
Project IST-511599

RODIN

“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable D15

Description of the Rodin Prototype

Editor: Laurent Voisin (ETH Zurich)

Public Document

February 28, 2006

http://rodin.cs.ncl.ac.uk

http://rodin.cs.ncl.ac.uk

Contributors

Michael Butler University of Southampton
Joey Coleman University of Newcastle
Stefan Hallerstede ETH Zurich
Thai Son Hoang ETH Zurich
Farhad Mehta ETH Zurich
Christophe Métayer ClearSy
François Terrier ETH Zurich
Laurent Voisin ETH Zurich

1

Contents

1 Introduction 3

2 Architecture of the Prototype 3

3 The Rodin Platform 4
3.1 The Rodin Database . 5
3.2 The Rodin Builder . 6

4 The event-B Core 6
4.1 Database Customization . 7
4.2 The event-B Static Checker . 7
4.3 The event-B Proof Obligation Generator 8
4.4 The event-B Proof Obligation Manager 8
4.5 The AST library . 9
4.6 The Sequent Prover . 10

4.6.1 Plugin Dependencies . 10
4.6.2 Functionality . 10
4.6.3 Prover Extensions . 12

5 The event-B User Interface 13
5.1 The Modeling UI . 13

5.1.1 The Project Explorer . 15
5.1.2 The Event-B Editor . 15
5.1.3 The Content Outline . 16
5.1.4 The Message Area . 17
5.1.5 Wizards . 17

5.2 The Proving UI . 17
5.2.1 The Obligation Explorer 17
5.2.2 Proof State . 18
5.2.3 Proof Information . 19
5.2.4 Proof Tree . 19
5.2.5 Proof Control . 20

5.3 The User Support . 20

2

1 Introduction

This document describes the contents of Rodin Deliverable D15 Prototype of
basic tools and platform.

The Rodin prototype is an extensible application for developing event-B
models and proving them correct. This prototype is not an industrial strength
application, but rather a proof of concept. The aim, when developing it, was
to ensure that the specification of the basic tools and platform (see [D10]) is
indeed implementable and that the resulting application is usable.

The implementation of this prototype corresponds to the advancement of
tasks 3.2 to 3.7 of work package 3 at the prototype level (these tasks are carried
out in parallel) and achieves milestone M9 of the project.

After describing the software architecture of the prototype, we describe in
turn each of its components: the Rodin platform, the event-B core, and the
event-B user interface.

2 Architecture of the Prototype

The Rodin prototype is built on top of the Eclipse Interactive Development
Environment (IDE) which provides all basic services needed by such an applica-
tion. The strong advantage of this design decision is that a lot of software gets
reused and that the Rodin team didn’t have to reinvent the wheel, as already
argued about in [D5].

As a consequence, all Rodin software is provided as a set of plugins to the
Eclipse IDE. These plugins contain the tools used during modeling and a user
interface. These plugins are decomposed along three axes, which are strong
design principles of the Rodin project:

• Separation of core and UI plugins: core plugins provide the basic func-
tionality (such as static checking and proof obligation generation) and
are completely independent of the user interface, which is isolated in UI
plugins.

• Separation of the Rodin platform and its event-B customization: the
Rodin platform is a general-purpose modeling framework and is completely
independent of the formalism used, while the event-B customization is spe-
cially tailored to event-B modeling.

• Independence from Eclipse: if a piece of software doesn’t rely on any
service provided by the Eclipse IDE, then it should be packaged separately,
so that it can be reused in another context.

The Rodin prototype consists of the following plugins:

Rodin Platform (org.rodinp.core). This plugin provides the core function-
ality of the Rodin platform: a database for storing hierarchical models and
artifacts produced by tools (such as proof obligations and proofs) and an
incremental builder for running tools in a reactive manner.

event-B Core Plugin (org.eventb.core). This plugin customizes the Rodin
platform for the event-B formalism. It defines all database elements

3

Eclipse IDE org.eventb.core.ast

org.rodinp.core org.eventb.core.prover

org.eventb.core

org.eventb.ui

The Rodin prototype is built by stacking plugins on top of the
Eclipse IDE.

Figure 1: Architecture of the Rodin Prototype

needed for supporting event-B modeling and it contains the three tools
needed by event-B: static checker, proof obligation generator and prover.

event-B Abstract Syntax Tree (org.eventb.core.ast). This plugin con-
tains a library for manipulating event-B mathematical formulas in the
form of Abstract Syntax Trees. It provides all basic services for pars-
ing, pretty-printing, type-checking, traversing, transforming, etc. math-
ematical formulas. This library is put in a separate plugin because it is
independent of Eclipse.

event-B Sequent Prover (org.eventb.core.seqprover). This plugin con-
tains a library for proving sequents. This library is the core of the event-B
prover, without any dependency on Eclipse, hence a separate plugin.

event-B User Interface (org.eventb.ui). This plugin contributes the two
graphical user interfaces of the event-B platform: the modeling UI and
the proving UI.

