

Project IST-511599

RODIN
“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable D8

Initial Report on Case Study Development

Editor: Elena Troubitsyna (Aabo Akademi University, Finland)

Public Document

31st August 2005

http://rodin.cs.ncl.ac.uk/

Contributors:
Peter Amey (Praxis High Integrity Systems Ltd, UK),
Joey Coleman (University of Newcastle upon Tyne, UK),
Budi Arief (University of Newcastle upon Tyne, UK),
Neil Evans (University of Southampton, UK),
Alex Iliasov (University of Newcastle upon Tyne, UK),
Ian Johnson (ATEC Engine Controls Ltd, UK),
Maciej Koutny(University of Newcastle upon Tyne, UK)
Linas Laibinis (Aabo Akademi University, Finland),
Sari Leppänen (Nokia, Finland),
Ian Oliver (Nokia, Finland),
Alexander Romanovsky (University of Newcastle upon Tyne, UK),
Colin Snook (University of Southampton, UK),
Elena Troubitsyna (Aabo Akademi University, Finland),

CONTENTS

1 Introduction 4
2 Report on case study development for case study 1: Formal Approaches to Protocol

Engineering
6

3 Initial report on case study development for case study 2: Engine Failure Management
System

17

4 Report on the case study: Formal Techniques in MDA Context 29
5 Case study 4: CDIS Air Traffic Control Display System 50
6 Initial report on case study development for case study 5: Ambient Campus – the

Lecture Scenario
63

3

SECTION 1. INTRODUCTION

This document reports on the first year of the development of case studies in RODIN.
The aim of case studies is to drive the development of RODIN methodology and
supporting platform, validate it and evaluate its cost-effectiveness. While the deliverable
D14 gives the precise assessment of the case study developments, in this document we
focus mostly on describing the achieved results and outline the future plans.

In general, we believe that the work on the case studies is proceeding as planned. Within
each case study we have identified challenging research topics to be addressed in RODIN
methodology. While working on case studies we explored the corresponding domain
specific models and problems. This allowed us to identify the additional requirements on
supporting tool platform. Hence diversity of case studies has facilitated achieving
versatility of the supporting platform.

The description of the achieved results and the outline of the future development for the
case study 1 – Formal Approaches to Protocol Engineering – is presented in Section 2.
This case study investigates the use of formal methods in the development of
communicating systems. Its major goal is to explore an incorporation of formal methods
into existing UML-based development cycle. The advances in creating a methodology for
formalizing UML-based development and identifying the requirements for tool support
are reported in this document.

Section 3 is devoted to the evaluation of the work done within case study 2 – Engine
Failure Management System. The methods and tools developed in RODIN should
potentially improve maintenance and re-use of the failure management systems. This task
is tackled from two directions. The first direction investigates an accurate modelling of
the domain to reduce the semantic gap between application requirements and systems
design. The second direction explores how to promote reusability by developing
configurable generic specifications. In this document we report on the current state of
research on this topic and future plans.

In Section 4, the initial results of the work on the case study 4 – Formal Techniques
within an MDA Context are presented. This case study is primarily aimed at constructing
and verifying platforms or architectures rather than aiming at the applications themselves.
The case study explores the problem related to the MDA development flow together with
the role of verification/validation within that flow, as well as problems related to
development methods used within Nokia. The section provides the background required
to understand the scope of the case study, outlines the research directions and evaluates
the obtained results.

Section 5 analyses the initial results of the development of case study 4 – CDIS Air
Traffic Control Display System. This case study aims at testing RODIN methods and
tools on a complex, data-intensive and highly-distributed system. The system was
successfully developed a decade ago but the development encountered a number of
difficulties. The chapter presents the analysis of the challenges to be tackled, evaluates
the initial results on addressing them and outlines further directions.

4

In Section 6 we present the overview of the development of case study 5 -- Ambient
Campus. The aim of this case study is to investigate modelling, development and
verification of fault tolerant mobile asynchronous systems. The work on the case study
during the first year has addressed a number of fundamental theoretical issues, such as
process algebraic and state-based approaches to modelling mobile systems, modelling
fault tolerance, reasoning about correctness of ambient system etc. Moreover, this work
has actively contributed to definition of the supporting platform and plug-ins. A brief
evaluation of the achieved results and outline of plans are presented in this document.

The case studies have naturally promoted a co-operation between academic and industrial
partners and facilitated overall consolidation of the project. A number of joint research
efforts have been initiated already during the first year and will be further expanded and
strengthened during the next years.

5

���������
	���
���������	�����	�������������� �"!$#�!�� %���&�	��(')� �����+*�	��
����������� �"!"#-,�./*�	��"'0��&1���2�(��	3����45���+��	6�(��	���	+�"	�&

� ��7��8����� ���8��7

��9,:�:�
;�<>=@?BADCFEG<IHJ?/;

KBLGM"N@OQPSRTOQU2VWLGM�X(Y/Z�[]\:O
^`_�PSRbadcQce^fOQPSg>LGMih�VjO�kl^fOmVjOQgSOQRonqpGN@rspGMSMt^urspGN$[]rvh�VjO�rwpQxGMihuVvrWN@PtVvM
PtcQcyRzrWgSPtVvrWO
p)OQU5UJO
^`_�PSR�_�M{V|LGOQ}Gh~U`O
^�}QMtxGMSRWOmce_�M>p@V�OQU�VjM�RWMSgSO
���QpGrzgSPtVjrzO
p�hu�ehuVvM>_�h�P>pG}
ce^uOmVvOQgSOQRvhd�9kl^uOI��MSgtVF��M8h�g>^ur�cQVjrzO
p�OQUT��O
^`�5�z�l�|Zt�J���lKBLGM�ce^fOmVjOQgSOQR�M>pGN@rwpGMSM>^urwpGN$Nm^fO
�@c3rsp���O
�GrzP
LGPih�}QM>xGMSRzOmcyMS}�VWLGM������
^fPS��_�MtV|LGOQ}1�dLGrWg>L�h��@cQcyO
^`V9h5V|LGM�h�M>^`xGrWgSM8�9O
^urzM>p@VjMS}�PtcQce^fOQPSg>L�VjO
ce^uOmVvOQgSOQR MtpGN@rspGMSMt^urspGNy�Q��rwVWLGrsp�¡£¢2�d¤s�¥�¦M§PSrs_�PtV�ce^uO
xGrW}QrwpGN�h��@cQcyO
^9V/�9rsp�VWLGM�U`O
^J_�OQU�U`O
^J_�P�R
VjM�g>LQpGrW¨
�GMih�P>pG}§VjOQOQR|h©�BU`O
^ xGP>^frWO
�ªh«huVvPSN@Mih�OQU:V|LGr|h�PtcQce^fOQPSg>L:�

�2�Q^urspGN�VWLGMdU`rs^�huVl�QM�P>^q�¦M¬LGP>xGM­N@OmV®}QMSMtcyMt^q�QpG}QM>^©huVvP>pG}QrspGN�OQU®V|LGM¬�®�m^uP(}QMtxGMSRWOmce_�M>p@Vl_�M{V|LGOQ}
P>pG}�r�V`h�PtcQcyRWrzgSPtVjrzO
p }QO
_�PSrsp:�­KBLGM¯gSO
pGg>^uM{VjM�gSPih�M$huV|�G}m��hu�GN@N@MihuVvMS}3°@�±� O
�GrWP8²­VWLGM±KBLGrw^u}
³ M>pGM>^uP{VjrWO
p3k�P>^9V|pGM>^�h�LGrwc�kl^uOI��MSgtVD�`´ ³ k:k:�DcyOGh©rwVjrzO
pGrspGN�h©M>^JxGrzgSMi² UJP�gSrWRzrwVjP{VjMS}3huVW�G}m�QrwpGN�V|LGM��®�
^fP
}QM>xGMSRzOmce_�M>p@V�ce^uOQg�MihIh-P>pG}�h©M>^JxGMS} Pih+P�VvMihuVW°GM>pGg>L�UJO
^/Mt_�M>^fN@rspGNµU`O
^J_�P�Ry_�MtVWLGOQ}QOQRWOQN¶�µP>pG}
VjOQOQR|ht�

��M(LGP>xGM¦hfVjP>^9VjMS}µVjO�U`O
^J_�PSRWr|h�M(VWLGMd���
^fP§}QM>xGM�RWOmce_�Mtp@V�ce^fOQgSMihIhbrsp V|LGM2·]¸�M{V|LGOQ}±�z�l�¹´@���mKqLGM(·
¸�MtVWLGOQ}ºrvh�P>p�PtcQce^fOQPSg>L�VvO�rwpG}
�ªhuV|^frWPSR+}QM>xGMSRzOmce_�M>p@V]OQU�LGrWN¶LGRw�»}QMtcyM>pG}QPt°GRWM�h�OQUjVW�¦P>^fMi²
h��@cQcyO
^9VjrspGN¼U`O
^J_�P�R hu�GhfVjM>_ }QM>xGM�RWOmce_�Mtp@V�°@��V|LGM½huVvMtce�¦r|h�M�^uMSU`rspGM>_�M>p@V�_�M{V|LGOQ}��T��M�LGP>xGM
}QM>xGMSRzOmcyMS}�V|LGM�Nm�GrW}QM�RWrspGM8h�U`O
^¦V|^fP>pªh�RWP{VjrspGN�VWLGM����
^fP�¾§¸��B�+_�OQ}QM�Rvh�rsp@VvO5·0hucyMSgSrzUJrzgSPtVjrzO
pªht�
¸�O
^fMSO
xGM>^©²���M$LGP>xGM�PihIh©OQgSrWPtVvMS}�V|LGM"�®�m^uP$}QM>xGMSRWOmce_�M>p@V£ceLGP8h�Mih���rwVWL�V|LGM"gSO
^`^uMihfcyO
pG}QrspGN�·
}QM>xGMSRzOmce_�M>p@V§huVjMtc�h¦[�·�^uMSU`rspGM>_�M>p@V`h{��KBLGr|h�g>^uMSP{VjMih�VWLGM±°GPih�r|h�UJO
^§xGM>^urzUj�@rspGN�gSO
^`^uMSg{V|pGMihIh OQU
�P�rsp }QM>xGMSRzOmce�M>p@VyceLGPih�Mih�OQU®�®�m^uP
�

¤vp�PS}Q}Qr�VjrzO
pª²���M¿LGP>xGMd}QM>xGMSRzOmcyMS}¥P(·ÀhucyMSgSrzUJrzgSPtVjrzO
p cyP{VWVjMt^Jp�U`O
^�P2gSO
���QpGrWg�PtVjrwpGN�h©M>^JxGrzgSM
gSO
_ cyO
pGM>p@V`²e�dLGrWgtL�gSP>p�°GM2�QpG}QM>^©hfVjOQOQ}�PihoP��>°Q�GrzRW}QrwpGN °GRWOQgt�G��OQU/gSO
���QpGrWgSP{VjrspGN�hu�ehuVjMt_�hbrsp
�®�m^uP
�oKBLGM3cyP{VWVjMt^Jp~gSP>p�°GM3^uMSg>�Q^�h�rsxGM�Rw�½�ªh�MS}5VvO¼hucyMSgSrzUj��h�M>^`xGrWgSM�gSO
_�cyO
pGMtp@V`h�O
p�}QrWUJU`M>^uMtp@V
RWP{�QM>^�h§OQU£Pt°ªhuV|^fPSgtVjrzO
p:�:��M�LGP>xGM�P�Rvh�O�rz}QM>p@VjrzUJrWM�}¯P>pG}�UJO
^`_�PSRzrvh�MS}�V|LGM�g�O
���QpGrzgSPtVvrWO
pGPSR�P>pG}
U9�QpGg{VjrWO
pGP�RªPihucyM�gtV`h�OQUBh��Gg>L gSO
���QpGrzgSPtVjrwpGN¦gSO
_ cyO
pGM>p@V`ht�

\:rspGP�RWRw�e²:��M LGP>xGM�huVjPt^`VjM�}�VjO�VvPSg>�GRzM�UJPt�GRwV�VjOQRWMt^uP>pGgSM P>pG}�cyP>^uPSRzRWMSRzrvh�_»r|hIh��GMihTV|LGPtVFP>^fM�rwpQLGM>^uMtp@V
UJO
^(VvMSRWMSg�O
���QpGrzgSPtVvrWO
p�hu�GhfVjM>_�ht� ��M�P>^fM�N@OQrspGN$VjO3U9�Q^9V|LGM>^drwpQxGMihuVvrWN@PtVvM�V|LGMih�M�r|hIh��GMih¦}
�Q^urwpGN
V|LGM(h�MSgSO
pG}§�@MSP>^BOQU:V|LGMT¡¬¢(�§¤s�Áce^uOI��MSgtVu�

��w
��l'�ÂyÃi?/=�!�H�=@ÄyEe<ÅHJ?q;FÆµHu;Ç��ÂBÆiÄ"��<{CFA�È�!�Ä
É�ÄGÊJ?/ËbÌ�Äª;�<

Í¼Î>ÏJÐ�ÑQÒ�Ñ@ÓWÑQÔ@Õ|ÖS×@Ó�Õ|Ø�Ø�Ù�ÎSØTÚ�ÛSÑ@Ù�Ô@ÐlÏFÙ:Ü�ÚGÝ±ÏJÐ®ÎdÖS×QØIÎdØ�ÏJÙ®ÒeÝlÞGKqLGMdgSPih©M¦huVW�G}m��LGPihF^uPSr|h�MS}�h©M>xGM>^uP�R
rsp@VvM>^uM8huVjrwpGN�_�MtVWLGOQ}QOQRWOQN@rzgSPSR�r|hIh��GMiht�¶KBLGM£_�P�rsp�N@OQPSR�OQU:V|LGM(gSPih©MdhuV|�G}m�µrvhqVvOµPSg>LGrWMtxGM¬P>�@VjO
_�PtVjrzg
V|^fP>pªh�RzPtVjrzO
pÇOQUßV|LGM»¾§¸��B�G�v°GPih�MS}¯}QMtxGMSRWOmce_�M>p@V�OQU�gSO
���QpGrWgSPtVvrspGNàhf�GhuVvM>_�h�rsp@VjO6VWLGM

6

áSâ
ã`ãuäiåuæyâ
çGèQéwçGê�åfæyäSáSéWë`éWáSì{íjéWâ
ç�ì>çGè�ãuäSë`ésçGä>î�ä>ç@íbæeãuâQá�äiåIå¦ésç�í|ïGä�ðòñ�ätí|ïGâQè�ó®ôBïGâ�ìSátïGéWä>õGä�í|ïGé|åIö
÷ ä�çGäSäSè±ívâ�èQä>õGäSøWâmæ�ì�ê@ä>çGä>ãfìSø/î�ätí|ïGâQèQâQøzâQê¶ù�å�ú@æQæyâ
ã`ívésçGê±ì>ú@íjâ
î�ìtíjézá�í|ãfì>çªå�øzìtíjézâ
ç¯âQëbû�ñ�ü ýGþ
ÿ ìiå�ä�è�î�âQèQäSøvå£éwç@íjâ�í|ïGä¦ðÁåuæyäSáSézëJézáSìtíjézâ
ç±øWì>çGêmúGì�ê@ä
ó��(çGá�ä§í|ïGä�î�ä{í|ïGâQèQâQøWâQêiù�évå£èQätõGäSøWâmæyäSèGö ÷ ä
÷ éWøWø�áSâQâmæyä>ãfìtíjä ÷ é�í|ï$íWïGä û§ýQð��zýló����oívâQâQø�èQätõGäSøWâmæyä>ã�å¬ívâ�æeãuâ
õGézèQä�ì>ú@ívâ
î�ìtívéWá¦íjâQâQø�å�ú@æQæyâ
ã`íFë`â
ã
å�úGá>ï¦íWãuì>çªå©øWìtívéWâ
ç:ó

ô/äSøWä�áSâ
î�î�úQçGéWáSìtívéWâ
ç�åuùGåfíjä>î�å�âmæyätãuìtívä~éwç�õGâQøzìtíjéwõGäiöµä>ãJãfâ
ã"æeãuâ
çGä¼ä>çQõGésãfâ
çQî�ä>ç@ífó�ôBïGä�î�âGåfí
íWù¶æyéWá�ìSø¦ëJìtúGøwí`å$ìtãuä�øWâGåfí â
ã�áSâ
ã`ãJú@æQíväSè�áSâ
î�î�úQçGéWáSì{íjéWâ
ç�î�äiåIå�ì�ê@äiå ÿ ätí ÷ ä�ä>ç~èQévåuívì>ç@í¦çGä{í ÷ â
ã	�
äSøzä>î�ä>ç@í9åtó:ôBïGä>ãuä�ëJâ
ãuä8ö ëJì>úGø�íFíjâQøzä>ãuìtçGáSä�å�ïGâ
úGøzè ÿ ä�ì>ç3ésç@íWãuéwçªå�éWá�ëJäSìtíWúQãuä�âQëbíväSøWäSá�â
î�î�úQçGézáSìtívéWâ
ç
åuùeåuíjätî�åtó�
§ä>çGáSä íWïGä ëJìtúGøwíòívâQøWä>ãfì>çGáSä6î�äSá>ïGì>çGé|å�î�å�å�ïGâ
úGøWè ÿ ä éwç@íjäSê¶ãuìtíväSè ésç@ívâ ÿ âmí|ï
åuæyäSá�éWëJézáSìtívéWâ
ç ì>çGèµèQä>õGä�øWâmæeî�ätç@íªæeãuâQá�äiåIå�âQëBå�úGá>ï�åuùeåuíjätî�åtó

ô/äSøWä�áSâ
î�î�úQçGéWáSìtívéWâ
ç�åuùeåuíjä>î�ådæeãuâ
õGéWèQä�áSätã`íjì�ésç�å�ä>ãJõGézáSäiå¦ëJâ
ã¬íWïGä�ä
�Qíjä>ã`çGìSøFúªå�ä>ã�åtó�ûµå�úGìSøzøwù"íWïGä
å�ä>ã`õGéWáSä¿ä
�yäSá>ú@íjézâ
ç�évå½èQé|åuí|ãfé ÿ ú@íväSè1â
õGä>ã�èQé|åuíjéwçGátí"çGä{í ÷ â
ã	��äSøzä>î�ä>ç@í9å ÷ ïGéWá>ïòæeãfâ
õGéWèQä�í|ïGäSéwã
å�ä>ã`õGéWáSä8å�ìiå2æyì>ã`í9å�âQëDí|ïGä�ãfä��
úGésãfäSè�å�ä>ã`õGéWáSä�ä
�yäSátú@íjéWâ
ç:ó��2ëjívä>ç"í|ïGä8å�ä�å�ä>ã`õGéWáSä8å§ì>ãuä�ä
�yäSá>ú@íjä�è�ésç
æyì>ãfìSøWøzäSø`ó���ä å�ïGâ
úGøzè¯ívì
�Gä�æyì>ãuì�øWøWä�øWévåuî ésç@íjâ ìSáSá�â
úQç@í ÷ ïGézøWäºî�âQèQäSøzøWéwçGê â
ã1õGätãuéWëvùQéwçGê
íjä�øWäSáSâ
î�î�úQçGézáSìtíjézâ
ç�åuùeåuíjä>î�åtó

ôBïGä"ü®ùmãuì�èQä>õGäSøzâmæeî�ä>ç@í2évå�á>úQã`ãuä>ç@ívøwù�õGì�øWéWèQì{íjäSè ÿ ù�úªå©ésçGê�î�âQèQäSø|þ ÿ ìiå�äSè�íväiåuíjéwçGê�âQë2æeãfâQêmãuìtî
áSâQèQä�â
ã�éwç@íjä>ã`î�äSèQézìtíjä]û§ñ�üBýßî�âQèQäSøvåtó(ð«ù~í|ãfì>çªå�øWì{íjésçGê¼í|ïGäiå�ä5û�ñ�ü ýÁî�âQèQäSø|å�ésç@ívâ­í|ïGä]ð
åuæyäSá�éWëJézáSìtívéWâ
çªåIö ÷ ä ÷ â
úGøWèºátãuäSìtíväµìSèQèQéwívéWâ
çGìSø�î�â
ãuä§æeãfäSáSé|å�ä åuùeåuíjä>î�î�âQèQäSø|åoí|ïGìtí�á�ì>ç ÿ ä�úªå�äSè
íjâµë`ìSáSézøWéwívìtíjä+íjäiåuílê@ä>çGä>ãfìtíjézâ
ç:ó

���
�	��������������� ��!��"!��$#%!�&�����')(�'*���+��&+�,���-��!�'*�-'.�,(��$/ ó0��ä ÿ äSøzéWä>õGä�í|ïGì{íBí|ïGä�î�ätí|ïGâQèQâQøzâQê@éWáSì�ø
ãuä8å�úGøwí9å§ìSá>ïGézä>õGäSè�è
úQãuéwçGê�í|ïGä�ëJésã�åuíFù@äSì>ã¬âQëoíWïGä æeãuâ*1�äSátíoä8åuíjì ÿ øzévå�ï3ì�å�âQøWézè ÿ ìiå�évådëJâ
ã£á>ãuäSì{íjésçGê±ì
î�ä{í|ïGâQèQâQøWâQêiù�ëJâ
ã�ëJâ
ã`î�ìSø:èQä>õGäSøzâmæeî�ä>ç@í âQë/áSâ
î�î�úQçGéWá�ìtíjéwçGê�åuùeåuívä>î�åtó2��ä¬ïGì>õGä2ìiåIå�âQá�éWìtíväSèµíWïGä
åuívìSê@äiå)âQë�ü®ùmãuì6èQä>õGäSøzâmæeî�ä>ç@í ÷ é�í|ï í|ïGä áSâ
ãJãfäiåuæyâ
çGèQésçGêàð èQä>õGä�øWâmæeî�ätç@í�åfíjätæ�å43 ð
ãuä�ëJésçGätî�ä>ç@í9åtó

��ä£ïGì>õGä(á>ãfäSìtíväSè�ì¬ð�åuæyäSá�éWëJézáSìtívéWâ
çµæyìtíWívä>ãJç�ë`â
ã/ì(áSâ
î�î�úQçGéWáSì{íjésçGê å©ä>ãJõGézáSä(áSâ
î�æyâ
çGätç@í ÷ ïGézá>ï
évå�ì65 ÿ úGézøWèQésçGê ÿ øWâQá
�75�âQë�á�â
î�î�úQçGézáSìtívésçGê�åfùGåuívä>î�å�ésç�ü�ù
ãfì
óbôBïGä�æyìtízíjä>ã`ç¼áSì>ç ÿ ä3úªå�äSè+íjâ
åuæyäSá�éWëjù�áSâ
î�î�úQçGéWá�ìtíjéwçGê¼å�ä>ã`õGéWáSä�á�â
î�æyâ
çGä>ç@í9å�ìtí¦èQéWë`ëJä>ãfä>ç@íµøzìtù@ä>ã©å�âQë�ì ÿ åfí|ãuì�átíjézâ
çªöTä
ó êªó öbíWïGä
áSâ
î æyâ
çGä>ç@í`å2æeãfâ
õGéWèQésçGê3å©ésçGê@øzä�ä
�Qíjä>ã`çGìSøoå�ä>ã`õGéWáSä8å�â
ã£í|ïGä�áSâ
î æyâ
çGä>ç@í`å�â
ãfá>ïGäiåuíWãuìtívésçGêàå©ä>ãJõGézáSä
ä
�yäSá>ú@ívéWâ
ç ÿ ù§ãuäSø�ùQéwçGê¦â
ç âmí|ïGätã"8`øzâ ÷ ätãqøWì{ùQä>ã	9/å�ätãJõGéWá�ä¬áSâ
î�æyâ
çGätç@í`åtó

