of M are feasible assuming that all of U(M ) hold. This is the
same proof obligation as for initial models. For each event we must prove:

Theorem 17

U(N ) ` ∀ t ·H1 ∧ . . . ∧ Hh ⇒∃w ′ ·BA(RN )
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Proof: Similarly to Theorem 7 we only need to prove

U(N ) ` ∀ t ·H1 ∧ . . . ∧ Hh ⇒ FIS(RN1) ∧ . . . ∧ FIS(RNq ) .

Using Theorem 7 rewriting yields: U(N ); H1; . . . ; Hh ` FIS(RN1) ∧ . . . ∧ FIS(RNq ). We
decompose this sequent into q sequents of the form U(N ); H1; . . . ; Hh ` FIS(R`) where
` ∈ 1 ..q . Applying the definition of FIS this means we have nothing to prove in case R` ∼ skip

or R` ∼ u` := E`. In the remaining two cases we have to prove U(N ); H1; . . . ; Hh ` E` 6= ∅
if R` ∼ u` :∈ E`, and U(N ); H1; . . . ; Hh ` ∃ u ′` ·A` if R` ∼ u` :| A`. This corresponds to
proving REF EVT FIS for all `. �

4.2.7 Before-States and After-States

In proof obligations that deal with refinement of events we must rename global variables of
the abstract model in order to achieve disjoint state spaces, for instance, [o := o1]U(M ). Fur-
thermore, we add a predicate o = o1 assuming equality of the before states to the antecedent.
So we have a sequent like: [o := o1]U(M ); o = o1; . . . ` . . .. We can apply the equalities
o = o1 to the entire sequent to remove o1 from all predicates. We state all proof obligations
after this renaming has been carried out and o1 does not appear anymore.

After-states of refined model events are named w ′, and after-states of the abstract model
events are named v ′′. Abstract model event after-states only appear existentially quantified
in the consequent. After application of the global witnesses all abstract after-states v ′′ are
removed.

4.2.8 Guard Strengthening of Events

We have to prove that the guards of refined events are stronger than the guards of their
abstract counterparts. We have two cases, one for events that are split (perhaps only into
one event) and for events that are merged. We deal with the split case first:

Theorem 18

U(N ); H1; . . . ; Hh ` ∃ tM ·G1 ∧ . . . ∧ Gg

Proof: Because of the feasibility of the event of the refined model we can add its before-after
predicate to the hypotheses. This implies that this theorem is proved as part of Theorem 20.
(In fact, we must prove it as part of Theorem 20 because the witnesses must be the same.)

�
The merge case is similar:

Theorem 19

U(N ); H1; . . . ; Hh ` ∃ tM ·((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk ))

Proof: Because of the feasibility of the event of the refined model we can add its before-after
predicate to the hypotheses. This implies that this theorem is proved as part of Theorem 21.

�
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4.2.9 Simulation of Events and Invariant Preservation

We have to show that the action of the abstract event can simulate the action of the refined
event and the resulting after-states satisfy the invariant (provided the before-states satisfy
the invariant).

Split case. In case of a split refinement the following must hold:

Theorem 20

U(N ); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN )) `
∃ tM ·G1 ∧ . . . ∧ Gg ∧ (∃ v ′′ ·[v ′ := v ′′]BAv (RM )) ∧

o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)

Proof: Using Theorem 7 on the local variables tN rewriting yields:

U(N ); H1; . . . ; Hh ; (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN )) `
∃ tM ·G1 ∧ . . . ∧ Gg ∧ (∃ v ′′ ·[v ′ := v ′′]BAv (RM )) ∧

o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

We instantiate tN in the antecedent and apply modus ponens to produce the simpler sequent:

U(N ); H1; . . . ; Hh ; BAw (RN ) `
∃ tM ·G1 ∧ . . . ∧ Gg ∧ (∃ v ′′ ·[v ′ := v ′′]BAv (RM )) ∧

o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

We assume the combined witness VtM has been chosen for the proof to succeed:

U(N ); H1; . . . ; Hh ; BAw (RN ) `
[VtM ]G1 ∧ . . . ∧ [VtM ]Gg ∧
(∃ v ′′ ·[VtM ] [v ′ := v ′′]BAv (RM )) ∧

o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

We replace BAw by BA denoting by wΞN
the variables that are not in the frame of RN , and

similarly for the abstract action RM where wΞM
denotes the variables not in the frame. This

yields:

U(N ); H1; . . . ; Hh ; BA(RN ); wΞN
= w ′

ΞN
`

[VtM ]G1 ∧ . . . ∧ [VtM ]Gg ∧ (1)
∃ v ′′ ·[VtM ] [v ′RM

:= v ′′RM
]BA(RM ) ∧ (2)

vΞM
= v ′′ΞM

∧ o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

32



To prove sequent (1) we split RN into a deterministic part SN and a non-deterministic part
TN , and apply the equalities wΞN

= w ′
ΞN

and BA(SN ):

U(N ); H1; . . . ; Hh ; BA(TN ) `
[S ′

N ] [w ′
ΞN

:= wΞN
] [VtM ]G1 ∧ . . . ∧ [S ′

N ] [w ′
ΞN

:= wΞN
] [VtM ]Gg

We split this sequent into g sequents:

U(N ); H1; . . . ; Hh ; BA(TN ) ` [S ′
N ] [w ′

ΞN
:= wΞN

] [VtM ]G`

for ` ∈ 1 .. g . Letting z = free(G`) and ψ = primed(VtM |z ) it is sufficient to prove

U(N ); H1; . . . ; Hh ; BA(TN |ψ) ` [S ′
N |ψ] [(w ′

ΞN
:= wΞN

)|ψ] [VtM |z ]G`

i.e. REF GRD REF (see also Theorem 18). Sequent (2) is proved by Theorem 22. �

Merge case. In case of a merge refinement the following must hold (Remember that for
events to be merged we require their actions to be identical.):

Theorem 21

U(N ); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN )) `
∃ tM ·((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk )) ∧

(∃ v ′′ ·[v ′ := v ′′]BAv (RM )) ∧
o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)

Proof: The proof is almost identical to that of Theorem 18. Using Theorem 7 on the local
variables tN rewriting yields:

U(N ); H1; . . . ; Hh ; (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN )) `
∃ tM ·((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk )) ∧

(∃ v ′′ ·[v ′ := v ′′]BAv (RM )) ∧
o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)

We instantiate tN in the antecedent and apply modus ponens to produce the simpler sequent:

U(N ); H1; . . . ; Hh ; BAw (RN ) `
∃ tM ·((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk )) ∧

(∃ v ′′ ·[v ′ := v ′′]BAv (RM )) ∧
o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)
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We assume the combined witness VtM has been chosen for the proof to succeed:

U(N ); H1; . . . ; Hh ; BAw (RN ) `
[VtM ] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk )) ∧
(∃ v ′′ ·[v ′ := v ′′]BAv (RM )) ∧

o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)

We replace BAw by BA denoting by wΞN
the variables that are not in the frame of RN , and

similarly for the abstract action RM where wΞM
denotes the variables not in the frame. This

yields:

U(N ); H1; . . . ; Hh ; BA(RN ); wΞN
= w ′

ΞN
`

[VtM ] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk )) ∧ (1)
∃ v ′′ ·[VtM ] [v ′RM

:= v ′′RM
]BA(RM ) ∧ (2)

vΞM
= v ′′ΞM

∧ o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

To prove sequent (1) we split RN into a deterministic part SN and a non-deterministic part
TN , and apply the equalities wΞN

= w ′
ΞN

and BA(SN ):

U(N ); H1; . . . ; Hh ; BA(TN ) `
[S ′

N ] [w ′
ΞN

:= wΞN
] [VtM ] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk )) .

Letting ψ = primed(VtM ) it is sufficient to prove

U(N ); H1; . . . ; Hh ; BA(TN |ψ) `
[S ′

N |ψ] [(w ′
ΞN

:= wΞN
)|ψ] [VtM ] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk )) .

i.e. REF GRD MRG (see also Theorem 19). Sequent (2) is proved by Theorem 22. �

Theorem 22

U(N ); H1; . . . ; Hh ; BA(RN ); wΞN
= w ′

ΞN
`

∃ v ′′ ·[VtM ] [v ′RM
:= v ′′RM

]BA(RM ) ∧
vΞM

= v ′′ΞM
∧ o ′ = o ′′ ∧

[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

Proof: We apply the one-point rule for the common variables o:

U(N ); H1; . . . ; Hh ; BA(RN ); wΞN
= w ′

ΞN
`

∃ x ′′ ·[VtM ] [x ′RM
:= x ′′RM

]BA(RM ) ∧
[o ′′ := o ′] vΞM

= v ′′ΞM
∧

[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .
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We split vΞM
into to sets of disappearing variables xΞM

and common variables oΞM
:

U(N ); H1; . . . ; Hh ; BA(RN ); wΞN
= w ′

ΞN
`

∃ x ′′ ·[VtM ] [x ′RM
:= x ′′RM

]BA(RM ) ∧
xΞM

= x ′′ΞM
∧ oΞM

= o ′ΞM
∧

[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

We apply the one-point law to xΞM
= x ′′ΞM

(note, that primed variables do not occur free in
VtM ):

U(N ); H1; . . . ; Hh ; BA(RN ); wΞN
= w ′

ΞN
`

∃ x ′′RM
·[VtM ] [x ′RM

:= x ′′RM
]BA(RM ) ∧

oΞM
= o ′ΞM

∧
[xRM

:= x ′′RM
] [w := w ′] (I1 ∧ . . . ∧ Im) .