These plugins are organized as depicted in Fig. 1, where box stacking denotes
dependency: each plugins depends on the plugins drawn below it.

The sequel of this document describes more precisely the contents of the
Rodin plugins.

3 The Rodin Platform

The Rodin platform is the formalism-agnostic part of the prototype. Contrary
to the other parts, it’s completely independent of event-B and can be reused for
any other formalism, e.g., π-calculus or CSP.

This plugin has been developed because the basic functionality of the Eclipse
IDE didn’t fulfill exactly some of the requirements that we had for a fully-fledged
modeling platform.

4

Firstly, Eclipse provides a service for managing projects, folders (i.e., direc-
tories) and files, independently of the underlying operating system. However,
this service, implemented in the Resource plugin, provides only a flat view on
files, while we wanted to have a hierarchical view on them, as discussed in [D5].
As a consequence, we developed a database on top of the Resource plugin.

Secondly, the Resource plugin of Eclipse also provides a mechanism for in-
crementally building a project, that is deriving automatically and in the back-
ground some object files from source files, as needed traditionally in software
development (compilation process). However, this mechanism doesn’t allow us
to implement directly the scheduling policy depicted in [D10]. Moreover, this
mechanism is quite crude and implementers need to implement the full logic
of their builder from scratch. As a consequence, we developed an incremental
builder that can run a tool-chain (static checking, proof obligation generation
and automatic proving) with our scheduling policy.

The rest of this section gives an overview of the implementation of the Rodin
database and the Rodin builder.

3.1 The Rodin Database

The Rodin database of the prototype implements parts of its specification given
in [D10]:

• Most kinds of elements (database, project, file, and internal elements) are
implemented. Only folder elements are missing in the prototype (they will
be implemented in the final version). File and internal element types can
be defined as extensions, using the extension points fileElementTypes
and internalElementTypes.

• The persistence of elements is implemented, including the caching of in-
ternal elements in memory.

• Both low-level and high-level services are fully implemented, including the
observer design pattern on database changes.

• The undo/redo facility is not yet implemented.

• The compare and search facilities are not yet implemented.

The Rodin database is implemented by four packages:

org.rodinp.core contains the published API of the database, that is a set of
classes and interfaces visible to all clients.

org.rodinp.core.basis contains the semi-published API of the database: It
is a set of abstract classes, which are intended to be sub-classed by clients
that contribute new element types to the database. However, no other
use of these classes should be made, like calling some internal methods
exposed by the abstract classes or overriding them.

org.rodinp.internal.core contains the implementation of the database man-
ager. Most notably, there are two classes for each kind of element type
(project, file, internal, etc.) The first class implements a handle on the
element, that is the client-visible part of the database, while the second

5

class, suffixed by ElementInfo, implements the actual element, that is the
list of children and attributes.

All modifications on the database are encapsulated in operation objects,
whose class inherits from RodinDBOperation. Class DeltaProcessor lis-
tens to changes of Eclipse resources and ensures that the database is kept
in sync with the filesystem. Finally, class RodinDBManager implements
the database cache and the Observer design pattern for the database.

org.rodinp.internal.core.util contains various utility classes for logging,
string manipulation, messages loading and cache management.

3.2 The Rodin Builder

The Rodin builder implements an IncrementalProjectBuilder of the Eclipse
Platform. In Eclipse, each project is associated with its own builder(s). If a
project is associated with the Rodin nature, the Rodin builder is called when
resource changes have taken place in the project. The Rodin nature is attached
to a project by the Rodin database.

The Rodin builder is extensible. One can contribute tools by means of the
extension point autoTools. The contributed tools are run when a Rodin file
is updated. The extractors are invoked after a Rodin file has been changed or
created, i.e., after a tool has finished for the file. Extractors are usually im-
plemented together with a tool to dynamically extract dependencies concerning
the files that are an input of the tool and insert them into the dependency graph
of the Rodin builder.

The Rodin builder is implemented by two packages:

org.rodinp.core.builder This package contains the classes that are used by
extensions of the builder to add tools to the Rodin platform. Usually
adding a tool requires adding the tool itself for running the tool and
cleaning up resources generated, and an extractor to tell the Rodin builder
about resource dependencies of the tool. Dependencies of a file in a Rodin
project are represented in a graph structure that is updated by extractors.

org.rodinp.internal.core.builder This package contains the implementa-
tion of the Rodin builder. It schedules the tools that have been added to
the Rodin builder by its extensions. The schedule is computed according
to the dependency graph maintained dynamically for each project. The
computed schedule is a topologically sorted list of all Rodin file resources
in a project.