��ä§ïGì>õGä�éWèQä>ç@ívéWëJézäSè�áSâ
î�î�úQçGéWá�ìtíjézâ
çGìSø ì>çGè�ëjúQçGátíjézâ
çGìSø�æyì>ã`í9åDâQë�áSâ
î�î�úQçGéWáSìtívésçGê�áSâ
î�æyâ
çGä>ç@í9å
ì>çGè ëJâ
ã`î�ìSøzévå�äSè í|ïGätî ésç ðdó ðDâmí|ï áSâ
î�î�úQçGéWáSì{íjéWâ
çGì�ø�ì>çGè ëjúQçGátíjézâ
çGìSø æyì>ã9í`å âQë ì
áSâ
î�î�úQçGéWá�ìtíjéwçGê$áSâ
î æyâ
çGä>ç@í`å2ì>ãuä�åuæyäSáSézëJéWä�è"ésç�åuúGá>ï�ì ÷ ìtù�í|ïGì{í�íWïGätù±áSì>ç ÿ ä�éwçªåuíjì>ç@ívéWìtíväSè ÿ ù
èQéWë`ëJä>ãfä>ç@í�áSâ
çGá>ãuä{íjäòá�â
î�î�úQçGézáSìtívéWâ
ç æeãuâmívâQáSâQøvå�â
ã½áSìSøWátúGøWìtívéWâ
çGìSø�ìSøzê@â
ãué�í|ïQî�å�è
úQãuéwçGê1íWïGä
èQä>õGäSøzâmæeî�ä>ç@í:8jãfäSëJéwçGä>î�ä>ç@í 9�æeãfâQáSäiåIåtó

��ä�ïGì>õGä½ì�øvå�â­èQä>õGäSøWâmæyä�è~ãuä�ëJésçGätî�ä>ç@í�æyìtízíjä>ã`çªå ÷ ïGéWá>ïÁëJâ
ã`î�ìSøzévå�ä�í|ïGä+èQäSáSâ
î æyâGå�éwívéWâ
ç¿ì>çGè
èQévåfí|ãué ÿ ú@íjézâ
çòåuíjätæ�å3ésçÁí|ïGä5ü®ùmãuì8þjð�èQä>õGäSøWâmæeî�ä>ç@íuó¬ôqïGä�æyìtíWívä>ãJçªå�áSì>ç ÿ ä½ésçªåuívì>ç@íjézìtíjä�èÁëJâ
ã$ì
åuæyäSá�éWëJézá�ë9úQçGá{íjéWâ
çGì�ø�â
ã�çGä{í ÷ â
ã	�~ì>ãfá>ïGéwíväSátí|úQãfä
óoôBïGä3úªå�ä�âQëµíWïGä3ãfäSëJéwçGä>î�ä>ç@ídæyìtízíjä>ã`çªå ÷ â
úGøWè
ìSøzøWâ ÷ úªå�íjâòìtú@íjâ
î�ì{íjä�õGä>ãuézëJéWá�ìtíjézâ
ç1âQë$í|ïGä¼ü®ùmãuì~èQä>õGäSøWâmæeî�ä>ç@í�æeãuâQáSä8åIåtó¦ôBïGé|å ÷ â
úGøWè ÿ ä

7

;�<
=7>@?
A7?�B�C�DE;
F�GIHKJL;MGI>�<6N$OPH�H�QRH�QSOP?�QT>VU7?
JR?
U�GTWXC7?MG�YZ?[?
U�G =7?\<�HKOTOP?]WPN�HKU7B�>^U7_a`bJRH�B�?�cIWXC�D
JL?[;
UdWeH�Q:G�=7?f;
A7;�>@c�;
C7c@?gGhH�H�ciWjF�N�N�HKOTG,k
l ?m;
O,?m<
F�OTOP?
U�GIc^DnB�?
A7?�c�H2N�>^U7_o` JLH�B�?�c WpH�Q4G�=7?mQ	;MF7c^GqGhH�c�?MOP;
U7<�?rJL?�<M=7;
U7>IWjJsWbQTHKO
<�HKJtJuF�U7>�<[;MGh>^U7_vWPD$WPGh?MJXWE;MU7Bw>VU�GI?�_2OP;xGh>VU7_yG =7?
J >^U�GhH4G�=7?zW,N�?�<�>�QT>�<�;xGh>�HKUw;
U7B�O,?�Q	>^U7?
JL?MU�G
N�;MG@Gh?
OTUdW{H�Q|<�HKJtJuF�U7>@<�;MGh>^U7_R<�HKJSN�HKU7?
U�GTWMk$}~=7?ZQT;
F7c^G�GhH�c@?
OP;
U7<[?�JL?�<M=7;
U7>IWjJsW�Y�>�c�c�;�c�c@HKY�FdW�GhH
JLH�B�?[c�W�>VJtN�c@?�O,?�<�HKA7?
O�D\N$OPH�<�?[BKF�OP?]WL>VU�G =7?�<�;]W.?�WuY�=7?
U�;�W.?
O	A7>@<�?�<�HKJtN�HKU7?MU�G�Q	;�>@c�?�B�HKOS;
<�HKJtJuF�U7>�<[;MGh>@HKULJL?]W*W�;�_�?�=7;]W�C7?�?
UXc�H7W,GPk��\HKO,?ZB�?MGh;[>�c�?[BLQ	;
F7c�G�GIH�c�?
O,;
U7<�?�JR?�<
=7;
U7> WjJXW�YZ>@c�c%C7?
>VU�GI?�_2O,;MGh?�B�;MG0W.HKJL?Ec�;xGh?
O�B�?
A7?�c@H2N$JL?
U�G0WPGI?MNzY�=7?
U�G =7?�B�?MGI;�>�c W\H�Q�FdW�?�B�<[HKJuJuF�U7>@<�;MGI>�HKU
N$OPH2GIH�<�H�cIW�C7?�<�HKJL?�;
A7;�>�c@;
C7c�?2k
l ?�;
O,?�;�cIW.Hs>^URG =7?�N$O,H�<�?]W*W{H�QeQ	HKOTJuF7c�;xGh>VU7_-G =7?�N$O,?�<�>IW�?Z<�HKO	O,?]WPN�HKU7B�?
U7<[>�?]W�C7?xG Y�?�?
URG =7?���DKO,;
� ���~�6JRH�B�?�cIW-;
U7B+G =7?�<�HKO	O,?]WPN�HKU7B�>^U7_�`�WPN�?[<�>�QT>�<�;MGI>�HKUdWMk�}~=7?]W.?X<�HKO	O,?]WPN�HKU7B�?
U7<�>@?]W�YZ>@c�c�C7?
FdW.?�B�QTHKO�;
F�GIHKJL;MGI>�<gG�OP;
UdW�c�;MGI>�HKUSH�Q:G�=7?���D2OP; � ���~�ZJRH�B�?�cIW�>VU�GhHZ`�k
l ?Z=7;
A7?tWPGh;MOTGh?[BLGIH�>^U�A7?]WPGh>@_�;MGI?ZN�;MOP;�c@c�?�c~?M�d?[<
F�Gh>@HKU�H�Q|<�HKJuJtF�U7>�<�;MGI>VU7_XW.?MO	A7>�<[?�<�HKJtN�HKU7?
U�G�WMk
l ?n<�;MU JLH�B�?�cyN�;
OP;�c@c�?�c�?
��?�<
F�GI>�HKU H�QbB�>�QTQ	?
O,?
U�G�W.?
O	A7>@<�?]Wr;�cVO,?�;�B2D ;MG�G =7?�W�?
O	A7>@<�?
B�?�<�HKJSN�H7W.>^GI>�HKU0N$=7;]W.?2k���HKOP?�HKA7?
Oj��YZ?L;
O,?L_�H�>VU7_�GIH A7?
OP>@QhD�N�H7W¡W.>VC7c@?RB�>IWPG�OP>^C�F�Gh>�HKU+H�Q�N�;
OP;[c�c�?[c
C7?
=7;
A7>@HKF�O�HKA7?
O�G =7?f_K>VA7?
U�U7?MG�YZHKOT¢S;
OP<M=7>^Gh?[<MG F�O,?f;MGdG�=7?�W.?
OTA7>�<�?�B�>IWPG�OP>VC�F�GI>�HKUZN$=7;]W�?Kk
£¥¤X¦�§�¨
©�ª�«|©	¬�­Z¨�§�®*­Z®�©,¯�°$±0ª�² ©,¬�­�¦:³ §K©	«Pª�´[¤b°:­*µ%­[³�ª�¦�¤�­[²%©P¶L· W�;�O,?]WjF7c^G~H�Q~G =7>IW�<�;]W.?ZWPG F7B2D$�
Y�?v;
OP?v_�H�>^U7_pGhHrB�?
A7?�c@H2N¸;v<�H�c�c@?�<MGh>@HKU¹H�QEN�;MG�GI?
O	UdWºQTHKO�WPN�?�<[>�QhD�>VU7_»;MU7B»B�?
A7?�c�H2N�>^U7_
<�HKJtJuF�U7>�<[;MGh>^U7_-WPD$WPGh?
JsWMk
£¥¤X¦�§�¨
©¼ª�«½©	¬�­q¨[§�®*­�®.©,¯�°$±pª�²b©,¬�­¾¦:³�¯�¿�À	Á@²Â°:­*µ%­[³�ª�¦�¤�­[²%©P¶ }~=7?�<�;]W.?�WPG�F7B2DÃW.?MG�W¼G�=7?
OP?[ÄKF7>VOP?MJL?
U�G�W�Q	HKOuG�=7?\B�?
A7?�c�H2N$JR?
U�GSH�QSG�=7?6JLH�B�?�c�ÅhC7;]W�?�B�Gh?]WPGI>VU7_¼N�c^F7_�ÅT>^UÆHKU�G�=7?6C7;]W.>IWXH�Q
?
��N�?
O,>�?
U7<�?s;�<[<
F�JuF7c@;MGh?�B+;MG�G�=7?SÇSHK¢7>�;RO,?]W.?�;
O,<
=6<�?
U�Gh?MO*k�}~=7?uOP?�ÄKF7>^OP?
JR?
U�GTW�QTHKO�G =7> W�N�cVF7_�Å�>VU
;
O,?¼B�?]W�<
OP>^C7?�BÆ>^UÉÈsÊ�Ê]k l ?�N�c�;
UEGhHÆ>^U�Gh?�_ËOP;MGI?¼HKF�O�?�QTQ	HKOTG�W Y�>^G�=ÌG�=7? � ��`»B�?
A7?�c@H2N�?
O�W0HKU
;
F�GIHKJL;MGI>�<sG�OP;
UdW�c�;MGI>�HKU½H�QfG =7?s��D2OP; � ������JLH�B�?[cIW�>VU�GhH+`�k~}~=7?
OP?[Q	HKOP?��~G =7?X<�;]W�? WPG�F7B2D�JL;MD
=7;
A7?f>^JtN�;�<xG:HKUZG =7?�B�?
A7?�c�H2N$JR?
U�G:H�Q%G =7? � ��`�N�cVF7_�Å�>VU:k

ÍeÎ^Ï�ÎiÐ+ÑdÒ|Ó	ÔKÕeÔ7Ö¼×�Ô7ØKÙ|Ú�Û¥Ø

}~=7?6QT>VO�W,G�D�?�;
OtH�Q�G =7?�ÜfÝ)È�Þ@Ç¹N$O,H*ß*?�<xGZHKF�O-Y�HKO	¢¼=7;]WsQTH�<
FdW.?�B¼HKU¼G�=�OP?�?0JL;	ß¡HKO�Gh;]Wj¢dWsà,W�?�?
á OPH*ß¡?�<MG%È�?]W.<MOP>^N�GI>�HKUSH�Q l HKO	¢�â@�%k ÊMã	ä*å

æ�çË¶�çË¶�ç È�?�Q	>^U7?gG =7?f<[;]W.?�WPG�F7B2D7�K?MA7;�cVF7;MGI>�HKUZN�c@;
Ud�ËJL?�;�WjF�OP?
JR?
U�GTW�;
U7B�;]W*W.?�W*WjJL?MU�G:<
O,>^Gh?MOP>�;2k
æ�çË¶�çË¶éè Ü�?MA7>�?
Y�G =7?Lê[��D2OP;[êuJL?MG�=7H�B+;MU7B+>@B�?
U�Gh>@QhDXG =7?RB�?MA7?�c�H2N$JR?
U�G{WPGI?MNiW*��Y�=7>�<
=6WP=7HKF7c�B

C7?fGh;[<
¢7c�?�B-C�DSÜfÝ)È�Þ@Çsk · W*W.>@_2UtG�=7?�W.?MGTW�H�Q�JR?MG =7H�B7W�;
U7BZGh?�<M=�U7>�ÄKF7?]W�GhH�C7?�;MN�N�c�>@?�B
;xGdG =7?�W.?�WPGI?MNiWMk

æ�çË¶�çË¶ìë ÞIU�A7?]W,Gh>�_K;MGh?ZG =7?�FdW.?-H�Q|OP?�QT>VU7?
JR?
U�Ge;
U7BLJLH�B�?�c�<M=7?�<
¢7>VU7_uGIHsA7?
O,>�QIDXB�?�<�HKJSN�H7W.>^GI>�HKU
;MU7BÆ<�HKJSN�H7W.>^GI>�HKUqW,Gh?MNiWMkgÞIU�A7?]WPGI>�_�;MGI?6G =7?½<�HKJuC7>^U7;MGh>@HKUÉH�QuJRH�B�?�c�<
=7?�<M¢7>VU7_�;
U7B
O,?�Q	>^U7?
JL?MU�G�GI?�<
=�U7>@ÄKF7?]W�>^U0<�HKU�GI?
��G|H�Q � ����;
U7Bs`�k�ÞIU�A7?]WPGI>�_�;xGh?�G =7?ZFdW.?-H�Q|JLH�B�?[c
<M=7?�<
¢7>VU7_oGIH�H�cIWÂ>VU <�HKJuC7>^U7;MGh>@HKU Y�>^G�= � ��� GhH ` GIH�H�cTkEÞIU�A7?]WPGh>@_�;MGI?mG�=7?
;xN�N�c�>�<[;
C7>�c@>^G�DZH�Q�QTHKO	JR;�c7O,?�;]W.HKU7>^U7_Z;
C7HKF�G:QT;
F7c^G�GhH�c@?
OP;
U7<[?f>VUZG�=7>IWe;MN�N�c@>�<�;xGh>�HKUS;MOP?�;Kk

8

í~î7ï{ðLñ[òVó�ôPï�õjö7÷^ø�õeñ�ù
î7ò@ï
ú7ï�û�ûKö�ôPò^ó7ü�ø î7ï�ý	òVôjõPødþ�ï�ñ
ô~ñ
ôPï�ø î7ïfýTÿ�÷�÷�ÿ���òVó7ü��
����� ïgî7ñ
ú7ï
	$ôPï�	�ñ
ôPï�û�ø�î7ïgø ô,ñ�ù�ï�ñ
�7÷�ï{ô,ï��Kö7òVô,ï
ðLï
ó�ø%û�ÿ�ù
ö�ðLïMó�ø���� � ���~ýTÿKô�ø�î7òIõeù�ñ�õ.ï�õPø�ö7û2þ �
� ��� ï�î7ñ
ú7ïZû�ï
ú7ï�÷@ÿ�	�ï�ûtø î7ï�ü2ö7ò�û�ï�÷@òVó7ï]õgý	ÿKôeø�ôPñ
ódõ�÷�ñMøIòVó7üSø�î7ï���þ2ôPñ��������RðRÿ�û�ï�÷Iõ{ò^ó�øhÿ��

õ 	�ï�ù�ò�ýTò�ù�ñxøhò�ÿKódõ �
!"��� ïºî7ñMú7ïyñ]õ*õ.ÿ�ù�ò@ñMøhï[ûwø�î7ïyû�ï�ù�ÿKð#	�ÿ7õ.ò^øIò�ÿKópñ
ó7û�û�òIõPø�ôPò$��ö�øhò�ÿKóÂõPøIï
	iõÆÿ�ý�ø�î7ï%��þKô,ñ

û�ïMú7ï�÷�ÿ�	$ðRï
ó�ø"	$ô,ÿ�ù�ï]õ*õ&��ò^ø�îZø î7ïfù[ÿKô	ôPï�õ'	�ÿKó7û�òVó7ü��\ô,ï�ý	ò^ó7ï
ðLï
ó�ø�õPøhï�	iõ �
()��� ï î7ñ
ú7ï û�ï
ú7ï�÷@ÿ�	�ï�û ø î7ï � õ 	�ï�ù�ò�ýTò�ù�ñxøhò�ÿKó ñMó7û ôPï�ýTòVó7ï
ðRï
ó�ø*	�ñMø@øhï
ôTódõ ýTÿKô

ù[ÿKðuðuö�ó7ò@ù�ñMøIòVó7ü-õPþ$õPøIï
ðXõ"ðRÿ�û�ï�÷�÷@ï�û�òVó+��þKô,ñ �
, ��� ï î7ñMú7ï õPøhñ
ô�øhï�û¸øIÿ òVó�ú7ï]õPøIò�ü�ñxøhïÂýTÿKô	ðLñ[÷EðLÿ�û�ï[÷�÷�ò^ó7ümÿ�ýºýTñ
ö7÷^øÌøhÿ�÷@ï
ôPñ
ó7ù[ïÂñ
ó7û

	�ñMôPñ�÷@÷�ï�÷@òIõjðzñ]õ'	�ï�ùMø�õeÿ�ý:øIï�÷�ï[ù�ÿKðuðtö�ó7ò�ù�ñMøIò�ÿKóuõPþ$õPøIï
ðXõ �

� ï-	$ôPï]õ�ï
ó�ø�ø î7ïRðLÿKô,ïsû�ïMøhñ�ò@÷�ï�û ô,ï]õjö7÷^ø�õ.��þ ödõ.ò^ó7ü�ø î7ïLù�ñ�õ.ïXõPø ö7û2þ+õjö7ü�ü�ï�õPøhï�û/��þ10tÿ�27ò@ñ+36ø�î7ï
!547686 	�ÿ7õ.ò^øIò�ÿKó7ò^ó7ü�õ,þ7õPøIï
ð ��� �:9�; � �=< � ��> ó½ø î7ï�ýTòVô�õ,ø7	�ñ
ôTø?��ï0û�ï
ðLÿKódõ,ø ôPñxøhï�ø î7ï/��þKô,ñ@�����A�CB
�7ñ]õ.ï[ûLû�ï
ú7ï�÷�ÿ�	$ðRï
ó�ø"ÿ�ý�ø î7ï-õ,þ7õPøIï
ð � í~î7ï
ó1��ï�õPî7ÿ��qî7ÿ��D��ï�ù�ñMósý	ÿKôTðLñ�÷@òIõ.ï�ñ
ó7ûtú7ñ�÷@ò�û�ñMøIï�ø î7ò õ
��þ2ôPñfû�ïMú7ï�÷�ÿ�	$ðRï
ó�ø���þ�ödõ.òVó7ü�ø î7ïE�F�\ïMø�î7ÿ�û �

GIHKJIHMLONQP)R�STSVU8W�JIXTYZY\[8]5^`_�ab_c]VUd_MU8eT^ P)^fa'gih

��þ2ôPñj��� �=k ��òIõ�ñ�ðRÿ�û�ï�÷cB�ûKôPòVú7ïMóLñ
ó7ûtù�ÿKðj	�ÿKó7ï
ó�ølBl�7ñ]õ�ï�ûtû�ï�õ.ò�ü2óSðLïxø î7ÿ�ûSý	ÿKô~ø î7ï�û�ï
ú7ï[÷�ÿ�	$ðLïMó�ø�ÿ�ý
ù�ÿKðtðuö�ó7ò�ù[ñMøhò^ó7üºõ,þ7õPøIï
ðXõ�ñ
ó7û�ù�ÿKðtðuö�ó7ò@ù�ñMøhò@ÿKóm	$ôPÿ2øhÿ�ù[ÿ�÷Iõ �?> øLî7ñ]õn�7ï�ïMóºû�ïMú7ï�÷�ÿ�	�ï�û�ò^ó�ø�î7ï
0Sÿ�27ò�ñ7o�ï�õ.ï�ñ
ô,ù
î1p�ï
ó�øIï
ôZ��þSòVó�øIï�ü2ô,ñMøhò^ó7üZø�î7ïq�7ï]õPø�	$ô,ñ�ùMøhò@ù�ï]õ|ñ
ó7û-û�ï]õ�ò�ü2óT	�ñMø@øhï
ôTódõ|ï]õPøhñ
�7÷�òIõPî7ï�û-òVó
ø î7ï�ñ
ôPï[ñ�ÿ�ý�ù�ÿKðuðtö�ó7ò�ù�ñMøIòVó7ü�õPþ7õ,øhï
ðsõ � í~î7ïsðRïMø î7ÿ�û�ù�ÿKú7ï
ôjõ-ñ�÷@÷�òVó7ûKödõPø�ôPò�ñ[÷�õ 	�ï�ù�ò�ýTò�ù�ñxøhò�ÿKó�ñ
ó7û
û�ï]õ.ò@ü2ór	$î7ñ]õ.ï�õeý�ô,ÿKðs	$ôPï�õPøhñ
ó7û�ñMôTøhò õ.ñMøIò�ÿKóZøhÿ�ýTòVó7ñ�÷�òVð#	�÷�ï
ðRï
ó�øhñMøIò�ÿKó �

��þ2ôPñ�î7ñ�õÌý	ÿKö�ô¼ðLñ�ò^ót	$î7ñ]õ.ï]õi�vu�ï
ô	ú7ò@ù�ïwu5	�ï�ù�ò@ý	ò�ù[ñMøhò@ÿKó ; udïMô	ú7ò�ù[ïyx�ï[ù�ÿKðj	�ÿ7õ.ò�øhò@ÿKó ; u�ï
ô	ú7ò@ù�ï
x�òIõPø�ôPòz��ö�øIò�ÿKóÆñ
ó7ûmudïMô	ú7ò�ù[ï > ð#	�÷�ï
ðRï
ó�øhñMøIò�ÿKó � í~î7ï�{I|
}�~��z�i|�{`��|i��� �V�z�i���c�z�V�O	$î7ñ]õ.ï\ý	ÿ�ùMödõ.ï]õ�ÿKó
û�ï�ýTòVó7òVó7ü�õ.ïMô	ú7ò�ù[ï]õ.	$ôPÿKú7ò�û�ï[û\��þ ø�î7ï�õPþ7õ,øhï
ð ñ
ó7û ø î7ï[òVô)ödõ.ï
ôjõ �d> ó�ø�î7ïj{I|�}�~��$��|+�+|����V�A�����i�z�c�z�V�
	$î7ñ]õ.ï)ø î7ï�ñ��dõPø ô,ñ�ùMø�ðLÿ�û�ï�÷�	$ôPÿ�ûKö7ù[ï�ûRñMø�ø î7ï7	$ôPï
ú7ò@ÿKödõ�õPøIñ�ü�ï�ò õgû�ï�ù[ÿKðj	�ÿ7õ.ï�ûtòVóRñZõPøIï
	���òIõ.ï�ñ
ó7û
øhÿ�	"B�û�ÿ���ó0ý	ñ]õjî7ò@ÿKó�òVó�øIÿ ñLõ�ïMø�ÿ�ý�õ.ï
ôTú7ò�ù�ïtù�ÿKðj	�ÿKó7ïMó�øTõ�ñMó7û ÷�ÿ�ü�ò@ù�ñ�÷"òVó�øIï
ôPýTñ�ù�ï]õE�7ïMøM�Zï�ïMó�ø î7ïMð �
> óRø î7ï.{I|
}�~��z�i|q�j�:�
�$}��z���V�c�z�V�j	$î7ñ]õ�ï ; ø î7ï�÷�ÿ�ü�ò@ù�ñ�÷�ñ
ôPùMî7ò^øhï[ùMø ö�ô,ï�ÿ�ý|õ.ï
ô	ú7ò@ù�ï]õ�òIõgû�ò õPø ô,òz��ö�øIï�ûRÿKú7ï
ô|ñ
ü�ò^ú7ï
ó�	�÷�ñxøhý	ÿKôTðmñMôPù
î7ò�øhï�ùMø�ö�ôPï �A� òVó7ñ�÷@÷^þ ; òVó6ø�î7ï�{I|�}�~��z��|j���A���M|i��|i���z�����z�V�n	$î7ñ]õ.ïsø�î7ï õ,ø ô	ö7ùxø ö�ôPñ[÷
ï�÷@ï
ðLï
ó�ø�õqñ
ô,ï ò^ó�øhï�üËôPñMøIï�û ò^ó�øhÿ�ø�î7ïyøIñ
ôPüKïMø�ï
ó�ú7òVô,ÿKó�ðLï
ó�ø�ñ
ó7û�	�÷�ñMøIý	ÿKô	ð1B,õ'	�ï[ù�ò�ýTò�ù�ù�ÿ�û�ï ò õ
ü�ï
ó7ïMôPñMøIï�û �

