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1 Introduction 

The RODIN open tools platform being developed in Workpackage 3 (WP3) will allow 
other parties to integrate their tools, such as model checkers and theorem provers, as plug-
ins to support RODIN methods. This is likely to have a significant impact on future 
research in formal methods tools and will encourage greater industrial uptake of these 
tools.  WP2 of RODIN is developing a collection of plug-in tools to be integrated in the 
RODIN platform.  Developing these plug-in tools has two major aims: 
 

• To provide extra functionality on top of the core platform to support more fully the 
application of the RODIN methodology being developed in WP2 

• To validate the open architecture of the platform by populating it with a collection 
of plug-in tools covering a range of functionalities. 

 
This deliverable (D11) describes our initial effort at defining a collection of plug-in tools.  
In the original proposal we identified the following plug-in tools for development within 
RODIN: 

1. Linking UML and B 
2. Petri net based model checking  
3. Constraint-based model checking and animation 
4. Model-based testing 
5. Code Generation 

Items 1-5 are covered in this report.  In the original proposal we also allowed for further 
plug-ins to be identified and developed in the lifetime of the project.  Three such 
additional plug-ins have been identified and are also covered in this report: 

6. Graphical model animation 
7. Documentation generation 
8. Requirements manager 

The identification and definition of plug-ins is driven by practical needs from the case 
study work.  Identification of the graphical animation and documentation plug-ins was 
based on the experience of the partners, particularly ClearSy, on the application of B to 
large projects.  The identification of the requirements manager was based on work in  the 
Engine Failure Management case study. 
 
These plug-ins are at varying levels of maturity.  In some cases stand-alone prototypes of 
tools exist that provide some of the required functionality (1,2,3,5,6,7).  An aim for these 
tools will be to produce versions of the tools that are properly integrated with the RODIN 
platform.   In the other cases (4,8) the required functionality is being developed but 
specification and design of the tools has not commenced. 
 
Early versions of the tools will be tested through application to the case studies of WP1, 
leading to improvements in functionality and design in the tools. 
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2 Linking UML and B 

This section describes initial investigation of tools to provide a link between UML 
modelling and the B repository and tools. The link will consist of a specialisation of the 
UML defined by a UML profile called UML-B [SnookButler04a] and a tool, called U2B 
[SnookButler04b], that links UML-B models with the B database and tools being 
developed under Rodin. This link will be developed according to the following high level 
requirements and principles. 

1) Functionality will be selectively based on the pre-existing U2B tool and UML-B 
profile. 

2) A new version of the UML-B profile will be developed based on the UML2 
metamodel plug-in project (http://www.eclipse.org/uml2/). 

3) The UML-B profile will be developed to take advantage of UML 2.0 features 
wherever this seems appropriate. 

4) The U2B translation tools will be developed as eclipse plug-ins 

5) U2B will take as input, a UML model with the UML-B profile applied. 

6) U2B will produce output by programmatically populating the B database. 

7) As far as possible, UML-B and U2B will not be dependant on a particular 
proprietary modelling tool 

 
Overview of organisation under eclipse 
 
The proposed organisation of UML-B and U2B is illustrated in figure 1. All tools and 
resources are maintained within the eclipse environment. A profile manager plug-in will 
be developed which will  programmatically generate a UML-B profile. An existing UML 
2.0 modelling tool will be used to create UML-B models by applying the UML-B profile. 
The modelling tool will either be based on the UML2 metamodel (so that it uses UML2 
as a repository) or, failing this, provide a facility to export to UML2 . The UML2 version 
of the model will then be converted into an XML version of B and stored in the Rodin B 
database. 
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UML-B  
 
It is planned to use a UML profile to define the structure of UML-B. In UML 2.0 the 
profile extension mechanisms have been improved. Stereotypes now enable you to attach 
additional properties to entities. For example, we might wish to add an invariant property 
to some kinds of classes. A number of primitive types are available for properties (e.g. 
string, boolean, integer etc). Properties may also have a complex type that is defined by a 
class of the profile. A metamodel of UML 2 is available as a plugin project for eclipse 
(called UML2). The UML2 plug-in is based on EMF and provides a repository and 
management facilities, including a reflective editor, for manipulating models and profiles. 
It is intended to provide a basis for tool developers and therefore does not provide any 
modelling/visualisation facilities other than the reflective editor. The reflective editor is 
provided for initial experimentation only, it is intended that UML2 is used 
programmatically. 
 
2.1 The UML-B profile 

Mandatory stereotypes 
Initially, we intended to use stereotypes to distinguish between the different roles of 
model elements. For example, <<sees>> and <<refines>> would be alternative 
stereotypes on a dependency. However, this requires the modeller to remember to apply a 
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stereotype on each element. Greater control, or at least indication, can be attained by 
forcing the application of a fixed stereotype for each and every modelling element and 
allowing the choices to be configured in the properties of the stereotype. Therefore, we 
structure the profile so that all (concrete) stereotypes are mandatory. This means that they 
are automatically applied to all instances of the model element that they extend. 
Properties are then used to distinguish different roles of UML entities within UML-B. For 
example <<UBDependency>> is a required stereotype that is automatically applied to all 
dependency relationships in the model. It has a property kind, which has an enumerated 
type: dependencyET == sees|includes|…|refines.  

Inheritance of abstract stereotypes 
There are many cases in UML-B where several different kinds of UML element require 
the same properties. For example, both class operations and state machine transitions 
require guards and actions. In order to avoid repetition of the definition of properties we 
used stereotype generalisation extensively in the profile. The generalised stereotypes are 
abstract (cannot be applied directly, only via their specialisations). In some cases several 
levels of generalisation of abstract stereotypes are defined. The resulting profile forms a 
tree structure of stereotypes with the leaves being the required stereotypes and the others 
being abstract. 

Avoidance of UML features 
In forming the stereotype properties that make up the profile, we decided not to rely on 
UML element properties, except for those diagram features that we define required 
stereotypes for. In some cases UML elements have standard text fields that have a similar 
intention to the properties we require. However, in previous work we have found that 
using these features leads to confusion because they may have slightly different 
semantics in UML leading the modeller to expect a different interpretation. Also, not all 
of these features are needed or appropriate in our modelling and many would be ignored. 
We have found that when some of the features are used, the modeller starts to assume that 
all the features have appropriate meanings in the translation. We therefore propose to 
replicate these features as properties in our stereotypes when necessary. This results in 
the simple rule that no UML model features are used except for the main elements that 
have a UML-B stereotype. 
 