Now we split the abstract action RM into a deterministic part SM and a non-deterministic
part TM :

U(N ); H1; . . . ; Hh ; BA(RN ); wΞN
= w ′

ΞN
`

∃ x ′′RM
·[VtM ] [x ′RM

:= x ′′RM
] (BA(SM ) ∧ BA(TM )) ∧

oΞM
= o ′ΞM

∧
[xRM

:= x ′′RM
] [w := w ′] (I1 ∧ . . . ∧ Im) .

We can apply the one-point rule for [VtM ]BA(S ′′
M |x ):

U(N ); H1; . . . ; Hh ; BA(RN ); wΞN
= w ′

ΞN
`

∃ x ′′TM
·[VtM ] [x ′TM

:= x ′′TM
] (BA(TM ) ∧ BA(SM |o)) ∧

oΞM
= o ′ΞM

∧
[VtM ] [S ′′

M |x ] [xRM
:= x ′′RM

] [w := w ′] (I1 ∧ . . . ∧ Im) .

We instantiate the remaining disappearing variables x ′′TM
using the global witness Wx , assum-

ing they have been chosen for the proof to succeed:

U(N ); H1; . . . ; Hh ; BA(RN ); wΞN
= w ′

ΞN
`

[W ′′
x ] [VtM ] [x ′TM

:= x ′′TM
] (BA(TM ) ∧ BA(SM |o)) ∧

oΞM
= o ′ΞM

∧
[W ′′

x ] [VtM ] [S ′′
M |x ] [xRM

:= x ′′RM
] [w := w ′] (I1 ∧ . . . ∧ Im) .

We can swap W ′′
x and VtM because frame(W ′′

x ) ∩ frame(VtM ) is empty, x ′′ 6∈ free(VtM ), and
tM \ tN 6∈ free(W ′′

x ):

U(N ); H1; . . . ; Hh ; BA(RN ); wΞN
= w ′

ΞN
`

[VtM ] [W ′′
x ] [x ′TM

:= x ′′TM
] (BA(TM ) ∧ BA(SM |o)) ∧

oΞM
= o ′ΞM

∧
[VtM ] [W ′′

x ] [S ′′
M |x ] [xRM

:= x ′′RM
] [w := w ′] (I1 ∧ . . . ∧ Im) .
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We simplify and apply the equalities wΞN
= w ′

ΞN
:

U(N ); H1; . . . ; Hh ; BA(RN ) `
[w ′

ΞN
:= wΞN

] [VtM ] [W ′
x ] (BA(TM ) ∧ BA(SM |o)) ∧

[w ′
ΞN

:= wΞN
] oΞM

= o ′ΞM
∧

[w ′
ΞN

:= wΞN
] [VtM ] [Wx ] [SM |x ] [wRN

:= w ′
RN

] (I1 ∧ . . . ∧ Im) .

We partition RN into a deterministic part SN and a non-deterministic part TN , and rewrite
the claim:

U(N ); H1; . . . ; Hh ; BA(TN ) `
[S ′

N ] [w ′
ΞN

:= wΞN
] [VtM ] [W ′

x ] (BA(TM ) ∧ BA(SM |o)) ∧ (1)

[S ′
N ] [w ′

ΞN
:= wΞN

] oΞM
= o ′ΞM

∧ (2)

[S ′
N ] [w ′

ΞN
:= wΞN

] [VtM ] [Wx ] [SM |x ] [wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im) . (3)

This sequent can be decomposed into three sequents: (1) deals with simulation by RM , (2)
deals with simulation by ΞM , and (3) deals with invariant preservation. Sequent (1), i.e.
U(N ); H1; . . . ; Hh ; BA(TN ) ` [S ′

N ] [w ′
ΞN

:= wΞN
] ([W ′

x ]BA(TM ) ∧ BA(SM |o)) can be
decomposed into the sequents

U(N ); H1; . . . ; Hh ; BA(TN ) `
[S ′

N ] [w ′
ΞN

:= wΞN
] [VtM ] [W ′

x ]BA(RM`
)

for RM`
6∈ SM |x . Letting f = frame(RM`

), ψ = free(RM`
), and χ = primed(Wx |f ), it is sufficient

to prove:

U(N ); H1; . . . ; Hh ; BA(TN |f ∪χ) `
[S ′

N |f ∪χ] [(w
′
ΞN

:= wΞN
)f ∪χ] [VtM |ψ] [W ′

x |f ]BA(RM`
) ,

i.e. REF EVT SIM ∆. Sequent (2) is proved by REF EVT SIM Ξ for the common variables
u of M and N that are not in the frame of RM but are in the frame of RN (in other words
u ∈ o ∩ (frame(RN ) \ frame(RM )):

U(N ); H1; . . . ; Hh ; BA(TN |u) ` [S ′
N |u ] u = u ′ .

In the case where u is not in either frame, sequent (1) is trivially true. Sequent (3) can be
decomposed into m sequents:

U(N ); H1; . . . ; Hh ; BA(TN ) `
[S ′

N ] [w ′
ΞN

:= wΞN
] [VtM ] [Wx ] [SM |x ] [wRN

:= w ′
RN

] I` ,

for ` ∈ 1 ..m, and for each ` it is sufficient to prove:

U(N ); H1; . . . ; Hh ; BA(TN |η∩z ) `
[S ′

N |η∩z ] [(w
′
ΞN

:= wΞN
)|η∩z ] [VtM |φ] [Wx |z ] [SM |x∩z ] [(wRN

:= w ′
RN

)|z ] I` .

where z = free(I`), φ = free(SM |x∩z ), and η = primed(Wx |z ) ∪ primed(SM |x∩z ), i.e. proof
obligation REF EVT INV. �
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4.2.10 Guard Weakening of External Events

Theorem 23

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ` ∃ tN ·H1 ∧ . . . ∧ Hh

Proof: Because of the feasibility of the abstract event and surjectivity of J1 ∧ . . . ∧ Jσ
interpreted as a mapping from states of the refined model to states of the abstract model, we
can add the abstract before-after predicate and the external invariant to the hypotheses:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ;
[×x := ×x ′′]BA×

v
(RM ); [×x := ×x ′′] [×y := ×y ′] J1; . . . ; [×x := ×x ′′] [×y := ×y ′] Jσ `

∃ tN ·H1 ∧ . . . ∧ Hh .

This is proved as part of Theorem 24. �

Remark. Guard strengthening (Theorem 18) and guard weakening (Theorem 23) of exter-
nal events together imply that the guards of external events are equivalent.

4.2.11 Equivalent External Events

Theorem 24

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; [×v := ×v ′′]BA×
v
(RM );

×o ′ = ×o ′′; [×x := ×x ′′] [×y := ×y ′] J1; . . . ; [×x := ×x ′′] [×y := ×y ′] Jσ `
∃ tN ·H1 ∧ . . . ∧ Hh ∧ BA×

w
(RN )

Proof: We apply the equalities ×o ′ = ×o ′′, yielding:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; [×x := ×x ′′]BA×
v
(RM );

[×x := ×x ′′] [×y := ×y ′] J1; . . . ; [×x := ×x ′′] [×y := ×y ′] Jσ `
∃ tN ·H1 ∧ . . . ∧ Hh ∧ BA×

w
(RN )

Because x and w are distinct, we can rename x ′′ to x ′:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA×
v
(RM );

[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `
∃ tN ·H1 ∧ . . . ∧ Hh ∧ BA×

w
(RN ) .

We assume that the witnesses for tN have been chosen for the proof to succeed:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA×
v
(RM );

[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `
[VtN ]H1 ∧ . . . ∧ [VtN ]Hh ∧ (1)
[VtN ]BA×

w
(RN ) . (2)
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We split sequent (1) into h sequents:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA×
v
(RM );

[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `
[VtN ]H` .

for ` ∈ 1 .. h. The before-after predicate can be split according to the frame of RM , and the
latter can split into a deterministic part SM and a non-deterministic part TM :

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM ); BA(SM ); BA(ΞM );
[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `

[VtN ]H` .

We apply the equalities BA(SM ) and BA(ΞM ) to yield:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM );
[SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[S ′
M ] [×v ′ΞM

:= ×vΞM
] [VtN ]H` .

Letting z = free(H`) and ψ = primed(VtN |z ) it is sufficient to prove:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪ψ);

[SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[S ′

M |ψ] [(×v ′ΞM
:= ×vΞM

)|ψ] [VtN |z ]H` .

i.e. REF GRD EXT. Sequent (2) remains to be proved:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA×
v
(RM );

[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `
[VtN ]BA×

w
(RN ) .

This equivalent to:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(RM ); BA(ΞM );
[×x := ×x ′] [×y := ×y ′] J1; . . . ; [×x := ×x ′] [×y := ×y ′] Jσ `

[VtN ]BA(RN ) ∧
[VtN ]BA(ΞN ) .

