
 
Project IST-511599 

RODIN 
“Rigorous Open Development Environment for Complex Systems” 

 
 
 

 
 
 

RODIN Deliverable D16 
 

Prototype Plug-in Tools 
 

Editor: Michael Butler, University of Southampton  
 

Public Document 
 

28 February 2006 
 

http://rodin.cs.ncl.ac.uk/ 
 
 



RODIN D16 Prototype Plug-in Tools 

 
 

Contributors: 
 
 

Michael Butler (University of Southampton) 
Ledina Hido (University of Southampton) 

Victor Khomenko (University of Newcastle) 
Maciej Koutny (University of Newcastle) 

Thierry Lecomte (ClearSy) 
Apostolos Niaouris (University of Newcastle) 

Martin Ross (University of Southampton) 
Colin Snook (University of Southampton) 
Robert Stops (University of Southampton) 

François Terrier (ETH Zurich) 
 
 
 

2 



RODIN D16 Prototype Plug-in Tools 

Table of Contents 
 
 
 

1 Introduction................................................................................................................. 4 
2 Eclipse-based U2B...................................................................................................... 4 

2.1 Tool Outline ........................................................................................................ 5 
2.2 Installation and Use............................................................................................. 6 
2.3 Platform Integration Plans .................................................................................. 7 

3 Requirements Manager ............................................................................................... 7 
3.4 Tool Outline ........................................................................................................ 8 
3.5 Platform Requirements ....................................................................................... 9 
3.6 Platform Integration Plans .................................................................................. 9 

4 Code Generation ....................................................................................................... 10 
4.1 Tool Outline ...................................................................................................... 10 
4.2 Platform Integration Plans ................................................................................ 11 

5 Document Generation (CompoSys) .......................................................................... 11 
5.1 Tool Outline ...................................................................................................... 11 
5.2 Platform Integration Plans ................................................................................ 12 

6 Animation tool .......................................................................................................... 12 
6.1 Tool Outline ...................................................................................................... 12 
6.2 Platform Integration Plans ................................................................................ 14 

7 Pi-Calculus to Petri Net (mobility plug-in)............................................................... 14 
7.3 Tool Outline ...................................................................................................... 15 
7.4 Platform Integration Plans ................................................................................ 15 

8 Other Plug-ins ........................................................................................................... 15 
8.5 ProB model checker for B................................................................................. 15 
8.6 Model based testing .......................................................................................... 15 
8.7 Connection with Atelier-B................................................................................ 16 

9 Concluding................................................................................................................ 16 
10 References............................................................................................................. 17 
Appendix A....................................................................................................................... 18 

 
 
 

3 



RODIN D16 Prototype Plug-in Tools 

 
 
1 Introduction 

The RODIN open tools platform being developed in Workpackage 3 (WP3) will allow 
other parties to integrate their tools, such as model checkers and theorem provers, as plug-
ins to support RODIN methods. WP4 of RODIN is developing a collection of plug-in tools 
to be integrated in the RODIN platform.  Developing these plug-in tools has two major 
aims: 

• To provide extra functionality on top of the core platform to support more fully the 
application of the RODIN methodology being developed in WP2 

• To validate the open architecture of the platform by populating it with a collection 
of plug-in tools covering a range of functionalities. 

This deliverable provides an overview of some prototype tools that have been developed 
by RODIN WP4 over the last six months.  The deliverable consists of this overview report 
together with the prototype software.  Our initial requirements and designs for these plug-
ins where described in RODIN Deliverable D11.  Since then much prototyping of tools 
has taken place in WP4.  This has taken place in parallel with the development of the 
RODIN open platform in WP3.  Although the developments in WP4 have been informed 
by the design decisions of WP4, it has not been possible at the time of writing to integrate 
these plug-in tools properly with the RODIN platform as the open platform prototype is 
being released at the same time as this deliverable (Month 18).  Over the next few months 
WP3 and WP4 will work together on integration of the prototype plug-ins with the 
RODIN open platform. 
Not all the plug-ins described in D11 have been prototyped at this stage.  We decided to 
focus on a subset of the tools identified in D11.  Other tools will be developed in the next 
stages of the project.  The prototype software being delivered as part of this deliverable are 