A drawing of the current profile stereotypes is given in Figure 2 
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2.2 Creation of Profile 

Since maintaining profiles is difficult (once a profile has been applied to a model it can 
only be added to), we decide to maintain the profile via a programmatic profile creator. 
This is a java program that uses the UML2 API to create a profile. This will allow us to 
easily re-create the profile for installation, recovery etc. We could make copies of the 
program for each released version of the profile, so that old profiles can be re-created. It 
is easier to read a program that creates a profile than to read the profile itself. A plug-in 
has been deployed that creates the UML-B profile. The plugin works within RSA 
(Rational Software Architect) eclipse (the UML modelling tool that we are currently 
using) as well as the standard eclipse installation.  
An alternative strategy that we investigated was to create and maintain the profile using 
the RSA profile editor. However we found that the RSA profile editor doesn’t provide a 
graphical editor. Although it is a little better than the standard UML2 reflective editor we 
decided that it didn’t give much benefit and opted for the profile manager plug-in 
 
2.3 Applying profiles 

Unfortunately, RSA does not use the UML2 metamodel plugin but has its own repository 
notation. RSA does have an export to UML2 and allows UML2 format profiles to be 
applied to its models. The fact that RSA doesn’t use the UML2 repository means that we 
will not be able to perform real-time checking, parsing etc. It means that UML-B will still 
not be totally integrated with the B tools. For this reason, although we use RSA for the 
time being, we will continue to examine other alternatives as they arise. The UML-B 
profile must be generated outside of the RSA workspace so that when it is applied in 
RSA it is considered by RSA to be an external profile. In this case, when the model with 
applied profile is exported to UML2, the profile application is retained. Otherwise it will 
be lost. 
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2.4 Wellformedness and Parsing 

A number of wellformedness constraints, are needed in addition to the profile 
information. For example we will require a constraint that the supplier and client of the 
dependency representing a refines relationship are both UBstructures with the same 
bstructure property value. It is not desirable to define this constraint and apply it from the 
profile because it must be possible for the UML-B model to be inconsistent while it is 
being developed. We adopt the same philosophy as the B database: at creation, we only 
enforce the type of elements used, not their interrelationships. A secondary stage 
(initiated by a user action) will run a validation program to check wellformedness. (This 
might be performed when the U2B tool is about to be run or when the model is saved).  
 
2.5 Structural features of UML-B 

The existing version (U2B3) provides two mechanisms (packages and classes) for 
representing a B model (A B model is a machine, refinement or implementation). The 
class-model translation has been used less and less and could be dropped. However, the 
new version will be based upon UML2, which introduces ‘components’. It may be useful 
therefore to switch to a component-model translation. In the first instance the package 
mechanism will continue to be supported for backwards compatibility. 
(It is not clear how hierarchical classes (also introduced in UML2) relate to components. 
Some sources have claimed the two to be equivalent but we assume that components 
have no concept of instances.) 
The new B will be organised into two kinds of constructs: models and contexts. Contexts 
define and refine the constant data features (SETS, CONSTANTS and their 
PROPERTIES). Models define and refine the variable data elements and the events that 
alter them. In general, UML-B models will contain elements that generate sets, constants, 
variables, events within a single model. Therefore, U2B will sort a UML-B model into B 
models and B contexts. However, the same reasons for having a separate context could 
apply in the UML-B representation. For the time being we will retain the ability to 
designate a UML-B structure as a context. The UML-B profile will provide a bstructure 
property on the <<UBstructure>> stereotype for indicating whether the structural feature 
is a model, context or neither. 
 
2.6 B modelling styles 

U2B3 provides 3 styles of modelling corresponding to different styles of using B: normal, 
action and event. The new UML-B will support the new B only. The new B is event-
based but will also incorporate facilities for parameterisation of events which is the main 
facility required in the action style B. (Arrays of events where the parameter is the array 
‘index’ representing external choice). 
 
2.7 Instance modelling options 

U2B3 supports three main options for modelling class instances. All 3 should continue to 
be supported. 

• Variable – this is the traditional O-O style where objects can be created and 
deleted dynamically. 
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• Fixed – found to be useful for embedded systems where classes often represent a 
small number of objects that permanently exist. 

• Class utility – no instances 
All options have been found to be useful and will therefore be supported in the new 
version. There is a special case (Singular) of ‘fixed’ where only one instance exists. This 
has been less useful – it was introduced to try to improve ease of proof – but it is not clear 
that this is the case. We will decide whether to continue to support this or not. 
 
U2B 
The new U2B translator will be an eclipse plug-in. It will be structured upon a model of 
Event B. Each class in the Event B model will have a constructor that accepts as input 
parameter, the UML-B model (or relevant parts thereof) to be translated. The hierarchical 
structure of the model will result in a cascaded invocation of constructors starting from 
the top level constructor that creates an entire B project based on a complete UML-B 
model. The model will also be used to generate the database. It may be desirable to 
maintain separation of the database generation from U2B. This will be done by extending 
the basic database class with a class that adds the U2B constructor. 
  
Summary of plug-in resources: 

• ac.soton.umlb.profile_generator  - The profile manager plugin tool 

• ac.soton.umlb.u2b   - The U2B translator tool 

• ac.soton.profiles.umlb   - the UML_B profile plug-in  
 
2.8 UML Model Transformation in Lyra 

The Lyra method developed at Nokia Research Center [LeppänenEtAl04] supports 
model-based approach in the development of distributed communicating systems and 
communication protocols. Although the method covers all stages of systems 
development,  it is used particularly in the development of system architecture 
descriptions and implementation specifications. It supports service-oriented approach and 
the main technique used in the method is model decomposition/composition. The method 
consists of the four phases: Service Specification, Service Decomposition, Service 
Distribution and Service Implementation.   An important objective is to integrate formal 
methods into the existing development process in Nokia by providing automatic 
translation of UML2-based Lyra design flow into the formal framework. A degree of 
automation in translating UML2 models and model transformation is perceived by Nokia 
as major criteria for evaluating the success of RODIN.  

The high-level and implementation independent Service Specification model specifies the 
structure, interfaces and behavior of the services provided by the system. In Service 
Decomposition phase these are refined top-down and in step-wise manner into a set of 
functional specifications for the system level services. Service Decomposition models 
reflect the chosen implementation architectures but they are completely independent of 
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the implementation techniques to be used, and also of the chosen, underlying platform 
architecture. In Service Distribution phase the system level services, or their parts, are 
distributed over a given platform architecture, e.g. network architecture consisting of 
network elements. Distribution is part of the system implementation and thus the 
distribution should be transparent to the users of the system level services. To preserve 
the user’s view of system level services as specified in the earlier phases, communication 
protocols are defined to implement the peer-to-peer communication. Peer-to-peer 
communication is defined between the distributed service parts as virtual communication, 
i.e. as independent of the chosen, underlying communication medias. In Service 
Implementation phase the distributed services are adapted and realized in their target 
environments (dynamic process management, process interaction etc.) and the virtual 
communication is realized using the communication medias and mechanisms provided by 
the underlying platform (e.g. routing, data encoding and decoding, adaptation to data 
transmission services provided by the underlying protocol layers).    

The Lyra approach is based on producing a sequence of gradually refined specifications. 
To provide a sound and consistent development framework the design approach has to be 
accompanied by rigorous verification and testing methods. The Service Specification 
model(s) providing the correctness criteria for the later development phases can be 
verified using model-checking techniques. In the following development phases, 
currently algorithmic verification is used to verify the correctness of the decomposition 
and refinement steps. In many cases the Lyra design method is used only partially (e.g. 
ignoring the Service Implementation phase) for producing architecture specifications for 
(a set of) system implementations. Especially in these cases verification and testing of 
conformance between the architecture specification and implementation components is 
important.    

Since the models describe the complete specification for services and service parts, 
abstraction of data and behavior according to the properties to be verified or tested is 
necessary.   