4 The event-B Core

This section describes the contents of the event-B core plugins. We first describe
the customization of the Rodin database for event-B, then each of the core tools
for event-B: the static checker, proof obligation generator and proof obligation
manager. Finally, we present the two separate plugins: the AST library and the
sequent prover.

The architecture of the prover tool has been refined since the writing of [D10].
It is now decomposed as follows:

6

• The Proof Obligation Manager (POM) merges new proof obligations pro-
duced by the POG with old proofs, and allows the commencement of a
new proof (or resuming an old proof) on a given proof obligation. It thus
bridges the database world with the proving world. It is implemented in
plugin org.eventb.core.

• The Sequent Prover works on a given sequent and is decomposed in
two parts: the Proof Manager (PM) takes care of the proof tree and
ensures its correctness, while prover extensions provide the actual prov-
ing tactics and reasoners. The sequent prover is implemented in plugin
org.eventb.core.prover.

4.1 Database Customization

The event-B core plugin contributes several element types to the database.
These types are split in four groups:

Unchecked model These types are used for representing the components (ma-
chines and contexts) entered by the user. There names don’t have any
prefix, contrary to the element types of the other groups. Example of
such elements are machine constant, variable, invariant, event, . . .

Checked model These types are used for representing the checked components
produced by the static checker. Their names are prefixed by sc. Example
of such elements are scMachine, scConstant, scVariable, scEvent, . . .

Proof obligations These types are used for representing the proof obligations
produced by the POG. Their names are prefixed by po. Example of such
elements are poFile poIdentifier, poPredicate, . . .

Proofs These types are used for representing the proofs managed by the prover.
Their names are prefixed by pr. Example of such elements are PRFile,
PRSequent, PRStatus . . .

Similar to the database, the published API of the event-B core plugin is in
package org.eventb.core, while the actual implementations of element handles
are in package org.eventb.core.basis.

4.2 The event-B Static Checker

The event-B static checker contributes two tools to the Rodin builder. One
tool to statically check event-B contexts, and the other one to statically check
event-B machines. The implementations of both are very similar and in accor-
dance with the specification written in event-B itself [D10]. They are located in
package org.eventb.internal.core.protosc.

The event-B context static checker is implemented in class ContextSC, which
also implements the Rodin builder interfaces for running, cleaning, and extract-
ing. The same functionality is implemented by MachineSC for event-B machines.

The static checker filters all elements that are not well-formed or well-
typed, and produces appropriate markers with error messages. The input
of the static checker are event-B contexts and event-B machines, interfaces

7

IContext and IMachine in package org.eventb.core. The static checker gen-
erates Rodin files containing those elements that are well-formed and well-typed.
The static checker extends the Rodin database with elements for the generated
files, ISCContext and ISCMachine contained in org.eventb.core.

The present implementation of the static checker is not extensible but has
been implemented with extensibility in mind. To this end, it is implemented
by a collection of independent rules. However, after inspecting more thoroughly
the design, it happens that having independent rules doesn’t allow to implement
extensions easily and efficiently. A new investigation is taking place to find a
better design for the static checker.

4.3 The event-B Proof Obligation Generator

The implementation of the event-B proof obligation generator (POG) follows
the specification given in [D10]. It extends the Rodin builder with two tools:
one POG for event-B contexts and one POG for machines. They are located in
package org.eventb.internal.core.protopog.

The event-B context POG is implemented in class ContextPOG, which also
implements the Rodin builder interfaces for running, cleaning, and extracting.
The same functionality is implemented by MachinePOG for event-B machines.

The POG does not produce any error messages addressed to the user, i.e., it
does not produce markers. All error conditions have been filtered by the event-B
static checker that is required to be run before the POG. The extractors of the
POG ensure this by adding corresponding dependencies to the Rodin builder.
The POG uses the statically checked files (ISCContext and ISCMachine) as
input and computes a Rodin file with proof obligations, extending the Rodin
database by IPOFile contained in org.eventb.core.

The POG is implemented as a list of rules that usually group some related
rule of the specification [D10] for better efficiency. The POG has been designed
to be extensible but this is not yet available. The present design suffers from a
similar deficiency like the event-B static checker.

4.4 The event-B Proof Obligation Manager

The proof obligation manager is implemented in package org.eventb.core.pom
in the Eclipse plugin org.eventb.core. It reads the proof obligation file of a
given event-B component and maintains it’s corresponding prover file. Both
these files are managed by the Rodin database.