� ïfðLÿ�û�ï�÷I	�ñMôTø�ÿ�ý�ñ�í~î7òVôPû 4 ï
ó7ï
ô,ñMøhò@ÿKó 6 ñ
ô�ø ó7ï
ôjõjî7ò$	 6 ôPÿ��¡ï�ùMø�� !54?6d6d� 	�ÿ7õ.ò�øhò@ÿKó7òVó7üSõPþ$õPøhïMð���� �:9�;
� �=< � � í~î7ïO	�ÿ7õ.ò^øIò�ÿKó7òVó7üzõPþ$õPøhï
ð 	$ôPÿKú7ò@û�ï]õ�	�ÿ7õ�ò^øhò@ÿKó7òVó7üzõ.ï
ô	ú7ò@ù�ï]õ6øhÿºù[ñ�÷�ù
ö7÷@ñMøhïaø î7ï�	$î�þ$õ.ò�ù�ñ[÷
÷�ÿ�ù[ñMøhò@ÿKóqÿ�ý�ñaü�ò^ú7ï
ó¾ödõ.ï
ô ï��Kö7ò$	$ðRï
ó�ø����� � òVó�ñF��ó7ò^ú7ï
ô�õ�ñ�÷#��ÿ��7ò�÷�ï¼í"ï�÷�ï�ù[ÿKðuðuö�ó7ò@ù�ñMøIò�ÿKó
u�þ7õ,øhï
ðw�����\í�u � ó7ïMøM�ZÿKô¡2 ��� ï�ý	ÿ�ùMödõ�ÿKó 6 ÿ7õ.ò^øIò�ÿKó�pgñ[÷�ù
ö7÷@ñMøhò@ÿKój¢?	5	�÷�ò@ù�ñMøhò@ÿKó 6 ñ
ô�øA� 6 p�¢ 6d� 3Lñ
	�ñ
ô�ø�ÿ�ý�ø î7ï/	�ÿ7õ.ò�øhò�ÿKó7ò^ó7üaõ,þ7õPøIï
ð ñ�÷�÷@ÿ��Zò^ó7ü¼ù[ÿKðuðuö�ó7ò@ù�ñMøIò�ÿKó�ò^ó¼ø�î7ïno{ñ�û�ò�ÿF¢Zù[ù�ï]õ*õT0tïxøc��ÿKôb2
�£o¤¢E0 ���

¢�õ{ñ.	�ñ
ô�ø"ÿ�ý~ø î7ï�oE¥7x > 0y	$ôPÿ��¡ï�ùMø ; �Zï�î7ñ
ú7ï�û�ï
ú7ï[÷�ÿ�	�ï�ûSø�î7ï�ô,ï��Kö7òVô,ï
ðLï
ó�ø�õgû�ÿ�ù
ö�ðRï
ó�ø¦��� � ���|ýTÿKô
ø î7ï !5476d6 	�ÿ7õ.ò^øIò�ÿKó7òVó7ü\õPþ7õ,øhï
ð � í�î7ï�û�ÿ�ù
ö�ðLï
ó�ø§	$ôPï]õ�ï
ó�øTõ�ø�ôPñ�ù[ï�ñ��7÷�ïXôPï��Kö7ò^ôPï
ðRï
ó�øTõtù[÷�ñ]õ*õ�ò�ý	ò@ï�û
òVó�øIÿ ! ù[ñMøhï�üKÿKôPò�ï�õi�6ñ
ô,ù
î7ò^øIï�ùMø ö�ô,ñ�÷ ; ýhö�ó7ùMøhò@ÿKó7ñ�÷ ; ñ
ó7ûrù�ÿKðtðuö�ó7ò�ù[ñMøhò@ÿKó7ñ�÷ �v> ó ñ�û�û�ò�øhò�ÿKó ; ø�î7ï
ý�ö�ó7ùxøhò�ÿKó7ñ[÷7ôPïi�Kö7òVôPïMðLï
ó�ø�õeý	ÿKô�ø î7ï 6 p�¢ 6 ù�ÿKðtðuö�ó7ò�ù[ñMøhò@ÿKó�î7ñ
ú7ï§�7ï�ï
óuõ 	�ï�ù�ò�ýTò�ï�û�ò^ó¨��� �:9�; � �=< � �

9

©«ª$¬ ­«® ¯ ® ¬=°=® °=±£²«ª³¬«­ ® ¯ ® ¬«°«® °«±
´«µK¶ ·¹¸«º µK¶ ·¹¸

»�»z¼¾½K¿zÀKÁ:½¾¿³Â$ÂÃcÄ ½:Å Æ Å Ä$Ç:È ÁzÉ À:¼³É Á¾Æ Å Ä$Ç

´¹Ê¾Ë£º Ê:Ë
´ Ì µ:Ílº µ:Í

´ Ì Î¾Ï Ð Ñ ¸ Ò Ó Ô Õ`º ÎKÏ Ð Ñ ¸ Ò Ó Ô Õ
´ ÖK· × Ø ÙMµ¡º Ö¾· × ·¹¸ · Ì Ú ·¹Ø Ù�µ

Û&ÜcÝ�ÞIßKÞIà"áãâ�äVå@àVÜ�æ�å@ä5çdèié

êMêMë'ìMí î³ï ð$ìMñ'ì�ð³òcó�ôMòMõ$ï ö ï òM÷MøcøùlúlûMü ý ü ú£þ£ü þlÿ

� �� �� �

� ����� �
	��
����� � � ����� ���� �����
������� � � ����� ���
� ���������

� �����
�!
� ����� �
	��"

� ����� �#	%$!&
� �
����$"& � ��$!& � ��'�(�� � ������'#(��

� ����� ��)'�(��

� �
*,+ ���
� � � -�	 � ������*
+ ���
� � � -�	
� ����� ��	.*
+ ���#� � � -
	� ���!

Û&ÜcÝ�ÞIßKÞ0/8ß21436571nàVæ�ç98:365;1=<�ä?>@1�äA<`Ü�BbÜcäVædÜMæ8Ý

CED0F9GHFJILK0M�NOFPGAQ6FRNOM�SLM�NRTJU,M�V2WXQYD0T[Z%F\Z]U!TJI^U^Z_S!I]V2`aNbI.FRTJU!M�W0cXTedAV2`9TRM�Wf`PVAdAFOghVAS=U
D0FeZ]iYZ]U,Fb`/á0CED0F
I]FOg�TJU,M�V2WHZ�D0M
QjZ9k0FJU�l:FOFbWmU�D0FnZ]iYZ]U,Fb`og�FbK0FRgpZ)FbILK0M�NRF[Z9TbW0dnU
D0FRM�IrqHZ%FbI)Z\k0FRNOV2`PFsNRTbW0dAM�dATJU!F[Z9S^V2I
t4uOvwtyx{znty|~}?���
�Y�O��u6�b|��[���R�;v��O�R�Jx�x{tw}0�
�Y��xPVAS_U�D0F�Z.i0Z]U,Fb`�g�FbK0FOg�Z)FbILK0M�NRF[Z
á�ChD0FX�hGY�;�hG�TbI.F
g�VAc2M�NRTRg�M�W?U!FJI]SLTONRF[Z�TJU�U!TRNbD0FOd�U,V�U
D0F�NRg�T[Z�Z%F[Z�l;M�U�D�Q6V2I^U^Z�ásChD0F�dAV2`PTRM�W�`PVAdAFRgmSLV2I�U�D0F
t�}�xO���
��}?�6�
�[��Z]iYZ]U!FJ`�TJW0d�M�U"Z Z)FbILK0M�NRF�t�}�xO���,��}?�6¡�¢Y£��¥¤?£�¢Y�
��}?�9M
Z Z]D0V2l7W9M�W9¦§M�ce¨)á
©JT�TbW0d{�hGY�;�ªVAS
U
D0F �@V0Z)M�U!M�V2W0M�W0c{Z.i0Z]U,Fb`«M
Z¬Z�D0V2lpWeM�W{¦§M�c;¨)á
©�kdá

�­K0TRg�M�d®Fb¯6FRNbq?U,M�V2W°V2I]dAFbIpVASpZ%M�c�W0TRg
ZrV2W��hGY�;��NRTbW®k0FªZ.Q6FRNRM�S^M�FRd�k?iªU�D0FPNRV2ILI.F[Z]Q6V2W0dAM�W0cªqHZ%F
NRT[Z)F;TbW0dXZ)FR±2q0FbW0NRF7dAM�TRc�I.Tb`fZ�á?¦§M�W0TRg�g�iY²Yl;F;SLV2I^`PTRg�g�i�dAF[Z%NJI]M�k0F³U
D0FpNRV2`�`\qAW0M�NRT~U!M�V2W\k0FJU
l;FRFbW9T
Z]iYZ]U!FJ`«g�FJK0FRg´Z%FJILK0M�NOF_TbW0drM�U"ZµqHZ%FbI]¶.Z)·�M�W:U�D0F�Z]U!T~U!F `9TRNbD0M�W0F�T[Z4M�g�g�qHZ]U�I]TJU,FRdrM�W{¦§M�c�qAI]F ¨)á
©JN�á

¸�¸�¹
º#» ¼�½ ¾�º#¹
¿�º�¾�½ À ½ ¾ÂÁ�Ã ½ Ä�ÅÂÆ�ÆÇ.ÈLÉ.Ê ËÂÊ È]Ì]Ê Ì^Í
Î�Ï�ÐÒÑ Ó Ô Ó Ð�Õ�Ó Õ�Ö^×�ÏÒÐ�Ñ Ó Ô Ó Ð�Õ�Ó ÕÂÖ

ØÂÙÒÚ ÛÂÜ Ý Ù�Ú Û Ü

¸�¸
Þ ß�º�¾�Á�ßÒº�Æ#Æà Ä�ß�½ Ã ½ Ä
ÅÂá"Á#â ¾ÒÞ�â Á�Ã ½ Ä#Å ã ä â º ß�º#» ¼Â½ Å å
æ ç�èÒé ÐÒê,Ï�ÐÒÑ Ó Ô Ó Ð�Õ�Ó Õ�Öæ ç#ë Ð�ÏÒÐ�Ñ Ó Ô Ó ÐÒÕ�Ó Õ Ö

ì�í ç�é î�ï

ì í ç í Õ ð
ìÂí ç ð ÎÒÓ ñ ç íÂÕ ð

ò óÒô Ú ÛÂÜ

Û&ÜcÝ�ÞIß�õ�à"áãâ�äVå¨àVÜMæ�å@ä5çdèié Û&ÜcÝ�ÞIß�õ[/Zá¥14365;1nä?>@1�äA<`Ü�BbÜcäVædÜMæ8Ý Û&ÜcÝ�ÞIß�õ�öißY3jB à2B'èqç)ÜMà5ÝA÷�àVå ä?>
3Aø´<%B'è�å 1436571®ö�äVå¨åfùdædÜ
ö�à2BbÜcäVæ

CµV�M�`\Q6g�Fb`PFJW?U�M�U"Z\V2lpW�Z%FbILK0M�NRF[Z�²µU�D0FsZ]iYZ]U!FJ`úqHZ�q0TRg�g�i�qHZ%F[Z\FJ¯YU,FbILW0TOg�FbW?U,M�U!M�F[Z
áµCED0FsZ%FJILK0M�NOF[Z
QYI]V2K0M�dAFRd°k?i®U
D0F�Fb¯AU,FbILW0TRgûFbW?U,M�U!M�F[Z:Q6TJI^U!M
U!M�V2W�Fb¯6FRNbq?U,M�V2W�VAS_U
D0F�tw}�xb���,��}?�6¡�¢Y£��¥¤?£�¢Y�
��}?�üZ)FbILK0M�NRF
M�W?U,V7U
D0F_NOV2ILI]F¥Z]Q6V2W0dAM�W0c{Z.U!TRc?F¥Z
á

ý,W�U
D0F�W0Fb¯AU§þPu6�b|������R�_ÿ{�R�R}����¬}�xO���
��}?�:þPQYD0T[Z%F³l;F7M�W?U
I]VAd2q0NOF7Fb¯AU,FbILW0TRg@Z%FJILK0M�NOF³QYI.V2K0M�dAFbI�ZwM�W?U!V
U
D0F{dAV2`9TRM�Wf`PVAdAFRghNOV2WHZ]U
I^q0NJU!FRd9QYI]FJK0M�V2qHZ%g
i0²´T[Z�Z�D0V2lpW�M�Wª¦§M�cX¨)áÂ¨YT�áHCED0F:`PVAdAFRghM�W0NRg�q0dAF¥Z U�D0F
Fb¯AU!FJILW0TRg Z%FbI^K0M�NRF QYI]V2K0M�dAFbI)Zsÿ����	��
��
����� TbW0d v³£��´}2|b�������já;ChD0F g�VAc2M�NRTRgXM�W?U!FbI.SLTRNRF¥Z�TbI.F
TJU�U!TRNbD0FOdrU,VrU�D0FpNOV2ILI]F¥Z]Q6V2W0dAM�W0c{NRg�T[Z�Z%F[Z=K0M�T Q6V2I^U"ZyNRTRg�g�FRd��=uOvwt4xyz��=x~�O�:u6�O�����O�µv��O�R�Jx�xyt�}0���Y�
x
T[ZhQYI.F[Z%FbW?U,FRdrM�W{¦§M�c;¨)áÂ¨?kdá

10

��� ����� � ����� �� �"!#� $&%�� $(') *,+.- /1032�/.4 5 6 5 /�7 5 7 8

) *,+ - /10:9�;

) *<+ - /�0�=�> 8 /�- 5 6 ? 0) *<+ - /103@�A

B�CED F G(H<I J3FLK�MNG�F O3D H&G�CED F G(H<I J3F) *<+ - /10:P QN@�R<S.7 T.> U.-) *<+ - /10N9�;,R<S.7 T.> U.-) *1V,/�2,/.4 5 6 5 /,7 5 7 8

W X,Y&Z [.\

W X,]�^�_&` a1b�c [1\

W X d�c e.f�\ g h i.jW X�Y�k

W X�l1m(Y�_&`.a b,c [\
W X1d(c e.f,\ g h i.jN_&` a b<c [1\W X,Y�k,_&`.a b,c [1\

W X1Y&Z [1\

W X�n f�Z g h g f1a�g a.e W X�n.f.Z1g h g f�a1g a e

W X,n f1Z1g h g f�a1g a e W X,n f.Z.g h g f1a1g a1e
W X,]�^ W X,l.m(Y

) *�+.- /10:@�A&R<S 7 T > U -) *<+ - /,0(=�> 8 /�- 5 6 ? 03R<S 7 T.> U.-

) *1V</�@�A,R&S 7 T > U -) *1V,/ =(> 8 /1- 5 6 ? 03R&S 7 T > U -

) *1V,/�P QN@�R<S 7 T > U -

W X,]�^

W X,Y�k W X1d(c e1f�\ g h i1j

W X,l.m�Y

) *.V,/,9�;<R<S.7 T.> U.-

) * V</,@�A

) *<+ - /103P QN@

) *1V,/ =(> 8 /1- 5 6 ? 0

) *.V,/<P QN@) * V</,9�; o(pLqsr�pLqEt3o&u(v:w x(y o�z�{#|sr�z({#|LtLo<u�v}w x�y

o�u�|E~�r}|�~}t3o�u�v3w x(y o<u(�Ew ����r��Ew �}�:t3o&u(v3w x(y

�,� � � ���#�,�&�(�<� �&� �.�<�3���.�<�����,�1� � � �,�1�<���1� ���1�

���,�������������¡ £¢:¤���¥�¦§¥�¨��ª©�¢� �«��¡ #��¨�«

¬�­¯®£°�±�²�³:´Nµ·¶3¸¹±»º£±�¼�½¹³�º£±�¾¯®£¶L¿�À�±s®Á­�´Â®Ã±¡º#Ä¹³}²�±Å³�ÆÇ°�È}±¡ÆÉ±�Ê�¶L¿�¶N³:­�ÊÌË�Í·±Î¾�±�²ª­�ÆÇ°�­¹®"±Ï¶:¸¹±ÑÐ¹±¡¸¹¿¡Ä¹³:­�½�º�­�´
¶3¸¹±�ÆÉ¿�³(ÊÉ½Ì®"±·²�¿Ò®Ã±Ò®Ï¿�²�²ª­�º�¾�³�Ê¹À�È(µÌÓÔ¬�¸¹±Õ´�½�Ê¹²�¶N³:­�Ê¹¿�È�¿¡º£²¡¸¹³(¶N±�²�¶3½�º£±Ö³3®×¾�±�´E³�Ê¹±�¾¯³(Ê
¶L±�º#ÆØ®Ù­�´Ú®Ã±¡º#Ä¹³}²�±
²�­�ÆÛ°�­�Ê¹±¡Ê�¶E®ÜË�ÍÕ¸¹³}²¡¸É±�Ê¹²�¿�°§®Ý½¹È}¿�¶L±Å´�½�Ê¹²�¶L³:­�Ê¹¿ªÈ:³(¶N³:±Ò®Þº£±�È:¿�¶N±�¾·¶L­Û¿Ö®Ã³�Ê¹À�È}±�±�ßÌ±ª²¡½�¶L³}­�Êà®�¶N¿�À�±Å­�ºÂ­á¶3¸¹±�º
È:­�À�³:²�¿�ÈÅ°�³:±�²�±â­�´
´�½�Ê¹²�¶N³:­�Ê¹¿�È}³(¶:µÌÓÙãNÊåä�³}ÀçæèÓ.æÔ²�Í·±é°Ôº£±Ò®"±¡Ê�¶Ö¶3¸¹±ê¿¡º£²¡¸¹³(¶N±�²�¶:½�º�±ê¾�³}¿�Àáº�¿�Æë­�´ì¶:¸¹±
íÁîáïªð�ñ3ð�î�ò�ð�òÒó	®�µÔ®�¶L±¡ÆôÓè¬õ¸¹±ÛÆ¯¿�³�Êö±ªÈ:±¡Æ¯±¡Ê�¶EËè÷�ø�ùûúüð�ýªøûþ
ð&ù�ø�ý�ñ}î�ùÝÿÂ°�È}¿�µ¹®Ñ¶3ÍÖ­ º�­�È}±Ò® � ³(¶ÞÆÉ¿¡Ê¹¿ªÀ�±Ò®»¶:¸¹±
±¡ß�±�²¡½�¶N³:­�ÊÛ²�­�Ê�¶:º�­�È�³�Ê·¶3¸¹±Î®�µ¹®£¶L±¡Æ ¿¡Ê¹¾Ö¸¹¿¡Ê¹¾�È:±s®�¶3¸¹±»²ª­�Æ
Æ
½�Ê¹³}²�¿�¶N³:­�ÊÛ­�Ê·¶3¸¹±���������Ó

��¢
	Õ��������
·¨��ª©�¢� �«��¡ #��¨�«»¤����Ü«ª¨��§¢3��«���¢��" �¨¡¢����è £¢3¤��

¬õ¸¹±ØÆ¯­�¾�½¹È:¿¡º·®�µÔ®�¶L±�Æ Æ¯­�¾�±�È °Ôº�­�¾�½¹²�±ª¾�¿�¶Ù¶3¸¹±���±¡º#Ä¹³}²�±��Ö±�²ª­�ÆÇ°�­¹®"³�¶L³:­�Ê °Ô¸¹¿Ò®"±Ø¿�È:È}­�Íì®Ö½Ì®Õ¶L­
¿¡Ê¹¿�È�µ¹®Ã±ÎÄ¹¿�º�³:­�½Ì®Ú¾�³3®�¶3º£³�Ð�½�¶L³}­�ÊÇÆ¯­�¾�±�ÈN®�ÓáãNÊì¶3¸¹±»Ê¹±¡ß�¶§°Ô¸¹¿Ò®"±�����±¡ºEÄ¹³:²�±��Õ³N®�¶:º�³(Ð�½�¶L³:­�Ê �Ç¶3¸¹±�®Ã±¡º#Ä¹³}²�±
²�­�ÆÛ°�­�Ê¹±¡Ê�¶E®Ï¿�º�±·¾�³3®�¶3º£³�Ð�½�¶L±ª¾É­�Ä¹±¡ºÁ¿·À�³�Ä¹±¡ÊÉÊ¹±�¶:Í·­�º"!Ø¿¡º�²�¸¹³(¶L±ª²�¶3½�º£±�Ó#��³:ÀáÊ¹¿�È}È:³(Ê¹ÀÛ°Ôº�­á¶N­�²�­�ÈN®Ï¿ªÈ:È:­�Í
´#­�ºõ²�­�Æ
ÆÇ½�Ê¹³:²�¿�¶L³:­�Ê Ð¹±�¶3ÍÖ±�±¡Ê·¶3¸¹±Î®"±¡º#Ä¹³}²�±»²�­�ÆÛ°�­�Ê¹±¡Ê�¶E®Â³�ÊÛ¾�³N®£¶L¿¡Ê�¶ÌÊ¹±�¶3ÍÖ­�º$!Û±�È}±¡ÆÉ±�Ê�¶E®�Ó

ãNÊ ä�³:À æèÓ&% Í·±�³}È:È(½Ì®�¶3º£¿�¶L± ¶:¸¹± °Ô¸�µ¹®"³}²�¿�Èà®£¶3º#½¹²�¶3½�º�±�­�´à¶3¸¹±�¾�³N®£¶3º�³(Ð�½�¶L±�¾ °�­¹®"³�¶L³}­�Ê¹³�Ê¹À ®�µÔ®�¶L±�Æ�Ó
íÁîáïªð�ñ3ð�î�ò�ð�òÒó�')(�*Ïþ ¿�Ê¹¾ÇíÁîáïªð(ñNð(î�ò�ð(òÒó�'¹÷,+Ï÷àº�±�°Ôº£±Ò®"±¡Ê�¶�Ê¹±�¶3ÍÖ­�º$!Ø±ªÈ:±¡Æ¯±¡Ê�¶E®Ï³(ÊØ¿�-�.â¬/�ØÊ¹±�¶3ÍÖ­�º$!�Ó
0�±éÆ¯¿�°�¶3¸¹±ê´L½�Ê¹²�¶L³}­�Ê¹¿�ÈÖ¿�º�²¡¸¹³�¶L±�²�¶:½�º�± ¶N­ ¶3¸¹± °Ô¸�µÔ®"³}²�¿�ÈÖ®�¶3ºE½¹²�¶3½�º£± Ð�µ ³�Ê¹²�È(½¹¾�³�Ê¹Àâ¶3¸¹±â®Ã±¡º#Ä¹³}²�±
²�­�ÆÛ°�­�Ê¹±¡Ê�¶E®»³�Ê�¶N­É¶:¸¹±·Ê¹±�¶3ÍÖ­�º$!ô±�È:±�ÆÉ±¡Ê�¶�®�ÓÌ¬õ¸¹±ì´�½�Ê¹²�¶L³:­�Ê¹¿ªÈ:³(¶}µØ­�´Â÷�ø¡ùÜúüð�ý�øÜþ
ð&ù�ø�ý�ñ}î�ùÖ®�°�±�²�³}´#³:±ª¾Ø¿�¶
¶3¸¹±1��±¡º#Ä¹³}²�±2�Ö±�²ª­�ÆÇ°�­¹®"³�¶L³:­�Ê °Ô¸¹¿Ò®"± ³N® ¿�ÈN®Ã­å¾�±�²ª­�ÆÇ°�­¹®"±�¾ ¿¡Ê¹¾ ¾�³N®�¶:º�³(Ð�½�¶L±�¾ ­�Ä¹±¡º¯¶3¸¹±	À�³(Ä¹±¡Ê
Ê¹±�¶:Í·­�º"!�Ó