The industrial-strength system case study will be centered on development of a Position 
Calculation Application Part (PCAP) specified by the Third Generation Partnership 
Project (3GPP). PCAP is part of the User Equipment (UE) positioning system in a UMTS 
(Universal Mobile Telecommunication System) radio access network. PCAP is specified 
to manage the communication related to positioning service between the network 
elements Radio Network Controller (RNC) and Stand-alone Assisted Global Positioning 
System Serving Mobile Location Center (SAS). The case study represents a typical 
example of systems developed in Nokia and hence constitutes a valid test-bench for 
methods and tools developed within RODIN. 

The specifications used in verification and testing are the models or their applicable parts, 
all developed using the Lyra method.  Though the Lyra method is language independent, 
the main development language used in Nokia is UML2 language. Lyra defines a subset 
of UML2, which is called as Lyra/UML2 profile. The profile describes the concepts used 
in the systems development and the relationships between these concepts.  
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Lyra/UML2 profile has been developed in Nokia Research Center. It can be used as an 
input in the development of language profiles in Rodin. In WP1/CS1 the UML2 language 
is considered as the main modeling language, i.e. the main source language for 
verification and testing. The target languages, i.e. the languages used in verification and 
testing should be compatible with the Rodin tool platfom. Automated model 
transformation tool(s) for UML2 models into the (set of) chosen verification and testing 
language(s) should be developed in Rodin.    

 
 
3 Petri net based model checking  

The complexity of verification of concurrent and distributed systems is widely recognised 
as a major stumbling block in this key area of computer system design. One way of 
coping with the complexity problem is to use formal methods supported by computer 
aided verification tools. Within this approach, a well-established method is model 
checking [Clarke’99] which is completely automatic and relatively fast compared to other 
alternatives. It is therefore particularly attractive in industrial context as it can contribute 
successfully to the reduction of product development costs [Pixley’04].  

Model checking is a technique in which the verification of a system is carried out using a 
finite representation of its state space. Basic properties, such as absence of a deadlock or 
satisfaction of a state invariant (e.g. mutual exclusion), can be verified by checking 
individual states. More subtle properties, such as guarantee of progress, require checking 
for specific sequences of states. Properties to be checked are typically described by 
formulae of a branching time or linear time temporal logic. An important pragmatic 
feature of model checking algorithms is that they produce counterexamples which can be 
used for debugging [Pixley’04]. 

Industrial strength model checkers are beginning to have an impact on practical designs 
and design methodologies. For example, in a “classical” reactive system application to 
the call processing software of a telephone switch at Bell Labs, model extraction 
combined with model checking revealed ten times as many concurrency related defects in 
the target code as the conventional system testing did [Holzmann’00]. Such an approach 
is particularly effective in detecting inter-process communication problems at an early 
stage of system design, helping to resolve the issue of design productivity.  

Model checking of concurrent systems is intrinsically hard, and exhibits a trade-off 
between the compactness of the representation of the system and resources it takes to 
verify behavioural properties. For example, the classical deadlock detection problem is 
PSPACE-complete for a compact (bounded) Petri net or equivalent process algebra 
representation, but polynomial for transition system representation. However, the latter is 
often exponentially larger, and soon becomes too large to be stored in the main memory, 
which makes the algorithm impractical.  
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3.1 The problem of model checking mobile computing systems 

Mobile systems are highly concurrent causing a state space explosion when applying 
model checking techniques. One should therefore use an approach which copes well with 
such a problem, in our case, based on partial order semantics of concurrency and the 
corresponding Petri net unfoldings [McMillan’92]. A finite and complete unfolding 
prefix of a Petri net PN is a finite acyclic net which implicitly represents all the reachable 
states of PN together with transitions enabled at those states.  Efficient algorithms exist 
for building such prefixes [Khomenko’03], and complete prefixes are often exponentially 
smaller than the corresponding state graphs, especially for highly concurrent systems, 
because they represent concurrency directly rather than by multidimensional “diamonds” 
as it is done in state graphs. For example, if the original Petri net consists of 100 
transitions which can fire once in parallel, the state graph will be a 100-dimensional 
hypercube with 2100 vertices, whereas the complete prefix will be isomorphic to the net 
itself. Since mobile systems usually exhibit a lot of concurrency, their unfolding prefixes 
are often much more compact than the corresponding state graphs. 

 
3.2 Model checking mobile systems using Petri net unfoldings 

There exist several programming notations and frameworks proposed in the past to 
formally model and analyse the locality and movement of components, such as data and 
code. They are often based on, or directly inspired by, the π-calculus [Milner’92], which 
in itself is an extension of the CCS process algebra used in a variety of situations where 
reasoning about the behaviour of distributed communicating components is needed. As a 
result, π-calculus plays a foundational role in the continuing development of theories and 
methods for mobile and dynamically reconfigurable computing systems. Within RODIN, 
the plan is to develop a model checker based on Petri net unfoldings aimed at verifying π-
calculus specifications, with the following main architectural components of the target 
plug-in:  

• translator  from π-calculus expressions used in the modelling of mobile systems 
to Petri nets  

• formula editor where the user specifies the property to be verified   
• unfolder for deriving a finite prefix of the unfolding of the translated Petri net  
• verifier which establishes, by working on the finite prefix, whether the formula 

property is true of the original π-calculus input. 
The model-checking plug-in for mobility systems is being developed and evaluated in the 
context of the mobile telecoms systems and the Ambient Campus case studies.  
 
3.3 Mobility Plug-in and Ambient Campus 

Mobile agent systems are increasingly attracting attention of software engineers. 
However, issues related to fault tolerance and exception handling for such systems have 
not received yet the level of attention they deserve. In particular, formal support for 
validating the correctness and robustness of fault tolerance properties is still under-
developed. To address this issue, the work on the Petri net based model checking was 
planned to be conducted in close cooperation with the RODIN Ambient Campus case 
study.  
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Ambient Campus uses the CAMA system (context-aware mobile agents [Iliasov’05a] 
which is still under intensive development) that consists of a set of locations, and active 
entities of the system, called agents. An agent is a piece of software which is executed on 
a platform, providing execution environment interface to the location middleware. Agents 
can only communicate with other agents in the same location. Agents can migrate 
logically (connection and disconnection) or physically (e.g., movement of a PDA on 
which the agent is hosted) from a location to a location. Agents can also migrate logically 
from platform to platform using weak code mobility (transfer of application code or its 
parts from one host to another without retaining the execution state). Compatible agents 
(i.e., agents capable of cooperation in certain conditions in order to achieve individual 
agent goals and in accordance to the abstract specification of the whole system) 
collaborate through a scoping mechanism. Scopes define joint activities of several agents. 
Scoping mechanism also isolates non-compatible agents from each other.  

As a result of adopting the CAMA system as a primary provider of model checking 
instances, and due to the technical decisions made in the design and implementation of 
latter, the scope of the Petri net based model checking has been extended to cover 
features related to asynchronous message passing (in addition to the synchronous 
message passing supported by the π-calculus). In concrete terms, it has been decided to 
add a capability of model checking designs expressed in a π-calculus based process 
algebra supporting constructs coming from the KLAIM system [Bettini’03]. The current 
details of the exact formalisation of the syntax and semantics of this extension are 
reported in [Iliasov’05]. It should be stressed, however, that the main architectural 
components of the target plug-in will remain the same, but they will be based on an input 
language which is closer to the intended application domain, in particular, to the 
development work within the Ambient Campus case study. 