Functionality. The proof obligation manager starts by reading a proof obli-
gation file from the Rodin database. If a prover file for it already exists, it
compares its proof obligations to see if the stored proofs are still valid. If no
proof file exists, it generates a new proof file with empty proofs and checks it
into the database. For the prototype old proof files are not taken into account,
and the tool always creates a fresh prover file on every proof obligation file
change.

The proof obligation manager manages proofs at the event-B file level. It can
navigate between proofs for proof obligations for a single machine or context.
It can make calls to the event-B sequent prover in order to try to discharge a
proof obligation automatically using an automated prover, proof reuse, or any

8

such method provided by the event-B sequent prover. Its output prover file is
the starting point for an interactive proving session.

Along with the proof (stored as a proof tree), the proof obligation manager
maintains the status of proofs (pending or discharged) of all proof obligations
in a proof obligation file. This status is used to give the user a quick overview
of progress in the proof of his model.

As proofs are precious artifacts, before closing a prover file, or at any time
in the middle of a proving session, the proof obligation manager can save the
current proof trees and proof status to the prover file for persistence and later
reuse. For the prototype, proof trees are not stored in the prover file.

The Prover File. Each prover file is associated to a proof obligation file
and has the suffix .pr. The prover file records the current state of all proofs
corresponding to proof obligations. For each proof obligation, the prover file
contains:

• its name in the proof obligation file,

• a copy of the proof obligation,

• its current proof attempt as a proof tree,

• the status of this proof (pending or discharged).

The copy of the proof obligation and its name is stored in the prover file
in order to check if the proof obligation has changed in the course of a formal
development. The proof obligation manager can thus check if a proof is still
valid. The current proof attempt is stored as a proof tree in order to keep the
proof persistent, allowing the user to replay a proof attempt and come back to
where he left off in a proof. The status of a proof is also kept track of in order
to avoid replaying proofs unnecessarily in order to recompute this information.

As already mentioned, for the prototype the prover file will not store proof
trees, but only the status of a given proof attempt. Incomplete proof attempts
will have to be restarted from scratch.

4.5 The AST library

The AST library provides basic services for manipulating formulas in the event-
B mathematical languages. The main design principles that gave rise to that
library are simplicity, efficiency and extensibility, although the latest one has not
been yet exercised within the Rodin prototype (no extension has been designed
yet).

The core of this library is the AST datastructure where formulas are repre-
sented internally as a tree of nodes. All nodes are immutable so that references
to them can be shared.

The services provided by that library are the following:

• Parsing a formula, that is computing its AST from a string of characters
(typically entered by the end-user).

• Pretty-printing a formula, which is exactly the inverse of parsing.

• Constructing new formulas directly using the library API.

9

• Type Checking formulas, that is inferring the types of the expressions
occurring within and decorating them with their type.

• Testing formulas for equality (up to alpha-conversion of bound identifiers),
for strict equality (taking into account the names of bound identifiers), for
well-formedness, etc.

• Substituting both free and bound identifiers of a formula, producing a new
formula.

• Computing the well-definedness predicate of a formula.

• Navigating through formulas using the Visitor design-pattern.

• etc.

4.6 The Sequent Prover

The sequent prover is implemented in plugin org.eventb.core.prover. It is
concerned purely with proofs of sequents expressed in the event-B mathematical
language. It is independent of the Rodin database or event-B files.

4.6.1 Plugin Dependencies

The sequent prover depends solely on the event-B AST library. In particu-
lar, it uses implementations of predicates, expressions, type environments from
this library. The sequent prover uses parsing, pretty printing, constructor, and
destructor methods for these data types.

4.6.2 Functionality

The sequent prover implements the data structures required for proof using the
building blocks provided by the AST library. Its main contributions to the rest
of the tool are proof trees (implementing the interface IProofTree) and tactics
(implementing the interface ITactic) used to modify them. Unless otherwise
stated, all data structures are immutable. The implementation is done bottom
up:

Hypotheses. A hypothesis (interface IHypothesis) is a container for pred-
icates that are used as hypotheses in a sequent. It may also contain other
information such as the origin of the hypothesis, or some pre-processing that
may come in handy at the time of proof.

Sequents. Prover sequents (interface IProverSequent) consist of a set of
hypotheses, a goal, and a type environment. In a prover sequent, the set of
hypotheses is partitioned into selected and un-selected hypotheses, and inde-
pendently into hidden and visible hypotheses. Roughly speaking, a selected
hypothesis is an hypothesis which is considered, either by the end-user or a
tool, as relevant to the proof to be achieved, while a hidden hypothesis is an
hypothesis that the user wants to hide from automatic tools (i.e., a hidden
hypothesis is invisible to automatic tools).