• An Eclipse-based U2B tool 
• A requirements manager tool associated with U2B 
• A code generation tool 
• A document generation tool 
• A model animation tool 
• A pi-calculus to Petri-net translator 

 
 
2 Eclipse-based U2B 

The U2B plugin translates a UML-B specification into B. The prototype version accepts, 
as input, UML21 models, that have had the UML-B profile attached. Profiles are a feature 
of  the UML2 metamodel which allow modelling elements to be specialised and extended 
with customised property fields. The UML-B profile specialises and extends the UML2 

                                                 
1 UML2 is an eclipse project plugin. It is an EMF based implementation of the UML 2.0 metamodel and 
provides a basis for UML eclipse tools. The Eclipse UML2 Project

4 

http://www.eclipse.org/uml2/


RODIN D16 Prototype Plug-in Tools 

metamodel for UML-B modelling. We currently use Rational Software Architect (RSA) 
to create models for input to U2B, but any such tool could be used. U2B has no 
interaction with or dependency on RSA. 
 
2.1 Tool Outline 
The prototype consists of the following packages: 

1. ac.soton.umlb.u2b  The main u2b conversion package that utilises the other 
packages. This package also contains the plugin code and extension code (only 
the pop-up menu is extended).  

2. ac.soton.umlb.umlb_metamodel  A package that implements a UML-B 
metamodel. The UML-B metamodel is UML-like but designed to be more 
appropriate to UML-B modelling. The package will create an instance of itself 
from a UML2 model with UML-B profile. 

3. ac.soton.umlb.u2b.b_metamodel  A package that implements a B metamodel. 
The package will create an instance of itself given a UML-B metamodel instance. 

4. ac.soton.umlb.u2b.classic_b  A package that converts an instance of the B 
metamodel into a collection of B text files. 

5. ac.soton.umlb.u2b.ui  A package that can be instantiated to provide simple user 
interfaces. The interfaces are used by the other packages for logging progress, 
errors and warnings. 

6. ac.soton.umlb.preferencePage An extension to the eclipse preferencePage 
facility 

7. ac.soton.umlb.preferencePage.preferences The actual preference page code. 
Currently provides preferences for folder locations for B output and logfiles. 

 
Hence the translation is performed by a constructor of the B metamodel given an instance 
of the UML-B  metamodel that has been constructed from a UML2 model. The prototype 
has limited functionality. It implements the translation of UML-B structural and data 
elements but without many of the alternative options that are envisaged for the final 
version. For example state machine regions are translated into relations whereas an 
alternative translation to a variable for each state is planned in the final version. Some 
handling of textual guards and actions is provided but no uB translation is provided in the 
prototype. The following features are currently supported: 
 

1. Packages are translated into B machines (containing the variable and behavioural 
aspects of the package) and contexts (containing the contextual sets and constant 
values of the package). A context will be generated automatically and referenced  
for each model. A package can also be explicitly identified as a context when its 
entire contents will be treated as sets and constants. A dependency from model to 
context package can be specified using a specialised dependency arrow. 

2. Refinement relationships between packages can be indicated using a specialised 
dependency arrow. 

3. Classes are translated into a set of instances and a variable representing the 
currently existing instances. All (non-static) elements owned by the class are 
lifted to the set of instances. 

5 



RODIN D16 Prototype Plug-in Tools 

4. Attributes are translated into variables or constants depending on their variance 
property. Note that Association roles are recorded as Attributes in UML2 and 
hence are covered by the processing of attributes. The translation provides the 
appropriate type and constraint invariants for each kind of association multiplicity 
(see Appendix A) 

5. Statemachine regions are translated into a set representing the states and a 
variable representing the current state. Each parallel or nested region generates a 
separate set and variable. No support is provided as yet for behavioural aspects. 

 
  A separate plug-in is provided to programmatically generate the UML-B profile. The 
program is easier to examine and maintain than the profile itself and the program enables 
quick installation and regeneration. 
 