In concrete terms, our approach is first to give a formal semantics (including a 
compositional translation) of a suitably expressive subset of CAMA in terms of an 
appropriate process algebra and its associated operational semantics. The reason why we 
chose process algebra semantics is twofold: (i) process algebras, due to their 
compositional and textual nature, are a formalism which is very close to the actual 
notations and languages used in real implementations; and (ii) there exists a significant 
body of research on the analysis and verification of process algebras. The next steps, 
translation to a suitable Petri net formalism and model checking of the resulting Petri 
nets, will be supported by the mobility plug-in and unfolding based verification toolkit. 
Some work is still needed in order to clarify the range of properties that the mobility 
plug-in will be designed to verify in an efficient way. 

 
3.4 Specific technical progress already achieved within RODIN  

The main features of the syntax and semantics of the programming notation derived from 
CAMA have now been identified [Iliasov’05]. As already mentioned, in terms of the 
underlying model, it is based on KLAIM and the π-calculus. 

The theoretical and algorithmic foundations of the compositional translation from the π-
calculus to Petri nets, first developed for its finite fragment [Devillers’04], have recently 
been extended to a full recursive variant of π-calculus [Devillers’05a]. The ongoing (and 
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nearing completion) work aims at extending the previous developments to the KLAIM 
based process algebra [Devillers’05b].   

Further development of algorithms needed for efficient implementation of the model-
checking kernel of the mobility plug-in has been proposed in [Khomenko’05a]. The paper 
introduces a new condensed representation of a Petri net's behaviour which copes well 
not only with concurrency, but also with other sources of state space explosion, such as 
sequences of non-deterministic choice. Moreover, this representation is sufficiently 
similar to the traditional unfoldings, so that a large body of results developed for the latter 
can be re-used.  Experimental results indicate that the proposed representation of a Petri 
net's behaviour alleviates the state space explosion problem to a significant degree and is 
suitable for model checking.  

For a system developer, a crucial part of any model checking approach is information 
about system traces leading to an error state. Moreover, in order to be useful for 
debugging, such a trace should be as short as possible. The paper [Khomenko’05b] 
describes a new efficient method for computing the shortest violation traces in the Petri 
net unfolding approach.   

 
3.5 Key requirements for the mobility plug-in 

• Input: 
System specification in the form of a term of a suitable process algebra capable of 
capturing locality of code and data, migration of code and data, dynamic creation 
of concurrently operating processes  

• Property specification in the form of a formula of a suitable temporal logic 
capable of capturing properties relating to locality and mobility, as well as fault-
tolerant issues identified by the Ambient Campus study. A crucial aspect here is 
to identify a set of properties which can be model checked in an efficient way.    

• Model_translation: 
Automatic translation from process expression to Petri nets is a pre-requisite to 
the subsequent model checking. The translation should lead to a suitable class of 
high-level Petri nets, with features allowing a direct and unambiguous linking of 
Petri net components to the sub-expressions of the original process expression. 

• Unfolding: 
Applying the unfolding (and truncating) algorithm to the result of model 
translation yielding a finite prefix comprising the necessary information used in 
property verification. 

•  Verification: 
Applying property verifier to the finite prefix and property specification provided 
as user input. If the result is negative (i.e., the property is not satisfied) debugging 
information should be generated in the form of a counterexample. 

• Counterexamples: 
A counterexample invalidating a given property should be returned to the user in 
way allowing easy debugging, for example, as an input to a simulator or a 
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visualisation sub-module. Any information returned should refer to the original 
system specification in a direct way.  

 
Additional requirements for the mobility plug-in 

• Translation: 
Automatic translation from CAMA to the process algebra used in the plug-in 
together with suitable linking of the corresponding part of the code (to allow 
direct interpretation of debugging information). 

• Unfolding: 
Applying the unravelling algorithm to the result of model translation leading to a 
merged process. 

 
 
4 Constraint-based model checking and animation 

ProB is an animation and model checking tool for the B method. ProB's animation 
facilities allow users to gain confidence in their specifications. ProB contains a temporal 
and a state-based model checker, both of which can be used to detect various errors in B 
specifications. ProB supports checking of specifications written in a combination of CSP 
and B. ProB also supports automated refinement checking. In this section we provide an 
overview of the current functionality of ProB.  We then give an overview our 
expectations of how ProB will be further developed in the RODIN project both in terms 
of integration with the RODIN tool environment and enhancement of the functionality of 
ProB. 
 
4.1 Automated consistency checking for B 

B is based on the notion of abstract machine. The variables of an abstract machine are 
typed using set theoretic constructs such as sets, relations and functions. Each machine 
has a certain number of operations that can update the variables of the machine, as well as 
an invariant specified using predicate logic.  There are two main proof activities in B:  
consistency checking, which is used to show that the operations of a machine preserve the 
invariant, and refinement checking, which is used to show that one machine is a valid 
refinement of another.  
 
The ProB animator and model checker has been presented in [LeuschelButler03]. Based 
on Prolog, the ProB tool supports automated consistency checking of B machines via 
exhaustive state space exploration.  For exhaustive model checking, the given sets must 
be restricted to small finite sets, and integer variables must be restricted to small numeric 
ranges. This allows the checking to traverse all the reachable states of the machine. ProB 
can also be used to explore the state space non-exhaustively and find potential problems.  
The user can set an upper bound on the number of states to be traversed or can interrupt 
the checking at any stage. ProB will generate and graphically display counter-examples 
when it discovers a violation of the invariant. ProB can also be used as an animator of a B 
specification. So, the model checking facilities are still useful for infinite state machines, 
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not as a verification tool, but as a sophisticated debugging and testing tool.  ProB 
comprises various visualization facilities [LeuschelTurner05] to display the state space in 
a user-friendly way. 
 
The interactive proof process with Atelier-B or the B-Toolkit can be quite time 
consuming.  A typical development involves going through several levels of refinement 
to code generation before attempting any interactive proof [Lanet02]. This is to avoid the 
expense of reproving POs as the specification and refinements change in order to arrive at 
a satisfactory implementation. We see one of the main uses of ProB as a complement to 
interactive proof in that errors that result in counterexamples should be eliminated before 
attempting interactive proof. For finite state B machines it may be possible to use ProB 
for proving consistency without user intervention.  We also believe that ProB can be very 
useful in teaching B, and making it accessible to new users.  Finally, even for 
experienced B users, ProB may unveil problems in a specification that are not easily 
discovered by existing tools. 
 
ProB provides two ways of discovering whether a machine violates its invariant:  
 

• It can find a sequence of operations that, starting from a valid initial state of the 
machine, navigates the machine into a state in which the invariant is violated. 
Trying to find such a sequence of operations is the task of the ProB temporal 
model checker. 

• It can find a state of the machine which satisfies the invariant, but from which we 
can apply a single operation to reach a state which violates the invariant. Finding 
such states is the task of the ProB state-based model checker. 