10

Rules. Inference rules (interface IRule) implement backward style inference
rules on prover sequents. Application of a rule on a prover sequent (considered
the conclusion of the rule) results in the generation of a list of prover sequents
(the list of antecedents of the rule). A rule discharges a sequent when its ap-
plication returns an empty list of antecedents. To keep their implementations
straightforward and less error-prone, rules typically perform simple sequent ma-
nipulations.

Proof Trees. Proofs in progress are stored as proof trees. Proof trees (inter-
face IProofTree) are trees with nodes containing sequents (IProverSequent).
Nodes with children also contain a reference to the inference rule of type IRule
used to compute their children. A proof tree node can either be an:

• open leaf node : no rule applied, extendable

• internal node : rule applied, at least one child

• discharged leaf node : rule applied, no children

The root of a proof tree contains the sequent to be proven. The open leaf
nodes of a proof tree are the pending subgoals left to be proven. A proof
tree is considered to be discharged when it contains no more open leaf nodes.
Discharged proof trees correspond to completed proofs.

The only way to construct a new proof tree is by constructing an open leaf
node from a prover sequent. The only ways to modify a proof tree are:

• To prune the children of an internal or discharged leaf node, making it
open.

• To apply a rule to an open leaf node, making it internal or discharged.

The sequent field of a proof tree is immutable, whereas the rule and children
fields are mutable, but only in the above two ways. The root sequent of a proof
tree cannot therefore be modified. Also, once we have a discharged proof tree
we are sure that only valid rule applications have been used.

Tactics. The growth of proof trees is restricted to applying rules on open leaf
nodes. Applying rules individually can be a tedious process since rules typically
perform small steps in a proof. A user typically wants to perform a series of
rule applications in one shot. Tactics (interface ITactic) facilitate this.

Tactics are proof tree transformers. Applying a tactic on a proof tree mod-
ifies the proof tree in a desired way. What is important to note is that :

• Tactic application leaves the root sequent of the proof tree untouched.
This is ensured by the immutable nature of sequents in proof tree nodes.

• Application of tactics in the end always get translated into pruning or ap-
plying rules on proof tree nodes. Tactics still have to go through the proof
tree API. What is achieved is greater convenience without compromising
the integrity of the proof tree data structure.

11

The sequent prover provides a number of pre-written tactics (static methods
conjI(), hyp(), cut(), doCase(), etc. in the class Tactics) to be used in
proofs.

The sequent prover also provides ways to compose pre-existing tactics to
easily construct new ones. For instance, the tactic norm is constructed by com-
bining simpler tactics in the following way:

public static ITactic norm(){
ITactic Ti = repeat(compose(conjI(),impI(),allI()));
ITactic T = repeat(compose(hyp(),trivial(),Ti()));
return repeat(onAllPending(T));

}

The methods repeat(), compose(), and onAllPending() take tactics as
input and return tactics as output.

Tactics may be used in automated, or interactive proof sessions. Tactics
provide a powerful, uniform and safe way to modify proof trees independent of
internal implementation details of the sequent prover.

Tactics intended for interactive use come with methods to check their ap-
plicability to a particular goal or hypothesis. These methods are used by the
proving user interface to give the user a choice of tactics to apply.

New tactics can be added to the prover when bundled as prover extensions.
Although not present in the prototype, the concept of prover extensions will be
described in the next section.

4.6.3 Prover Extensions

The sequent prover will provide extension points for prover extensions. A prover
extension extends the reasoning capabilities of the prover. It typically may
contain:

• new prover tactics,

• external reasoners.

From the users perspective, the main aim of a prover extension is to provide
new tactics for use within a proof. Internally, a prover extension may also
provide external reasoners.

New Tactics. As seen earlier, the sequent prover provides ways to compose
pre-existing tactics to construct new ones. Developers can create their own
specialized tactics for particular types of problems. In case a tactic needs to be
called interactively with user input, an extension to the interactive proof UI is
also needed.

Providing new tactics in this way does not compromise the safety of the
system since only pre-existing reasoning tools are used. It may be the case that
a developer wants to add a new reasoning method to the prover, in which case
he needs to provide an external reasoner as part of the prover extension and
provide tactic wrappers for it.

12

External Reasoners. An external reasoner extends the reasoning capabili-
ties of the prover. The interface for external reasoners is contained in the file
IExternalReasoner. Its main task is to generate valid sequents (of a given
form) for the prover to use in proofs. A special rule (essentially performing
modus ponens) is present in the prover in order to use this generated sequent
in a proof.