2.2 Installation and Use 
Requirements: 
To create UML-B models suitable for translation, an eclipse based modelling tool, such 
as RSA, that supports the use of UML2 profiles is needed. RSA comes in an installation 
package that includes eclipse and the UML2 metamodel plugin. We have found that the 
eclipse versions used by RSA and UML-B are incompatible. We therefore recommend 
installing a separate eclipse environment for running U2B. This should include eclipse 
3.2.0, emf 2.2.0 and uml2 2.0.0.  
To install, just unzip the profile generator plugin and the u2b plugin into your eclipse 
installation directory (e.g. C:\eclipse). Restart eclipse. A new menu button and a drop-
down menu should appear. Use either of these to run the UML-B profile generator. The 
file containing the profile can be put anywhere on your file system but it is recommended 
that it be put in a folder outside of the UML modelling tools workspace. (This is because 
RSA strips the model of any profile information before exporting it if the profile is within 
its workspace).  
To create models suitable for translation by U2B, create a class diagram model and apply 
the UML-B profile to it. Do not overwrite or re-create this profile once it is has been 
applied to a model as the model will then contain a profile application to a profile that no 
longer exists. (Even if the profile has the same content it contains unique identification 
information from its creation).  The profile adds stereotypes to all existing model 
elements and any new elements when they are added to the model. 
A UML-B model should consist of packages (representing B constructs) contained within 
the outer level package. Each of these construct packages may contain a class diagram 
and own classes. When the model is completed it can be exported from RSA into another 
workspace that will be accessible from the eclipse installation where U2B is installed. 
To translate the model to B it must be imported into the eclipse environment (import from 
file system). The profile that was applied to the model should also be imported into the 
same eclipse project folder to ensure it is accessible to the model. First set the folder 
locations for the log file and for the B text output. The model can then be opened using 
the UML2 reflective editor (a browser style editor).  Expand the model package and 
select the model inside it. Right click on the model to start the pop-up menu and select 
U2B – translate to B. U2B will ask for a project name. The project will appear in the 

6 



RODIN D16 Prototype Plug-in Tools 

eclipse browser view and will contain a pair of text files (model + context) corresponding 
to each construct package from the UML2 model. 
 
2.3 Platform Integration Plans 
The U2B tool is intended to act as a link between the Rodin B tools and a front end 
UML-B modelling interface provided by a drawing tool. Our current method of inputting 
models is hampered by version differences between the eclipse platform required by the 
U2B plug-in and that required by the drawing tool.2  This means that we have to export 
the UML-B model from one eclipse platform and import it into another for linking to the 
U2B plugin. In the future we expect these problems to be resolved by new versions of the 
drawing tools. We are also investigating the feasibility of providing a dedicated UML-B 
drawing tool that will bypass the use of UML2 and store models directly in the UML-B 
metamodel. Once these issues are resolved we will make U2B a model listener so that it 
can be invoked from the drawing tool. It will register B repository elements that are 
listened to by the Rodin B tools (for example syntax checker) so that these tools run 
automatically after U2B has updated the B models. Feedback of results will be provided 
by a similar process in reverse, relying on linking pointers in the model elements to 
identify the reverse translation paths. 
We expect the packages to change in the following way 

1. ac.soton.umlb.u2b  This package will be developed to provide closer integration 
with alternative front end drawing tools. The package will also be expanded to 
accommodate additional packages handling plug-in usage facilities such as project 
properties, U2B help pages, improved dedicated error handling views. 

2. ac.soton.umlb.umlb_metamodel  This package will be developed to support 
direct data insertion. This will enable alternative (i.e. non UML2) input formats. 

3. ac.soton.umlb.u2b.b_metamodel  This package will be modified to utilise the 
Rodin repository for storing its B elements. This will be the main package 
involved in integration with the Rodin repository. 

4. ac.soton.umlb.u2b.classic_b  We expect this package to be removed after 
integration with the Rodin repository. A B text output facility will be provided as 
part of the Rodin B tools. 

5. ac.soton.umlb.u2b.ui  This package will be improved (and probably replaced by 
many packages) to support better user interface facilities by extension of eclipse 
ui features. 

6. ac.soton.umlb.preferencePage This package is unlikely to change since it only 
provides the extension mechanism 

7. ac.soton.umlb.preferencePage.preferences This package will be developed to 
include any new preferences as they arise. 

 
3 Requirements Manager 

The Requirements Manager (RM) plugin aids instance data management in the context of 
product line engineering. Product line engineering arises when multiple instances of 

                                                 
2  Currently we use Rational Software Architect as this was the only available tool to support UML2. 
However, we intend to investigate the use of other tools such as Together’s.  