 
4.2 Automatic Refinement Checking 

Refinement is a key concept in the B-Method. It allows one to start from a high-level 
specification and then gradually refine it into an implementation, which can then be 
automatically translated into executable code.  While there is tool support for proving 
refinement via semi-automatic proof (within Atelier-B [Atelierb96], the B-toolkit 
[Btoolkit99], and now also B4Free), there has been up to now no automatic refinement 
checker in the style of FDR [FDRManual] for CSP [Hoare85, Roscoe98]. Thus, 
especially the development of B refinements has been a labour intensive activity. Indeed, 
when a refinement does not hold it may take a while for a B user to realise that the proof 
obligations cannot be proven, resulting in a lot of wasted effort. We wish to speed up B 
development time by providing an automatic refinement checker that can be used   to 
locate errors before any formal refinement proof is attempted. In some cases the 
refinement checker can actually be used as an alternative to the prover1, but in general the 
method is complementary to the traditional B tools.  
 
[LeuschelButler05] formalises the notion of trace refinement checking and presents an 
algorithm which is at the heart of an automatic refinement checker.  This new refinement 

                                                 
1 Namely when all sets and integer ranges are already finite to start with  and do not have to be 
reduced to make animation by ProB feasible. 
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checker has been implemented and integrated within the ProB tool. To compute the set of 
reachable states of a B machine the model checker makes use of the same underlying 
interpreter as the animator. In fact, the ProB interpreter can be viewed as providing the 
operational semantics of a B machine. We will re-use the same ProB interpreter as the 
foundation of the refinement checker. In case refinement is violated, the refinement 
checker displays a sequence of operations that can be performed by the “refinement'” 
machine but not by the specification. 
 
4.3 Combining B and CSP in ProB 

In the Event B approach [RodinD7], a B machine is viewed as a reactive system that 
continually executes enabled operations in an interleaved fashion.  This allows parallel 
activity to be easily modelled as an interleaving of operation executions. However, while 
B machines are good at modelling parallel activity, they can be less convenient at 
modelling sequential activity. Typically one has to introduce an abstract `program 
counter' to order the execution of actions.  This can be a lot less transparent than the way 
in which one orders action execution in process algebras such as CSP [Hoare85]. CSP 
provides operators such as sequential composition, choice and parallel composition of 
processes, as well as synchronous communication between parallel processes.  
 
Our motivation is to use CSP and B together in a complementary way.  B can be used to 
specify abstract state and can be used to specify operations of a system in terms of their 
enabling conditions and effect on the abstract state. CSP can be used to give an overall 
specification of the coordination of operations.  To marry the two approaches, we take the 
view that the execution of an operation in a B machine corresponds to an event in CSP 
terms.  Semantically we view a B machine as a process that can engage in events in the 
same way that a CSP process can. The meaning of a combined CSP and B specification is 
the parallel composition of both specifications.  The B machine and the CSP process must 
synchronise on common events, that is, an operation can only happen in the combined 
system when it is allowed both by the B and the CSP.  
 
In [Leuschel01] we   presented the CIA (CSP Interpreter and Animator) tool, a Prolog 
implementation of CSP. As both ProB and CIA are implemented in Prolog, we were 
provided with a unique opportunity to combine these two to form a tool that supports 
animation and model checking of specifications written in a combination of CSP and B. 
We envisage two main uses of the combined tool.  Firstly it can be used to animate and 
model check specifications which are a combination of B and CSP. We illustrate this 
below. The second use of the tool is to analyse trace properties of a B machine. In this 
case the behaviour is fully specified in B, but we use CSP to specify some desirable or 
undesirable behaviour and use ProB to find traces of the B machine that exhibit that 
behaviour. More details on combining B and CSP may be found in [ButlerLeuschel05] 
including an comparison with related work on combining state based approaches such as 
B with process algebras such as CSP. 
 
4.4 Case Studies 

The existing ProB tool is already being used in the Engine Failure Management case 
study and the CDIS case study and is proving useful both for animation and consistency 
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checking.  This is providing valuable feedback in understanding the way in which 
animation should be presented and driven and the sorts of properties that are useful to 
check.  We expect it will be applied to other case studies as the tool matures. 
 
4.5 Future Requirements 

The animation and model checking functionality needs to be integrated to the RODIN 
kernel.  The kernel should provide access to models and proof obligations.  The ProB tool 
already uses XML as an intermediate format for B models so that this integration should 
be easily achievable using XML.   If ProB was an integrated plug-in to the kernel, it 
should then be possible to apply the animation and automated checking features 
seamlessly as part of formal developments. 
 
There is further enhanced functionality that we have already identified for the ProB 
animation and automated checking approach: 

• Support for Event B especially refinements involving the introduction of new 
events 

• Simultaneous animation of a model and its refinement 
• Link with the U2B plug-in so that animation and automated checking can be 

applied to UML-B models 
• Currently ProB works through exploration of the state space of models.  A 

complementary approach would be to attempt to falsify unproved proof 
obligations.  This could save much effort resulting from attempting to manually 
prove proof obligations that turn out to be unsatisfiable. 

• Optimisation of exploration should be achievable through the application of 
symmetry reduction techniques.  This is especially true at higher levels of 
abstraction where models are likely to contain many symmetries. 

 
 
 
5 Model-based testing 

Model based testing is an umbrella term for several possible techniques.  The general idea 
is to define the tests using some description or modeling mechanism and let a program 
perform the testing based on that defined model. The aim is to produce testing with better 
coverage by letting the computer automatically generate more, longer and more complex 
tests from the model that clearly exceed coverage that can be achieved by manually 
written test cases. This can be thought of as automatic simulation of the model against the 
implementation. The effort for creating the model-based test suite should less than that 
required for manually written test cases of similar coverage. "Manually written test cases" 
mean here the current practice of writing a test case that typically aims to tests a single 
property and upon execution against the System Under Test (SUT) returns a verdict that 
indicates whether the SUT correctly implements that property. Execution of such a test 
case can be expressed as a trace. These test cases are typically written in programming 
languages like C, Java or TCL (using frameworks like JUnit for Java and Expect for 
TCL), but there are dedicated testing languages, like TTCN-3, as well. 
 



RODIN D11 Definition of Plug-in Tools 

20 

The models should be used to describe what behaviour is supposed to be tested and leave 
the how to test part for a tester program to perform based on the model. This is rather 
useful as in complex cases, like for example testing of parallel systems where it is 
possible to specify the components of the system and let the tool compute the large 
number of possible interleavings. Another example is specifying a data range, which 
yields all integers (or, say, every fourth integer) between two integer values (0-255). 
Another possiblity is to yield only the min and max values of the given range. In terms of 
manually written test cases, a model repesents several test cases. 
 
The model is specified in a modeling language, such as SDL, UML, Z or B using the 
concepts of those languages. SDL, for instance has concepts of parallel communicating 
state machines that consist of states and transitions that along with concepts that are 
similar to programming languages, like arithmetic operations and conditional 
expressions. Note, that it is possible to define such concepts using any programming 
language and then use those concepts within that language. This can be thought of as 
modeling as well and in large test suites such libraries may easily emerge as they ease the 
actual task of testing. However, just packaging and using common behaviour is not 
modeling as such. Also, implementation of concepts typically found in a modeling 
language is a large task.   
 