354 687:9 ; <:6�; ="4 <�>?9 @:AB4 @$C

D EGFIH
J
KML�NMOIN

D PRQ�S
T
UGTWVIX:YITIZ [Z Y:\IZ \
]G^8_:`a_

b,cWVIX8Y8T
Z [Z Y:\IZ \
]G^$dfeBg

hGikj l monqp
p
r:n
s mGl itn
ufl vkj s l w�xMj l y�z�{
{|iM} hGvtv?~:yGvMl j l y
z�l zM�

D EM�I�D EG�I�
D EG�I� D EG�I�

D PRQ&S
D EG�����
D EkO8� �RLk� � � �R�

D EM�R���
D EtOI� �kLR� � � ���

D EoNMOINMKMLkFIH
J

D EG�����R�

D EG�����k�

11

���M���,���o�����?������� �¢¡|£¥¤§¦M¨,¡ª©a«­¬/®G¡,« ¡q¯�°G±�°I¦o²�¯´³����¶µa�¸· �¹µ�³¢�5º5�G»8�¼��½¾· �����À¿��MÁ"��Â��5�ÄÃ�ÅÇÆ
º5½¾ÈÉÈÊÂ)����º,�|�8�G½¾�ÌË��?�
· �5�q�¹�q���8�t�8�G�¶µÍ�M�¹Î)��»"»$�qÁB�q���1���|��·Ï½¾Á"Ð ��½)Î)�¶µÑ�
µÒÁ��5�,���GÓ¶�,ÎÔÂÕµÖ�M��×Ø�����
Â)��Î)�qÁB�o���M��×Ù�
Á��|�Õµ�³¢½¾Á"�1µÖ�qÁ"¿���º5�Wµ|ÚÜÛ­���ÝÎ)�|�8�,�����,ÎªÎ)�
µÖºqÂÕµ�µÖ�G½¾�À½)»Þ�����IµÒµ��I�5×��Ýº5�q�ØË��Ý»$½¾Â)��Î
�5�
µÖ�q·Ç���qÁ��àßMáâÚ&ã���áâÚkä¾��áâÚ&å�æçÚ

è¢é�ê¢é�èìëîí)ï,ðòñ�óâôâõ5ï�ö#÷�ø5õ,ù$úÊï,÷�õ,ûâü�õ5ýÿþ õ�öâõ,ó
í���ðòõ,ûâü
Û­������� �|�
��½)Î ßGáâÚ���æ �Iµ �q���|³)³�ÁB½)�5ºq�Ü»$½¾Á �
��� �M��Î¾ÂÕµ���Á��G�5��Î)�q¿��5��½�³�Èÿ�q��� ½)»/����×����t� Î)�|³¢�q��Î)�qË��G�
µÖ½)»I�
· �qÁ��¾Ú Û­���ÄÎ)�q¿��,��½�³�È �|���ÜÈ �?�
��½)Î)½)��½)×¶� �5Î)½�³)�I�5ÎÍË���� �
µ µ��I�|³�·Ï�
µÖ� ÁB�5»$�o���qÈ �q���BÚ
	1�
�qÈ ³¢��½��Ç�
������� �|����½)Îà�¶µ ��»"½¾Á$Èÿ�5�Õ»8Á��qÈÿ�q·Ï½¾Á"Ð »$½¾Á ¿��qÁ��G»8���M��×Ç������
 ��Á���Î)�q¿��,��½�³�È �|���Õ³�Á�½)º,�¶µ�µ|Ú
�I��
 ��Á��¶�#�
��� ��½��I��½¾� ½)» � µa�qÁ$¿��Gº5�Êº5½¾È ³¢½¾���q���/�IµÇº,�q���
ÁB�5���I½ �
���É�q���8�oÁ��ÉÎ)�q¿��5��½�³�Èÿ�q����³�Á�½)º5�Wµ�µ|Ú
Û­���qÁ��,»$½¾Á��W�­�8½ »$½¾Á"È �5�G�IµÖ��
 ��Á�� �M� ��������� �|����½)Î��­· �ÿ���q¿��Ê�8½ µ��8�qÁ:��Ë���È ½)Î)�,�����o��× ��µa�qÁ$¿��Gº5�
º5½¾È ³¢½¾���q�����o�Ï�
����� µ�³¢�5º,��»$�Gº5�|�I��½¾�����|��×�Â��5×��¾Ú
� µÖ�qÁ"¿���º5��º5½¾È ³¢½¾���q��� ���¶µ ��·Ï½Ñ�¶µ�µÖ�|���8���,�ÿ³¢�|Á"�"µ��ì»8Â)��º|�8�G½¾���5���q��ÎÍº,½¾ÈÊÈÊÂ)���Gº5�|�I��½¾���5�:ÚÏÛ­���
»:Â)��º?�8��½¾���,� ³¢�qÁ:�ì�Iµ ���qÈ �
µ�µÖ�G½¾��� ½)»Ê�2µa�qÁ$¿��Gº5� º5½¾È ³¢½¾���q���"���:Ú��¾Ú����
���2µa�qÁ$¿��Gº5���Bµ��É·Ç����ºq� �t�à�
µ
º5�|³¢�|Ë���� ½)»ì���¢�5º|Â��8�M��×¢Ú/Û­��� º,½¾ÈÊÈÊÂ)���Gº5�|�I��½¾���5��³¢�qÁ:�Ï�
µ��|�1�M���I�qÁ�»"�5º5��¿�����·����Gºq�Þ����� µa�qÁ$¿��Gº5�
º5½¾È ³¢½¾���q��� Á��,º5�5�M¿��Wµ Á�� �¾Â��¶µB�"µ��I½ ���¢�5ºqÂ��8�2�
��� µÖ�|Á$¿���º,� �q��Î�µÖ�q��Î�µÜ�
���ÞÁB�¶µfÂ��o�:µ ½)»�µa�qÁ$¿��Gº5�
���¢�5ºqÂ��I��½¾��Ú
ÆàµfÂ��5���t� ���¢�5ºqÂ��I��½¾� ½)» � µÖ�|Á$¿���º,�´�o�)¿�½)�M¿��¶µÀº5�|Á"�8�,�M� º5½¾ÈÉ³�Â��I�|�8�G½¾�Õµ|Ú�	1� º5�,���Ñ�
���!�
Á��?³�Á��¶µÖ�|���8�|�I��½¾�"�
�
��� º5½¾Á$ÁB�¶µ�³¢½¾��Î)�o��×òÎ)�|�I�É�|��Î�½�³¢�qÁB�|�8�G½¾�Õµ#� ½)»/�����Iµ ³¢�qÁ:� ½)» µÖ�qÁ$¿��Gº5�ìº5½¾ÈÉ³¢½¾���|���
�q�%$'&)(|°o£¥±�¨5°+*,$ ®G¨�-�®G±�°
¦o¯/.10 ±�¨32¢¦o¯�¡�4 $%*5$60%7�Ú�Û����Çº5½¾ÈÉÈÊÂ)����º,�|�8�G½¾���5�Õ³¢�qÁ"� �Iµ º5½¾Á"Á��¶µ�³¢½¾��Î)�o��×��o�
º5�5�G���5Î8$'&)(|°M£¥±�¨,°9* ²�«Ç«:-¾¯¢¦o¨,±�°I¦t¯/.;0 ±�¨32¢¦o¯�¡14 $<*=0<7?>î�q��Îò�t� �M��º5�oÂ�Î)�¶µ �
���ìÎ)�|�I� �|��Îò½�³¢�qÁB�|�8�G½¾�Õµ
È ½)Î)�,�����o��× �
��� º5½¾ÈÊÈÉÂ)����º5�|�I��½¾� ºq���|�)���5�Iµ Ë��?�
· �5�q� � µa�qÁ$¿��Gº5� º5½¾È ³¢½¾���q���À�q��Î �o�:µ
�q�)¿��oÁ�½¾�)È �|����ÚÒÛ­��� �q���I�MÁ��@� Èÿ½)Î)�5� ½)»ª� µÖ�|Á$¿���º,� º5½¾È ³¢½¾���q��� �
µÌº5�,�����,Î!$'&)(|°M£¥±�¨,°
* ²�«�«8-¾¯¢¦M¨,±�°
¦o¯/.�* ²�«­¬/²�¯�¡q¯�°A4 $<*6*B7�Ú
�I�C
 ��Á��Ü� ��µÖ�|Á$¿���º,��º5½¾È ³¢½¾���q��� �
µàÂÕµfÂ��,���o� ÁB�|³�Á��¶µa�q���8�5Î �¶µ �q� �5º|�I�M¿�� º5���¶µçµÏ· �o��� �
����ÃED � Ã
�|�G�8�5ºq���,Î �8½ �o� ¿����ÿ�
���ÿ³¢½¾Á"�BÚ+�I� �,Î)Î)�o�8�G½¾�Õ�­�����Üµ��I�|�8� Î)���,×�Á��qÈ¹Î)�|³¢�Gº|�"µ µÖ�G×����5���G�M��× µÖº5�q���|Á���½ ½¾�
ÃED � Ã �o��º5�MÂ�Î)�o��×ì�
���ÏµÖ��×§���5�Iµ�»:Á�½¾È �q��Î �I½ �
���ÏµÖ�qÁ"¿���º5��º5½¾�ÕµfÂ)È �|Á�ÚGF µ�µa�q���8�G�5���t�à�
���¶µÖ�ÇÎ)���,×�Á��qÈ�µ
µfÂ�»"»$��º,�2�8½ µ�³¢�5º5�G»8� �
��� µÖ�qÁ$¿��Gº5� º,½¾ÈÉ³¢½¾���q���ÿ�5º5º5½¾ÁBÎ)�M��× �8½1�
��� ³¢�|���I�qÁ$�C$<*6*�Ú�Û­���Þ×¾�q���qÁ��,�
³�Á��o��º5�o³¢�G��½)»���Á��q�Õµa���|�I��½¾� �Iµ µf��½¾·�� �o�ì����× áâÚIHâÚ
Û­��� Æ<��
­á�Î)�WµÖºqÁ��t³)�8�G½¾� ½)» ÃED � Ã2½)»�µÖ�|Á$¿���º,�Êº5½¾È ³¢½¾���q���=J ²)(,¦o°I¦o²�¯¢¦o¯/. �
µ���Á��q�Õµa���|�I�5Î��o���8½������
$%*K0 ³¢�qÁ"� ½)»������L� È �5ºq���o����M6NONKPRQASBT�U VWU SYXZUIX)[�\ìÛ­����$%*5$O0 ³¢�qÁ:��½)»�M]NON=PRQASZT�U V^U SYXZUIXG[
º5½¾���I�5�M�Õµà�Üµa�M��×��G� ½�³¢�|Á��|�I��½¾� ·����Gºq� �|ËÕµ��
ÁB�5º|�8�t��È ½)Î)�,�IµÏº5�5�GºqÂ����|�I��½¾� ½)» �q� �|³)³�Á�½G�¢�MÈÿ�|�8�ÿÂÕµÖ�|Á
³¢½�µÖ�t�8��½¾��Ú¶Û­���¶µa� �
ÁB�q�ÕµÖ���?�8��½¾�Õµî»$½¾Á$Èÿ�5���
µÖ� ����� �¢¡q£¥¤§¦o¨5¡ �ç¬/¡5¨W¦ _)¦o¨,±�°I¦o²�¯ ³����¶µÖ��½)»,
 ��Á��¾Ú
�I� �
���������)��³����¶µa��½)»8
 ��Á���Î)�q¿��5�G½�³�È �q���6` �¢¡|£¥¤§¦M¨,¡�a ¡5¨,²�«­¬/²)(,¦o°I¦o²�¯b`Þ· �ÜÎ)�5º,½¾ÈÉ³¢½�µÖ� �����
³¢½�µÖ�t�8��½¾���o��×¹µÖ�qÁ$¿��Gº5� ³�Á�½¾¿��GÎ)�5Î¸Ë��Ô�
���ªµÖ�qÁ"¿���º5� º5½¾È ³¢½¾���q��� �M���I½¹�Ù�)Â)ÈÊË��|Á�½)»�µ��8�5×¾�¶µ
�Bµ�Â)ËÕµÖ�qÁ$¿��Gº5�¶µ#�ÖÚ Û­��� µÖ�qÁ"¿���º5� º5½¾È ³¢½¾���q����º5�q� ���¢�5ºqÂ��I��º5�qÁ:�8�5�o�1µ�Â)ËÕµÖ�qÁ$¿��Gº5�¶µÊ�t�"µÖ�5�G»Ï�¶µ · �5�����¶µ
Á��3�¾Â��¶µ��Õ���������)�8�|Á$���5�#µÖ�qÁ$¿��Gº5��º5½¾È ³¢½¾���q���"µ­�8½àÎ)½à�o�BÚ � �¢�
��� �¢¡|£¥¤§¦M¨,¡ca ¡,¨5²�«­¬/²)(q¦M°I¦o²�¯ ³����¶µÖ� ��·Ï½
È �ed�½¾Á ��Á��q�Õµa»$½¾Á$Èÿ�|�8�G½¾�Õµ �qÁB� ³¢�qÁ�»"½¾Á$Èÿ�5Î5�

12

fBg�hBi�j k)lAg�hGh3m n�o�prq stq ovu#q uxw
ycz{ n�l�|?g)}/j { k/~�)������ m3� �#�� ������ ��q s ���� m3� �#p �
�)���3�� �v� �#� � ��s �
l�k)�� ��� � � ��� ��� ���

��� � � ���

��� ��� �¡ ��� � ¢t� � �£� ��

¤ ¤ ¤

¤ ¤ ¤
¥=¦¨§<©«ª�¬Zª�­�®3¯�°A±r²³¯G´x¦µ°,§8¶<·¹¸O©�º¼»B½,¾�²Y¦¨°¿´x»8´xÀ,¾6Á:Â<ÂÄÃ,¯G´Å´Æ¾3®3°

ÇÉÈ³Ê�ËÍÌ#Ë�ÎÅÏ�ÐµÑ ËÒË�Ó«Ë Ñ�Ô�ÈÕÐ¨ÖG×�Ð³ÌÙØBË Ñ ÖGÚ�Û«Ö�ÌrË ØÜÐ£×�ÈÕÖÜÝ]×BÔBÚßÞ�Ë?ÎEÖBàEÌxÈ^Ý á�Ë�Ì9âeÖGÎ=Ì�ÔBÞYÌrË�ÎeÏ�Ð¨Ñ Ë/Ì�ã�äGÝ�×�Ø
ÇÒÑ3ÖGÚßÚßÔB×�ÐµÑ Ý?ÈÕÐ¨ÖG×æå:ÐçÈ³Ê"È³Ê�Ë�Ë�ÓBÈ^Ë�Îe×�Ý ècË�×�ÈÕÐ�È^ÐµË/Ì:Ë�Ó«Ë Ñ�Ô�ÈÕÐ£×�á;È³Ê�Ë/Ì#Ë;ÌÆÔBÞYÌrË�ÎÅÏ�ÐµÑ Ë/Ì:ÐÕÌ8Ð�×�È³ÎxÖBØGÔ�Ñ Ë Ø
Ï�ÐµÝ]é�ê�ë<ì+Ì?íî Ý Ñ�Ê:È¨ÎÆÝ�×YÌràeÖGÎÅÚïÝ?È^ÐµÖG×�Ñ ÖGÎÅÎxË/ÌÆÛ«ÖG×�Ø�ÌEÈÕÖÜÝÍÌrË?Û«Ý�ÎxÝ?È^Ë6ÎÆË àeÐ£×�Ë�ÚïË�×�ÈAÌÆÈÕË?ÛðÐ£×�ÖGÔBÎRÝ?ÛBÛZÎÆÖBÝ3Ñ�Ê5í

ë8Ñ Ñ ÖGÎÆØBÐ�×�áðÈ^Ö1ñAò)ÎÆÝ/ä�È¨Ê�ËÜàÅè¨ÖGåóÖBàKÈ³Ê�Ë�Ì#Ë�ÎÅÏ�ÐµÑ ËÜË�Ó«Ë Ñ�Ô�ÈÕÐ¨ÖG×¼ÐÕÌ�ÖGÎxÑ�Ê�Ë/ÌÆÈ¨ÎÆÝ?ÈÕË ØßÞ�òðô«õ?öø÷úù£û3õ'üßù�ö�õ û ýµþGö�íÿ È�Ð£ÚðÛ«èµË�Ú1Ë?×�ÈeÌ<È³Ê�Ë1Þ�Ë�Ê�Ý�Ï�Ð¨ÖGÔBÎ<ÖBà'ìEêZë8ì ÖBà�È¨Ê�Ë ÌrË?ÎÅÏ�Ð¨Ñ3Ë¼Ñ ÖGÚ�Û«ÖG×�Ë�×�È�Ý/Ì�ÌÆÛ«Ë Ñ ÐµàÅÐ¨Ë3ØbË Ý�Îxè¨ÐµË�Î#ä=Ý/Ì
å8Ë è¨è]Ý/ÌðÑ ÖZÇWÖGÎÆØBÐ£×�Ý�È^Ë/ÌðË?ÓYË3Ñ�Ô�È^ÐµÖG×�Þ�òbË�× � Ô�Ð£ÎxÐ£×�á"È¨Ê�Ë�ÎxË � Ô�Ð£ÎxË Ø�Ì�ÔBÞYÌrË?ÎÅÏ�Ð¨Ñ3Ë/Ì�à^ÎÆÖGÚ È³Ê�Ë;Ë?ÓZÈÕË�ÎÅ×�Ý3è
Ë�×�ÈÕÐ�È^ÐµË/ÌÙÝ Ñ3Ñ ÖGÎÆØBÐ�×�á%È^Ö<È¨Ê�ËÒØBË àÅÐ�×�Ë ØÜË�Ó«Ë Ñ�Ô�ÈÕÐ¨ÖG×�àeè¨ÖGåðí
ê«Ë�ÎÅÏ�ÐµÑ ËïÑ ÖGÚ�Û«ÖG×�Ë�×�È��cþ��3ù�ýÕù�þ��«ù��
	 ÌÆÛ«Ë Ñ3Ð¨àÅÐµË Ø;Þ�ò�È³Ê�ËðÚïÝ Ñ�Ê�Ð£×�Ë���
�
���������� ��� ��������� ÎxË è¨ÐµË/Ì%ÖG×;È¨Ê�Ë
ÛZÎÆÖGÏ�ÐµØBË Ø Ì�ÔBÞYÌrË�ÎeÏ�Ð¨Ñ Ë�Ì ü! �"$#%�$&('Zùçö*)�+ ,-#�"$#%�$&('Zùçö*)5ä .0/1,-"$/æõ32��4')ö�õ458õ3�Zý³ä Ý�×�Ø687 	¿þGö�ù�ý:9$5;"�<=�B÷�þBû42ZýÕù£þ��¿í?>CÖGÎxË ÖGÏ�Ë�Î�äðÈ¨Ê�Ë ÌÆÈ^Ý�È^Ë�Ú1Ý3Ñ�Ê�Ð£×�Ë ÖBàæô«õ?öø÷úù£û3õ üßù�ö�õ û ýµþGöÄØBË àeÐ£×�Ë/ÌCÈ¨Ê�Ë
ØBË/ÌrÐ�ÎÆË Ø;ÖGÎÆØBË�Î�ÖBà]Ë?ÓYË3Ñ�Ô�È^ÐµÖG×5í ÿ ×A@�Ì�Ô�Ñ�Ê"ØBË3Ñ ÖGÚðÛ«Ö�ÌrÐçÈ^ÐµÖG×�Ñ Ý�×¼Þ�Ë
ÎxË?ÛZÎÆË�ÌrË�×�È^Ë3Ø;Ý/Ì'Ý
ÎxË àÅÐ�×�Ë�Ú1Ë?×�È
ÖBà5È¨Ê�ËÒÝ�ÞYÌÆÈ¨ÎÆÝ Ñ�ÈÉÚ1ÖBØBË3è��B
�
������$��� �C� ���������,í
D ÖðØBË?ÎÆÐ£Ï�Ë]È¨Ê�Ë]Û«Ý?È¨ÈÕË�ÎÅ×ðàeÖGÎ+È³ÎxÝ�×YÌrè¨Ý�È^Ð£×�á8é!>�ñ�E�ØBÐµÝ á)ÎÆÝ?Ú�ÌKÚ1ÖBØBË3è¨è¨Ð�×�áÜàWÔB×�Ñ?ÈÕÐ¨ÖG×�Ý èYÝ�×�Ø
ØBÐÕÌÆÈ¨ÎÆÐ£ÞBÔ�ÈÕË Ø
ÌrË�ÎeÏ�Ð¨Ñ Ë�Ý�ÎÆÑ�Ê�ÐçÈ^Ë Ñ�È³ÔBÎÆË�Ý?ÈYÈ¨Ê�Ë/ÌrË6È¨å:Ö<ÛZÊ�Ý/Ì#Ë/Ì=å8ËÍÌ�Ê�ÖGÔ�è¨ØÜÑ3ÖG×YÌrÐ¨ØBË�Î,È³å8ÖÜá�Ë�×�Ë�ÎxÝ èYÑ3Ý/ÌrË/Ì3FG ã,È¨Ê�ËÍÌrË�ÎeÏ�Ð¨Ñ Ë�ØBÐ£ÎÆË3Ñ?È^ÖGÎRÖBàH�cþ��3ù£ý³ù£þ��«ùI�
	1ÐÕÌKJ Ñ3Ë�×�È³ÎxÝ è¨ÐML/Ë Ø$N/äGÐeí¡Ë)í�äGÐ�ÈÉÎxË/ÌrÐµØBË/ÌÙÖG×�ÝÍÌrÐ�×�á�è¨Ë

×�Ë?È³å8ÖGÎPO�Ë3è¨Ë�ÚïË�×�Èeä
EBã9È¨Ê�ËðÌrË�ÎÅÏ�ÐµÑ Ë
ØBÐ£ÎxË Ñ?È^ÖGÎ6ÖBà��Oþ���ù£ýÕù�þ��«ù��
	"ÐÕÌ;J3ØBÐÕÌÆÈ¨ÎÆÐ£ÞBÔ�ÈÕË Ø$N/äÉÐeí¡Ë)í�ä¿ØBÐµàÅàeË�ÎÆË�×�È+Û«Ý�ÎeÈWÌ�ÖBà Ë�Ó«Ë Ñ�Ô�ÈÕÐ¨ÖG×

àÅèµÖGå!Ý�ÎxËCÖGÎÆÑ�Ê�Ë/ÌxÈ³ÎÆÝ�È^Ë Ø¹Þ�òÄØBÐ³ÌÆÈ^Ð�×�Ñ?ÈßÌrË?ÎÅÏ�Ð¨Ñ3ËCØBÐ£ÎÆË3Ñ?È^ÖGÎ�Ì�ÎÆË/ÌrÐµØBÐ£×�á ÖG× ØBÐ¨àeàÅË�ÎxË�×�È:×�Ë�È³å8ÖGÎPO
Ë è¨Ë?Ú1Ë�×�ÈWÌ?í D Ê�Ë Ì#Ë�ÎÅÏ�ÐµÑ Ë�ØBÐ£ÎxË Ñ?ÈÕÖGÎ#Ì¼Ñ ÖGÚðÚßÔB×�ÐµÑ Ý?È^Ëæå:ÐçÈ³Ê Ë Ý Ñ?Ê Ö)È³Ê�Ë�Îðå<Ê�Ðµè¨ËæÛ«Ý/Ì�ÌrÐ£×�á È¨Ê�Ë
Ñ ÖG×�È³ÎxÖBèYÖGÏ�Ë�Î,È³Ê�ËÒÑ3ÖGÎÅÎÆË�ÌÆÛ«ÖG×�ØBÐ£×�á%Û«Ý?ÎeÈeÌKÖBà5È³Ê�Ë�àÅè¨ÖGåðíÿ ×ßÞ�Ö)È¨Ê1Ñ Ý/Ì#Ë/Ì9È¨Ê�ËÍÚïÖBØBË è¿ÖBàKÌrË�ÎeÏ�Ð¨Ñ ËÍÑ ÖGÚ�Û«ÖG×�Ë�×�È,ì,Ö�ÌrÐ�ÈÕÐ¨ÖG×�Ð�×�áÜå8Ð�È¨Êðé�êZë8ì+Ì è¨ÖBÖ�OYÌ Ý/ÌOÌ�Ê�ÖGå%×ßÐ£×Q Ð¨á«íRE¿í�E�Þ5í