7 



RODIN D16 Prototype Plug-in Tools 

fundamentally indistinguishable software systems are required. RM interfaces with 
Rational Software Architect, an Eclipse based UML modelling tool, and provides a 
database for storing and validating correctness of such data. An abstract B specification 
of the system was produced and model-checked in ProB [HRS06a].  
 
3.4 Tool Outline 
Figure 1 shows the structure of Requirements Manager. After completing the properties, 
preferences, and selecting a current schema, a database can be automatically generated 
from the class diagram. This is then populated through bulk upload and / or manual data 
processing. User-friendly feedback is provided to the user through pop-up messages and 
the error views. When there are no multiplicity errors in the instance data, the UML-B 
profile can be populated using this. Finally, the diagram together with the data can be 
input to U2B to produce an instantiated B specification of the class diagram.  
 

 
Figure 1: Tool structure 

 

8 



RODIN D16 Prototype Plug-in Tools 

  
3.5 Platform Requirements 
Primarily due to the requirements of RSA, the tool can only run on a Windows machine, 
required to have: 
 
Processor Minimum: Pentium™ III, 800MHz 
 Recommended: Pentium™ 4, 1.40GHz or higher 
Memory Minimum: 768MB RAM 
 Recommended: 1GB RAM 
 
In order for the tool to work, Rational Software Architect and the PostgreSQL Database 
Management System need to be first installed. RSA comes in an installation package 
including the Eclipse platform and the UML2 metamodel plug-in. Steps on how to install 
PostgreSQL are detailed in the System Manual [HRS06b]. The tool also requires the 
UML-B profile to be applied to class diagrams (see section 2). 
 
Details of using the tool may be found in the User Manual [HRS06c]. 
 
3.6 Platform Integration Plans 
The tool has been designed and implemented to exhibit a high degree of genericity by 
adopting a component-based approach, using well defined interfaces and non-proprietary 
protocols/systems. This not only makes it easily extensible but also allows for it to re-
integrated with alternative components. 
 
The Requirement Manager tool acts as an intermediate database between the U2B tool 
and a front end UML-B modelling interface (currently provided through the Windows 
version of RSA). The data stored in the database is used to populate the instances and 
value fields of the UML-B profile attached to each class diagram (see Figure 2). The 
values of these fields, represented as sets of instances or mappings between instances can 
be exported from RSA together with other information from the UML diagram and 
imported into a separate eclipse installation where it is converted into an instantiated B 
Specification by U2B. In the future the Requirements Manager will be integrated into the 
same eclipse platform as U2B. 
 
 

 
Figure 2: UML-B Association 

 
It would be desirable for the RM tool to be less dependent on RSA either by providing 

9 



RODIN D16 Prototype Plug-in Tools 

interfaces to other proprietory eclipse based UML tools or by developing a dedicated 
UML-B drawing tool. When porting the tool to a new drawing tool, its database 
component will be completely unaffected and most of the user interface components 
would require only minor alterations, as the RSA specific code has been deliberately 
isolated to single ‘wrapper’ classes. 
 
It is possible that a different Database Management System could be used. In this case, 
the new classes handling the data can simply implement the well-defined interface 
between the existing database component and the rest of the tool, specifying the contract 
between the two. Alternatively, the database functionality can be extended, by 
augmenting this interface with new methods, which can then be called from within RM. 
Such possible extensions include providing a querying mechanism, more detailed logging 
or provision of user-specific views of different product lines. 
 
 
4 Code Generation 

This tool helps to transform a subset of events into an a piece of code, by applying 
transformation (aggregation) rules on events to obtain a monolithic event and by 
translating this event into target source code . This tool is to be used when the software 
model is not large and already integrates all algorithmic aspects. The development of 
large software is covered by the Atelier B tool. 
 
4.1 Tool Outline 
This tool proceeds in several steps: 

• The user selects the events to translate, 
• The user applies a set of transformation rules to merge those events, 
• The resulting merged event is translated into target source code, using simple 

translation rules. 
 

RODIN
database

Events 
selectionread Event merger

Transformation 
rules

Rules
selection

Translation 
rules

Target 
language 
selection

translator Source code

read read

 
 
Both transformation and translation rules are hard-coded in the respective 
implementations.  Event selection is done by means of a wizard for given model. Then a 
list-based editor is opened , in which eventd and transformation rules are selected and 
applied.Finally, target translators are C Ansi, Ada and Java. 
 