Software testing is broadly classified into two categories: structured testing and 
functional testing [AdrionEtAl82, Beizer95]. Structured testing (or white-box testing) 
derives test cases from the structure of the implementation or part of the implementation. 
Such test cases are derived from a programmer’s perspective with the aim of covering as 
much as possible the structure of the object under test. This approach is likely to miss out 
many bugs because it may give all the code coverage that we may need, but it may not 
give us all of the system coverage that users may expect. The test cases for functional 
testing (or black-box testing) on the other hand are written from a user’s perspective. 
They are derived from the external specification of the software behaviour with no 
consideration given to the internal organisation, logic, control or data flow. Structured 
tests tell a developer that the code is doing things right while functional tests tell a 
developer that the code is doing the right things. Functional testing involves executing the 
implementation under test in relation to a set of test cases and examining the correctness 
of the generated output. In this context, we have the following issues:  

• Generation of test cases: How to obtain test cases so that they cover all features of 
a requirement under all scenarios? 

• Execution of the test cases: How to execute the test cases which are obtained from 
requirements or specifications? This may be a difficult task because even if the 
implementation preserved the intent of the requirement/ specification, it may not 
preserve the structure or the logic of the latter. 

• Validation of test outcomes: Once we run the test cases, the program would 
produce some outputs. How to ensure that the results are correct?  

 
5.1 Existing work 

If the development process is formal, many of the above issues can be handled in a 
rigorous manner. Formal specifications precisely define the high level aspects of a 
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software while omitting the detailed structural information; they are more likely to 
encode all of the required functions and their scenarios. Therefore testers can use the 
underlying mathematical framework to generate, possibly mechanically, test cases for 
functional testing. Even if we obtain test cases from specifications, it may not be easy to 
use them to execute the implementation. This is because a high level functionality may 
have been implemented in a variety of ways, and the mapping between the high level 
functionality and the low level implementation may not be apparent to the tester. 
Consider an example of a test case being a sequence of high level operations at 
specification level, but this operation sequence may not map easily to the operations at 
the implementation level. Some authors have proposed the use of special mappings called 
representation mappings to bridge this semantic gap [RichardsonEtAl92]. In addition, 
there is the problem of non-determinism. The choice made by a non-deterministic 
operation may not correspond to the deterministic choice made by the implementation. 
And then how are we going to use a test case involving non-determinism? 
 
When a system executes a test case, it produces an outcome, and the outcome is often 
interpreted by the tester to assign a verdict that the system has passed the test. This 
problem can be tackled by incorporating oracles into the testing process 
[RichardsonEtAl92, Weyuker92]. A test oracle determines if the system behaved 
correctly in relation to the test case. Test oracles are usually obtained from specifications. 
The outcome of a test case and the outcome obtained from a test oracle need to be 
matched to establish the equivalence between abstract outputs and concrete results. There 
are two issues in this context; first, there must be a mapping between the abstract state of 
the specification and the concrete state of the implementation, and second, there must be 
a mechanism to show their equivalence. The first problem can be solved by 
representation mapping; Antony and Hamlet [AntoyHamlet00] have discussed how the 
users could write explicit code for a representation mapping between the concrete data 
structures of C++ instance variables and the abstraction of the specification. And the 
second can be addressed though the use of probing or observation operations both at the 
abstract as well as at the concrete state levels.  
 
Early work on specification based testing includes that of Hall [Hall91] in which he 
discussed partitioning the input space by examining predicates in the operations of Z 
specification [Spivey88]. The aim was to induce software correctness based on test 
results. The work by Dick and Faivre [DickFaivre93] is a major contribution to the use of 
formal methods in software testing in which they have discussed a strategy for generating 
test cases from model oriented formal specifications. A VDM [Jones90] specification has 
state variables and an invariant (Inv) to restrict the state variables. An operation, say OP, 
is specified by a pre-condition (Pre) and a post-condition (Post). The approach of Dick 
and Faivre is essentially to partition the input space of OP by converting the expression 
Pre ∧ Post ∧ Inv into its Disjunctive Normal Form (DNF); and each disjunct of it 
represents an input subdomain of OP. Next, as many operation instances of OP are 
created as the number of non-contradictory disjuncts in the DNF. An attempt is then 
made to create a FSA (Finite State Automaton) in which each node represents a possible 
machine state and an edge represents an application of an operation instance. A set of test 
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cases are then generated by traversing the FSA where each test case is a sequence of 
operation instances.  
 
The work of Dick and Faivre discusses only the mechanisation of the partitioning 
algorithm. Legeard et al. [LegeardEtAl02] have developed a tool called the BZ Testing 
Tool (BZTT) for deriving test cases from Z or B specifications. So far as B specifications 
are concerned, they assume (i) the specification consists of a single B machine, and (ii) 
all sets in the B machine are transformed into finite enumerated sets.  The BZTT test case 
generator computes DNF forms of the operation precondition and postconditions pairs 
and uses the separate disjuncts to define partitions of the state and operation inputs.  
Boundary goals are also incorporated to generate further partitions.  Given a boundary 
condition, Prolog search techniques are used to generate a test preamble. At a boundary 
state, all eligible operations are applied to generate test cases as sequences of operation 
instances. From the test cases, automatic test scripts are generated in the target language, 
and representation mappings are created manually. Because of problems due to non-
determinism and those related to matching between abstract and concrete states, 
automatic verdict assignment was not implemented.  
 
The work of Richardson et al. [RichardsonEtAl92] discusses the derivation and use of 
test oracles for checking test results in the context of multi-lingual and multiparadigm 
(formal) specifications. Test oracles are derived from specifications in conjunction with 
the derivation of test data in relation to some testing criteria. Test execution is monitored 
and the results are verified against oracles; sometimes the authors considered it useful to 
compare intermediate results in addition to the end results. To make verification possible, 
their approach constructs mappings between the name space of the implementation and 
the name space of the oracle (same as the name space of the specification). There are two 
kinds of mappings: control and data. Control mappings are between control points in the 
implementation and locations in the specification where the implementation and the 
specification should be in same state. Data mappings describe the transformation between 
the data structures in the implementation and objects in the specification. These mappings 
are also called representation mappings [LegeardEtAl02], and usually they are developed 
manually. The implementation state and the state changes are monitored at the pre-
determined control points, and data mappings are used to establish the correspondence 
between the implementation and the specification state as oracle. The authors point out 
that many of the steps described could be automated. 
 
[SatpathyEtAl05] describes the experimental ProTest tool, an automatic test environment 
for B specifications. ProTest is based on the ProB model checker for B. ProTest follows 
an approach similar to the one by Dick and Faivre [DickFaivre93] and generates test 
cases from B specifications by partition analysis of the state invariant and the operation 
preconditions of a specification.   ProTest generates test cases by partitioning and 
exploring the state space. ProTest then simultaneously animates the specification and 
runs the implementation with respect to the test cases and assigns verdicts whether the 
implementation has passed the tests. ProTest has an interface for running Java Programs 
with respect to test cases, and to explore the execution states through the use of probing 
operations. The whole process is automatic; however, at this stage the test environment 
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imposes some restrictions on operation arguments and results.  Arguments are required to 
be basic types and specifications are required to be deterministic. 
 