We apply the equalities BA(ΞM ). This yields (ΞN does not refer to local variables):

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(RM );
[×xRM

:= ×x ′RM
] [×y := ×y ′] J1; . . . ; [×xRM

:= ×x ′RM
] [×y := ×y ′] Jσ `

[×v ′ΞM
:= ×vΞM

] [VtN ]BA(RN ) ∧
[×o ′ΞM

:= ×oΞM
] (×w′

ΞN
= ×wΞN

) .
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We split RM into a deterministic substitution SM and a non-deterministic substitution TM ,
and apply the equalities BA(SM ):

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM );
[SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[S ′
M ] [×v ′ΞM

:= ×vΞM
] [VtN ]BA(RN ) ∧ (3)

[S ′
M |o ] [×o ′ΞM

:= ×oΞM
] (×w′

ΞN
= ×wΞN

) . (4)

We prove sequent (3) by splitting it into q sequents:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM );
[SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[S ′
M ] [×v ′ΞM

:= ×vΞM
] [VtN ]BA(RN`

) ,

where ` ∈ 1 .. q . Letting f = frame(RN`
) it is sufficient to prove:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪f );

[SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[S ′

M |f ] [(
×v ′ΞM

:= ×vΞM
)|f ] [VtN ]BA(RN`

) ,

i.e. REF EVT GEN ∆. Sequent (4) is proved by

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM );
[SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM

:= ×x ′TM
] [×y := ×y ′] Jσ `

[S ′
M |o ] (u = u ′) ,

for all u ∈ o ∩ (frame(RM ) \ frame(RN )). Thus it is sufficient to prove:

Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪u);

[SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `
[S ′

M |u ] (u = u ′) ,

i.e. REF EVT GEN Ξ. �

4.2.12 Simulation of Skip and Invariant Preservation

If an ordinary event is introduced we only need to prove that it preserves the invariant and
refines skip.

Theorem 25

U(N ); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN )) `
∃ v ′′ ·[v ′ := v ′′]BAv (skip) ∧

o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im)
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Proof: We proceed similarly to the proof of Theorem 20. After simplifying the antecedent
we obtain:

U(N ); H1; . . . ; Hh ; BAw (RN ) `
∃ v ′′ ·[v ′ := v ′′]BAv (skip) ∧

o ′ = o ′′ ∧
[x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

The predicate BAv (skip) is v ′ = v , hence, we can simplify using the one-point rule:

U(N ); H1; . . . ; Hh ; BAw (RN ) `
[v ′′ := v ] o ′ = o ′′ ∧
[v ′′ := v ] [x := x ′′] [w := w ′] (I1 ∧ . . . ∧ Im) .

We continue simplifying:

U(N ); H1; . . . ; Hh ; BAw (RN ) `
o ′ = o ∧
[w := w ′] (I1 ∧ . . . ∧ Im) .

We replace BAw by BA, and apply the equalities:

U(N ); H1; . . . ; Hh ; BA(RN ) `
[w ′

ΞN
:= wΞN

] o ′ = o ∧
[w ′

ΞN
:= wΞN

] [w := w ′] (I1 ∧ . . . ∧ Im) .

Thus,

U(N ); H1; . . . ; Hh ; BA(RN ) `
o ′RN

= oRN
∧

[wRN
:= w ′

RN
] (I1 ∧ . . . ∧ Im) .

We split RN into a deterministic part SN and a non-deterministic part TN , apply the equalities
BA(SN ), and simplify:

U(N ); H1; . . . ; Hh ; BA(TN ) `
[S ′

N ] o ′RN
= oRN

∧ (1)

[SN ] [wTN
:= w ′

TN
] (I1 ∧ . . . ∧ Im) . (2)

In order to prove (1), it is sufficient to show:

U(N ); H1; . . . ; Hh ; BA(TN |u) ` [S ′
N |u ] u ′ = u

for all u ∈ frame(RN ) ∩ o, i.e. REF NEW SIM. To show (2) we prove m sequents:

U(N ); H1; . . . ; Hh ; BA(TN ) ` [SN ] [wTN
:= w ′

TN
] I` ,

where ` ∈ 1 ..m. Letting z = free(I`), it suffices to prove:

U(N ); H1; . . . ; Hh ; BA(TN |z ) ` [SN |z ] [(wTN
:= w ′

TN
)|z ] I` ,

i.e. REF NEW INV. �
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4.2.13 Reduction of a Set Variant

The variant of a model must be a finite set. It is decreased by convergent events; it is not
increased by anticipated events.

Theorem 26

U(N ) ` finite(D)

Proof: This is trivially proven by REF VAR FIN P. �

Theorem 27

U(N ); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN )) ` ([w := w ′]D) ⊆ D

Proof: We proceed similarly to the first steps of the proof of Theorem 20 to obtain:

U(N ); H1; . . . ; Hh ; BAw (RN ) ` ([w := w ′]D) ⊆ D .

Thus,

U(N ); H1; . . . ; Hh ; BA(RN ) ` ([wRN
:= w ′

RN
]D) ⊆ D .

We split RN into a deterministic part SN and a non-deterministic part TN , apply the equalities
BA(SN ), and simplify:

U(N ); H1; . . . ; Hh ; BA(TN ) ` ([SN ][wTN
:= w ′

TN
]D) ⊆ D ,

thus, letting z = free(D):

U(N ); H1; . . . ; Hh ; BA(TN |z ) ` ([SN |z ][(wTN
:= w ′

TN
)|z ]D) ⊆ D ,

i.e. REF ANT VAR P. �

Theorem 28

U(N ); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN )) ` ([w := w ′]D) ⊂ D

Proof: Following the same steps as in the proof of Theorem 27 we obtain:

U(N ); H1; . . . ; Hh ; BA(TN |z ) ` ([SN |z ][(wTN
:= w ′

TN
)|z ]D) ⊂ D ,

i.e. REF CVG VAR P, where z = free(D). �
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4.2.14 Reduction of a Natural Number Variant

In the case when the variant can be expressed as a number specialised proof obligations can
be used. If DZ describes an integer number, then 0 .. DZ is a set. So, all we have to do is to
state the equivalents of Theorems 26 to 28 for natural numbers.

Theorem 29

U(N ) ` finite(0 ..DZ)

Proof: The set 0 ..DZ is finite. �

Theorem 30

U(N ); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN )) `
([w := w ′] 0 ..DZ) ⊆ 0 ..DZ

Proof: We obtain (see Theorem 27):

U(N ); H1; . . . ; Hh ; BA(TN ) ` ([SN ][wTN
:= w ′

TN
] 0 ..DZ) ⊆ 0 ..DZ .

The consequent can be expressed equivalently:

U(N ); H1; . . . ; Hh ; BA(TN ) `
DZ ∈ N ∧ (1)
([SN ][wTN

:= w ′
TN

]DZ) ≤ DZ . (2)

Letting z = free(DZ) the first sequent becomes

U(N ); H1; . . . ; Hh ` DZ ∈ N ,

i.e. REF ANT VAR N and the second sequent:

U(N ); H1; . . . ; Hh ; BA(TN |z ) ` ([SN |z ][(wTN
:= w ′

TN
)|z ]DZ) ≤ DZ ,

i.e. REF ANT VAR ∆. �

Theorem 31

U(N ); (∃ tN ·H1 ∧ . . . ∧ Hh); (∀ tN ·H1 ∧ . . . ∧ Hh ⇒ BAw (RN )) `
([w := w ′] 0 ..DZ) ⊂ 0 ..DZ

Proof: We proceed as in the proof of Theorem 30 and with z = free(DZ) obtain the sequents:

U(N ); H1; . . . ; Hh ` DZ ∈ N ,

i.e. REF CVG VAR N, and:

U(N ); H1; . . . ; Hh ; BA(TN |z ) ` ([SN |z ][(wTN
:= w ′

TN
)|z ]DZ) ≤ DZ

i.e. REF CVG VAR ∆. �
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4.2.15 Introduction of New Events

Ordinary Events. If an ordinary event is introduced we must prove Theorem 25.

Anticipated Events. If an anticipated event is introduced we must prove Theorem 25
and that the event does not increase the variant. If there are no convergent events either
by refinement or introduction, there is no variant for the model and, hence, there is nothing
to prove. In the other case Theorem 26 and Theorem 27 must hold (or alternatively only
Theorem 30).

Convergent Events. If a convergent event is introduced we must prove Theorem 25 and
that the event decreases the variant. I.e. we must also prove Theorem 26 and Theorem 28
must hold (or alternatively only Theorem 31).

4.2.16 Refinement of Events

External Events. External events can neither be anticipated nor convergent. They must,
however, not have a stronger guard or be less deterministic. We must prove Theorem 20 and
Theorem 24.

Ordinary Events. If the refined event is ordinary we must prove Theorem 20 or Theo-
rem 21.

Anticipated Events. If the refined event is anticipated we must prove Theorem 20 or
Theorem 21, and that the event does not increase the variant (if there is a variant in the
refined model). If there is a variant we must also prove Theorem 26 and Theorem 27 (or
alternatively only Theorem 30).

Convergent Events. If the refined event is convergent we must prove Theorem 20 or
Theorem 21, and that the event decreases the variant. I.e. we must also prove Theorem 26
and Theorem 28 must hold (or alternatively only Theorem 31).

4.2.17 Relative Deadlock-Freedom

We must prove that the disjunction of the guards of the internal events of the refined model im-
plies the disjunction of the guards of the internal events of the abstract model. Let eN

1 , . . . , e
N
`

be the internal events of the refined model, and eM
1 , . . . , eM

k be the internal events of the ab-
stract model.