10 



RODIN D16 Prototype Plug-in Tools 

4.2 Platform Integration Plans 
Integration of this tool within the platform requires to: 

• connect to the RODIN database to have access to models (events, variables, …) 
in read-only mode. 

 
The UI is yet to be integrated in Eclipse 3.1.  Their execution requires the B-kernel (the 
B-kernel implements the B language and comes along with Atelier B and B4free tools. 
This program is named krt. All Atelier B proof tools are built on top of the B-kernel). 
 
 
5 Document Generation (CompoSys) 

5.1 Tool Outline 
This tool, named CompoSys, is designed for generating documentation for a B model, 
based on a component-based decomposition. The resulting document is intended to ease 
the understanding of the underlying B model, by providing a more representation of the 
underlying B model.  
This tool comes along with several features: 

• component based-description of a system: a system is broken down in 
components. Events are associated to one component. 

• Comments: every single part of a model may be commented and documented.  
• Verification: usage of variable is checked in order to establish in which 

component a variable is read and where it is modified. Variables never used or 
never modified after initialization are exhibited and error messages are displayed. 

• Documentation generation: based on component allocation and comments, B 
models (up to several models within one refinement column) are transformed in 
chapters, one per component. Paragraphs are related to events allocated to the 
current component.  

 
RODIN

Database 
extended with 

comments 
fields

Component 
records

CompoSys
editor

read

write

write
read

generatorExtended model

File format 
selection

Generated 
document

 
 
Supported file formats are PDF, HTML and Star Office. 
 
 
 
 

11 



RODIN D16 Prototype Plug-in Tools 

5.2 Platform Integration Plans 
 
This tool is integrated with Eclipse 3.1, but is independent from the Rodin platform. In its 
current state, it generates documentation from: 

• B files (machine and refinement): these files are normal B files, without extra 
information.  

• and dictionary file: this file contains comments, component description and 
component allocation. 

AtelierB B compiler and cross-referencers are used to determine variables usage. 
 
Integration requires to: 

• connect the tool with the RODIN database, to gain access to models (variables, 
events, …) in read/write mode; 

• extend the RODIN database with comments fields and component allocation 
information (events are allocated to sub-systems, composing the whole system). 
Separate information related to components should be stored aside the RODIN 
database, and synchronized with the it. 

 
 
6 Animation tool 

This tool brings animation capabilities to formal B model developers, easing model 
debug phases as well as demonstrating the B model to non B specialists.  
 
6.1 Tool Outline 
The animation tool is composed of several parts: 

• Animation Engine, 
• Communication Manager, 
• Graphical part, based on Flash. 

 
The Animation Engine uses statically checked models from the RODIN database. From 
such a model, the Animation Engine creates its own set of objects, independent from the 
RODIN database, by using the Ovado predicate evaluator. For the time being, the 
Animation Engine doesn’t listen to RODIN database modifications and behave 
independently. The Animation Engine is multi-threaded and can be commanded via a set 
of commands. 
Available commands are: 

• “execute an event” : the user may choose an event whose guard is enabled 
whatever the level of refinement.  

• “assign a value to a variable”: the user may assign the variables of any level of 
refinement.  

 

12 



RODIN D16 Prototype Plug-in Tools 

RODIN
database

read
Animation 

Engine
Communication 

Manager
commands
feedback

Predicate 
evaluator 

Ovado

Flash

Graphical part
Coding/

decoding 
routines

read read

xml
xml

User 
interaction

User 
interaction

Scenarii 
generator

 
 
In case of non-deterministic choices (“becomes such that” or ANY), the formula 
evaluator tries to find a correct value. In case of failure, the user is asked to enter a 
correct value.  
The Animation Engine is also capable of generating and playing scenarios, by firing 
enabled events (the choice function would also be probabilistic). 
The heart of the Animation Engine is minimal; its only function is to receive commands 
and to execute them. Several elements are hooked by using the provided extension points. 
Thus, observers (views, animation servers …) or robots (scenario generator) can be easily 
added.  
As the Animation Engine is running in its own thread, the thread sending commands to it 
is not necessarily interrupted while a command is being evaluated. Similarly, if a 
command is taking too much time for execution, the Animation Engine may decide to 
abort its execution. 
 