To check the validity of theses generated sequents is the responsibility of
the external reasoner. A faulty external reasoner can make the prover unsound.
It is therefore advisable to write external reasoners as a last resort, only when
writing new tactics for the desired problem is not feasible.

The sequent prover provided in the prototype does not offer extension points
for prover extensions but has been designed in order to accommodate this in
the near future.

5 The event-B User Interface

The Rodin prototype provides two UIs for event-B: the Modeling UI and the
Proving UI. They are extensions of the Eclipse Platform UI, and are built on top
of a workbench that provides the overall structure and presents an extensible UI
to the user. The two UIs are implemented in one plugin named org.eventb.ui.

The Modeling UI is built on top of the Rodin database, customized by the
event-B core plugin. Users create and modify components through the Modeling
UI. Once saved and thanks to the Rodin builder, components get checked by the
static checker. The static checker provides feedback (error messages, warnings,
etc.) to the Modeling UI.

Users interact with the Prover using the Proving UI for discharging proof
obligations.

Sec. 5.1 gives the details for the Modeling UI. Sec. 5.2 on page 17 describes
the design of the Proving UI.

5.1 The Modeling UI

A snapshot of the Modeling UI can be seen in Fig. 2 on the next page. This is
derived from the classical Eclipse Platform UI. It contains five distinct parts:

“Project Explorer” shows a tree structured view of the current workspace,
i.e.,list of projects with their editing contents (machines, contexts, etc.)

“Event-B Editor” is a specific editor for creating and modifying event-B
components.

“Content Outline” shows the tree structured view of the currently edited
component.

“Message Area” displays error/warning messages.

“Wizards” simplifies the creation of a new project or a new event-B compo-
nent.

The following sub-sections discuss each part in details.

13

Figure 2: Modeling UI Workbench

14

5.1.1 The Project Explorer

The Project Explorer contains a tree-structured view of the list of all projects
which are developed in the current workspace. This is built on top of the “Rodin
Database”. This is an extension of the Eclipse “View”. The tree contained in
the view also shows the contents of the projects, i.e.,the components such as
machines and contexts, together with their internal elements, such as variables,
invariants, etc. This view is not exactly the same as that of the Rodin Database,
but it is modified for better navigation on components.

The Project Explorer is implemented by the following classes in package
org.eventb.internal.ui.projectexplorer:

ProjectExplorer The main class for the Project Explorer.

ProjectExplorerActionGroup Implements the actions available in the Project
Explorer .

ProjectExplorerContentProvider Implements the connection with the Rodin
Database in order to get the relevant data and feed this to the Project
Explorer ’s tree viewer.

The following classes provide some support for the Project Explorer :

TreeNode Implements nodes which are displayed in the Project Explorer . They
are not contained in the Rodin Database and purely used for displaying
purpose of the Project Explorer . For example, a“Variables” node which
is displayed as children of a machine and contains all variable children of
this machine.

5.1.2 The Event-B Editor

In a classical Eclipse Platform UI, the Editor region is displayed in the middle
of the workbench. The Event-B Editor is used for editing event-B related com-
ponents, such as machines and contexts. All instances of the Event-B Editor
will be displayed in the Editor region. The Event-B Editor is a “multi-page”,
“form” editor.

Firstly, the Event-B Editor as a form editor is in contrast with a normal
text editor. Users edit an event-B component by typing various information into
different forms. Users do not see the actual sequential “source file” any more.
This is specifically built to give users a clean and dynamic way for interacting
with the Rodin Database and does not have to take care of keywords, etc.

Secondly, the Event-B Editor is a multi-page editor in a sense that there are
several different pages for editing different “parts” of a component. For example,
when editing a machine, the editor provides five pages, namely: Dependencies
(for choosing a context on which this machine depends), Variables, Invariants,
Theorems and Events. Similarly, for a context, there are four pages for editing
Carrier Sets, Constants, Axioms and Theorems. Each page of the editor can
be decomposed into two areas. The top area is the proper editing area where
elements can be edited, while the bottom area contains “mirror” sections that
display additional information relevant to the edited elements. For instance, in
the Sets page, the top area displays the sets of the current context, while the
bottom area displays the axioms and theorems of the same context.

15

With the design of Event-B Editor (i.e. multi-page and form), users only
need to enter some minimal text into the editor. A typical example of using
this editor is that a user goes through different pages, using buttons to add
or delete some elements, using forms to change some elements. After entering,
modifying or removing a (usually small) number of such elements, the user can
“save” the component and the Rodin builder (running in the background) will
start appropriate processes for static checking, proof obligation generating and
even (auto) proving the component.

The Event-B Editor is implemented by the following classes in package
org.eventb.internal.ui.eventbeditor:

EventBEditor The main class implementing the Event-B Editor .