Theorem 32

U(M ); GD(eN
1 ) ∨ . . . ∨ GD(eN

` ) ` GD(eM
1 ) ∨ . . . ∨ GD(eM

k )

Proof: By REF DLK. �
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4.3 Generated Proof Obligations

4.3.1 Well-definedness of Invariants

Proof Obligation: REF INV WD

FOR invariant I` of N WHERE

` ∈ 1 ..m

ID “REF/INV`/WD”

GPO Q(C ); I(M ); I1; . . . ; I`−1 ` WD(I`)

Proof of WDEF: Analogously to MDL INV WD. �

Remark. REF INV WD is identical to MDL INV WD (3.3.1 on page 18) apart from re-
naming.

Remark. See remarks on MDL INV WD.

4.3.2 Well-definedness of Theorems

Proof Obligation: REF THM WD

FOR theorem Q` of N WHERE

` ∈ 1 .. n

ID “REF/THM`/WD”

GPO Q(C ); I(M ); J (N ); Q1; . . . ; Q`−1 ` WD(Q`)

Proof of WDEF: Analogously to MDL THM WD. �

Remark. REF THM WD is identical to MDL THM WD (3.3.2 on page 19) apart from
renaming.

Remark. See remarks on MDL THM WD.
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4.3.3 Model Theorems

Proof Obligation: REF THM

FOR theorem Q` of N WHERE

` ∈ 1 .. n

ID “REF/THM`/THM”

GPO Q(C ); I(M ); J (N ); Q1; . . . ; Q`−1 ` Q`

Proof of WDEF: Analogously to MDL THM. �

Remark. REF THM is identical to MDL THM (3.3.3 on page 19) apart from renaming.

Remark. See remarks on MDL THM.

4.3.4 Functional External Invariant

Proof Obligation: REF EXT FUN

FOR external invariants J1, .., Jσ of N WHERE

>

ID “REF/EXT/FUN”

GPO Q(C ); [×x := ×x] J1; . . . ; [×x := ×x] Jσ; [×x := ×x ′] J1; . . . ; [×x := ×x ′] Jσ ` ×x = ×x ′

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C ), and J1, . . . , Jσ before by REF INV WD. �

4.3.5 Total External Invariant

Proof Obligation: REF EXT TOT

FOR external invariants J1, .., Jσ of N WHERE

>

ID “REF/EXT/TOT”

GPO Q(C ) ` ∀×x · ∃×y ·J1 ∧ . . . ∧ Jσ

Proof of WDEF: Similarly to REF EXT FUN. �
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4.3.6 Surjective External Invariant

Proof Obligation: REF EXT SRJ

FOR external invariants J1, .., Jσ of N WHERE

>

ID “REF/EXT/SRJ”

GPO Q(C ) ` ∀×y · ∃×x ·J1 ∧ . . . ∧ Jσ

Proof of WDEF: Similarly to REF EXT FUN. �

4.3.7 Well-definedness of Initialisation

Proof Obligation: REF INI WD

FOR substitution R` of the combined initialisation of N WHERE

` ∈ 1 .. n AND u` = frame(R`)

ID “REF/INIT/u`/WD”

GPO > (if R` ∼ skip)

GPO Q(C ) ` WD(E`) (if R` ∼ u` := E`)

GPO Q(C ) ` WD(E`) (if R` ∼ u` :∈ E`)

GPO Q(C ) ` WD(A`) (if R` ∼ u` :| A`)

Proof of WDEF: Analogously to MDL INI WD. �

Remark. REF INI WD is identical to MDL INI WD (3.3.4 on page 19) apart from renam-
ing.

Remark. See remarks on MDL INI WD.
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4.3.8 Feasibility of Initialisation

Proof Obligation: REF INI FIS

FOR substitution R` of the combined initialisation of N WHERE

` ∈ 1 .. n AND u` = frame(R`)

ID “REF/INIT/u`/FIS”

GPO > (if R` ∼ skip)

GPO > (if R` ∼ u` := E`)

GPO Q(C ) ` E` 6= ∅ (if R` ∼ u` :∈ E`)

GPO Q(C ) ` ∃ u ′` ·A` (if R` ∼ u` :| A`)

Proof of WDEF: Analogously to MDL INI FIS. �

Remark. REF INI FIS is identical to MDL INI FIS (3.3.5 on page 20) apart from renam-
ing.

Remark. See remarks on MDL INI FIS.

4.3.9 Simulation of Initialisation

Proof Obligation: REF INI SIM

FOR combined initialisation of N and combined initialisation of M WHERE

` ∈ 1 .. p AND RM`
6∈ SM |x AND f = frame(RM`

) AND z = primed(Wx |f )

ID “REF/INIT/u/SIM”

GPO Q(C ); BA(TN |f ∪z ) ` [S ′
N |f ∪z ] [W

′
x |f ]BA(RM`

)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C ), and TN and SN by REF INI WD, and combined witness Wx by REF GWIT WD,
and RM`

by MDL INI WD/REF INI WD. �

Remark. This proof obligation should only be generated when the initialisations, external
and internal, of the models M and N are well-formed and well-typed. It should be avoided
to present the user with proof obligations that may not be stable.

Remark. Note also, that the initialisation of a model must assign values to variables of
that model. This means there no variables outside its frame.

47



4.3.10 Unreduced External Initialisation

Proof Obligation: REF INI EXT

FOR subst. RN`
of ext. initialisation of N and ext. initialisation of M WHERE

` ∈ 1 .. q AND f = frame(RN`
)

ID “REF/INIT/f /EXT”

GPO Q(C ); BA(TM |x∪f );

[SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `

[SM |f ]BA(RN`
)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C ), and J1 . . . Jσ by REF INV WD, and substitution RN`

by REF INI WD, and SM

and TM by MDL INI WD/REF INI WD. �

4.3.11 Invariant Establishment

Proof Obligation: REF INI INV

FOR combined initialisation of N and invariant I` of N WHERE

` ∈ 1 .. i AND z = free(I`) AND θ = primed(Wx |z ) ∪ primed(SM |x∩z )

ID “REF/INIT/INV`/INV”

GPO Q(C ); BA(TN |θ∪z ) ` [S ′
N |θ∪z ] [Wx |z ] [SM |x∩z ] [(wRN

:= w ′
RN

)|z ] I`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C ), and TN and SN by REF INI WD, and Wx by REF GWIT WD, and invariant I`
by REF INV WD. �

4.3.12 Well-definedness of Guards

Proof Obligation: REF GRD WD

FOR guard H` of event eN of N WHERE

` ∈ 1 .. h

ID “REF/EVT/GRN`/WD”

PO U(N ); H1; . . . ; H`−1 ` WD(H`)
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Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1, . . . ,H`−1 before by REF GRD WD, and tN1 , . . . , t

N
j nfin U(N ) by Theo-

rem 7. �

Remark. REF GRD WD is identical to MDL GRD WD (3.3.7 on page 21) apart from
renaming.

4.3.13 Well-definedness of Local Witnesses

Remark. There are two kinds of local witnesses: witnesses for local variables of the abstract
event, and for external events also witnesses for local variables of the refined event.

Proof Obligation: REF LWIT WD A

FOR witness WtM`
of event eN of N WHERE

` ∈ 1 .. i AND WtM`
∼ tM` := E

ID “REF/EVT/tM` /WWD”

GPO U(N ); H1; . . . ; Hh ` WD(E )

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1, . . . ,Hh before by REF GRD WD, and tN1 , . . . , t

N
j nfin U(N ) by Theorem 7.

�

Remark. This proof obligation does not apply to index ` for tM` ∈ tN because it is not
possible to specify explicit witnesses for local variables for which default witnesses are used.

Proof Obligation: REF LWIT WD R

FOR witness WtN`
of event eN of N WHERE

` ∈ 1 .. i AND WtN`
∼ tN` := E

ID “REF/EVT/tN` /WWD”

GPO Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ` WD(E )

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of Q(C ), and the external invariants J1, . . . , Jσ by REF INV WD, and the guards G1, . . . ,Gg

by MDL GRD WD/REF GRD WD, and tM1 , . . . , tMj nfin U(N ) by Theorem 7. �
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Remark. This proof obligation does not apply to index ` for tN` ∈ tM because it is not
possible to specify explicit witnesses for local variables for which default witnesses are used.

4.3.14 Well-definedness of Global Witnesses of Events

Proof Obligation: REF GWIT WD

FOR witness Wu of event eN of N WHERE

Wu ∼ u := E AND z = primed(E )

ID “REF/EVT/u/WWD”

GPO U(N ); H1; . . . ; Hh ` BA(TN |z )⇒ [S ′
N |z ]WD(E )

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and the guards H1, . . . ,Hh by REF GRD WD, and TN and SN by REF EVT WD,
and tN1 , . . . , t

N
j nfin U(N ) by Theorem 7. �

4.3.15 Guard Strengthening (Split Case)

Proof Obligation: REF GRD REF

FOR event eN of N and guard G` of event eM of M WHERE

` ∈ 1 .. g AND z = free(G`) AND ψ = primed(VtM |z )

ID “REF/EVT/GRM`/REF”

GPO U(N ); H1; . . . ; Hh ; BA(TN |ψ) ` [S ′
N |ψ] [(w ′

ΞN
:= wΞN

)|ψ] [VtM |z ]G`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1, . . . ,Hh by REF GRD WD, and that of SN and TN by REF EVT WD,
and VtM by REF LWIT WD A, and guard G` by MDL GRD WD/REF GRD WD, and
tN1 , . . . , t

N
j nfin U(N ) by Theorem 7. �
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4.3.16 Guard Weakening of External Events

Proof Obligation: REF GRD EXT

FOR guard H` of external event eN of N and external event eM of M WHERE

` ∈ 1 .. h AND z = free(H`) AND ψ = primed(VtN |z )

ID “REF/EVT/GRN`/EXT”

GPO Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪ψ);

[SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `

[S ′
M |ψ] [(×v ′ΞM

:= ×vΞM
)|ψ] [VtN |z ]H`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H` by REF GRD WD, and VtN by REF LWIT WD R, and the guards G1 . . .Gg

by MDL GRD WD/REF GRD WD, and SM and TM by MDL EVT WD/REF EVT WD,
and tM1 , . . . , tMi nfin U(N ) by Theorem 7. �

Remark. This proof obligation applies to all external events of a model. In conjunction
with REF GRD REF it shows that the guards of an external event and the corresponding
refined event are equivalent.