5.2 Model abstractions in Lyra 

Abstraction of behavior 

The Lyra design method [LeppänenEtAl04] relies heavily on the theories of process 
algebraic specification and thus the notion of externally observable behavior has 
significant role in Lyra. Total behavior is categorized into externally observable behavior 
and internal behavior.  

Externally observable behavior consists of PSAPCommunication, USAPCommunication 
and PEERCommunication, which are the different types of behavior related to 
communication with the environment. PSAPCommunication encapsulates the behavior 
related to communication between the system and its users. The behavior type 
USAPCommunication encapsulates the behavior related to communication between the 
system and external service providers. PEERCommunication is defined in distribution of 
the system level functionality and encapsulates the behavior related to communication 
between the distributed system parts.         

Internal behavior consists of behavior types ExecutionControl and InternalComputation. 
ExecutionControl type of behavior manages the execution flow. InternalComputation 
encapsulates the algorithms and functionality related to internal computation of the 
system. These behavior types are separated to allow easy distribution and implementation 
independent, modular specification of higher-level behavior.   
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Figure 1: Lyra Behavioral Architecture (generic)  
The different types of behavior have been specified in the Lyra profile. When using 
UML2 as the modeling language, stereotypes are used to label the model elements with 
the behavior types. Behavior is structured in the model using hierarchical state machines 
and classes for encapsulation. Layering, which implies the the triggering rules for 
encapsulated behavioral components has been illustrated in Figure 1: Lyra Behavioral 
Architecture (generic). This approach provides support for automated generation of 
abstracted verification and testing models from large and complex UML2 models.  

In verification and testing the appropriate viewpoint of the system behavior for 
observation is chosen with respect to the properties to be verified and tested. When 
testing the externally observable behavior, by choosing the approapriate interfaces and 
sets of messages on those interfaces the tests can be clearly focused with respect to the 
chosen set of properties. The properties are related to a set of functionalities, which have 
the corresponding implementation also as internal behavior. Typing of the internal 
behavior provides support for abstraction of irrelevant internal behavior. The behavior, 
which is not relevant with respect to the set of specified test cases should be abstracted to 
obtain test models of appropriate size and complexity. Definition of the abstraction 
algorithms involves choosing the semantics approapriate for the test purpose (we assume 
the reduction algorithms to be part of the abstraction). For example, in Nokia the notion 
of CFFD equivalence and preorder have been used in abstractionverification and testing 
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with the TVT (Tampere Verification Tool). Different kind of abstraction tools can be 
developed as separate tools or embedded into model transformation tools.    

Abstraction of data 

One of the major challenges in testing and verification lies in the abstraction of data. 
Large or even infinite data domains make the systems hard or even impossible to verify 
and test them, at least exhaustively. In Rodin, different heuristics and patterns should be 
investigated and identified to make data abstractions possible and thus to manage the size 
and complexity of systems to be verified and tested.   

Behavior related to communication is usually data independent: functionality in 
PSAPCommunication, USAPCommunication and PEERCommunication is related to 
receiving of incoming messages and sending of outgoing messages. Decisions and 
computation based on the information included in these messages is done in internal 
behavior, i.e. in ExecutionControl and InternalComputation.  

In WP1/CS1 we have defined the system behavior through abstract machines, which 
correspond to the Lyra behavior types. ACM (Abstract Communicating Machine) handles 
communication, i.e. receiving and sending of messages on PSAP, USAP and PEER 
interfaces. This behavior type is usually data independent. Part of ACM corresponds to 
ExecutionControl, which identifies the message type and forwards the (appropriate part 
of the) message to be handled by the InternalComputation or (in case the computation 
algorithms resides in an external entitiy) to be set further by USAPCommunication or 
PEERCommunication. This behavior type manages the execution control flow and uses 
only the part of the messages indicating the message type. In UML2 also the entry and 
exit points with the related data parameters are used for managing the execution control 
flow. ACAM (Abstract CAlculation Machine) corresponds to InternalComputation 
behavior type and encapsulates the algorithms and other internal calculation. This 
behavior part is strongly data dependent. Outcome of the internal computation directs 
implicitly the execution (through the return values, i.e. exit points visible for 
ExecutionControl). 

In the Lyra design method the ASN.1 kind of approach has been used to structure and 
encapsulate the data into message parameters. This approach supports abstraction of the 
irrelevant message parts from the incoming messages.  

In managing the size and complexity of the system models to be tested, abstraction of 
data domains is crucial. In Rodin, heuristics and patterns for identifying suitable 
abstractions for large and infinite data domains should be investigated and developed. 
Also the possibility to abstract data variables from the test specification should be 
investigated (e.g. use of program slicing kind of techniques to define dependencies 
between the variables) . Abstraction of data in test specifications (produced using model 
transformation tools for UML2 models) should be computer-assisted or fully automated. 
To allow a degree of automation data abstraction tools for test specifications should be 
developed in Rodin. 
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5.3 Testing Plug-in  

The results of testing are reported as test verdicts (e.g. pass, fail, inconclusive), preferably 
together with execution traces as counter-examples in failure (and possibly inconclusive) 
cases. Execution traces should be generated in such a form that can be interpreted with 
respect to the initial model, for example as sequences of messages. Possibly also the 
execution traces could be stored into a test log. If the testing tool is able to use the test 
logs as its own input, this would allow higher degree of automation when repeating the 
tests (e.g. regression testing). This would also allow the use of other, external model 
transformation and testing tools. 

Test reports should also include information on the test coverage. Test coverage can be 
indicated e.g. with respect to states or transitions in the abstracted test specification.  
Reporting and generation of counter-examples should be developed and implemented as 
part of the testing tool and/or test execution environment. 

Modeling of the environment should be considered. In verification and testing of 
communication protocols an abstracted model of the relevant part of lower layers 
behavior should be part of the test models. For example, an abstraction of the underlying 
media (e.g. radio interface) should be brought into the testing environment as part of the 
test system to allow automated test execution.  

Another issue is how to simulate the inputs from the environment, for example messages 
sent by the upper layer(s). This is a typical way of triggering the behavior to be observed 
in the system under test. Triggering can also be done through user interaction. Solutions 
for these issues should be part of the model-based testing method and implemented in the 
testing tool.  

For development of the testing algorithms the appropriate semantic models should be 
defined. Verification and testing of the specified properties is done with respect to the 
chosen semantics. Testing algorithms implement different kind of testing heuristics. The 
implementation of the testing tool and the execution environment should be modular and 
expandable. For example the testing algorithms could be stored into a library, which 
allows flexible use and easy adding of new algorithms.  

We believe that the approach outlined above for generating test cases from formal 
specifications fits well into an overall package of tools to support the RODIN approach to 
system development.  A plug-in to support model-based testing should try to meet the 
following requirements: 
 

• Automate the generation and running of tests 
• Provide flexible ways of defining and applying boundary cases 
• Provide flexible and comprehensive ways of mapping the interface of a high level 

formal specification to the interface of an implementation under test. 
• Deal with nondeterminism in specifications 
• Support testing of a range of implementation languages.  This is probably best 

achieved by using a standard test specification language such as TTCN 
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• Provide a metrics for the degree of test coverage and indications of the degree of 
coverage being achieved 

 
These represent a very challenging set of requirements which will require a large research 
effort to achieve.  It is unlikely that we will achieve a powerful general purpose model-
based testing tool in the near future, but several of the pieces will be provided by RODIN 
to work towards such a tool.  RODIN also has a range of challenging case studies which 
can be used to guide and validate any tool development for model based testing. 
 