EventBEditorContributor The contributor class of the Editor, which manages
the installation/de-installation of global actions.

The pages of the Event-B Editor are implemented by the classes in pack-
age org.eventb.ui.internal.eventbeditor. Except for the Dependencies
Page, the other pages are instances of EventBFormPage, which contains a “Mas-
ter/Details Block” at the top, and several “mirror” sections for displaying rele-
vant information at the bottom of the page.

A master section of a Master/Details block can be either a section with
a table viewer (e.g. in Variables or Invariants Page), or a section with a tree
viewer (e.g. in Events Page). Elements are created/removed through the Master
section.

A detail section of the a Master/Details block contains several editing rows
for modifying (i.e.,changing name, content) the element which is selected in the
corresponding Master section.

In package org.eventb.ui.internal.eventbeditor, the conventions for
the supporting classes are:

..MasterDetailsBlock implements a Master/Details block.

..MasterSection implements a Master section of a block.

..DetailsSection implements a Details section of a block.

..MirrorSection implements a Mirror section, which displays the related in-
formation in the editing pages.

..Page implements a page of the Event-B Editor .

5.1.3 The Content Outline

The tree structure (i.e., contents) of the currently edited component is shown
in the Content Outline section (on the right) of the Eclipse Workbench. The
Content Outline provides a convenient way to navigate through the editing
component. By selecting one or several elements in the Content Outline, the
corresponding Event-B Editor shows the page for editing these elements. The
Content Outline is implemented by class EventBContentOutlinePage in pack-
age org.eventb.internal.ui.eventbeditor.

16

5.1.4 The Message Area

The Message Area displays the error and warning messages that have been pro-
duced by building tools, such as the static checker. This contains the standard
Problems View, in which the different markers (Problem, Warning) are displayed.

Since there are some limitations in the Problems View, we may provide our
Rodin Problems View later —with similar concepts— which will be tailored to
suit our Rodin Markers.

5.1.5 Wizards

Besides three Views and an Editor, the Modeling UI also provides a set of
wizards for creating new elements. There are wizards for creating a new project
and for creating a new component (machine, context). They can be invoked from
the menu File/New, or through the local menu/toolbar of the Project Explorer .
These wizards are implemented in package org.eventb.internal.ui.wizards
with the following conventions:

New..Wizard The main class for the wizard.

New..WizardPage Implements a dialog which will be used when the wizard is
invoked, in order to create a new element.

5.2 The Proving UI

The (Interactive) Proving User Interface is under development and it also follows
the classical Eclipse Platform UI (Fig. 3 on the following page) with a slight
change. It has five distinct parts:

“Obligation Explorer” The Obligation Explorer shows a tree structure view
of the workspace from projects to proof obligations in components.

“Proof State” This is an editor which shows the current state of the proof.

“Proof Information” This view shows the information related to the current
proof obligation the user is working on.

“Proof Tree” This shows the proof tree of the current proof.

“Proof Control” The user can drive the proof and browse proof obligations
using this view.

The following sub-sections present each part in details.

5.2.1 The Obligation Explorer

Similar to the Project Explorer , the Obligation Explorer displays a tree struc-
tured view of the list of all projects which are developed in the current workspace.
The tree contained in the view shows the proof related contents of the projects,
i.e.,the components such as machines and contexts, together with their proof
obligations. This view is not exactly the same as that of the Rodin Database,
but it is modified for better navigation through components.

The Obligation Explorer is implemented by the following classes in package
org.eventb.internal.ui.obligationexplorer:

17

Figure 3: Proving UI Workbench

ObligationExplorer The main class for the Obligation Explorer .

ObligationExplorerActionGroup Implements the actions associated with the
Obligation Explorer .

ObligationExplorerContentProvider Connects to the Rodin Database for
fetching relevant data and feed them to the Obligation Explorer ’s tree
viewer.

5.2.2 Proof State

The Proof State (as mentioned earlier) is indeed a multi-page and form editor.
The main page of the editor displays the current goal and various kinds of
hypotheses. The Proof State is implemented by the following classes in package
org.eventb.internal.ui.prover:

ProverUI Main class for the Proof State.

ProofsPage Implements the main page of the editor.

GoalSection Displays the goal in the main page.

HypothesesSection Abstract class for showing different set of hypotheses in
the main page.

SelectedHypothesesSection Displays selected hypotheses in the main page.

CachedHypothesesSection Displays cached hypotheses in the main page.

SearchHypothesesSection Displays searched hypotheses in the main page.

18

HypothesisRow Displays one hypothesis in an hypotheses sections.

The other pages can be used for showing information related to the proof
such as the list of all hypotheses. No other page is implemented in the prototype.