The Communication Manager is responsible for sending and receiving 
information/commands from/to Animation Engine/Flash-based graphical part. This 
communication part is socket-based and  
Messages from Animation Engine to Graphical Part are: 

• event fired, 
• new variable value. 

Messages from Graphical Part are: 
• event played, 
• new variable value displayed, 
• user interaction. 

 
The graphical part is a Flash-based animation, connected to the Communication Manager 
and exchanging XML flows. This graphical part is developed using FlashMX. 
Animations are set up independently then connected to the underlying model, by 
specifying specific behavior upon reception of commands. The decoding routines, 
transforming XML flow in Flash commands, are common to all Flash animations using 
the Animation Engine. 
 
 

13 



RODIN D16 Prototype Plug-in Tools 

6.2 Platform Integration Plans 
 
Integration in the RODIN platform only requires having access to statically checked 
models (parsing, type-checking) in read-only mode. For the time being, only unchecked 
models are supported as the required services are not yet implanted in the RODIN 
platform. 
Any further functionality would be implemented as an extension to the Animation Engine  
plug-in, by contributing to any of its extension points. 
 
 
7 Pi-Calculus to Petri Net (mobility plug-in) 

As planned in the original project proposal, the mobility plug-in was to be developed and 
primarily evaluated in the context of Rodin’s Ambient Campus case study. Following 
this, our work on the Petri net based model-checking has been conducted in close 
cooperation with this case study. In particular, it was decided about a year ago to use the 
Ambient Campus programming notation CAMA (context-aware mobile agents 
[Iliasov’05, Iliasov’05a]) as the main specification notation. At the present moment, 
CAMA is still under intensive development and, in fact, is expected to lead to a new 
programming notation which is planned to be completed in the second year of the project. 
As a result, the final development of the mobility plug-in will need to be postponed until 
this new programming notation is available. Having said that, it is clear that this notation 
(and so input to the mobility plug-in) will be based on concepts and constructs coming 
from (or being based on) π-calculus, Event B and KLAIM. We have therefore focused on 
those aspects of these three models which we will support in the final model-checking 
plug-in. In each case, the key issue which needs to be considered is a behaviour 
preserving translation of a given specification into a high-level Petri net, and optimisation 
of the resulting high-level Petri net in order to utilise all potential concurrency present in 
the original specification by the model-checking engine based on net unfolding 
[Khomenko’03].  
The work on model-checking π-calculus specifications has been based on the translation 
of finite π-calculus terms described in [Devillers’06]. However, the theoretical translation 
was not suitable as a direct input to the model-checking engine as it relied on the so-
called read arcs. We have therefore developed a novel technique for simulating read arcs 
and applied it in the implemented translation of π-calculus terms. Note that this 
translation is specifically aimed at full utilisation of potential concurrency in the model-
checking procedure. Another advantage is that the translation utilises inherent symmetries 
in the analysis of state spaces of systems evolving according to π-calculus specifications. 
The existing translation is sufficient for bounded model-checking of π-calculus 
specifications, and in the next step we plan to also address some aspects of recursive (or 
iterative behaviour), as described in [Devillers’05a].  
In the work on model-checking Event B specifications, we have developed an initial 
translation into high-level Petri and carried out a number of performance tests. The 
results are clearly promising, and in the next step we will explore the extent to which 
Petri net based model-checking could be used, at least for a subset of instances, to 
improve the efficiency of the existing Event-B model-checking. 

14 



RODIN D16 Prototype Plug-in Tools 

In the work on model-checking KLAIM specifications, we proposed a theoretical 
translation from its recursive subset to high-level Petri nets [Devillers’05b]. As it also 
uses read arcs, further work is still needed to turn it into a suitable tool for producing 
input to our model-checking engine, and we plan to follow here our experiences gained 
during the work on the translation of π-calculus terms.   
Further plans include incorporating recent improvements of the efficiency of unfolding 
based model-checking technique presented in [Khomenko’05a, Khomenko’05b]. 
The work on model-checking π-calculus and Event B specifications has reached the 
prototype implementation phase, and the folder accompanying the submission contains 
two corresponding sub-folders, where prototype implementations, example input files and 
documents explaining the main technical details and test results can be found.    
 