Remark. External events can neither be split nor be merged. The proof obligation that
applies is that for the split case (where the abstract event is split into only one event).

Remark. The combined witnesses VtM and VtN are used for both proof obligations con-
cerning guards REF GRD REF and REF GRD EXT. This is possible because identically
named local variables u must denote the same objects. They are associated with default wit-
nesses of the form u := u. These are applied in both directions. For the remaining variables
with distinct names it is clear for which proof obligation they are to be applied because they
only occur either in the guard of the abstract event or in the guard of the refined event.
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4.3.17 Guard Strengthening (Merge Case)

Proof Obligation: REF GRD MRG

FOR event eN of N and events eM
1 , . . . , eM

k of M WHERE

ψ = primed(VtM )

ID “REF/EVT/MRG”

GPO U(N ); H1; . . . ; Hh ; BA(TN |ψ) `

[S ′
N |ψ] [(w ′

ΞN
:= wΞN

)|ψ] [VtM ] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk ))

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1, . . . ,Hh by REF GRD WD, and that of SN and TN by REF EVT WD,
and the combined witness VtM by REF LWIT WD A, and G1,1 . . .G1,g1 . . . Gk ,1 . . .Gk ,gk by
MDL GRD WD/REF GRD WD, and tN1 , . . . , t

N
j nfin U(N ) by Theorem 7. �

Remark. Unfortunately this proof obligation cannot be further decomposed.

4.3.18 Well-definedness of Event Actions

Proof Obligation: REF EVT WD

FOR substitution R` of event eN of N WHERE

` ∈ 1 .. n AND u` = frame(R`)

ID “REF/EVT/u`/WD”

GPO > (if R` ∼ skip)

GPO U(N ); H1; . . . ; Hh ` WD(E`) (if R` ∼ u` := E`)

GPO U(N ); H1; . . . ; Hh ` WD(E`) (if R` ∼ u` :∈ E`)

GPO U(N ); H1; . . . ; Hh ` WD(A`) (if R` ∼ u` :| A`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1 . . .Hh before by REF GRD WD, and t1, . . . tj nfin U(N ) by Theorem 7. �

Remark. REF EVT WD is identical to MDL EVT WD (3.3.8 on page 21) apart from
renaming.
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4.3.19 Feasibility of Event Actions

Proof Obligation: REF EVT FIS

FOR substitution R` of event eN of N WHERE

` ∈ 1 .. n AND u` = frame(R`)

ID “REF/EVT/u`/FIS”

GPO > (if R` ∼ skip)

GPO > (if R` ∼ u` := E`)

GPO U(N ); H1; . . . ; Hh ` E` 6= ∅ (if R` ∼ u` :∈ E`)

GPO U(N ); H1; . . . ; Hh ` ∃ u ′` ·A` (if R` ∼ u` :| A`)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1 . . .Hh has be shown by REF GRD WD, and that of E` (respectively A`) by
REF EVT WD, and t1, . . . tj nfin U(N ) by Theorem 7. �

Remark. REF EVT FIS is identical to MDL EVT FIS (3.3.9 on page 22) apart from re-
naming.

4.3.20 Simulation of Refined-Event Actions

Remark. There are two cases of simulation to be treated as indicated in the proof obli-
gations REF EVT SIM (∆/Ξ) by underlining the corresponding conditions. This happens
because an event behaves like skip on variables that are not in its frame. For each event, the
generated simulation proof obligations must cover all abstract variables v .

Proof Obligation: REF EVT SIM ∆

FOR refined event eN of N and substitution RM`
of event eM of M WHERE

` ∈ 1 .. p AND RM`
6∈ SM |x AND

f = frame(RM`
) AND ψ = free(RM`

) AND χ = primed(Wx |f )

ID “REF/EVT/u/SIM”

GPO U(N ); H1; . . . ; Hh ; BA(TN |f ∪χ) `

[S ′
N |f ∪χ] [(w

′
ΞN

:= wΞN
)f ∪χ] [VtM |ψ] [W ′

x |f ]BA(RM`
)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
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of U(N ), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, , and that of RM`

by MDL EVT WD/REF EVT WD, and Wx by
REF GWIT WD, and t1, . . . tj nfin U(N ) by Theorem 7. �

Remark. We have the choice to add either proved invariant preservation as lemmas to
the antecedent of this generated proof obligation, or the simulations as lemmas to the an-
tecedents of the invariant preservation proof obligations REF EVT INV. We have decided
for the second choice because, empirically, the simulation proof obligation is usually straight-
forward whereas invariant preservation proofs are more difficult and profit from the addition
antecedents. See the remarks on REF EVT INV.

Split GPO. In case of a split refinement we can add some useful additional hypotheses
to REF EVT SIM ∆, assuming that REF GRD REF (Theorem 18) has been proven as a
lemma (for all G`):

U(N ); [VtM |θ1 ]G1; . . . ; [VtM |θg ]Gg ; H1; . . . ; Hh ; BA(TN |f ∪χ) `
[S ′

N |f ∪χ] [(w
′
ΞN

:= wΞN
)f ∪χ] [VtM |ψ] [W ′

x |f ]BA(RM`
)

where θ` = free(G`) for ` ∈ 1 .. g . This is still well-defined because we have shown well-
definedness of G1, . . . ,Gg has be shown by MDL GRD WD/REF GRD WD, and VtM by
REF LWIT WD A.

Merge GPO. In case of a merge refinement we can add some useful additional hypotheses
to REF EVT SIM ∆, assuming that REF GRD MRG (Theorem 19) has been proven as a
lemma:

U(N );
[VtM ] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk ));
H1; . . . ; Hh ; BA(TN |f ∪χ) `

[S ′
N |f ∪χ] [(w

′
ΞN

:= wΞN
)f ∪χ] [VtM |ψ] [W ′

x |f ]BA(RM`
)

This is still well-defined because we have shown well-definedness of (G1,1, . . . ,G1,g1), . . . ,
(Gk ,1, . . . ,Gk ,gk ) has be shown by MDL GRD WD/REF GRD WD, and the combined wit-
ness VtM by REF LWIT WD A.

Remark. There must only be global witnesses for variables that do occur in the frame of
are non-deterministic assignment in the abstract action. Extra witnesses would break the
correctness of REF EVT INV.
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Proof Obligation: REF EVT SIM Ξ

FOR refined event eN of N and event eM of M WHERE

` ∈ 1 .. p AND u ∈ o ∩ (frame(RN ) \ frame(RM )

ID “REF/EVT/u/SIM”

GPO U(N ); H1; . . . ; Hh ; BA(TN |u) ` [S ′
N |u ] u = u ′

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1 . . .Hh has been shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and t1, . . . tj nfin U(N ) by Theorem 7. �

4.3.21 Unreduced External-Event Actions

Proof Obligation: REF EVT GEN ∆

FOR subst. RN`
ext. event eN of N and ext. event eM of M WHERE

` ∈ 1 .. q AND f = frame(RN`
)

ID “MDL/EVT/f /EXT”

GPO Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪f );

[SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `

[S ′
M |f ] [(

×v ′ΞM
:= ×vΞM

)|f ] [VtN ]BA(RN`
)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and the external invariants J1, . . . , Jσ by REF INV WD, and G1 . . .Gg has be shown
by MDL GRD WD/REF GRD WD, and V N

t by REF LWIT WD R, and that of SM and
TM by MDL EVT WD/REF EVT WD, and that of RN`

by REF EVT WD, and tM1 , . . . tMj
nfin U(N ) by Theorem 7. �
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Proof Obligation: REF EVT GEN Ξ

FOR external event eN of N and external event eM of M WHERE

u ∈ o ∩ (frame(RM ) \ frame(RN ))

ID “MDL/EVT/u/EXT”

GPO Q(C ); J1; . . . ; Jσ; G1; . . . ; Gg ; BA(TM |x∪u);

[SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] J1; . . . ; [SM |x ] [×xTM
:= ×x ′TM

] [×y := ×y ′] Jσ `

[S ′
M |u ] (u = u ′)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and G1 . . .Gg has be shown by MDL GRD WD/REF GRD WD, and that of SM

and TM by MDL EVT WD/REF EVT WD, and tM1 , . . . tMj nfin U(N ) by Theorem 7. �

4.3.22 Invariant Preservation of Refined-Event Actions

Proof Obligation: REF EVT INV

FOR refined event eN of N and event eM of M and invariant I` of N WHERE

` ∈ 1 ..m AND

z = free(I`) AND φ = free(SM |x∩z ) AND η = primed(Wx |z ) ∪ primed(SM |x∩z )

ID “REF/EVT/INV`/INV”

GPO U(N ); H1; . . . ; Hh ; BA(TN |η∩z ) `

[S ′
N |η∩z ] [(w

′
ΞN

:= wΞN
)|η∩z ] [VtM |φ] [Wx |z ] [SM |x∩z ] [(wRN

:= wRN
)′|z ] I`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ) and VtM by REF LWIT WD A, and SN and TN by REF EVT WD, and Wx by
REF GWIT WD, and I` by REF INV WD, and H1 . . .Hh has be shown by REF GRD WD,
and tN1 , . . . t

N
j nfin U(N ) by Theorem 7. �

Remark. If RN |z is the empty multiple substitution and z∩x is empty, this proof obligation
should not be generated because I` would appear in the antecedent and in the consequent.