S TVU�W XZY\[�X^]M_ ` _ XZaZ_ a:bS T*cVXZ[CX:]M_ ` _ XZa^_ aMb

dMegfih j h elkgh kimonMd:p�q�d

13

r*sut^v(wyxVzM{}|~t%�3�
|=w
��z�t�z*|8w��
|���t*������|=w�{P�(w�tZv(��t�|=w4{V�(z^��w�����������s(w4s�t������4�M�*���������
�A���^����|���{��$�:w?�$x
tZv(w�|=w4{P�(z:��w�����s�|��$��w4{�xP��{�tZv(w!����{P{~w
|�����s(�$zMs(� |=w4{V�(z^��w!�����y����s(w4s�tC|K¡£¢-¤�¥-¦-¤¨§�©1¥ª��s(�8«�§K¬�­
®1w¯|���w���z:x��°t^v(w
|=w¯|=w4{V�(z^��w±����������s(w4s�tV| �
|²|=w\���4{���t*w³�����4v(z�s(w
| ��������{~�$zMs(�´t��°tZv(w���{~�����(|=w��
����t:t�w4{Vsµ«£¶�¶%·A¸�v(w¹��{~�$��w
|º|»�$x°t^{��4s�|}�^��t*zMs(�¼tZv(w�z�{¾½!¿°À�ÁÂ���$�$w��Z|»z�s�t��ÂÃÄz*|Å|=zM� z^�:�4{Æt��
|���w��3z^x���zMs(�Ç�����4�M�*���������
����t�tZv(wBÈ�É�ÊÌËÍ�MÎ3ÉBÈÐÏ%É�Î
� Ñ$�MÎ4Ò��*�M������v(�R|=w�­

ÃBw
|=z:�$w
|Ó�$w�xVzMs(zMs(�Ô|=w����4{~��t�w¹�����4v(z�s(w
|Õt*�Ö���$�$w3�¯w4×$t*w4{Ps(���´|=w4{V�(z^��wØ�����y����s(w�s�tV|º�uz�sÙtZv(zZ|
{�w3xPzMs(w���w4s�tÚ|�t�w\� Û�w ���*|}� �$w�xPz�s(w t^v(w ��w3�4v(�4s(z*|��Ü| �$wR|=�4{�z��(zMs(� tZv(w Ý-Þ(ß!Ý�à�½�Þ�ß�Ý
�����y�á�$s(z^�3��t�z:��s��(w�tZÛ�w�w4s�t^v(w4�ãâP|=w�w;ä�z:��­�Á¨­gå�æÐ­

ç^è*ç*é*ê*ë�ìçZèVé*ê*ë�ì
ë�ì ç^èZç�é*ê*í*î ç^èZç�é*ê*ïIéðí

ç^èZç�é*ê*ñ:òIóõô ö ô ò�÷iô ÷iø

ç*èVé*ê*íZî ç^èPé*ê*ïIé�í
íZî ïIé�í

ñMòIólô ö ô ò�÷gô ÷gø
ç^èCè^ê*ñ:òIóõô ö ô ò�÷õô ÷iø
î�ùiö ú�û ÷gü�ý�óõú�û þIô ÿõú=ÿõò�÷ió����Pú�û

� � �

� � �ç*ï����ç^è*ç*é�êMç�ï����ç^èVé�êMç�ï���� � � �

	�

������������������
��! ��"�$#��� &%(')'$%*�,+.-(/1032� ��,
4'$
5��-6��
5%(798��,-*0: �;�<
¿Æ�$�$w��:�^z�s(�²tZv(w����
|}wy�$x�tZv(w��$z*|~tZ{�z��$��t�w��³|=w4{V�(z^��w��$zM{~w���t���{�zZ|Ç� ��{�w������y���:w4×0­�ß�|º|ð�$��w�tZv(�\t�t^v(w
w4×�w��4��t*z^��sáxP�:��Û¹�$x�|=w4{V�(z^��w�����������s(w4s�t������3�M�Z�M�������
�Üz*|%��{~�4v(w
|�t^{���t*w��?����tZÛ�� |=w�{P�(z^�3w£�$z�{�w��\t���{}|�=
tZv(w�>@?�¶�A(È�É4ÊÌË
�MÎ�ÉÌ¡y�IÊÌÉ�Î��^��Ê¼�4s(� È3«;È6B(È�É�ÊÌËÍ�MÎ3ÉÌ¡á�lÊ\É�Î��:��ÊR­�¸-v(w?�4{~�4v(z�t*w���t^�${�w?�$z^���Í{��4� �$w���z:��t�z�s(�
tZv(w;���(w4{����:���4{V{��4s(��w4��w4s�t¨z*|%|�v(��Û!s�z�s?ä�z^��Á¨­DC�­
¸�v(w¼|}w4{P�(z:��wØw�×�w3�4��t�z:��sÖ��{��$�3w�w��(|1��������{~�$zMs(�¼t��ãt^v(wØxV�$�^�:��Û�z�s(� |=�3w4s(�4{�z:�E=y�(z^� Ý-Þ�ß�Ý �$x
�����3�M�Z�M�����I�
�F>@?�¶�A(È�É4ÊÌËÍ��Î�ÉÌ¡y�IÊ\É3Î��^��Ê�{�w���w3zM�(w
|�tZv(w£{~w�G��(w
|�t0t��?��{����(z^�$wÇtZv(wÇ���(|=zIt�z^��s(z�s(� |}w4{P�(z:��w�­
ß�x�t�w�{ tZv(w´{�wR|ð�(��tC|��$x�¡!¢�AHÉ3�*HJI��lÊLK¹�4s(�¼¥�¦MA$¦%�*HJI��lÊLK¹�4{�wÆ����t*��zMs(w3�(�N>@?�¶MA(È�É�ÊÌËÍ�MÎ3ÉÌ¡á�lÊ\É�Î��:��Ê
{�w,G��(w
|�tV|áÈ3«�È6A(È�É4ÊÌËÍ��Î�É³¡y�IÊ\É3Î��^��ÊÜt��Õw4×�w�����t�w³tZv(wA{�w
|�t��$x�tZv(w´|=w4{V�(z^��w �4s(� {�w�t^�${Ps t^v(w±{~w
|ð�(�It
�(����O�­�½�����sÆ{�w3��w�zM�(z�s(� tZv(wÜ{�w
|ð�(�ItV|yx�{�����¤8z�t�xV��{PÛ��4{��(|�z�tBt��P>@?�¶MA(È�É4ÊºËÍ�MÎ�Éº¡á�lÊ\É�Î��:��ÊR­�ä�zMs(�3�^�����
>@?�¶�A(È�É4ÊÌË
�MÎ�É;¡á�lÊ\É�Î��:��Ê;{�w\tZ�${Ps�|�t���t^v(w�|=w�{P�(z^�3w�����s�|ð�$� w4{�tZv(w£{~w
|ð�(�It-�$x tZv(w£w4s�t*zM{�wÇ���(|=zIt�z^��s(z�s(�
|=w4{V�(z^��wB�(z^�;Ý-Þ�ß�ÝÜ�$x������4�M�*���������
��­
¸�v(z*|?�����y���:w4×Æ�(w4v(�4�(z:���${��3�4s´�(wÜ�����$t^�${�w��¯zMsÆ��s$�$�á�(w�{��$xÇ{~w�xPz�s(w4��w4s�t8|�t*w��H|�­0ß£t;xPz�{}|�tC�-Û�w
����|=w4{V�(wÆt^v(��t?È3«�È6A(È�É4ÊÌËÍ��Î�ÉÌ¡y�IÊ\É�Î3�^��Ê´����àV��{~�$zMs(��t*zMs(�Åw4×�w��4��t�z:��s �$x�§�©»¥)A$©¯É3Ò��"I�Ê\É,Q!É3�����4s(�
«SRõ�¨��Ê4���4T*QUA(V=�$ËR�$Î4Ò��*�M���²�3�4s��(w!���$�$w3�^�^w3���
|��XW��:�4{���w�Y?|=w4{V�(z^��w!�����y����s(w�s�t�§�©»¥[Zl«�§�¬ÓÛ!v(z:�4v
��{����(z:�$w
|ØtZv(w |=w4{P�(z:��w
|¹§�©»¥)A$©¯É3Ò���I�ÊÌÉ,Q�É4���Å��s(�Ù«SRõ�¨��Ê��M�4T*QUA(V=�$Ë��$Î3Ò��*�����¨­´®1w ��|=wÙtZv(zZ|
����|=w4{V�(��t�z:��s zMs ���${Bs(w4×$t�{~w�xPz�s(w4��w�s�tB|�t*w��0­Hr*s±���${;����s�|=w�G��(w�s�t�{~w�xPz�s(w4��w4s�t�|�t*w��AÛ�wáxP�$����|£��s
�$w����������(|=z�t*z^��s²�$x�§�©»¥[Zl«�§�¬�­�¸-v(w!�$w����������(|=z�t*z^��s²zZ|%��w4{~xP��{P� w��á�3������{��$z�s(��t*�?t^v(w8��{~�����(|=w��
|=�4v(w���w*= ���ãtZv(wµ{~w��4�${ð|=zM�(wØ���$���^z:����t�z:��s �$x°tZv(w¹��{~�����(|=w�� |~��w���z^xVz^���\t�z^��s �4s(�Â{~w�xPz�s(w4��w�s�t
����t:t�w4{Vs�|�â~|=w3w;ä�z^��­�Á¨­D\�æ=­
ß�t�t^v(w�����s�|=w,G��(w4s�t {~w�xPz�s(w4��w�s�t�|�t*w��H|�Û�w�xV�$�4��|���sy���4{Ct�z^���(�^�4{%|=w4{V�(z^��w£����������s(w4s�tV|��4s(��{~w�xPz�s(w
tZv(w��ÔâCzMsát^v(w£Û����á�$w
|=�4{~zM�(w�� ���(���(w3æ��$s�t*z^�HtZv(w!�$w
|=zM{~w��á�:w4�(w����$x���{���s$�(�^�4{~z�t^�yzZ|�����t*��zMs(w3�H­*]Çs(��w
���:� w4×$t�w�{Ps(���¼|=w4{P�(z:��w ����������s(w4s�tV| �4{�w z�s ���^���3w
�ÅÛ�w ���4s x��${VtZv(w�{ �$w��3���y���(|=w tZv(w�z�{
|���w��3z^xPz:����t*z^��s�|±���¹|=w����4{~��t�z�s(�£tZv(w3zM{�«£¶�© �4s(��«£¶�«�©Ô���4{CtV|�­�Þ��(�4v��$w��3���y���(|=zIt�z^��s�Û�z^�:�����:�^��Û

14

^5_
^a`ab4cLd^L_a`ab�cLd
^5_
^a`ab�e4f�gDh i h f�j�h jDke4fDgDh i h f�j�h jDk
^5_L_�b4e�f�gDh i h f�j�h jlk

mon�i p�q j�r�stglp�q uoh vlp!vlf�jDgDw�x!p�q

ycLd zLm ^5_
^a`ab�zLm { `!z
| ^ {�}�~^5_
^a`ab { `!z�bo^ {�}�~^5_a`ab4zLm ^5_a`ab { `!z�b�^ {D}�~

{ `!z ^ {�}�~^L_
^L`ab { `!z ^L_
^a`ab�^ {D}�~^5_a`ab { `!z ^L_a`abo^ {�}�~

���5�����������X���,�E�4�$���������,�&�(�)�!�*�,���(�������,�,�
�$�
���6�$�
�(�9�����*�:�N�*�
�1���L�F ��6¡J �¢�¡(�
£!¤"�L¢X�6¡¥�5¦J¢X ,�6§¨§¨�*¡J©4 �¤"�L©
�6¡J¤�ª¬«�¤�£��­�®�*¯��
¦J¢�£!¢°�$«�¢� "�a©�±J¢² ��6§³«��6¡J¢�¡(���N¤�¡J´¥¯a�*£��5¦J¢"£
£!¢,¯�©�¡J¢N�5¦J¢�§¶µ(·�©�¡(�5£!�*´6�J ,©�¡J¸X´*¢"�L¤�©
ª5�¹�*¯�£$¢�º6�J©�£$¢�´� ��6¡J �£$¢"�a¢U ��6§¨§»�*¡J©
 �¤"�L©
�6¡X«�£$���a�* ��*ª5�"¼
½ ¦J¢®§F�6£$¢&´*¢"�L¤�©
ª4¢�´�´*¢°�� �£$©�«*�L©
�6¡³�*¯E�
¦J¢¾«�£!��«��J�¿¢�´�¤"«*«�£!�*¤, �¦³ �¤�¡�µJ¢&¯��6�*¡J´�©�¡�À4Á¬¼tÂ�Ã�Á¬¼�Ä6Å�¼

Æ¹Ç4È@Ç¬ÉËÊ1ÌÎÍ�Ï[ÐÒÑ�Ó*Ô�ÑÕÍMÓ(Ð
½ ¦J¢&´*¢�§¥�6¡1�!�5£$¤"�a�6£Ö�¹¯��6£��5¦J©L�M �¤°��¢×�$�5�J´�·�ØX©4ª
ª1©�¡J �ª��J´*¢(ÙÚ ¼Û�5¦J¢Ë ��*ª4ª
¢� Ü�a©
�6¡Û�*¯�¯��6£�§F¤�ª&ÝÞ§F�*´*¢�ª5�Fß$�!«�¢� ,©
¯�©4 �¤"�L©
�6¡1�¿àá´*¢°�¿ �£!©�µJ©�¡J¸â�!«�¢� ,©
¯�©4 �¤"�L©
�6¡ã¤�¡J´

´*¢�±J¢�ª4��«�§F¢�¡(��«�¤"�
�L¢�£�¡1�M¯��6£��L¢�ª
¢, ��6§¨§»�*¡J©
 �¤"�L©
�6¡¨�!·��!�L¢�§9�:Ã
Á¬¼Û«�£!���L���
·ä«�¢°�®�*¯@�5¦J¢å�L�*�*ªL�&�Ö�(«*«��6£­�a©�¡J¸¥¤��(�a�6§¥¤"�a©4 å�5£$¤�¡1��ª4¤"�a©4�6¡9�*¯��5¦J¢�æ�·6£$¤�ç�èéæ)ÁJêaµJ¤Ò��¢�´

´*¢�±J¢�ª4��«�§F¢�¡(��«�£!�* �¢Ò�:�¹©�¡(�L�³�!«�¢� �©4¯�©4 �¤"�a©4�6¡³¤�¡J´²£!¢,¯�©�¡J¢"§F¢�¡(��«�£!�* �¢°�3�¹�*¯E�
¦J¢UÝëèì¢"�5¦J�*´JÃ
íÒî ¤¾«�£$���a���
·ä«�¢&�*¯¬�5¦J¢®§¥�*´*¢�ª5êLµJ¤°��¢�´��L¢°�!�a©�¡J¸å«�ª��J¸(ê�©�¡E¼

Æ¹Ç4ï@ÇEð²ñ¹Ñ"ñNÓ(ÊFÉPÊ(ò¹ÊJó�Í@ô�ÌõÊ1Ï¹Ñ&Í�öUÑ"÷[Ê�ø�Ô)Ð°Ê.ùMÑ"ñ[úMû
½ ¦J¢&¯­�(�
�*£!¢®Ø²�6£�ü³�6¡X�
¦J¢& �¤°�¿¢×�!�5�J´�·�Ø²©
ª
ª*«�£!�* �¢,¢�´�¤�ª
�6¡J¸×�5¦J¢&¯��*ª
ª
�6Ø²©�¡J¸²´*©�£!¢, "�a©4�6¡1�,Ù

ý þ ¢�±J¢�ª
��«�§¥¢�¡(�ÿ�*¯ÿ�
¦J¢ §F¢"�
¦J�*´*�*ª
�*¸ä· ¯��6£é£$¢�¤°���6¡J©�¡J¸ ¤�µJ�6�(�ÿ¯�¤��Jª�� �L�*ª
¢�£$¤�¡J �¢ ©�¡ �
¦J¢
¯��6£�§F¤�ª4©L��¢,´Xæ�·6£$¤&´*¢�±J¢�ª4��«�§F¢�¡(��«�£!�* �¢Ò�:�:Ã

ý þ ¢�¯�©�¡J©��a©4�6¡ �*¯)«�£!¢� �©5��¢å£��Jª
¢°�N¯��6£��5£$¤�¡1��ª
¤Ü�a©�¡J¸��5¦J¢Sç²è æ)ÁJêaµJ¤°�¿¢�´»æ�·�£!¤å´*¢�±J¢�ª4��«�§F¢�¡(� ©�¡(�a�
ÝUÃ

ý � ¡(�a¢�¸ä£!¤"�L©
�6¡ �*¯X§F�*´*¢,ª5ê� "¦J¢� �üJ©�¡J¸â©�¡(�L�â£$¢�¯�©�¡J¢�§F¢�¡(�×«�£$�* �¢°�:�»�a�ã¤�´*´6£!¢°�3�¥§¥�*´*¢�ª
ª4©�¡J¸â�*¯
¡J¢"�
ØX�6£�üX«�£!���a�* ,�*ª5ê$�$«�¢� �©
¯�©
 & ,�6§¨§¨�*¡J©4 �¤"�L©
�6¡1Ã

ý èì�*´*¢�ª4ª
©�¡J¸X�*¯E«�¤�£$¤�ª
ª4¢�ª
©5�Ö§ ©�¡X�5¦J¢&¯��6£�§¥¤�ª
©5��¢�´Xæ�·�£!¤&´*¢"±J¢�ª
��«�§¥¢�¡(��Ã
ý � ¡*¦J¤�¡J �©�¡J¸��5¦J¢¨§F�*´*¢,ª5êaµJ¤Ò��¢�´.�a¢°�$�a©�¡J¸.§¥¢"�5¦J�*´*�*ª4�*¸ä·Ë©�¡ÿæ�·6£$¤»�a�*¸(¢Ü�5¦J¢�£&Ø²©��
¦P�5¦J¢¨Ø²�6£�ü

�6¡X�5¦J¢¾§F�*´*¢�ª
êaµJ¤°��¢,´��a¢°�!�L©�¡J¸å«�ª��J¸*ê�©�¡1Ã
ý � �(�a�6§F¤Ü�a©
 N�5£!¤"¡1��ª
¤"�L©
�6¡³�*¯F�5¦J¢Uæ�·�£!¤¾ç²èéæ ÁX§F�*´*¢�ª5�¹©�¡(�L�XÝë�1�¿©�¡J¸å�
¦J¢®ç²Á*Ýé�L�*�*ª�¼

½ ¦J¢ §F¢"�
¦J�*´*�*ª
�*¸ä·â¯��6£�£!¢�¤Ò���6¡J©�¡J¸ë¤�µJ�6�(��¯�¤��Jª��S�L�*ª
¢�£$¤�¡J �¢ ØX©4ª
ªUµJ¢Ë´*¢�±J¢�ª4��«�¢�´éµ(·ë©�¡(�a¢�¸�£$¤"�a©�¡J¸
§F�6£$¢ £$¢�¤�ª4©L�!�L©
 ¯�¤��Jªo� �L�*ª
¢�£$¤�¡J �¢ §F¢� "¦J¤�¡J©L�Ö§ � ß�¢6¼l¸1¼�Ãì´*©
¯�¯�¢�£$¢�¡(�õ�
·ä«�¢°� �*¯ ¯�¤"�Jª�� £!¢, ��6±J¢�£�·
«�£!�* ,¢�´6�*£!¢°�Öà��1��¢�´�©�¡X�5¦J¢¾«�£$¤� "�L©
 �¢&�*¯¬�a¢�ª4¢� ��6§»§¨�*¡J©
 ,¤"�a©4�6¡¨�!·J�$�a¢�§ �"¼
� ¢ã¦J¤�±J¢Û¤�ª�£$¢�¤�´�· ´*¢�±J¢�ª
��«�¢,´ ¸(¢�¡J¢�£$¤�ª¨¸��J©4´*¢�ª
©�¡J¢°� ¯��6£��5£$¤�¡1��ª4¤"�a©�¡J¸ �5¦J¢ãç�èéæ)ÁJêLµJ¤°��¢�´ æ�·6£$¤
§F�*´*¢,ªL�¾©�¡(�a�¨Ý �$«�¢� �©
¯�©
 �¤Ü�a©
�6¡1�Ü¼ ½ �»§F¤�üJ¢�¤��(�a�6§¥¤"�a©4 S�
£!¤�¡1�¿ª
¤"�L©
�6¡F�*¯ �
¦J¢åæ�·�£!¤S§F�*´*¢,ªL�¹«��J�:��©�µJª4¢°Ã

15

���	��
���
�������
���������
��������! "��
#���%$��'&��(���!)��������*+
,�'-'�� .�	-/�0
�
��1 �*2�0��$��3��-'�%�! 54��������'�3�6�'&���7��3���8 9��:
;=<?>A@ $��07��/���2B, ,*2�'-'��:C��-57D��$��'&� E�3��$=�����)-/�0
�
��1 �*2�0��$�����
�FG �*2�/-'��:C��-'�������0�H �I

J ���3
��K*2&%�3��������
L���M:8��
C�����3
N$��3O��/&��#*M�����P �*2�/-'��:C��-'�������0�Q�3��$R
��/:�������7��3���S*2�T���U��
��H V7���$��/&�&��(��

*2�3
,�'&�&%�'&M�3W2�'-3���U�%�0�X��:Y-'�07K7������%-'���U�(��
Z "�3
�O��%-'�[-'�07K*2�0�������C �I J �[�3��O��� "�/
��\�������Q:C�0
�7��/&
7���$��/&�&��(��
]��:)$��� ,��
��(4����U�%�0�^��:_*2�3
��'&%&��'&E4��3���3O����0��
`�0O��3
9������
0��O��3�M�������a�0
Cb^��
�-3���c�U�'-�����
�������&%&
4��)�3�	�1 �*2�'-'�%�'&�&cde-3���/&�&�����
�����
V*+
,�04�&��376I

f �L�����K-3
,�'�����'$] �*2�/-'��:C��-'�������0�P*2�������3
��R��:g�	-'�07K7�������-/���U�(��
P-/�07K*2�0���3���h���a���3O���$��'&��(4��3
������'&(d
 �*2�'-/��:��%�'$R������-'�07�7K������-'�T�U���0���/&E*2�3
C�SO��3
Cd]�34H ���
,�'-���&(dHIjiA���� ��'&�&%�0�� V�H N���k�(�H ��U�����U���T�U���(�S�a�c���
O���
8�����'&%&(dl����dl-'�07�7K������-'�T�U���0�m*+
��#����-'��&CInih�o-����'-3bG$#d0���37D��-6*+
��#*2��
C�U�%�! D�! K�a�/&�&`�! K
��/�! "�0�
�34��0����:�����&(���U��&%�3
��3��-/�o�3��$p*2�3
��/&�&��/&��� �7 �(�q*+
,�#�U��-'��&�-'�07K7�������-/���U�%�0�Hr`���m����&%&	�(��O��! �����
������
��*�*2&%��-'�������0�	��:s7���$��'&2-3���'-3b��(��
V�U�'-�������t0���! �I

u �����/&�&(d+rj�=���%&���$��3O��/&��#*2����
L������7���$��'&�BU4��! .�'$6�U�! �������
L*2&(��
�BC�(�Hrv�����a�%&�&n�3W�*2&��0
��	���0�w���6�H "�
������$��3O��/&��#*2�'$MFx7D��$��'&� a��:`-'�07K7�������-/���U�(��
^ ,d� ����37P a�! a�3�Q�'$�$��c�U�%�0���'&_ "�0��
,-'�K�������_-'�3�M4��
�H "�'$e:C�0
j���! ��s
0�3���3
��T�U���0�sI

ynz%{|z~}M�+�������H���2���

�+�%�������c�1�1�C�'�������#�����5���#���c�'�!�V���1���s�1�0���C�'�!�V���!�¡ U�'�n¢E�'�`�0�c�¤£L¥/¦��U�����a�n§��n�S�_¨(©Nª8«��5�/��¬����­�1���(�'�
�! H®Q�1�U¯#«/¨,¥#°�±3² ³2´+�Cµ��V�¤¶)�'�U¯9·+�C�!�/�Cµ��`�V��«/·+�C�1�#�0��µ��/©N�+�'¸��!��¸'¹!¹º«3»g�º���(�#�#¼!¼'½��

�+� �+���n�S�g¨c©x�5�3�(�¾�#���Cµ�¿0�c�V�g½aÀL°~��µT¬T�Tµ�¿��c�N���TÁ'�0�­�����V���1�U�S�5�!¬��!�V���1�h U�'��¢hµ/���	¥1���0Âº�c�/�,«2·��C��Ã"��¬¤�
¨,¥#°�Ä8¸��º�!��¸/¹!¹#«/´2��¿!�8�#µ���¦V�#¼!¼#¸0�

�+� Å���Æ�� Ä%�g��»g¿º���cµ����!ÇºÈºÉ|Ê|Ë�Ê|ÌºÌ'Íº��¢hµ��`¿!���cÂ!�1�EÎg���¾�#�����,�­��¦`·��C�/�Ï�,«��"¹!¹º±��
�+� ½+��ÐE� Ðjµ��­¿��­�0�%�,«��E� °s�C�'�!¿��¾�U��¦#�#µ3«¡¥�� Ðj���!�#Ñ��#���0«�Æ3� ÐA�(�(�­����«~µ��#ÂDÒ`� Ó6µ����­¯+��´2�'�8�Vµ��|¥0�����0�c¬T��Ä������c���1���TÂ

�5�¤�#�3�c�'�!�V���!�Y�! l´2µ����¾�Y°j�º�c����µ��1�m¢h�'�`�`�!�0�(¬Tµ¤���­�0�X¥/¦��U�����a�"��¨��w·+�C�º¬1���h�s´2°nÔc�#¼!¼#¸[À
Õ Ì'ÖÏÍT×"ÈºÌCØÙÌ'ÚDÛnÜ Ý+Ì'Ö"Ì!Þ'×`ß¡Ú3Ý�ÜàÚ#ÉTÉ�ÖTÜàÚ3ÝkÌ%á	âAãºÞºä(å�Ç#Ìºä(É�Ö.ã1Ú0åAæ¤ç0×�å(É�èS×�«2©N�¤¶)¬Tµ/�U���(�a�!�#�'�6°2¦#�#��«
°���¬�é!�0�c¬�µ��º�n���#�'�U�+�º +Î5�0�¾�#�������¾��¦=�! �©N�¤¶9¬Tµ'�U���c��«/Îgê)«'Æ.�0�ë¦V�#¼!¼#¸0�

�+�à¸#��ÐE� Ðjµ��­¿��­�0�%�,«)�E� °s�C�'�!¿��¾�U��¦#�#µ3«�¥�� Ðj���!�#Ñ��#���0«)Æ3� ÐA�(�(�­����«`µ��#ÂGÒ`� Ó6µ��(��¯+�S´2�'�U�Vµ��NÓ6�ºÂ!���cÄ%�_���­�#���
�5�¤�#�3�c�'�!�V���!� �! ¢h�1�`�`�!�0�c¬Tµ����­�#� ¥/¦��U�����a�"�ì°~Î9¢S¥ °j�T¬�é!�0�(¬Tµ�� �n���0�'����« �#¼!¼#¸#�
é1�(�%�2í î(î(¶g¶_¶=� ���#¬/�"� 8�¾î%�C�/���Tµ��C¬�é1îU�,�����c�/�8îU�������(�1� �ºé!�0ï"��¦#�0��ð�����¬�é!�C���0�'����ñg¦���µ��8ð��0¼!¼#¸

�+�ò±��,¥�� Ðj���!�0Ñ��#���0«1ÓQ� °~�!�8�!�#���0«ºµ��#Â9¨�� �g�(�¾�#���"�,ó+Ø!Ø|ä�Ü¾ôTãºå�Ü­Ì'Úgõ9Ö�Ü¾ö3É�Ú_÷PÉTåcÈ#Ì'ø#Ì!ä(Ì�ÝTç~á1Ì'Ö�õ`É�ö�É�ä(ÌCØ¡ègÉ�Ú#å
Ì�áQù|Ì1è_ègÞ1Ú�Ü¾ôTãºå�ÜàÚ3Ý?æ�ç0×¤å(É�è�×3�¡´+�_ÐnÔ�¼1½#«E´2�'�U�!�ú�'�l¥!�0�T¬��c 8�(¬Tµ¤���c�1�^µ��#ÂM�5�/�,�(�/�kÐjµ��0�/�#µT�1�/�"�
Ð¡�(���c��«/´+��µ��#¬T��«�¥#���1�����`¿#���~�#¼!¼'½��

�+�òû��U¢��¾¥!�#�!�1¯9µ��#ÂgÓQ� üh�1���c���.��ýsþ'ÊKÿSóMå�Ì!Ì!ä�á1Ì'Ö|å�Ö.ã1Ú1×�äcãºå�ÜàÚ/Ý�ý2÷��~Ë�ÊPègÌ'ø#É�ä­×nÜ¾Ú#å(ÌSÊh«1�­�gÓR���U�V�¤��«�Æ3� «
�jÂ0�¤�nýH÷��~Ë�Êvæ�ØAÉ�ô1Ü á#Ü¾ôTã#å�Ü­Ì'Ú�á1Ì'Ö��AÖ"Ì1ö�É�Ú�ßAè��!É�ø!ø#É�øPæ¤ç0×¤å(ÉTèS×)õ`É¤×�Ü Ý�Ú0«j¬�é#µ��!�����9±��j¥!�!�,�­�#�1����«
�#¼!¼1½+�

�+���º�UÅ
	S·�·��3°j�T¬�é!�0�(¬Tµ����8�#��¬��c 8�c¬�µ¤���c�'�N��¸#� Å#¼#¸0í0¥1��µ��1�n�` ��º�#¬¤���c�1�#µ��+�8�#�T¬3�c 8�c¬Tµ����c�'�N�! �Îg�D�#�0���¾���c�'���­�#�
�­�9Î9°s�|»�©e�1¥0�T�né1�(���2í î(î(¶_¶_¶�� Å!�/�º��� �1�C�3î� ����!î8¥!�#�T¬'�Uî�é1���=�(Ä����# U�/î%��¸/Åº¼#¸#� é1���

�+� ¹��UÅ
	S·�·��|°��T¬�éº�0�c¬Tµ��)�8�#�T¬3�c 8�c¬Tµ����c�'�^��¸#� ½�¸/Å+í¡Î)°~�|»�©X¨��º�#¬P�­�1�����C UµT¬��D�#�0�,�­���c�'�0���#�]¬Tµ��c¬��0�cµ¤���(�'�
µ��!���(�c¬Tµ¤���c�'� �0µ���� §��0¬Tµ��#ª ���c�/�#µ��(���­�#��� ¥#�T� é1�����2í î(î�¶_¶_¶=� Å!�/�!��� �'�C�3î� ����1î8¥º�#�T¬/�Uî%é1���=�cÄ
�­�# 8�/î%��¸3½�¸/Å�� é1���

16

SECTION 3. INITIAL REPORT ON CASE STUDY
DEVELOPMENTS FOR CASE STUDY 2: ENGINE FAILURE

MANAGEMENT SYSTEM

3.1. Introduction

This section of the D8 report summarises the developments in AT Engine Controls
(ATEC)α case study “Engine Failure Management System” as part of the RODIN
project.

It also discusses how the development of the case study will provide some tangible
demonstration that can be used to evaluate the impact of RODIN on Engine Failure
Management.

The work on the case study has addressed the following tasks from the Description of
Work [3.10].

T1.2.1 Define case study, evaluation plan, measurements and assessment criteria
T1.2.2 Produce an informal specification of a typical engine failure management
 system
T1.2.3 Use the informal specification to produce a visual formal specification

Contributions have been made to other tasks and are commented on later.

The work has been presented to the RODIN project in a series of internal workshops
and presentations outlined below.

 Initial RODIN presentation (University of Newcastle September 2004)

This outlined issues on the case study which are to be addressed by
RODIN. This included a feasibility study into abstraction of failure
management using UML-B.
From this presentation work continued in developing a natural language
description of the case study to prepare for the next workshop.

Requirements workshop (Chilworth December 2004)

It provided an introduction to learning the methodology of “Event B” for
modelling and a methodology to specify a traceable requirements
specification presented by J- R Abrial by means of an example structure
requirements document [3.12]
This led us into work into requirement research and its development on the
Traceable Requirement Specification.

α “AT Engine Controls” was formerly called “VT Engine Controls” (VTEC) which was the name
referenced in previous RODIN deliverables.

17

Presentation on work (Helsinki workshop, March 2005)
 A summary of the case study development was presented including some

early work on requirement engineering and model development.

The following deliverables and papers have been generated from the Case Study work
so far.

RODIN deliverables of case study
 D2 (D1.1) Definition and Evaluation Plan [3.6] November 2004
 D4 (D1.2) Traceable Requirements Specification [3.7] February 2005
 D8 (D1.3) Interim report (this report)

Papers

1. “Rigorous development of reusable domain specific components for complex
applications.” [3.1]
(This paper provided exploratory modelling of the domain).

2. “The engineering of generic requirements for failure management” [3.2]

3. “Towards a methodology for rigorous development of generic requirement
patterns”[3.3]

 18

3.1.1. Case Study Development

The definition of the engine failure management system as a subsystem has been
described in the deliverable of D2 [3.6] and in the initial presentation of the project.
 The context of the subsystem is shown in Fig 3.1 below. It illustrates that all the
sensor inputs to the control subsystem are handled by the Failure Management
Subsystem. The subsystem processes these inputs to provide a managed input to the
Control Subsystem which in turn drives the engine.

Figure 3.1 – Environment of Failure Management Subsystem

Principally ATECs’ aim is to improve an Engine Failure Management Systems’
maintenance and re-use, by adopting RODIN methods. The use of the technology is
expected to contribute to improvement by

1. Being able to accurately model the domain in order to reduce the semantic gap
between application requirement and system design.

2. Promoting re-usability by being able to develop a configurable generic

specification.

The application domain is safety critical which makes RODIN rigorous methods a
particularly attractive solution for AT Engine Controls.

AT Engine Controls intention is that the development of these models will form the
basis towards design and implementation of a future system.

 19

AT Engine Controls have been working closely with the University of Southampton
who have provided the necessary support and education in developing a solution
using a UML_B approach [3.4].

3.1.2. Case Study Development Cycle

The intention was to develop the modelling into two phases. The development phases
are described in deliverable D2 [3.7].

The first phase was to establish the modelling of a representative system using
RODIN methods (aim 1). The second phase was to consider more generic functional
and component requirements in order to provide re-configurability and reuse (aim 2).

However during the course of development the boundaries of these phases have
become less distinct. The creation of a typical requirement specification has resulted
in a generic specification. Furthermore the modelling of this general system has
identified common components within the system appropriate to generic modelling.
In essence some of the work intended for Phase 2 is being addressed in Phase 1. The
current intention is to complete the existing model for this phase and then evaluate its
generic aspects before entering into the next phase. The generic model is intended to
be converted to the new version of the UML_B toolset in Phase 2.

3.1.3. Informal Requirements Stage

A representative requirement of an engine failure management subsystem was
produced in natural language format.

The approach taken was for a domain expert to identify the functional requirements
common to different engine failure subsystems in order to form a representative
engine failure system specification. Some anticipation of future requirements were
also incorporated. This resulted in a specification for a general engine failure
management subsystem.

The specification described the general functionality supported by detailed instances
which were held in tabular form. It supports the idea of a table being used to validate
a variant in a generic model. This contributed toward the development of a more
generic specification which was developed further in the traceable requirements
specification.

3.1.4. Traceable Requirements Specification

The specification is described in detail in deliverable D4 [3.7]. It was generated
adopting the format guidance presented in the internal RODIN Requirements
workshop Chilworth (referenced in the introduction). Its salient features are:-

• A more rigorous natural language definition of generic requirement with

traceable reference to the instance data. (This was supported by
explanatory text).

• A more rigorous database style definition of the tabular data.

 20

• A taxonomy which identifies the requirement entities of the domain.

• A first cut diagrammatic entity relation model which defines the

relationships between these entities.

The approach adopted from the workshop worked well in presenting the requirement,
the adoption of the taxonomy was particular suited to labelling common components
appropriate to generic design. However it was felt that more research was required in
support of developing generic requirements. This led to an investigation into research
into domain analysis and domain engineering.

The investigation identified the concept of product line engineering and how it might
be applicable to the failure management domain.
The Production Line concept [3.2] nurtures the idea that a template can be used to
generate a family of variants of failure detection management systems, this is suited
towards developing a generic requirements model for reuse.

Some work on domain analysis and engineering is outlined below and described in
more detail in Snook et al [3.2]. It supports ATECs’ aim of reusability of an Engine
Failure Management System.

3.1.5. Domain Analysis

A core set of requirements were identified from the representative failure
management engine system. For example, the identification of magnitude tests with
variable limits and associated conditions established several magnitude test types.
These types have been further subsumed into a general detection type. This type
structure provided the taxonomy for classification of the requirements.

Domain analysis showed that failure management systems are also characterised by a
high degree of fairly simple similar units made complex by a large number of minor
variations and interdependencies. The domain presents opportunities for a high degree
of reuse within a single product as well as between products. For example, a
magnitude test is usually required in a number of instances in a particular system. The
domain contains a few simple units which are reused many times. A particular
configuration depends on the relationships between the instances of these simple
units. A first-cut entity relationship model was constructed from the units identified
during this stage. The entities identified during domain analysis were:

• INP Identification of an input to be tested.
• COND Condition under which a test is performed or an action is taken. (A
predicate based on the values and/or failure states of other inputs).
• DET Detection of a failure state. A predicate that compares the value of an
expression to be tested against a limit value.
• CONF Confirmation of a failure state. An iterative algorithm performed for
each invocation of a detection, used to establish whether a detected failure state is
genuine or transitory.

 21

• ACT Action taken either normally or in response to a failure, possibly subject
to a condition. Assigns the value of an expression, which may involve inputs
and/or other output values, to an output.
• OUT Identification of an output to be used by an action.

Domain analysis also described the concept of requirement rationale. Considering the
rationale behind a requirement is useful in reasoning about requirements in the
domain. For example, the rationale for confirming a failure before taking action is that
the system should not be susceptible to spurious interference on its inputs. From the
consideration of requirements rationale, key issues were identified which served as
higher level properties required of the system. An example of such a property would
be that the failure management system must not be held in a transient action state
indefinitely. The rationale from which it has been derived is that a transient state is
temporary and actions associated with this state may only be valid for a limited time.
It is felt that the consideration of such rationale and key issues will form an abstract
model which is refined by the generic requirement model.

3.1.6. Domain Engineering

The aim of the domain engineering stage is to explore, develop and validate the first-
cut generic model of the requirements into a validated generic model. At this stage
this is essentially an entity relationship model, omitting any dynamic features (except
temporary ones added for validation purposes).The UML_B approach adopted for the
case study and the supporting tools are described and referenced in the next section
3.2.

The first-cut model from the domain analysis stage was converted to the UML-B
notation by adding stereotypes and UML-B clauses (tagged values) as defined in the
UML-B profile [3.11]. This allows the model to be converted into the B notation
where validation and verification tools are available. The model contains invariant
properties, which constrain the associations, and ensures that every instance is a
member of its class. To validate the model we needed to be able to build up the
instances it holds in steps. For this stage a constructor was added to each class so that
the model could be populated with instances. The constructor was defined to set any
associations belonging to that class according to values supplied as parameters.

OUT

CONDDET

10..*

+dcond

10..*

ACT

1

1..*

+aOut
1

1..*

1

0..*

+aCond 1

0..*

INP

CONF

1

1..*

1

+dets 1..*

1..*0..* +tAct 1..*0..*

0..*0..*

+pAct

0..*0..*

0..*0..*
+hAct

0..*0..*

1

1

+input
1

1

Fig. 3.2. Final UML-B version of generic model of requirements

 22

The model was tested by adding example instances using the animation facility of the
ProB model checker (see section 3.2) and examining the values of the B variables
representing the classes and associations in the model to see that they developed as
expected. The model was re-arranged substantially during this phase as the animation
revealed problems. Once we were satisfied that the model was suitable, we removed
the constructor operations to simplify the corresponding B model for the next stage.
The final version of the UML_B model described above is illustrated in fig 3.2. A
detailed description is provided in the generic requirement paper [3.2].

3.1.7. Requirements for a Specific Application

Having arrived at a useful model we then use it to specify the requirements for a
particular application by populating it with class instances. We use the verification
tool ProB to check the application is consistent with the properties expressed in the
generic model. This verification is a similar process to the previous validation but the
focus is on possible errors in the instantiation rather than in the model. Although our
example is small compared to a real application, there is still a substantial amount of
data entry involved and errors were expected. The technique was found to be highly
effective, detecting all the data entry errors and satisfying the invariant within a few
iterations.

3.1.8. Future Development

The next stage is to add behaviour to the generic model by giving the classes
operations. In future work we will investigate the best way to introduce this behaviour
during the process. It may be possible to add the behaviour after the static model has
been validated as described above. Alternatively, perhaps the behaviour will affect the
static structure and should be added earlier. In either case, we aim to formalise the
rationale described in the domain analysis and derive the behaviour as a refinement
from this.

3.2. Directions on RODIN Methodology and Tools

In order to meet the RODIN objectives the case study is seen to be a driver on
RODIN methodology and tools. The following outlines the contribution of the case
study to these areas. The next section outlines the experiences with the technology.

3.2.1. Methodology

The case study is intended to drive the methodology by presenting issues and
experiences from the problem domain. The adopted methodological approach being
used by the case study is modelling using a UML-B approach [3.11].

The experience of developing a generic model described in Snook et al [3.1, 3.2, 3.3]
is likely to be the main consideration which will contribute to the RODIN
methodology. The impact on methodology is to be described in the methodology
deliverable D9 [3.8]. Some experiences using this methodology are outlined in the
next section.

 23

3.2.2. Plug-in Tools

The case study is intended to drive the development of plug-in tools by providing
some feedback of its experience of using them when applying the methodology. This
case study uses plug-ins which support the UML-B approach. However the new
Plug-in tools intended for this approach have not been made available at this point (in
development for the eclipse platform) this has forced the case study to work with
some older existing tools that were available. The tools used by the case study in the
UML_B formal development are U2B and ProB.

The UML-B [3.11] is a profile of UML that defines a formal modelling notation.
UML-B consists of class diagrams with attached statecharts, and an integrated
constraint and action language based on the B AMN notation. It is suitable for
translation into, the B language.

The U2B [3.5] translator converts UML-B models into B components (abstract
machines and their refinements), thus enabling B verification and validation
technology to be exploited. U2B has been implemented using Rationale Rose s’
extensibility features this is expected to change to a different implementation in future
tool development.

Experience with this version of the UML_B profile may identify areas of
improvement in terms of representation ability and ease of use which can be applied
to the new tool development.

ProB is a model checker [3.2] and has been used to provide verification and through
validation via animation of models developed during the case study.

Verification of the requirement serves to strengthen the mapping of the model to the
requirement specification. Verification provides confidence that the UML_B model
represents the requirement accurately. It is the closeness of mapping in conjunction
with the understandability of the model which will help to reduce the semantic gap
(aim1). However the validation of the requirement is particular useful for AT Engine
Controls as this allows early exploration of the requirements which can identify
unintended behaviour or incomplete requirements which can help improve the
dependability of a system and potentially and development cost savings.

The case study is expected to contribute to development of the U2B and ProB tools in
terms of how effectiveness and its ease of use for the novice.

Finally in addition to the profile and tools described above it is anticipated that
development of the case study will identify new areas of tool support. Some areas
have already been identified in the following section.

3.3. Results and Experiences of the Technology

Whilst it is still too early in the project to provide significant evidence to support
evaluation, the experience of using the technology so far is summarised below.

 24

3.3.1. Modelling

The stage of development that the model has reached has been described above. The
progress is considered to be good by ATEC as the static model developed is already
starting to addresses their aims in the case study.

The semantic gap is being reduced as illustrated by the closeness of mapping between
the requirements specification and the model components. This was also verified with
an instance model.

Reusability is being addressed as the static structure has identified generic
components which have been verified against the instance model. However the model
still lacks behaviour and scaleability is yet to be tested.

Furthermore exploratory modelling of behaviour has already identified weaknesses in
the requirement. Snook et al [3.1] identified that a state can exist where a common
transient action such as a freeze can be maintained for a longer period if the individual
inputs that share this action fail after each other. Similarly if a given test input is
failing erratically then its transient action can persist.

These results provided an early indication that a rigorous approach provides quality
benefits.

3.3.2. Learning the Technology

The learning of the RODIN technology for AT Engine Controls has been addressed
through the RODIN workshops and working with the University of Southampton.
The following specific areas have been targeted.
 UML_B method

UML_B tools
 Formal methods Modelling

The learning and applying of a developing technology alongside research activities
has presented particular challenges to the novice learner which are summarised below.

1. Mastering the concept of modelling rather than implementation
2. New toolset availability
3. Existing tool functionality limited eg lack of bi-direction relations, unclear

error messages
4. Limited UML_B examples to learn from.
5. A comprehensive understanding of formal notation is required to support the

UML_B method. ie how to express behavioural concepts in its notation
6. Time/resource available to learning to be shared with research activity
7. Establishing a foundation knowledge in formal methods alongside the

UML_B method.
8. Developing the case study model in parallel with learning technology

concepts.

 25

Model development of the case study has also identified weaknesses in the existing
tools which has identified areas potential areas for new tool development.

3.3.3. Experiences with the tools

UML_B profile
The following improvements were identified using the current profile implementation.

• Ability to make more information visible on diagrams - this will assist in
making the model more readily understandable.

• Bi directional associations should be better supported (in the current U2B tool
they are translated but navigation in uB is sometimes difficult depending on
multiplicities – this should increase both understanding and efficiency in
generating models.

• Some restriction to prevent only correct UML_B constructs from being
specified would be useful. It was found that incorrect code could be entered
which could cause problems when running the ProB tool.

U2B tool
This tool is easy to use. One problem was that the conversion into B was not always
successful eg the $ operator being ignored. This bug was corrected in U2B.

Pro B
The tool was successfully used to animate and model check the model.
ProB provides an indicator to show when the invariant is violated. Due to the
‘required’ (i.e. multiplicity greater than 0) constraints in our generic model, the only
way to populate it without violating the invariant would be to add instances of several
classes simultaneously. However, we found that observing the invariant violations
was a useful part of the feedback during validation of the model. Knowing that the
model recognises inconsistent states, is just as important as knowing that it accepts
consistent ones.

We found that the analyse invariant facility provided useful indication of where the
invariant was violated (i.e. which conjunct) but, in a data intensive model, it is still
not easy to see which part of the data is at fault. This is another area for tool
improvement.

3.3.4. New Tool Support

Experience of modelling has shown that the size of a failure management requirement
can create practical difficulties with the amount of data that has to be input. This
became evident when only a few instances were tried when populating the static
structure of the model. A requirements manager plug-in tool is envisaged to assist
with this problem.

3.4. Demonstrators and Evaluation

The evaluation plan D2 [3.6] has identified three parallel purposes of the case study.
These are summarised as

 26

a) to evaluate the UML_B method from AT Engine Controls viewpoint
b) to improve the maintainability and portability of failure management software
c) to provide feedback to the developers of UML-B.

The evaluation of these have been defined by goals and metrics described in the plan.
The application of these goals and metrics are ongoing throughout the project and are
expected to come to completion in the final report.

The interim reporting of metrics will be limited to what can be demonstrated at
particular points.

In phase 1 the intention is to demonstrate a verified and validated visual model of the
failure management system.

In phase 2 the intention is to demonstrate a generic system from which variants can be
derived and techniques explored and the development of the model to a package
explored.

This report has provided some qualitative feedback of the progress so far. An attempt
at ranking the evaluation criteria at this point has been given in the deliverable D14
[3.9].