7.3 Tool Outline 
We provide prototype translations in the standalone format. The key components of the 
target Petri net based mobility plug-in will be as follows:  

• Translator from the programming notation used in the modelling of mobile 
systems in the Ambient Campus case study to high-level Petri nets; 

• formula editor where the user specifies the property to be verified; 
• unfolder for deriving a finite prefix of the unfolding of the translated Petri net; 
• verifier which establishes, by working with the finite prefix, whether the formula 

property is true of the original input.   
 
7.4 Platform Integration Plans 
We see two main ways of integrating our work with the other parts of the platform:  (i) 
through the programming notation used in the modelling of mobile systems in the 
Ambient Campus; and (ii) as a verification option which can be called by a developer 
working with Rodin B notation (for example, through Pro-B interface). 
 
 
8 Other Plug-ins 

8.5 ProB model checker for B 
This tools pre-dates the RODIN project though it has continued to be developed during 
the project.  ProB is freely available from  

http://www.ecs.soton.ac.uk/~mal/systems/prob.html
The immediate plan with ProB is to produce an Eclipse version integrated with the 
RODIN open platform.  In this way, the animation and model checking functionality of 
ProB can be invoked as part of a formal development in the RODIN environment. 
 
8.6 Model based testing 
We are currently exploring a number of approaches to model-based testing in WP4.  One 
approach that we are investigating (Nokia, Aabo Akademi and Southampton) involves 
combining the UML-B profile and U2B with the Confomiq UML-based testing tool.  The 
Conformiq Test Generator automates the generation of tests from UML state diagrams 

15 

http://www.ecs.soton.ac.uk/~mal/systems/prob.html


RODIN D16 Prototype Plug-in Tools 

(www.conformiq.com).  Another approach we are investigating (Aabo Akademi, 
Southampton and Dusseldorf) is the use of ProB to generate finite coverage graphs form 
Event B models.  These would then be used to generate test cases for Java programs 
along the lines described in [SatpathyEtAl05].  Naturally any plug-ins developed as part 
of this work will be integrated with the RODIN open platform. 
 
8.7 Connection with Atelier-B 
This tool provides a direct way from the system-level RODIN platform to the software-
level Atelier B tool, thus enabling the development of large software in a dedicated 
environment. This tool is not yet complete as it is heavily dependent on having a 
prototype of the Rodin platform (D15) which is being made available at the same time as 
this deliverable. 
At the end of a decomposition phase, a system-level model is usually decomposed into 
several modules/components/subsystems, representing hardware, software or mixed 
parts. This tool can be seen as an export wizard for software-only components issued 
from this phase. It helps to select parts, package and generate B software models. 
 

RODIN
database

Events 
selectionread

B model 
packager

B model

 
 
 
The user is invited to select events that should be part of the specification of the software 
to develop. Then the tool generates the B model containing those events, renamed in 
operations, plus its sequencer, using different execution models: linear (single execution), 
looped. 
Exported data are constants, properties, variables, events, invariant and initialisation. 
The resulting package (Atelier B archive) is ready to be used as a starting point in a 
software development with Atelier B. 
Integration requires having access to the RODIN database in a read-only mode.  
 
 
9 Concluding 

The prototype plug-ins included in this deliverable provide extra functionality on top of 
the core Open platform to support the goal of a rich development environment for the 
RODIN methodology.  Our efforts over the next period in WP4 will focus on proper 
integration of the plug-ins with the RODIN open development environment.  This will be 
followed by evaluation of the plug-ins in the case studies of WP1. 
 

16 

http://www.conformiq.com/


RODIN D16 Prototype Plug-in Tools 

 
10 References 

[Abrial96] J.-R. Abrial. The B-Book. Cambridge University Press, 1996 
 
[Devillers’04] R.Devillers, H.Klaudel and M.Koutny: Petri Net Semantics of the Finite π-
Calculus. FORTE (2004)     
 
[Devillers’05a] R.Devillers, H.Klaudel and M.Koutny: A Petri Translation of π-Calculus 
Terms. CS-TR-887, University of Newcastle (2005) 
 
[Devillers’05b] R.Devillers, H.Klaudel and M.Koutny: A Petri Net Semantics of a Simple 
Process Algebra for Mobility. EXPRESS (2005) 
 
[HRS06a] Ledina Hido, Martin Ross, Robert Stops (2006) Requirements Manager Final 
Report, Master’s Group Design Project, ECS, University of Southampton, UK. 
 