The Proof State is connected to the “User Support” (see Sec. 5.3 on the
next page) which provide the information to display. Each instance of the
editor corresponds to one instance of the User Support . Multiple instances of
the editor can be open at the same time in order to work in parallel on different
proof obligations.

5.2.3 Proof Information

This view displays information relevant to the current proof obligation, such as
the event and the invariant that gave rise to it. This view also allows the user to
go back to the Editing UI by selecting the appropriate element. For instance, if
the user finds some errors and want to modify the event related to the current
proof obligation, the user can easily do so by selecting this event in the Proof
Information view.

The Proof Information is associated with the Proof State, and thus always
displays the information related to the current active editor. The information
shown in this view is provided by the same instance of the User Support in the
editors. In package org.eventb.internal.ui.prover, the Proof Information
is implemented by the following classes:

ProofInformation This implements a page book view (where each page gives
the proof information corresponding to one editor).

IProofInformationPage The interface for each page in the view.

ProofInformationPage The implementation of each page in the view. This is
connected to the User Support in order to get the relevant information to
show in the page.

5.2.4 Proof Tree

The Proof Tree is implemented in a similar way to the Content Outline view
of the Proof State (the editor). This gives the current Proof Tree and helps
to navigate through the proof, such as jumping between subgoals, backtracking
one or more proof steps, reusing some part of the current or other proofs that
have already been done.

In package org.eventb.internal.ui.prover, the Proof Information is im-
plemented by the following classes:

ProofTreeUI This implements a page book view (where each page gives the
proof tree corresponding to one editor).

IProofTreeUIPage The interface for each page in the view.

ProofTreeUIPage The implementation of each page in the view. This contains
a tree viewer.

ProofTreeUIContentProvider Implements the connection with the User Sup-
port in order to get the relevant data and feed it to the Proof Tree’s tree
viewer.

19

ProofTreeUIActionGroup Implements the set of actions that can be applied to
the proof tree.

5.2.5 Proof Control

The Proof Control provides buttons for controlling the proof process. Beside
the list of buttons, it also provide a Text Area for entering a formula (in the
Mathematical Language). During interactive proof steps, messages are shown
in the bottom of this view. In package org.eventb.internal.ui.prover, the
Proof Information is implemented by the following classes:

ProofControl This implements a page book view (where each page gives the
proof control corresponding to one editor).

IProofControlPage The interface for each page in the view.

ProofControlPage The implementation of each page in the view. This is con-
nected to the User Support in order to get relevant information to display
in the page.

5.3 The User Support

The User Support implements the connection between the Proving UI and the
sequent prover (interactive prover). This maintains the state of the proofs,
and provides information to display in the Proving UI. Each instance of the
User Support corresponds to one instance of the Proof State, hence also to one
instance of a Proof Information, Proof Control and Proof Tree.

The Proving UI sends the task to do to the User Support (for example, apply
a tactic at the current proof node). The User Support then passes this task to
the sequent prover. The sequent prover performs the task and modifies the
state of the proof accordingly. Then, the User Support computes the difference
between the previous state (before performing the task) and the new state (after
performing the task) and notifies the Proving UI of the changes.

The User Support is responsible for keeping the state of the proofs (including
the set of cached and searched hypotheses).

In package org.eventb.core.pm, the User Support is implemented by the
following classes:

UserSupport The main class for the User Support .

ProofState The implementation for keeping track of the state of one proof
obligation, including the proof tree. One instance of the User Support
manages a set of these proof states.

Other supporting interfaces (in package org.eventb.core.pm) and classes
(in package org.eventb.internal.core.pm) are used to implement the delta
mechanism in the User Support .

References

[D5] C. Métayer et al. Final Decisions. Rodin Deliverable D3.1 (D5).
28th February 2005.

20

[D7] C. Métayer et al. Event-B Language. Rodin Deliverable D3.2 (D7).
31st May 2005.

[D10] L. Voisin (Ed) Specification of Basic Tools and Platform. Rodin Deliver-
able D3.3 (D10). 31st August 2005.

21

	Introduction
	Architecture of the Prototype
	The Rodin Platform
	The Rodin Database
	The Rodin Builder

	The event-B Core
	Database Customization
	The event-B Static Checker
	The event-B Proof Obligation Generator
	The event-B Proof Obligation Manager
	The AST library
	The Sequent Prover
	Plugin Dependencies
	Functionality
	Prover Extensions

	The event-B User Interface
	The Modeling UI
	The Project Explorer
	The Event-B Editor
	The Content Outline
	The Message Area
	Wizards

	The Proving UI
	The Obligation Explorer
	Proof State
	Proof Information
	Proof Tree
	Proof Control

	The User Support