The metrics being collected are

- time spent learning the technology
- problems identified in learning (see above section)
- defects being found in the model/requirements (verification and validation)
- time spent developing models
- improvements identified in tools

3.5. References

[3.1] C. Snook, M. Butler, A. Edmunds, and I. Johnson. Rigorous development of
reusable, domain-specific components, for complex applications. In J. Jurgens
and R. France, editors, Proc. 3rd Intl. Workshop on Critical Systems Development
with UML, pages 115–129, Lisbon, 2004.

[3.2] C. Snook, M. Poppleton, and I. Johnson. The engineering of generic

requirements for failure management
Accepted for Eleventh International Workshop on Requirements Engineering:
Foundation for Software Quality, REFSQ'05, Oporto, 2005

[3.3] C. Snook, M. Poppleton, and I. Johnson. Towards a methodology for rigorous

development of generic requirements
 Accepted for Workshop on Rigorous Engineering of Fault Tolerant Systems,

REFT, Newcastle, 2005

[3.4] C. Snook, I. Oliver, and M. Butler.The UML-B profile for formal systems

modelling in UML. In J. Mermet, editor, UML-B Specification for Proven

 27

Embedded Systems, chapter 5. Springer, 2004.

[3.5] C. Snook and M. Butler. U2B - A tool for translating UML-B models into B. In

J. Mermet, editor, UML-B Specification for Proven Embedded Systems Design,
chapter 5. Springer, 2004.

[3.6] RODIN deliverable D2 : Definitions of Case Studies and Evaluation Criteria

Project IST-5111599, November 2004

[3.7] RODIN deliverable D4 : Traceable Requirements Document for Case Studies

Project IST-5111599, February 2005

[3.8] RODIN deliverable D9 : Preliminary Report on Methodology IST-5111599,

Sept 2005

[3.9] RODIN deliverable D14 : Assessment report 1 IST-5111599, Sept 2005

[3.10] Rigourous Open Development Environment for Complex Systems -RODIN

:Description of Work IST-5111599, April 2004

[3.11] C. Snook and M. Butler, “UML-B: Formal modelling and design aided by
 UML”, Technical Report, Electronics and Computer Science, University of

 Southampton.

[3.12] J-R Abrial Mechanical Press: Requirement Document Nov 2004

 28

SECTION 4. REPORT ON THE CASE STUDY: FORMAL TECHNIQUES IN

MDA CONTEXT

4.1 Case Study Description

This case study is primarily aimed at constructing and verifying platforms rather than aim-
ing at the applications themselves. We take the view that with the increased use of technolo-
gies such as MDA - which emphasise the role of domain models of applications which are
independent of many implementation technologies - the inclusion of properties such as fault
tolerance can be decided and architected upon at a later stage of development in much the
same way as a choice of implementation platform or language can be made [4.18].

It is also commonly true that platforms are being constructed in parallel with the applica-
tions that will run upon those architectures; whether this is a good situation or not depends
upon the processes and management involved. Most MDA literature suggests that there is a
single platform and that a PIM is mapped (architected) onto this platform to produced the
PSM. We take a more liberal view which states that platforms themselves are collections of
properties [2] - the theory of this is still under construction in this particular context and will
be expanded upon during this course of this case study.

To fulfil this we aim in this case study to take a more aspect oriented approach to the notion
of a platform by weaving together a successive series of platforms each introducing an addi-
tion level of detail. Each level of detail (again, the theory about what a level of detail or
“abstraction level” is depends upon the defition of what a platform is and how this is phrased
in MDA terminology - we make an attempt in this case study to answer this question). At
least within the context of RODIN we shall consider fault tolerance to be a platform in its

own right; given our specification of the Nokia NOTA1 platform we will utilise existing
transformations to generate implementation of this, e.g.: C++ (Symbian), Java, SystemC and
so on. In addition we shall also produce versions of fault-tolerant version of both the NOTA
platform and NOTA services/applications by mapping the specifications onto the “fault-tol-
erant” platform and then to our existing transformations.

A number of particular questions need to be answered:

• How much information about fault tolerance can be axiomsed in this way? A discussion
about the possibilities and limitations is given in [1].

• Does the ordering of transformations make any difference to the overall properties of the
system; on particular concern here is that transformations may either over-constrain a
model or not be applicable due to variations in the abstraction level of the domain model
for transformation?

• Given this platform and aspect based approach, how does this affect the placement of fea-
tures such as fault-tolerance into the various models being created and how does this
affect the transformation or weaving process to compose two or more models?

1. Network-on-Terminal Architecture. This is described later in more detail.
29

• How does the effect of using an aspect oriented design flow and composition of model
affect refinement?

4.1.1 MITA and NOTA

This case study was originally described as MITA (Mobile Internet Technical Architecture).
MITA is a large, “grand plan” for the overall structure of the mobile internet. NOTA on the
other-hand is one particular implementation of a part of MITA [4.13][4.14][4.15].

NOTA provides us with a more concrete set of requirements but still conforms to the plat-
form based, distributed, service oriented nature that was put forward in the original case
study. As far as the RODIN work is concerned NOTA can be considered a refinement or sub-
set of MITA. No changes to the goals of this work have been made.

Additionally we must also consider situations where the services do not follow the rule of
being stateless. Combinations of services and applications may themselves deadlock and fail,
but the platform must never.

Many defintions of the term service have been proposed. We follow the defintion that a serv-
ice is a group of publicly available, common functionalities [4.2].

4.1.2 Network-On-Terminal Architecture

NOTA (Network-On-Terminal Architecture) is a platform for mobile devices for service ori-

ented systems [4.2]1. The platform itself consists of a number of interconnect nodes which
provide access points for services and applications to communicate. Via these interconnect
nodes, a service can register itself so that its features and functionality are globally (we shall
return to clarify this point) available to other services and applications in the system.

NOTA is envisaged as a platform onto which services and applications can be implemented
(it provides services registration, discovery and connection facilities). Services and applica-
tions therefore must contain (when made NOTA specific) a certain set of functionalities to
remain well-behaved within a NOTA system. Ideally services and applications would be for-
mally specified and their compliance formally proven; this might not always be the case
[4.24] and the system should be able to recover from mis-behaving services and applications.

4.2 Major Directions in Case Study Development

This first year has seen a change in the application of the RODIN ideas and technologies to a
more concrete implementation. However this has given us time to concentrate more on
methodological and theoretical aspects of the ideas being investigated in this case study. The
major point here is that technologies such as the OMG’s MDA [4.16] are loosely defined and
the ideas being suggested lack a rigorous theoretical basis.

Regarding the actual practical part of the case study we have

1. Also compare NOTA with WSML (Web Services Management Layer) which provides a similar kind of func-

tionality but not in the embedded scales of terminals we are considering here. http://ssel.vub.ac.be/wsml/
30

• Investigated the use of B in distributed systems (via MITA ideas)

• Constructed specifications of the NOTA Platform

• Constructed specifications of potential applications and services that might be based on
the NOTA platform

• Taken initial steps towards understanding how OO/AOP/MDA can be utilised in the con-
text of RODIN.

• Taken initial steps towards understanding the role of MDA and formal methods in the
construction of Service Oriented systems.

• Started investigation of refinement and retrenchment properties between models.

4.3 Achieved Results

4.3.1 Platform Development

Development of platforms is conceptually no different from developing applications them-
selves; there are of course differences in practise such that platforms are not normally con-
cerned with execution and concentrate more on structure and non-functional properties. In
this case study we are more focused on the specification of the structure of the platform, its
internal consistency and how non-function aspects can be specified and validated/verified
inside the Rodin framework [4.6][4.7]. There exists a large amount of material related to the
development of distributed system in a formal manner, e.g.:
[4.9][4.12][4.22][4.27][4.25][4.27]. We are therefore particularly interested in the combina-
tion of these formal techniques with MDA and its ideas of model composition through
transformations.

We consider two aspects of platform development here, the first is related to the MDA devel-
opment flow and the role of verification/validation within that flow and the second is related
to development methods used within Nokia.

The case study is being designed to evaluate the following scenario:

• The platform contains information about where fault tolerance lies and how this is to be
achieved.

• Applications are developed independently of this platform. These applications may how-
ever contain information about fault tolerance as well as other desired properties.

• These applications may be mapped to many platforms (each having their own structure
and properties). In this example we map the application onto NOTA.

The result of this is that we obtain a model of the application now in the context of that plat-
form, i.e.: in MDA terms it is a platform specific model of that application.

The results should then show the following

“The (platform independent) application should pass all the required tests, i.e.: it verifies
and is validated according to whatever criteria have been specified at this level.”
31

and similarly for the platform:

“The platform specific model created by the composition or mapping of the application
onto the platform should satisfy all the relevant criteria respectively.”

We do know from experience that the following scenarios do exist:

• The properties specified on the platform independent application can not always be
implemented by the chosen platforms.

• The composition of properties results in an overly constrained system which then can not
perform the tasks or behave in the way initially envisaged.

The former case is often seen when there exists pollution of properties from other levels of
abstraction and platforms into the platform independent model of the application. This
sometimes can not be avoided.

In the second case it is necessary to weaken the specification in such a way that the desired
behaviour of the application and platform are preserved [4.1]. Weakening specifications
means that the refinement relationship breaks and various properties of the system are
potentially compromised [4.5]. Techniques such as retrenchment [4.23] however make this
process very explicit and thus safer in the sense that the breaking of the refinement relation-
ship is made explicit and can be verified.

4.3.2 NOTA Platform Specification

The interconnect is the platform that is being designed for a new series of mobile devices.
This platform is designed to consist of a number of nodes (called interconnects) that are
capable of running applications and services. The actual implementation of these is left
undefined as potentially an interconnect node might be a hardware, software or mixed com-
ponent. All interconnect nodes however are capable of communicating by some standard
means. A model of the interconnect node and related elements is shown in figure 4.1.

The specification here exists at a different “abstraction” level than the service/application
specifications. The models here describe the interconnect platform onto which services and
applications are implemented. For example this can be visualised using the Y-model or
“standard” MDA approach. Compare this with, for example, the SPARC processor/architec-
ture definition from Sun.

Regarding the sockets, an interconnect node keeps track of the sockets that have been cre-
ated:

Local Socket

This is a socket between services on the same interconnect node

Remote Socket

This is a socket between a service on the current interconnect node and some other
interconnect node.

Target Sockets
32

These are sockets which have been requested by other interconnect nodes.

The typical boot sequence is described in the sequence diagram in figure 4.2 on page 6. Note
the artistic license in this sequence diagram, this is due to so vagaries of a so called “UML
compliant” tool. This diagram shows two cases, namely the boot sequence which creates the
interconnect, its connections and a resource manager; of which there is one in any system.
We also describe the starting of a service which registers itself with one of the nodes. For
simplicity the creation of the sockets to be used during registration is not shown on this dia-
gram for brevity.

Before describing the sequence of events for registration it is important to describe infor-
mally the workings of each of the operations described in the interconnect node class dia-
gram.

InterconnectNode::register

When a service registers, it supplies its service name and properties. These properties
include information about what API the service provides and other information, for exam-
ple, security keys etc. This information is forwarded to the resource manager for processing;
it is the resource manager that has the responsibility for deciding whether a service is allowed
to register and issuing service IDs.

As a return either a service ID and acknowledge is returned or a null value and an error mes-
sage (i.e.: RMERROR).

During this process the local Services table must be updated to contain this new service ID.

InterconnectNode::deregister

FIGURE 4.1. Class Diagram of the Interconnect Platform
33

A service announces that it is no longer functioning (termination, fault or any other rea-
son for suspension of services) and that it is to be removed from the global pool of ser-
vices. This information is forwarded to the resource manager that decides upon the
course of action. Only services themselves may deregister, a service can not be deregis-
tered by another service.

If the resource manager allows deregistration then an acknowledgement is sent back and the
service is also removed from the locals services IDs for that interconnect node. It is also pos-
sible that a refusal is made an no changes may be made to the local services. It is possible in
this situation that the service may still be available but refuse all attempts to access it after-
wards.

InterconnectNode::connect

A service will connect to another service by its service ID. The sid if local will result in
the creation of a socket to the given service and INSUCCESS is returned along with the
id of the socket.

If the sid is not in the local Service table then a connection is made to the resource manager
which supplies information about the location of the service and whether that service id
exists. The resource manager will either respond with RMSUCCESS denoting that the serv-

FIGURE 4.2. Example Interconnect Boot Sequence
34

ices does exist; then a remote socket will be created and INSUCCESS returned along with the
socket id to the service.

If the resource manager refused and returns RMERROR then no socket is created and
INERROR is returned.

InterconnectNode::disconnect

The id of a socket is given. This socket must be owned by the requesting sid in which
case the socket obviously must exist; in all this cases the socket is removed and INSUC-
CESS is returned, else INERROR.

InterconnectNode::send

Given a socket id which is owned by the calling service, some data is sent via this con-
nection. At this point in time we assume that this is always successful returned INSUC-
CESS.

InterconnectNode::getSID

Given a service name string then this initiates a connection to the resource manager
which returns the SID of the requested service. If this service exists then INSUCCESS
and the SID are returned, else INERROR.

InterconnectNode::newTargetSocketRequest

When a connection is made between interconnect nodes by a call to the connect opera-
tion, the underlying (or whatever) subsystem makes the “physical” connection. The tar-
get interconnect receives a call to make a new socket for the “physical” connection. If
this is possible then a new target socket is created, else an error is returned (INERROR).
After creation it is necessary to inform the service that this socket is aimed at that a
socket is available. If this succeeds then INSUCCESS is returned via this new socket, else
INERROR.

Service IDs uniquely identify a service within the local system (i.e.: current device and asso-
ciated peripherals). Service IDs are defined to be an integer value in the range 0..infinity.
However a service ID of 0 is always an error. All operations that accept service ID, if they
accept a service ID of 0 then an error signal is returned, e.g.: RMERROR, INERROR.

4.3.2.1. B Translations

Currently the main focus of development is by constructing the structural models and
assigning responsibilities in UML and then writing the invariants and operations in B. These
together are then translated into a pure B representation and then presented to AtelierB for
theorem proving and then additional validation through animation and model checking by
ProB.

The primary difficulties are at this time:
35

• keeping the B and UML models in sync. Tool support is lacking although work in ongoing
with U2B.

• maintaining consistency across the various projected specifications; B is not object ori-
ented.

The specifications currently (at least at this abstraction level) are relatively simple and the
nature of B keeps us focused on the visible interfaces and the more declarative aspects of the
modelling process. We have a direct comparison here with ongoing (and now in the light of
the results and techniques here highly modified) work in SDL for constructing specifications
of the interconnect node. The primary result is that the current SDL work has been aban-
doned and that any new work is directly based by hand translation from the UML/B to SDL;
we are investigating automating this using augmented XML representations of B.

An extract of the specification can be seen below1 - we focus here mainly on the invariant
and a number of the operations:

MACHINE notaic
...
INVARIANT
 sids <: SID & externalSids <: sids & sockets <: SOCKET &
 localServices <: sids & address : ADDRESS &
 resourceManager_interconnectNodeAddress <: ADDRESS &
 resourceManager_sid <: sids &
 interconnect_resourceManagerAddress <: ADDRESS &
 interconnect_resourceManager_sid <: sids &
 (not(resourceManager_sid = {}) => card(resourceManager_sid) = 1) &
 localServices ⁄ externalSids ⁄ resourceManager_sid = sids &
 localServices / externalSids / resourceManager_sid = {} &
 localSocketsTo : sockets <-> sids &
 remoteSocketsTo : sockets <-> sids &
 localSocketsFrom : sockets <-> sids &
 remoteSocketsFrom : sockets <-> sids &
 targetSocketsTo : sockets <-> sids &
 targetSocketsFrom : sockets <-> sids &
 dom(localSocketsTo) / dom(remoteSocketsTo) = {}
...
OPERATIONS

 /* OO KLUDGE! */
 resourceManagerExternalRegistation =
 PRE
 not(resourceManager_sid = {} &
 resourceManager_interconnectNodeAddress = {})
 THEN
 ANY newEsid
 WHERE
 newEsid : SID - sids & not(newEsid : localServices) &
 not(newEsid : resource WHEREManager_sid)
 THEN
 externalSids := externalSids ⁄ { newEsid } || sids := sids ⁄ { newEsid }
 END
 END ;
...
rr,ss<--interconnectNode_register(nn) =
 /* nn is the name of the service,
 rr is the return code
 ss is the sid
 */
 PRE
 nn : NAME &
 not(interconnect_resourceManager_sid = {} &
 interconnect_resourceManagerAddress = {})
 THEN
 CHOICE
 ANY newsid
 WHERE
 newsid : SID - sids & not(newsid : externalSids) &
 not(newsid : resourceManager_sid)
 THEN
 sids := sids ⁄ { newsid } || ss := newsid ||
 rr := INSUCCESS || localServices := localServices ⁄ { newsid }
 END
 OR
 ss :: SID || rr := INERROR

1. “...” denote where the specification has been cut
36

 END
 END ;
...
rr,so<--interconnectNode_connect(cc,ss) =
 /* cc is the calling service,
 ss is the sid that it wishes to call to,
 so is the socket created,
 rr is the return code
 */
 PRE
 cc : sids & cc : localServices & ss : sids &
 not(cc = ss) & not(ss : resourceManager_sid)
 THEN
 CHOICE
 rr := INERROR || so :: SOCKET
 OR
 ANY newso
 WHERE newso : SOCKET - sockets
 THEN
 sockets := sockets ⁄ { newso } || so := newso || rr := INSUCCESS ||
 IF ss : localServices
 THEN
 localSocketsTo := localSocketsTo ⁄ { newso |-> ss } ||
 localSocketsFrom := localSocketsFrom ⁄ { newso |-> cc }
 ELSE
 remoteSocketsTo := remoteSocketsTo ⁄ { newso |-> ss } ||
 remoteSocketsFrom := remoteSocketsFrom ⁄ { newso |-> cc } ||
 externalSids := externalSids ⁄ { ss }
 END
 END
 END
 END ;
...
END

Note the inclusion of (horrors!) such as the first (suitably marked) operation to allow us to
simulate activities external to the interconnect node. In this case to generate a number of
external services which may be running on other interconnect nodes other than the current.
This is one of the problems when trying to project single classes out of a UML model.

However, the results from theorem proving have shown that the internal structures and
behaviour of the node remain consistent across the operations - this has greatly simplified
and improved the reliability of the SDL implementation.

Results from this specification’s processing by AtelierB can be seen below
Printing the status of notaic
 notaic AutoProved /home/ioliver/BProjects/NOTAIC/notaic.mch
+--------------------------------------+-------+------+-------+-------+------+-----+
| | NbObv | NbPO | NbPRi | NbPRa | NbUn | %Pr |
+--------------------------------------+-------+------+-------+-------+------+-----+
Initialisation	3	7	0	7	0	100
resourceManagerExternalRegistation	9	13	1	12	0	100
createResourceManager	10	14	0	14	0	100
announceResourceManagerLocation	18	0	0	0	0	100
interconnectNode_register	28	13	1	12	0	100
interconnectNode_deregister	20	13	1	12	0	100
interconnectNode_connect	45	16	0	16	0	100
interconnectNode_disconnect	33	6	2	4	0	100
getSID	39	0	0	0	0	100
newTargetSocketRequest	34	6	0	6	0	100
+--------------------------------------+-------+------+-------+-------+------+-----+						
notaic	239	88	5	83	0	100
+-------------------------------------

All proof obligations have been discharged - the specification here is relatively simple - in the
cases where the interactive theorem prover has been needed the proofs have been discharged
by the predicate prover without difficulty.

Proofs that have not been amenienable this way have invariable lead to discoveries of errors
in the specification itself (misspecification) or misunderstandings in the requirements.
37

It must be stressed that on many occasions we have had a theorem proved specification but
results from the model checking and animation in ProB have shown that the specification is
wrong and that the specification is behaving not according to our wishes.

The specification of the sockets is performed similarly:
MACHINE socket

SEES notaGenerics

CONSTANTS capacityI, capacityO

PROPERTIES capacityI : NAT & capacityI > 0 & capacityO : NAT & capacityO > 0

VARIABLES incommingBuffer, outgoingBuffer

INVARIANT
 incommingBuffer : seq(DATA) & outgoingBuffer : seq(DATA) &
 card(incommingBuffer) <= capacityI & card(outgoingBuffer) <= capacityO

INITIALISATION incommingBuffer := [] || outgoingBuffer := []

OPERATIONS
 /* API calls to a NOTA Process */
 send(dd) =
 PRE dd : DATA & card(outgoingBuffer) < capacityO
 THEN outgoingBuffer := outgoingBuffer <- dd
 END;

 dd<--getData =
 PRE not(incommingBuffer = [])
 THEN dd := first(incommingBuffer) || incommingBuffer := tail(incommingBuffer)
 END ;

 flushIncommingBuffer =
 BEGIN incommingBuffer := []
 END ;

 flushOutgoingBuffer =
 BEGIN outgoingBuffer := []
 END ;

 rr <-- isDataAvailable =
 BEGIN
 IF incommingBuffer = []
 THEN rr := FALSE
 ELSE rr := TRUE
 END
 END ;

 /* Calls to the transport layer .. here for convenience
 to allow simulation of sending the data through a pipe */
 pipeSend =
 PRE not(outgoingBuffer = [])
 THEN outgoingBuffer := tail(outgoingBuffer)
 END ;

 pipeReceive =
 PRE not(card(incommingBuffer)=capacityI)
 THEN
 ANY dd
 WHERE dd : DATA
 THEN incommingBuffer := incommingBuffer <- dd
 END
 END
END

and similar problems as described earlier have been found here.

Matching the results from the sockets with the results from the interconnect node are prob-
lematic. We assume that if it were possible to work in a truly object oriented way then a sys-
tem with many concurrent sockets managed by many concurrent interconnect nodes (as
according to the class diagram in figure 4.1) would be correct. We are currently investigating
ways this can be achieved in B without resorting to U2B to generate the specifications.
38

One interesting facet here has been the model
checking of the behaviour of the sockets. ProB
is capable of generating graphs of the state space
of a machine. We have tools available internally
which can also explore these graphs and com-
pare these with logging information returned
by implementations. An example of the state
space for sockets (with limited SET sizes) can
be seen in figure 4.3.

Despite the apparent incomprehensibility of
this graph, it is however generated from a repre-
sentation in the dot language - part of the

GraphViz graph visualisation package1. Two
results come from this:

• The textual format is processable as
described earlier and can be compared
against log files generated from implementa-
tions.

• The visual appearance of the graph gives
clues to major branching or other problems
such as deadlocks.

Of course the latter case is purely subjective but generally the “cleaner” the graph looks the
better.

4.3.3 Example Service Specifications

We present here two potential services that could be implemented upon NOTA. As we have
described earlier, the specification of these services is independent of NOTA and could be
implemented on any given platform.

4.3.3.1. Still Camera Service

The basic functionality of a camera service is to make available the API functions for taking
pictures (obvious). In this case there are five pieces of functionality that we consider:

• taking a single picture

• taking multiple pictures (aka multishot mode)

• changing the number of pictures to be take in multishot mode

• changing between multishot and single shot modes

• changing between camera states (i.e.: on, standby etc)

1. http://www.graphviz.org/

FIGURE 4.3. State Space Graph for
Socket.mch
39

The UML description for a camera is fairly
simple as can be seen in the figure 4.4 which
shows the simple class diagram and figure
4.5 which describes the behaviour in terms
of an orthoginal state machine.

The attributes and operations have the fol-
lowing natural language specifications:

multipleShots: this is a value between 2
and 10 which states how many shots
should be taken sequentially in multi-
ple shot mode

takeSinglePicture: the camera must be in the on state and multiple shot mode must be
off. The result is a single picture returned.

takeMultiplePicture: the camera must be in the on state and multiple shot ode must be
on. The result is a set of pictures - the number of which is given by the number of multi-
ple shots to be taken.

changeMultipleShots: this accepts an integer which is used stored in the multiple shots
attribute

startCamera: switch the camera to on mode - this can occur at any time

stopCamera: switch the camera off - this can occur at any time

gotoStanby: this places the camera is stand by (aka power save) mode. This mode can
only be activated from the on mode. This operation would not normally available to the
user.

The camera can be considered at any point in time to be in certain discrete states which can
be represented by an orthogonal state machine shown in figure.