[HRS06b] Ledina Hido, Martin Ross, Robert Stops (2006) Requirements Manager 
System Manual, Master’s Group Design Project, ECS, University of Southampton, UK. 
 
[HRS06c] Ledina Hido, Martin Ross, Robert Stops (2006) Requirements Manager User 
Manual, Master’s Group Design Project, ECS, University of Southampton, UK. 
  
[Iliasov’05] A.Iliasov, L.Laibinis, A.Romanovsky and E.Troubitsyna: Towards Formal 
Development of Mobile Location-Based Systems. WREFT (2005) 

 
[Iliasov’05a] A.Iliasov,V.Khomenko, M.Koutny and A.Romanovsky: On Specification 
and Verification of Location-based Fault Tolerant Mobile Systems. WREFT (2005) 
 
[Khomenko’03] V.Khomenko: Model Checking Based on Prefixes of Petri Net 
Unfoldings. PhD Thesis, University of Newcastle upon Tyne (2003) 
 
[Khomenko’05a] V.Khomenko, A.Kondratyev, M.Koutny and V.Vogler: Merged 
Processes - a New Condensed Representation of Petri Net Behaviour. CONCUR (2005) 
 
[Khomenko’05b] V.Khomenko: Computing Shortest Violation Traces in Model Checking 
Based on Petri Net Unfoldings and SAT. WREFT (2005) 

 
[SatpathyEtAl05] Satpathy, M., Leuschel, M. and Butler, M. (2005) ProTest: An 
Automatic Test Environment for B Specifications. Electronic Notes in Theoretical 
Computer Science 111:pp. 113-136. 
 
[SnookButler04] Snook, C. and Butler, M. (2004) U2B - A tool for translating UML-B 
models into B, in Mermet, J., Eds. UML-B Specification for Proven Embedded Systems 
Design, chapter 6. Springer. 
 

17 



RODIN D16 Prototype Plug-in Tools 

[SnookButler06] Snook, C. and Butler, M. (2006) UML-B: Formal modelling and design 
aided by UML. ACM Transactions on Software Engineering and Methodology (to 
appear). 
 
 
 
Appendix A 

 
Translation of a UML association to B 

r is the role name of an association from class A to class B, Ai and Bi are the instances sets of class A and B respectively 

UML-B association properties B invariant  

multiplicity surj uniq reqd sing additional constraints type 

     0..n  0..n        r: Ai <-> Bi 

     1..n  0..n *    ran(r)=Bi   r: Ai <-> Bi 

     0..1  0..n  *               r~: Bi +-> Ai  r: Ai <-> Bi 

     1..1  0..n * *   ran(r)=Bi r~: Bi +-> Ai  r: Ai <-> Bi 

     0..n  1..n   *               dom(r)=Ai r: Ai <-> Bi 

     1..n  1..n *  *  ran(r)=Bi     dom(r)=Ai r: Ai <-> Bi 

     0..1  1..n  * *   r~: Bi +-> Ai dom(r)=Ai r: Ai <-> Bi 

     1..1  1..n * * *  ran(r)=Bi r~: Bi +-> Ai dom(r)=Ai r: Ai <-> Bi 

     0..n  0..1    *    r: Ai +-> Bi 

     1..n  0..1 *   * ran(r)=Bi   r: Ai +-> Bi 

     0..1  0..1  *  *  r~: Bi +-> Ai  r: Ai +-> Bi 

     1..1  0..1 * *  * ran(r)=Bi r~: Bi +-> Ai  r: Ai +-> Bi 

     0..n  1..1   * *   dom(r)=Ai r: Ai +-> Bi 

     1..n  1..1 *  * * ran(r)=Bi  dom(r)=Ai r: Ai +-> Bi 

     0..1  1..1  * * *  r~: Bi +-> Ai dom(r)=Ai r: Ai +-> Bi 

     1..1  1..1 * * * * ran(r)=Bi r~: Bi +-> Ai dom(r)=Ai r: Ai +-> Bi 

 

18 


	RODIN Deliverable D16
	Prototype Plug-in Tools
	Editor: Michael Butler, University of Southampton
	Public Document