Remark. The frame of the combined witness Wx must not be larger than xRM
.
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Remark. We can add additional hypotheses to proof obligation REF EVT INV, assuming
that REF EVT SIM ∆ has been proven as a lemma (for all RMk

6∈ SM |x ):

[S ′
N |f ∪χ] [(w

′
ΞN

:= wΞN
)f ∪χ] [VtM |ψ] [W ′

x |f ]BA(RMk
) .

This is still valid if the option Split GPO or Merge GPO has been used to for proof obli-
gation REF EVT SIM ∆. This corresponds to an application of the cut rule. Furthermore,
these hypotheses can be add in addition to those suggested in the options Split GPO or
Merge GPO for this proof obligation.

Split GPO. In case of a split refinement we can add some useful additional hypotheses to
REF EVT INV, assuming that REF GRD REF (Theorem 18) has been proven as a lemma
(for all G`):

U(N ); [VtM |θ1 ]G1; . . . ; [VtM |θg ]Gg ; H1; . . . ; Hh ; BA(TN |η∩z ) `
[S ′

N |η∩z ] [(w
′
ΞN

:= wΞN
)|η∩z ] [VtM |φ] [W ′

x |z ] [S
′
M |x∩z ] [(wRN

:= wRN
)′|z ] I`

where θ` = free(G`) for ` ∈ 1 .. g . This still well-defined because well-definedness of G1 . . .Gg

has be shown by MDL GRD WD/REF GRD WD and VtM by REF LWIT WD A.

Merge GPO. In case of a merge refinement we can add some useful additional hypotheses to
REF EVT INV, assuming that REF GRD MRG (Theorem 19) has been proven as a lemma:

U(N );
[VtM ] ((G1,1 ∧ . . . ∧ G1,g1) ∨ . . . ∨ (Gk ,1 ∧ . . . ∧ Gk ,gk ));
H1; . . . ; Hh ; BA(TN |η∩z ) `

[S ′
N |η∩z ] [(w

′
ΞN

:= wΞN
)|η∩z ] [VtM |φ] [W ′

x |z ] [S
′
M |x∩z ] [(wRN

:= wRN
)′|z ] I`

This is still well-defined because we have shown well-definedness of (G1,1, . . . ,G1,g1), . . . ,
(Gk ,1, . . . ,Gk ,gk ) has be shown by MDL GRD WD/REF GRD WD, and the combined wit-
ness VtM by REF LWIT WD A.

4.3.23 Simulation of New-Event Actions

Proof Obligation: REF NEW SIM

FOR new event eN of N WHERE

` ∈ 1 .. p AND u ∈ frame(RN ) ∩ o

ID “REF/EVT/u/SIM”

GPO U(N ); H1; . . . ; Hh ; BA(TN |u) ` [S ′
N |u ] u ′ = u

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and t1, . . . tj nfin U(N ) by Theorem 7. �
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Remark. This is a simplified variant of of REF EVT SIM Ξ, where we have used the fact
that a new event refines skip, i.e. the abstract event has the guard > and the action skip, and
frame(skip) is empty.

4.3.24 Invariant Preservation of New-Event Actions

Proof Obligation: REF NEW INV

FOR new event eN of N and invariant I` of N WHERE

` ∈ 1 ..m AND z = free(I`)

ID “REF/EVT/INV`/INV”

GPO U(N ); H1; . . . ; Hh ; BA(TN |z ) ` [SN |z ] [(wTN
:= w ′

TN
)|z ] I`

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and SN and TN by REF EVT WD, and I` by REF INV WD, and H1 . . .Hh has be
shown by REF GRD WD, and t1, . . . tj nfin U(N ) by Theorem 7. �

Remark. If RN |z is the empty multiple substitution, this proof obligation should not be
generated because I` would appear in the antecedent and in the consequent.

4.3.25 Well-definedness of the Variant

Proof Obligation: REF VAR WD

FOR variant D of N WHERE

>

ID “REF/VWD”

GPO U(N ) ` WD(D)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ). �
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4.3.26 Well-foundedness of the (Set) Variant

Proof Obligation: REF VAR FIN P

FOR variant D of N WHERE

>

ID “REF/VFIN”

GPO U(N ) ` finite(D)

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and D has been shown by REF VAR WD. �

4.3.27 Strong (Set) Variant

Proof Obligation: REF CVG VAR P

FOR variant of N and event eN of N WHERE

z = free(D)

ID “REF/EVT/VAR”

GPO U(M ); H1; . . . ; Hh ` BA(TN |z )⇒ ([SN |z ] [wTN |z := w ′
TN |z ]D) ⊂ D

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and D by REF VAR WD, and t1, . . . tj nfin U(N ) by Theorem 7.

�

Remark. This proof obligation must be generated for each convergent event (where the
variant is a set expression).

4.3.28 Strong (Natural Number) Variant

Proof Obligation: REF CVG VAR ∆

FOR variant of N and event eN of N WHERE

z = free(D)

ID “REF/EVT/VAR”

GPO U(M ); H1; . . . ; Hh ` BA(TN |z )⇒ ([SN |z ] [wTN |z := w ′
TN |z ]D) < D
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Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and D by REF VAR WD, and t1, . . . tj nfin U(N ) by Theorem 7.

�

Proof Obligation: REF CVG VAR N

FOR variant of N and event eN of N WHERE

>

ID “REF/EVT/NAT”

GPO U(M ); H1; . . . ; Hh ` D ∈ N

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1 . . .Hh has be shown by REF GRD WD, and D by REF VAR WD, and
t1, . . . tj nfin U(N ) by Theorem 7. �

Remark. These proof obligations must be generated for each convergent event (where the
variant is a set expression).

4.3.29 Weak (Set) Variant

Proof Obligation: REF ANT VAR P

FOR variant of N and event eN of N WHERE

z = free(D)

ID “REF/EVT/VAR”

PRE >

GPO U(M ); H1; . . . ; Hh ` BA(TN |z )⇒ ([SN |z ] [wTN |z := w ′
TN |z ]D) ⊆ D

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and D by REF VAR WD, and t1, . . . tj nfin U(N ) by Theorem 7.

�

Remark. This proof obligation must be generated for each anticipated event if the refined
model has (set) variant.
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4.3.30 Weak (Natural Number) Variant

Proof Obligation: REF ANT VAR ∆

FOR variant of N and event eN of N WHERE

z = free(D)

ID “REF/EVT/VAR”

PRE >

GPO U(M ); H1; . . . ; Hh ` BA(TN |z )⇒ ([SN |z ] [wTN |z := w ′
TN |z ]D) ≤ D

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and D by REF VAR WD, and t1, . . . tj nfin U(N ) by Theorem 7.

�

Proof Obligation: REF ANT VAR N

FOR variant of N and event eN of N WHERE

>

ID “REF/EVT/NAT”

PRE >

GPO U(M ); H1; . . . ; Hh ` D ∈ N

Proof of WDEF: The sequent is well-defined because context abstraction and model ab-
straction are acyclic directed graphs, and we can assume that we have shown well-definedness
of U(N ), and H1 . . .Hh has be shown by REF GRD WD, and that of substitutions SN and
TN by REF EVT WD, and D by REF VAR WD, and t1, . . . tj nfin U(N ) by Theorem 7.

�

Remark. This proof obligation is identical to REF CVG VAR N.

Remark. This proof obligation must be generated for each anticipated event if the refined
model has a (natural number) variant.
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4.3.31 Deadlock-Freedom

Proof Obligation: REF DLK

FOR model M WHERE

eN
1 , . . . , e

N
` are the internal events of N AND eM

1 , . . . , eM
k the internal events of M

ID “REF/DLK”

GPO U(M ); GD(eN
1 ) ∨ . . . ∨ GD(eN

` ) ` GD(eM
1 ) ∨ . . . ∨ GD(eM

k )

Remark. Deadlock-freedom proof obligations need only be generated for events whose
guard has been changed. The two sets of events can be chosen accordingly.

Remark. One could alternatively generate the proof obligation:

U(M ); ¬ GD(eM
2 ); . . . ; ¬ GD(eM

k ); GD(eN
1 ) ∨ . . . ∨ GD(eN

` ) ` GD(eM
1 )

where event eM
1 is arbitrarily chosen.
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Chapter 1

The Event-B Kernel Prover

The Event-B kernel prover is the proving infrastructure used in the Event-B kernel. The
main aim of the prover is to discharge valid proof obligations. The proof obligations
are expressed in the Event-B mathematical language, and are generated by the proof
obligation generator. Specifications for each of these can be found within the RODIN
deliverables .

What does it do?