 
 
6 Code Generation 

This plug-in aims at enabling the production of source code from a given Event B model. 
This production is performed in 2 steps: 

- Events are recomposed by applying composition rules. Such rules are 
described in [Abrial01]. A rule is composed of: 

 an antecedent (the matching pattern) 
 a consequent (the resulting pattern) 
 a side condition which has to be verified by a theorem-prover 

before applying the rule. 
- Final recomposed event is translated into target source code. Target source 

code could be C, C++ or Java. 
The process flow is described in the following figure. 
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Figure 3 : code generation process flow 

The Composer tool is an interactive tool,  performing transformations ordered by a user. 
No automation is required. The tool will show up the composition rules that may be 
applied on some of the events. 
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Generated code would be either C, C++ or Java. 
Required functions are:  

• Load an event system 
• Apply rules on events 
• Search applicable rules 
• Load and save recomposition rules 
• Save the created system 

6.1 Composition rules  

A recomposition rule is applied on one or more events to replace them by one or no 
event. A recomposition rule has:  

1. a name 
2. a list of initial events 
3. a created event 
4. some proof obligations 
5. some instantiable joker 

The point 3,4 and 5 are optional: a rule can be used to delete some events, it can be used 
without proving anything and most of the time all the jokers are instantiated 
automatically. The order of the initial events is important: when trying to apply a rule on 
some events, we try to match them using this order. 
 
6.2 Interface  

4 viewers are expected:  

• the list of events 
• the list of rules or the list of possible rule applications 
• the currently selected event 
• the currently selected rule 

With the menu and the tool bar, one can  

• Open a new file: the file is loaded and the event list is updated. 
• Save to a file: the current list of event is saved in a file with the prelude 

(variables, invariant, ...) as the initial one. 
• Change the preferences: the list of preferences can be changed. 
• Load a rule file: the file is loaded and the rule list is updated. 
• Save a rule file: the current rule list is saved in a XML file 
• Apply a rule: a rule is applied on selected events, the list of possible rule (with 

the same number of initial events as the number of selected events) is displayed in 
a window that allows also the change the order of the selected events in order to 
make them match the rule. 
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• Search rule application: the possible application of selected rules is searched on 
all possible combinations of events. The rule is displayed in the application 
viewer. 

• Edit the current events: the current system file is edited using the editor 
specified in the preferences 

• Going back to the previous event list: the previous event list before a rule 
application is restored. 

• Going forward to the next event list: the next event list that have already been 
calculated is restored. 

In the rule viewer, one can  

• add, remove and modify some rules 
• Search rule application by double-clicking on a rule 

In the application viewer, one can apply a rule by double-clicking on an application. 
 
 
7 Graphical model animation 

Presenting a B model is never an easy task, as the receiver of this presentation is usually 
not able to read and/or understand a B model.  This plug-in aims at providing 
presentation support to expose results of a formal modeling study, not limited to a text 
based representation (listing). The process flow is described in the following figure. 
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Figure 4: Model animation process flow 

 
 
The very objective of this plug-in is to provide some attractive, easily understandable, 
meaningful, multimedia representation of a B model. This plug-in doesn’t offer any 
debugging capabilities: the ProB model checker plug-in offers that service.  
 
Required services: 
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1. graphical presentation set up: associate model modification with graphical 
animation. 

2. stepwise progress: select an event to fire, provide value(s) to variable(s). 
3. starting point selection: select any starting point (even unreachable). 
4. play a predefined scenario: this scenario is described in a formatted text file 

(variables modified, events fired). 
 
Software architecture 
The animator is made of 2 components: 

- a graphical interface: its role is to represent observations and to command 
the simulation kernel. 

- a simulation kernel: this kernel is composed of 3 elements: 
 set of variables of the B model to animate, 
 events 
 a sequencer 

As a debugger, he has 2 main properties: 
 it can be commanded: initialized, stopped, launched in automatic 

mode, run in step by step mode and allowing the valuation of 
variables. 

 It can be observed: an external program may have access to any 
variable modification or to any enabled event. 

 
8 Documentation generation 

This plug-in aims at generating automatically some documentation related to a B model. 
The objective is to enable the reading of a formal model, but without any prior 
knowledge of B.  
 

B model
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Documentation
generator

Document
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Format

 
Figure 5: Documentation generation process flow 

This kind of representation can be seen as a mid-term between multimedia presentation 
(see §Error! Reference source not found. Error! Reference source not found.) and 
the original, text-based B model. 
Generating by program the very semantics of a model is impossible. So extra inputs are 
required from the user to automatically generate this documentation. 
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In fact, the B model should be released with a complementary document called 
“dictionary”. Such a dictionary is composed of: 

- The list of all components/subsystems composing the system being 
modelled, 

- For each event: 
 The name of the component/subsystem which it is related to, 
 a brief description of this event, 
 a detailed description of it. 

- a description of each variable and constant. 
The resulting document should contain a description of the system being modelled, based 
on the relationships existing among all components/subsystems. For example, should be 
exhibited: 

- impact of events on different subsystems, 
- shared variables (variables modified/used  by several subsystems), 
- … 

with graphical/text-based representation. An example is provided below, resulting from 
our previous experience. 
 

 
Figure 5: example of generated documentation 

 
 
Target format would be HTML, RTF and/or PDF. 
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9 Requirements Manager 

A need for tool support for instantiating generic requirements patterns was conceived 
while working on case study 2. In this case study a generic model of a failure 
management subsystem was developed and then made specific to an example application 
by defining a set of instances. The specific example had been described previously in a 
tabular form which was then translated in terms of the generic model for verification. The 
instantiation was successful but tedious. Tool support for adding individual instances and 
maintaining the instantiation in the form of a database is envisaged. The tool will perform 
verification that the instantiation conforms to the constraints expressed in the generic 
model. 
The tool will maintain a database representing the instance data for a line of software 
products. The product line is based on a generic requirements specification that is 
expressed as a UML-B class diagram. The following features are required:  

1. A database schema for the instance data tables will be automatically generated 
from a class diagram generic model.  

2. The tool will provide a context dependent menu extension to a UML-B modeling 
tool for adding class instances and corresponding table entries.  

3. Database support (create/ update/ delete/ audit trail) will be provided at product 
and at instance level.  

4. The requirements manager will provide a capability for batch data input as well 
as manual addition of individual instances and the capability to switch between 
the two.  

5. The requirements manager will verify new/updated instance data against the 
generic model, including  

a. association multiplicities, 

b. constraints (written in µB, the action and constraint notation of UML-B) 
attached to UML-B entities as stereotype data fields.  

6. Verification feedback notification will be given by annotating the violated 
constraints and the offending item in the table.  

The tool will be implemented in Java and deployed as an Eclipse plug-in. The UML-B 
modeling tool to be extended will be Rational Software Architect (RSA). 
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