The main task of the prover is to discharge valid proof obligations using a valid proof.
Since this cannot always be done automatically, one of its main aims is to do this with
as little user interaction as necessary. Design decisions need to be taken in order to
make these interactions as few and as simple as possible.

Once a proof is found, the prover must be capable of recording it and reusing it some
time in the future. The prover must also be able to record incomplete proof attempts
so that they can be completed sometime in the future.

It is often the case that a proof obligation is invalid, or a proof cannot be completed
at a given time with the given assumptions. The user then has to make some changes
in order to receive revised proof obligations. The prover must be able to reuse as many
of the old proofs as possible in order to discharge the revised proof obligations.

How does it work?

The Event-B kernel prover is made of two components:

� The Proof Manager

� A collection of Prover Plugins

The Proof Manager

The proof manager performs all functions of the Event-B kernel prover except generating
valid inferences. These are tasks related to storage, traversal, retraction, composition
and reuse of proofs. It maintains proof data structures. The proof manager is also
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the point of contact of the kernel prover to the proof obligation generator. The proof
manager itself does not perform any proof steps (apart from maybe some very trivial
ones). The proof manager calls prover plugins in order to obtain valid inferences. The
proof manager composes valid inferences returned by prover plugins into the current
proof in order to generate a new proof state. Most importantly, the proof manager
decides if the current proof obligation has been discharged using the current proof.

Prover Plugins

The proof manager works with a collection of prover plugins in order to discharge a
proof obligation. The main task of a prover plugin is to generate valid inferences. These
can then be composed by the proof manager to its current proof in order to discharge a
given proof obligation. A proof plugin may also return other useful information such as
a counterexample in case of a contradiction, or hints to a user in an interactive session.

Prover file

Proof obligation
file

Interface
Proof UserProof Manager

Prover Plugins

Event−B Kernel Prover

Proof Obligation
Generator

Figure 1.1: Organization of the Event-B kernel prover.

Figure 1.1 shows an overview of the organization of the Event-B kernel prover, and
its relation to the proof obligation generator. The arrows represent data flow, the
cylinders represent files, the ellipses represent prover plugins, and the boxes represent
components of the tool. The next chapters give details about the proof manager and
the prover plugins.
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Chapter 2

The Proof Manager

The proof manager performs all functions of the Event-B kernel prover except generating
valid inferences.

As shown in figure 1.1, the proof manager gets its input from the stand-alone proof
obligation file maintained by the proof obligation generator. The proof manager main-
tains a prover file to communicate and store its results. In addition to this, an API
of status queries can be used to gather internal information from the proof manager
without having to read the prover file.

2.1 Proof Manager Input

The proof manager receives as input a set of proof obligations. These are typically proof
obligations generated for a single model, refinement or context. Each proof obligation
PO has the form of a sequent and is assigned a structured identifier ID that is unique
to the current development. When the statement of a proof obligation changes during
the course of a development, it still retains its old identifier, allowing for proof reuse.

InputPM ≡ (ID : PO)∗

Each proof obligation has the form:

PO ≡ Γ. H ` C

The statement to prove is C, which is a predicate expressed in the Event-B mathematical
language . The hypotheses H is a set of predicates that can be assumed in order to
prove the conclusion C. The typing environment Γ is a function mapping each free
variable occurring in H and C to its type.

Γ : Var → type

The type of a free variable is the largest set it is a member of and therefore an expression
in the mathematical language.

An example of a set of input proof obligations follows. Each proof obligation is
indexed by its unique identifier, in this case m.ini and m.inv :

m.ini : x 7→ Z . x = 0 ` x ∈ N
m.inv : x 7→ Z , x′ 7→ Z . x ∈ N , x′ = x + 1 ` x′ ∈ N
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2.2 Functionality

The main function of the proof manager is to maintain the state of current proofs for
all proof obligations in a development and allow for them to be eventually discharged.
This functionality can be divided into two concerns:

1. Correctness: The proof manager correctly deduces the discharge of proof obli-
gations and maintains a valid proof state.

2. Usability: The proof manager is able to facilitate the construction of proofs and
do as much as possible to help in their construction.

A general idea in many proof system implementations is to have a safety-critical
core concerned with correctness, separated from the rest of the system concerned with
usability. A similar approach will be used for the proof manager too. A clear line is
drawn between what is trusted, in our case the outputs from the prover plugins and the
way they are incorporated into the proof, and the rest of the system.

The following sections detail correctness and usability concerns and the components
dealing with them.

2.2.1 Correctness

The proof manager must be able to perform the following tasks correctly:

1. Check if a proof is able to discharge its assigned proof obligation.

2. Insert inferences (from an old proof or a prover plugin) into a proof in order to
generate a new proof state.

The correctness of the proof manager is dependent on the way the proof manager per-
forms these tasks. The way these tasks are performed must therefore be consistent with
the rules of the mathematical language. Details of this will be found in a later document.
The part of the proof manager responsible for its correctness is the proof manager core.

The Proof Manager Core

The proof manager core in responsible for maintaining consistent proof states. As
already stated, it must correctly:

1. Check if a proof is able to discharge its assigned proof obligation.

2. Insert inferences into a proof.

The proof manager core internally maintains the current proof state as a set of known
to be valid (forward and backward) inferences. It inserts inferences from prover plugins
into it and checks if the proof obligation has been discharged. It is able to calculate
dependencies on hypothesis for completed proofs.

For forward style reasoning it is able to calculate the set of valid predicates given a
set of hypotheses, using the forward closure of the inference rules present in the proof.
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Details of this will follow in a later document. A global typing environment is maintained
for the entire proof.

For backward style reasoning it maintains proof trees of backward proof steps. These
trees have sequents for nodes. The hypotheses for these sequents are the set of global
hypotheses coming from the original proof obligation, along with local hypotheses aris-
ing from a backward proof step such as a case distinction or implication introduction.
This set of original hypotheses is then used to calculate, using the forward reasoning
mechanism mentioned earlier, the set of derived hypotheses that can be used for that
sequent.

The roots of these trees correspond to input proof obligations to be discharged,
and the leaves, the set of remaining subgoals. It ensures that at all times, the set of
remaining subgoals are consistent. That means if inferences that discharge all remaining
subgoals are inserted into the proof, then the original proof obligation can be discharged.
Undoing and replaying of backward proof steps correspond to removing and re-inserting
branches into these trees. The leaves of these trees can be automatically closed by the
core if the conclusion of a subgoal is present in its set of derived hypotheses.

2.2.2 Usability

In addition to this the proof manager should be able to perform the following tasks:

1. Save proofs between proof attempts in order to be reused later.

2. Call a prover plugin with relevant information in order to complete or make
progress in a proof.

3. Be able to reuse a previously constructed proof in order to complete or make
progress in a proof.

4. Support operations on the proof to facilitate an intuitive user interface on top of
the proof manager.

5. Have some way of managing remaining subgoals in order to perform goal directed
proof.

6. Have some way of partitioning hypotheses according to their relevance in discharg-
ing a remaining subgoal.

7. Have some way of navigating within proofs, undoing proof steps, and switching
between remaining subgoals.

These are tasks related to minimizing user interaction and increasing the efficiency of
the proving process, adding to the usability of the prover. These tasks are done using:

� Refined Proof Trees

� The Proof User Interface

� The Batch Mode

Details for these follow.
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Refined Proof Trees

As far as the proof manager core is concerned, a subgoal is merely a sequent. In order
to give more structure to the proof attempt, proof trees are refined to allow for deferring
proof attempts and hypothesis management. Both these can be implemented by marking
nodes in proof trees without altering their sequent structure:

1. Deferring proof attempts: Each node, as a remaining subgoal, is marked as
being either:

(a) Pending: A subgoal yet to be discharged. A candidate for a proof attempt.
(b) Lemma: A subgoal that may be used as a forward inference by the core before

it is proven. If a lemma is used to discharge a proof obligation, its proof is
required before the proof is considered complete.

(c) Reviewed: Subgoals that have been reviewed externally or manually as being
likely valid. No proofs of these are required to complete the proof. Proof
obligations discharged using these will be marked as having used a reviewed
lemma.

These markings on remaining subgoals allow the user to better organize his proof
attempt by letting him test and reuse reasoning steps using lemmas, or temporarily
avoid subgoals he strongly thinks are valid by marking them as reviewed.

2. Hypothesis management: As mentioned earlier, each subgoal comes with its set
of original hypotheses, from which a possibly much larger set of derived hypotheses
can be calculated and used in a proof. In order to give this large set of hypotheses
some structure, a subset of them are marked as selected.

In general, a marking relation is defined on the set of hypotheses. This marking
relation is attached to each node of the proof tree. To allow for changing and
retracting marking information, a stack structure for markings is used.

The next two subsections deal with the user interactive and automated aspects of
the proof manager.

The Proof User Interface

The Interactive Proof user interface can be thought of as a front-end to the proof
manager.

Though not a primary concern of the proof manager, the Event-B prover must allow
for interactive proof sessions. Since interactive proof sessions require information about
the entire proof, the interactive proof user interface must work closely coupled with the
proof manager, where the proof data structures reside.

The user interface for interactive proofs should allow the user to have a good overview
of the proof state. It should allow the user to navigate through the proof and the
remaining subgoals. It should provide a front end for proof manager functions such as
specifying lemmas and changing the type of a remaining subgoal. It should also allow
the user to call proof plugins and easily specify their inputs.

Note that interactive proof is used by the proof manager as a last resort. Whenever
possible, it works in non-interactive, batch mode.
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The Batch Mode

It is an aim of the proof manager to work with as little user interaction as possible.
The proof manager in batch mode handles all such proof attempts. These are proof
attempts where the proof obligation is discharged by:

1. Reusing an already existing proof.

2. Using a series of automated prover plugins.

2.3 Proof Manager State

The state of the proof manager is the state of current proofs for all proof obligations in
a development.

StatePM ≡ (ID : PO , Π )∗

The identifier ID from InputPM is used to uniquely identify the same proof obligation to
its current proof in StatePM across a development. The proof Π of each proof obligation
PO is managed internally by the proof manager core. It contains:

1. The set of valid inferences inserted into the proof.

2. The refined proof trees used for backward reasoning.

3. The global typing environment for the entire proof.

4. Information on how the proof was done in order to gage the success of automated
provers.

In addition to this, the proof manager core is able to compute and return:

1. The set of remaining subgoals along with their markings, which are the leaves of
the refined proof trees.

2. The set of derived hypotheses from a set of original hypotheses.

The nodes of a refined proof tree are subgoals of the form:

Subgoal ≡ H ∪ Hl ` Csub

With information their type (Pending, Lemma, or Reviewed), and a stack of hypothesis
markings. As mentioned earlier, the set of original hypotheses for this sequent is com-
posed of the union of the global hypotheses H coming from the input proof obligation,
and Hl is the set of local hypotheses arising from a backward proof step.
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2.4 Proof Manager Output

As output, the proof manager returns for each proof obligation the state of the current
proof attempt to discharge it.

OutputPM ≡ StatePM

The status of a proof attempt for a particular proof obligation may be inferred from its
entry in StatePM as follows:

1. New: No proof has been attempted yet. Its proof field is empty.

2. Pending: A proof has been attempted but the proof obligation has not yet been
discharged. There exists at least one pending subgoal.

3. Pending Lemmas: The proof obligation has been discharged, but using unproven
lemmas. There are no pending subgoals, and there exists at least one lemma in
the set of remaining subgoals.

4. Reviewed: The proof obligation has been discharged, but using reviewed lemmas.
All remaining subgoals are marked reviewed.

5. Complete: The proof obligation has been discharged. There are no remaining
subgoals. The complete proof can be recorded for reuse. Information on how it
was proven can be used for statistical purposes.

Status queries

In addition to the output, an API of status queries can be used to gather internal
information from the proof manager without having to read the prover file.

2.5 Modes of operation

The proof manager works in close connection with the prover plugins in order to dis-
charge a proof obligation. The interface between the proof manager and the prover
plugins is described in the next chapter.

The proof manager has the following modes of operation with respect to how it uses
the prover plugins to discharge a subgoal:

1. Automated: The proof manager tries to automatically discharge a subgoal by
calling a predefined or user defined sequence of prover plugins.

2. Reuse: The proof manager tries to reuse a proof from a previous proof attempt
in order to discharge a subgoal or make progress in its proof.

3. Interactive: The proof manager starts an interactive proving session with the user
who then directs the proof by calling various plugins in order to make progress in
the proof.
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In order to discharge as many of the proof obligations with as little user interaction,
the proof manager uses the following broad strategy:

Reuse ; [Automated] ; ( Interactive ;AutomatedI ; ReuseI )∗

The modes AutomatedI and ReuseI are lightweight versions of Reuse and Automated
tailored for interactive sessions.
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Chapter 3

Prover Plugins

Prover plugins are responsible for generating valid inferences that can be used to make
progress in a proof. As shown in figure 1.1, their only point of contact to the external
world is through the proof manager. The proof manager calls them with the relevant
input, and it is the proof manager that accepts their output. Communication between
the proof manager and proof plugins happens through API calls.

3.1 Input

The input to a plugin is of the same form as a subgoal and an optional information field:

Inputplugin ≡ ( Subgoal , info )

Subgoal ≡ H ∪ Hl ` Csub

In addition to this it may query for the global typing environment, the set of all
derived hypotheses and their current markings.

3.2 Functionality

This input is a hint to the prover plugin as to what is desired to be proven. Strictly
speaking, the prover plugin is not even required to take notice of its input. What it is
required to do, is to ensure that:

1. Each inference returned by it is a valid inference.

2. Each inference returned by it preserves well-definedness.

What this precisely means will be discussed in a later document.

3.3 Output

The output of a prover plugin is a combination of:
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1. A set of valid inferences for forward reasoning of the form:

INF ≡ A Z⇒ C

where Z⇒ can be read as a meta implication.

2. For backward reasoning, a valid sequent of the form H ′ ` Cnew ⇒ Csub , where
H ′ ⊆ H ∪Hl and Cnew is the new subgoal to prove. Using this sequent, the proof
manager is able to replace Csub by Cnew , and depending on its structure perform
some elementary operations on it such as introducing new free variables, splitting
subgoals, or introducing new local hypotheses. Details of this follow in a separate
document.

3. A new marking on the set of derived hypotheses.

4. Additional information on the subgoal, such as a counterexample in case of inva-
lidity, or a hint in case of failure.

The output of a plugin can be interpreted as follows:

1. Success: The plugin is successful in discharging the given subgoal if it returns a
set of forward inferences that derive the conclusion of the subgoal from a subset
of the derived hypotheses.

2. Failure: If the plugin cannot make any progress with the subgoal, it returns
nothing and is said to end in failure.

3. Progress: The plugin makes progress in the proof of the subgoal. Its output is
nonempty and is used by the proof manager core to generate a new proof state.

Exact details on how the proof manager core uses plugin outputs will follow in a
separate document.

3.4 Envisaged Plugins

Here is a collection of prover plugins that are envisioned to be included as a standard
part of the Event-B kernel. They are inspired by proof tools previously used in the
Atelier-B, B4Free, and Click’n’Proove systems. Prover plugins are typically either:

� Interactive Plugins : Called by the user when doing interactive proof in order
to make small, user directed proof steps.

� Automated Reasoners : Called either automatically, or interactively in order
to make large, automated proof steps.
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3.4.1 Interactive Plugins

Interactive Plugins are used when doing interactive proof in order to make small, user
directed proof steps. They can be further categorized into:

� Forward: Only modify the set of derived hypotheses or the hypotheses marking
on a subgoal.

� Backward: Only modify the conclusion of a subgoal.

� Bidirectional: Can modify the conclusion and local hypotheses of a pending
proof obligation.

� Splitting: Can split a subgoal by replacing it with more than one new subgoal.

The hypotheses marking may also be modified by backward, bidirectional, and splitting
plugins as well. What follows is a list of envisaged plugins in these categories.

Forward proof plugins:

1. Remove hypothesis: Removes a hypothesis from the set of selected hypotheses.

2. Select hypothesis: Adds a hypothesis to the set of selected hypotheses.

3. Search hypothesis: Searches for hypotheses of a given form for display to the user
for possible selection.

4. Remove conjunction: Replace a selected hypothesis in the form of a conjunction
by a number of individual hypotheses corresponding to its conjuncts.

5. Specialize: Specialize a universally quantified hypothesis by instantiating it.

6. Remove existential: Replace an existentially quantified hypothesis by one without
existential quantification by introducing a fresh variable.

7. Modus ponens: Generate new hypotheses by modus ponens using an implication
in the hypothesis with its premise in the hypotheses.

Backward proof plugins:

1. Remove disjunction: Replace the disjunction in a goal by an equivalent implication.

2. Reverse modus ponens: Generate new goal by modus ponens using an implication
in the hypothesis whose conclusion is the current goal.

3. Instantiate existential: Instantiate an existentially quantified goal with a witness
provided by the user.

4. Instantiate universal: Instantiate an universally quantified goal with a fresh vari-
able.
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Bidirectional proof plugins:

1. Apply equality: Uses an equality in the hypotheses in order to rewrite selected
hypotheses and the goal. The equality can be used in either direction.

2. Negate hypothesis: Starts a proof by contradiction by replacing the goal with the
negation of a hypothesis.

3. Contradict: Start a proof by contradiction by adding the negation of the goal to
the selected hypotheses.

4. Remove implication: Replace a goal in the form of an implication by its conclusion,
including the premise in the set of hypotheses.

Splitting proof plugins:

1. Do case: Perform case distinction on a disjunction in the hypotheses.

2. Reverse remove conjunction: Split a goal in the form of a conjunction into multiple
conjunct goals.

There will also be the provision for certain interactive plugins to be called automat-
ically when the user is in an expert mode.

3.4.2 Automated Reasoners

Automated reasoners are used either automatically, or interactively in order to make
large, automated proof steps. The following are planned to be part of the Event-B
prover kernel:

1. Rule based prover: This prover works by applying predefined and user defined
inference rules in a forward or backward manner in order to either:

(a) Discharge a given subgoal.

(b) Return an equivalent (maybe simpler) subgoal.

(c) In case of failure give a hint to the user about the reason of failure.

2. Predicate prover: This prover works by trying to find the proof of an equivalent
translated subgoal in predicate logic. It may be called in varying strengths de-
pending on the timeouts and number of hypotheses to be tried. It can either:

(a) Discharge a given proof obligation.

(b) End in failure or a timeout.

Automated provers may return a set of inferences outlining intermediate steps in
their proof. These intermediate steps can prove helpful when reusing a proof with slight
changes made its the proof obligation.
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