FIGURE 4.4. Class Diagram of Still Camera

FIGURE 4.5. Still Camera State Machine
40

What is not shown in this example is the specification of the specifics of the behaviour. This
is embedded inside the elements diagram as allowed by the various tools in use.

4.3.3.2. Storage Service

The storage service provides a common API to all storage devices. The basic functionality
provided is:

• storing of items (files)

• retrieving of items (files)

• overwriting of items (files)

• deletion of items (files)

• renaming of items (files)

The UML class diagram of the storage is shown in figure 4.6 and as before the natural lan-
guage specifications of the attributes and operations are given as below.

items: the set of items that the storage contains - basically an index or directory. Each
item has a unique name

store: takes an item and name and stores it. An item with the given name must not
already exist in the storage

retrieve: given an name that exists in the storage, returns the associated item

rename: given a name of an item that exists in the storage, changes its name to the new
given name. The new name must not previously exist in the storage

overwriteItem: given a name and item where the name already exists in the storage,
overwrite the currently stored item with that name with the given item.

FIGURE 4.6. Class Diagram of Storage
41

deleteItem: given the name of an item that already exists in the storage, remove that item
and the corresponding name.

Similarly the storage specification in B is very simple and is concerned with maintaining the
set of items:

MACHINE storage

SEES generics

VARIABLES items

INVARIANT items : NAME <-> ITEM

INITIALISATION items := {}

OPERATIONS
 storeItem(ii,nn) =
 PRE
 nn : NAME & ii : ITEM & nn /: dom(items)
 THEN items := items ⁄ { nn |-> ii }
 END;

 overwriteItem(ii,nn) =
 PRE nn : NAME & ii : ITEM & nn : dom(items)
 THEN items := items <+ { nn |-> ii }
 END;

 ii <-- retreiveItem(nn) =
 PRE nn : dom(items)
 THEN ii := items(nn)
 END;

 deleteItem(nn) =
 PRE nn : dom(items)
 THEN items := { nn } <<| items
 END;

 renameItem(oo,nn) =
 PRE oo : dom(items) & nn : NAME & oo : NAME & nn /: dom(items)
 THEN items := items - { oo|->items(oo) } ⁄ { nn|->items(oo) }
 END
END

Again all proof obligations were discharged without problem.

4.3.3.3. Example Camera Application Specification

We now describe an simple application that utilises the services described above. This appli-
cation manages the available cameras and storage devices and simple allows the user to
choose between these and take photographs. The photograph is then stored by the selected
storage service.

There application also keeps track of the last picture taken. This application at this time
insists that the camera only takes single shots (i.e.: multishot mode is always off).
42

The model describing the structure of this application can be seen in figure 4.7 and similarly
the natural languages descriptions of its functionality below:

The following are natural language specifications of the attributes and operations of the cam-
era application:

localPicture: contains a picture which is the last picture taken by the camera

availableCameras: lists all the available camera (services). Some mobile devices have
more than one camera device.

availableStorage: lists all the available storage (services). Some mobile devices have more
than one storage device.

selectedCamera: points to the currently selected camera, which must be available to the
camera application.

selectedStorage: points to the currently selected storage which must be available to the
camera application.

selectCamera: chooses one of the available cameras

selectStorage: chooses one of the available storage services

photograph: take a photograph. The photograph will be stored as the localPicture and be
automatically stored by the selected storage service. An example of this in use can be
seen below.

FIGURE 4.7. Class Diagram of Simple Camera Application
43

The workings of the photograph() operation is described using the interaction diagram in
figure 4.8.

To construct the application we must compose the specifications for storage, camera and the
application itself. The first major problem here is that we need individual objects to represent
various instances of cameras (e.g.: the Nokia 6680 has two individual cameras), similarly
storage, most mobile devices have memory cards, SIM cards and even hard disks; off-device
storage is also possible.

4.3.3.4. Commonalities

When working at this “domain” modelling level with the services and applications we have
found it necessary to augment the basic UML with a number of stereotypes and also we have
identified a number of common generic artifacts.

The stereotypes are simply <<service>> and <<application>>. These are applied to the class
which takes the role or responsibility of managing the collaborations in that service or appli-
cation.

The <<service>> stereotype states that this particular structure will be thought of as a service
- that is in the future it may become (platform permitting) some kind of service component.
It is envisaged that services in the future will be placed in some kind of respository to form a
library of standard services; cf. standard libraries in some programming languages/environ-
ments.

Similarly the <<application>> stereotype states that this particular structure will be thought
of as an application.

FIGURE 4.8. Interaction Diagram for photograph() Operation
44

The primary difference here being is that services can be used by anything, while applica-
tions only call services. Applications can not be called or used as services.

The common or generic artifacts relate to
more the standardisation of a set of data
types or classes found at this level. The class
diagram in figure shows these currently.

An item is any piece of data (or in object ori-
ented terms, an object of some kind), a pic-
ture is a special kind of object and a name is
some way of naming something. Items may
or may not have names. Within a given
namespace, two items with the same name
are necessarily identical. The definition of
namespace however is lacking at this point in
time other than some informal, “common sense” meaning.

4.3.4 Object Orientation in B

One of the major issues to be tackled in this work is how to combine object orientation with
a formal specification language such as B which does not directly support object oriented
concepts such as inheritance, polymorphism or the class-object dichotomy.

One issue is the tools that are available [4.4], in previous projects (PUSSEE [4.12]) we have
utilised the U2B tool [4.26] to automate the translation from UML to B. Currently in the
Rodin project the tools are unavailable; usage of U2B at the moment is difficult due to the
differences in tool chain and that most projects now rely upon the UML 2.0 XMI representa-
tion which can not be read by U2B at present. While useful, U2B still has limitations such as
it does not handle inheritance and that the UML models have their attributes, invariants and
operation pre/post conditions written in B - one might argue that B as a constraint language
to UML is not a bad thing, but unlike OCL, B is not integrated with the UML meta-model
and lacks certain constructs for navigation expressions, typing etc.

The specifications so far discussed in this document have been hand translated either in the
style of a U2B translation which embeds the object oriented management constructs into the
B in much the same way as early C++ compilers produced convoluted C code to emulate
these features directly. The second option has been to individually translate each class as a
single B machine construct and attempt to “hide” other classes by presenting these as simple
set structures (using B’s SETS construct). This latter method is a kind of projection of various
structures in the model and while simplifying the specification in B does not allow the whole
model to be checked at once.

Neither method is wholly satisfactory at this time but the B produced is amenable to sensible
verification and validation, although we do have a number of difficulties proving certain
constructs due to the added complexity of the OO management constructs. Particular suc-
cess has been had using the ProB animation/model checking environment to assist in under-
standing the relationships (maintenance of relationships between elements of sets
representing objects).

FIGURE 4.9. Domain Level Generic
45

We are also currently investigating projecting the inheritance (specialisation/generalisation)
structures out of the UML model so that classes can be represented as B machines and the
inheritance relationship as refinement relationships between machines. This gives a very
strict interpretation of inheritance but allows an alternative way of asserting the Liskov Sub-
stitution Principle [4.8]. This method however would not admit multiple inheritance [4.3];
one hypothesises here that the machine inclusion mechanisms might be more appropriate in
these situations but one loses the refinement proof obligations.

4.3.5 Theoretical Basis of MDA

We have an outline of a categorical semantics for MDA. This theory provides semantics to
the notions of model, platform, language, development flow and the relationships between
models: refinement, transformation and translation.

It is hoped that this work will be finalised before the end of this year. The development and
application of this theory in being made within the context of this case study and various
projects outside of Rodin, e.g.: Åbo Akademi’s Coral tool.

4.4 Demonstrators and Evaluation

The evaluation plan described in Rodin Deliverable D1.1 identifies the following criteria for
this casestudy; we provide some evaluations from the work performed so far:

• How well does this formal approach fit with existing processes?

Any formality or rigor in any engineering exercise improves some aspects of the quality
of the finalised product. At least the experiences within MITA and NOTA on construct-
ing a specification with the required platform abstraction and formality has lead to
results showing potentially gross errors in the existing (non-formal) specification.

• How well do these techniques integrate with an object-oriented approach?

This still needs more analysis but current results point to (once again) the semantic gap
between object-oriented and structured decompositions.

• In what form are these technologies transferred to the Nokia Business Units?

The ideas and concepts have and are being successfully transferred to various commer-
cial products. This has been primary in the way of thinking that is being employed and
the emphasis on clear and precise requirements/specification and platform independent
designs. The transfer of verification techniques however is still a problem.

• Can this approach check components against a (very loose) specification?

Yes, but this still needs more analysis before a clear conclusion can be made on this.

• What is required to understand over constraint models, their causes and effects?

This has so far only manifested itself either as coding errors in the specification or as a
pointer to mixing abstraction levels (i.e.: platform or architectural pollution of a model).
46

Investigations of this phenomenal during MDA style transformations will be investi-
gated during the next steps of this case study.

• Can this approach deal with requirements volatility?

Techniques such as retrenchment are known to handle this, though there are method-
ological and theoretical issues here. The existing specification has been reworked a
number of times with respect to addition feature requirements but more substantial
changes need to be investigated in more detail.

4.5 Summary

Work on this casestudy is progressing well now that steps have been taken to more concretise
the application from a very generic distributed framework such as MITA into NOTA

The results of this work with an existing project within Nokia Research has been extremely
beneficial but of course has lead to a number of other issues such as how to capitalise on this
early specification and verification/validation work later in the development process.

Preliminary results in terms of time spent working with requirements is showing a 60-70%
decrease in time spent developing the system from specification to prototype. However some
of this can be explained by the personnel involved at this time, e.g.: experts in SDL/C++ cod-
ing, B, verification etc. We would expect to see a 30% increase in productivity (equatable
with 30% decrease in development time with a more correct product at delivery) once these
techniques are more established.

The work will continue in the following fashion; firstly the various specifications will be
composed, i.e.: stillCamera, store and the simple camera application will be made NOTA
specific using a transformation (MDA mapping/transformation). Via this we will investigate
whether or not the transformations are simply superpositions or whether additional effects
are introduced.

Secondly the set of fault tolerant properties will be decided upon and these will be integrated
again using transformations, i.e.: fault tolerance being considered a platform. We will investi-
gate fault tolerance as a platform with respect both to services/applications and the NOTA
platform itself. Various combinations of fault tolerant services/applications and the NOTA
platform will be tried and analysed for their respective properties.

4.6 References

4.1 Thomas Bolusset, Flavio Oquendo (2002). Formal Refinement of Software Architec-
tures Based on Rewriting Logic. RCS’02 International Workshop on Refinement of Critical
Systems: Methods, Tools and Experience, January 22, 2002 - Grenoble - IMAG

4.2 Manfred Broy (2004). From Objects to Components to Services - A formal framework
for service-oriented architectures. WICSA, 4th Working IEEE/IFIP Conference on Software
Architecture. June 2004. Oslo, Norway.

4.3 Luca Cardelli. A Semantics of Multiple Inheritance (1988). Information and Computa-
tion 76:2-3, Feb/March 1988, pp 138-164.
47

4.4 Bernhard Steffen (2004). Major Threat: From Formal Methods without Tools to Tools
without Formal Methods. ICECCS 2004:

4.5 Andrea Kerschbaumer (2002). Non-refinement Transformations of Software Architec-
tures.Formal Refinement of Software Architectures Based on Rewriting Logic. RCS’02 Inter-
national Workshop on Refinement of Critical Systems: Methods, Tools and Experience,
January 22, 2002 - Grenoble - IMAG

4.6 #I. H. Krüger, R. Mathew: Systematic Development and Exploration of Service-Oriented
Software Architectures. Proceedings of the 4th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2004), 2004.

4.7 #I. H. Krüger, D. Gupta, R. Mathew, P. Moorthy, W. Phillips, S. Rittmann, J. Ahluwalia:
Towards a Process and Tool-Chain for Service-Oriented Automotive Software Engineering.
Proceedings of the ICSE 2004 Workshop on Software Engineering for Automotive Systems
(SEAS), 2004

4.8 Barbar Liskov, Jeannette Wing (1993). Family Values: A Behavioral Notion of Subtyping.
Technical Report MIT/LCS/TR-562b.

4.9 Shaoying Liu (2004). Formal Engineering for Industrial Software Development.
Springer. 3-540-20602-7

4.10 Tiziana Margaria (2004) Modelling Dependable Systems: What can Model Driven
Development Contribute and What Likely Not? ISORC 2004, 7th IEEE Intern. Symposium
on Object-oriented Realtime distributed Computing. May 12-14, 2004, Vienna (A), IEEE CS
Press, pp. 113-120.

4.11 Tiziana Margaria, Bernhard Steffen (2003). Aggressive Model-Driven Development:
Synthesising Systems from Models viewed as Constraints. The Monterey Workshop Series
2003 Theme: Workshop on Software Engineering for Embedded Systems: From Require-
ments to Implementation, Chicago, Illinois, September 24-26, 2003.

4.12 J Mermet (editor) (2004). UML-B Specification for Proven Embedded Systems Design.
The ChDL Series. Kluwer Acadmic Publishers. 1-4020-2866-0.

4.13 Nokia (2002). Mobile Internet Technical Architecture. Technologies and Standardiza-
tion. ITPress. 951-826-668-9

4.14 Nokia (2002). Mobile Internet Technical Architecture. Solutions and Tools. 951-826-
669-7

4.15 Nokia (2002). Mobile Internet Technical Architecture. Visions and IMplementations.
951-826-670-0

4.16 Object Management Group. Model Driven Architecture. http://www.omg.org/mda

4.17 Object Management Group. Unified Modelling Language. http://www.omg.org/uml

4.18 an Oliver (2004). Model Based Development and Embedded Systems Design. FDL04
Special Session on MDA in Embedded Systems Development.

4.19 Ian Oliver (2004) Some Issues in Rigorous System Design in a Model Driven Develop-
ment Context. ECSI UML-SystemC System Design Flow Workshop. May 4, 2004, Lille,
France

4.20 Ian Oliver (2004) Model Based Testing and Refinement in MDA Based Development.
In: Proceedings of Forum on Design Languages FDL’04. September 14-17 2004, Lille, France.
48

4.21 Pankaj Palote (1998) Fault Tolerance in Distributed Systems. PTR Prentice Hall. 0-13-
301367-7

4.22 J.Plosila, K. Sere and M. Waldén, Design with Asynchronously Communicating Com-
ponents. In FMCO 2002: First International Symposium on Formal Methods for Compo-
nents and Objects, Leiden, The Netherlands (November 2002), LNCS. Springer-Verlag.

4.23 M. Poppleton, R. Banach (1999) Retrenchment: Extending the Reach of Refinement.
IEEE ASE-99, 158-165

4.24 Alastair D Reid (1993). A Precise Semantics for Ultraloose Specifications. MSc Thesis.
University of Glasgow

4.25 Bran Selic, Garth Gullekson, Paul T. Ward (1994). Real-Time Object-Oriented Mode-
ling. Wiley Professional Computing. 0-471-59917-4

4.26 Snook, C., Butler, M. and Oliver, I. (2003) Towards a UML profile for UML-B. Techni-
cal Report DSSE-TR-2003-3, Electronics and Computer Science, University of Southampton.

4.27 C. Snook, L. Tsiopoulos and M. Waldén, A case study in requirement analysis of con-
trol systems using UML and B. In Proceedings of RCS’03 - International workshop on
Refinement of Critical Systems: Methods, Tools and Experience, Turku, Finland, June 2003.
Also as: TUCS Technical Reports, No 533, Turku Centre for Computer Science, Turku, Fin-
land, June 2003.
49

SECTION 5. CASE STUDY 4 — CDIS AIR TRAFFIC CONTROL
DISPLAY SYSTEM

5.1. Introduction

The CDIS case study is aimed at providing feedback into the methodological and tool platform
workpackages. While much of the initial work on this case study involves reviewing CDIS doc-
umentation, this process is extremely productive in providing challenges to the methodological
research.

In early 2005 the first task of generating a subset of the original CDIS specification was com-
pleted. The first draft of the subset was discussed in a meeting at Newcastle on December 14th,
2005, where the degree to which things like concurrency and fault tolerance would be included
was considered. The decision to draw the subset from a “vertical” slice of the original CDIS
specification was generally agreed to be the best way to get a usable chunk of material.

The next meeting, held on January 20th and 21st, 2005, in Newcastle, was an opportunity to
discuss the penultimate version of the CDIS subset. The entire context of CDIS was discussed,
with respect to both the subset and the entire CDIS specification. A large part of the meet-
ing was given to discussion of the problems initially faced during CDIS development, how
they manifest in the subset, and the nature of the challenge the problems pose to the RODIN
methodology. The January meeting also gave an opportunity to plan the first steps of how the
subset would be redeveloped using the RODIN methodology.

The RODIN Plenary meeting at Nokia Research in Helsinki at the end of March gave a chance
to present the subset and some of the work done on redevelopment to the wider RODIN com-
munity, and solicit feedback and view on the case study’s progress.

5.2. Major Directions In Case Study Development

5.2.1. Nature of CDIS

CDIS was a technically successful project with exceptionally low defect rates for its time, and
any new method must at least maintain the features that contributed to that success. At the same
time, there were substantial technical difficulties which we would hope could be addressed by
a more modern approach to the specification and design.

There are particular characteristics of CDIS that are relevant to the choice of method:

50

• CDIS is a data-intensive system. It contains large collections of disparate data and its
behaviour is described by changes in that data. This is in contrast to, for example, control
systems which are typically finite state and have only single instances of each kind of
data.

• CDIS has a large external interface. Indeed its whole purpose is to display information.
The specification is therefore large in terms of the number of operations and the number
of inputs and outputs for each operation.

• CDIS does little processing. There are almost no interesting algorithms in CDIS, and the
specification is shallow: each operation has a simple though voluminous definition.

• CDIS is a highly distributed system. It exhibits a high degree of concurrency, and the
idea of an atomic operation is a very loose approximation to its actual behaviour.

There are five major areas that the case study needs to address:

1. Comprehensibility
Any system specification needs to be understood by all the stakeholders. The formal
notations1 in CDIS were a barrier to understanding by many stakeholders.

2. Modularity
The original CDIS specification and design take thousands of pages. A good modularity
mechanism is essential.

3. Concurrency

(a) We have no formal ways of reconciling the atomic operation model with the real
concurrent behaviour

(b) We needed different, unrelated notations for sequential and concurrent specifica-
tions.

4. Refinement
Conventional models of refinement are quite inadequate to express the change of struc-
ture between the specification model and the design model.

5. Proof
It was completely infeasible to carry out proofs on a specification of this size.

5.2.2. Comprehensibility

The case study needs to ensure that the new specification is comprehensible to stakeholders. It
needs to be capable of expressing stakeholder concepts in a direct way rather than having to
translate them into some obscure (even if faithful) representation. For example, notions such as
aggregation, sequencing and optionality of data must be directly expressible in the specification
language.

1Principally VVSL — VDM augmented with modularization constructs

51

EDD DISPLAY operations

DELETE PAGE deletes a public page and all its versions.

traceunit SPEC.EDD DISPLAY.DELETE PAGE.OP

DELETE PAGE(pageno : Page number)

edd dspl updates : EDD displays

ext wr pages : Pages
wr version sets : Version sets
wr checked out : Checked out
wr edd pages : EDD pages
wr edd displays : EDD displays
rd page selections : Page selections
rd preview selections : Preview selections
rd time now : Date time

pre true

check can delete page(pageno,↼−−−pages ,
↼−−−−−−−−version sets)

post page deleted(pageno,↼−−−pages , pages,
↼−−−−−−−−
version sets, version sets)
∧
page deleted(pageno,

↼−−−−−−−−−−−−−
edd acks required , edd acks required ,

↼−−−−−−−−−−−−−
concealed displays , concealed displays,
↼−−−−−−−−
edd displays , edd displays,

↼−−−−−−
edd pages , edd pages,

edd dspl updates, page selections, preview selections,
pages, time now)

explanation It is not feasible to check that a page is not being displayed or previewed at a user
position.

106 S.P1286.50.4/Issue 0.2 c©2004,2005 Praxis High Integrity Systems

Figure 5.1: The VVSL specification for Deleting Pages

5.2.3. Modularity and size

VVSL [5.6] has a modularity mechanism similar to VDM-SL [5.2]. It allows types, state and
functions visible in one module to be used in another. It also contains a good mechanism
— perhaps better than any other specification language — for expressing error behaviour. In
spite of this, the CDIS specification is extremely verbose. The main reason is that there is no
good mechanism for modularising the definition of operations. Figure 5.1 is an example of
an operation definition from the subset. This specification is simply importing the three partial
definitions, but it requires a huge amount of boilerplate to make it a correct VVSL specification.
There is currently no completely satisfactory solution to this problem. For example, while

DeletePage
DeletePageFromPages
DeletePageFromDisplays

CanDeletePageFromPages

Figure 5.2: Z Schema for Deleting Pages

52

the schema calculus in Z [5.7] has limitations, although the corresponding Z specification in
Figure 5.2 would certainly be more palatable.

Any new notation needs to allow specifications that are closer to Figure 5.2 than Figure 5.1.

5.2.4. Concurrency

It is obviously useful to separate concerns about behaviour from concerns about concurrency.
However, it is also necessary to bring together the two views of the system, and in CDIS we
weren’t able to do that very effectively. There are two issues: the approximate nature of the
VVSL specification and the incompatibility of notations.

5.2.4.1. VVSL versus reality

The VVSL specification of the operation to release page states that all workstations that are
displaying the page simultaneously switch from displaying the old version to displaying the
new one. This is not necessarily what the system actually does: the different workstations may
take varying lengths of time to do the switch. There are many similar examples in CDIS. The
methodological challenge that this poses is whether there is a justifiable retrenchment from the
strict specification to some looser (and presumably more complex) specification that describes
the real behaviour. The reason this is so desirable is that the initial strict specification is rel-
atively simple and captures the essence of the operation; the complexity of non-simultaneous
update is really a separate issue. Furthermore one would like to have a single generic way of
retrenching all the different operation specifications, rather than cluttering each one with the
details of non-simultaneity.

5.2.4.2. Notations

Although VVSL does have a notation for concurrency, it was not in practice usable. Therefore
we had to use quite separate notations such as CSP or CCS (as well as informal notations like
data flow diagrams) to describe concurrency. There is therefore no formal connection between
the sequential and concurrent specifications. The case study needs to demonstrate that Event-B
can integrate the different aspects while still allowing different concerns to be treated fairly
independently.

5.2.5. Refinement

VDM [5.5] (on which VVSL is based) and Z have a simple model of refinement in which state
can be made more concrete and operations can have their preconditions weakened and post-
conditions strengthened. This notion doesn’t begin to address the complexities of design of a

53

distributed concurrent system like CDIS. Nor does it capture the idea of viewing an operation at
different levels of granularity, which is essential if the initial specification is not to be cluttered
with too much detail.

5.2.5.1. Concurrency and distribution

State is split over many machines; operations involve several different processes and messages
between processes and machines, so the set of operations in the design is far richer than the set
of operations in the specification. A single specification level operation may require multiple
instances of several design level operations and messages, while a single design operation may
contribute to many different specification level operations. We need a calculus of refinement
that allows such structural changes to be expressed.

5.2.5.2. Granularity

At one level, we do not worry about how inputs to operations are provided. The VVSL op-
eration to display a page, for example, has an input of type Page Number. At another level,
however, we need to specify exactly how this input is derived from user actions. For example,
the page number is typed on a special keypad and there is quite a complex protocol to allow the
user to change their mind or do something else in the middle of selecting a page. We did not
have any formal way of relating these two views of the operation. The protocol was described
as a finite state machine but its connection to the VVSL was entirely informal.

5.2.6. Proof

As CDIS is a shallow but large system, there is a huge volume of relatively trivial proof obli-
gations. It is important that the tools are capable of carrying out the necessary proofs with a
minimum of human intervention, since the sheer volume would make it impractical to do the
proofs by hand.

Of course, while the specification level proofs are trivial, proof obligations introduced by the
more complex refinement rules mentioned in section 4 may not be. There will also be a very
large number of such proof obligations.

5.3. Achieved Results

There are two major results to date in this case study. The first is the subsetting of the original
CDIS specification to a usable set of documents for the project. The rationale behind the
selection is described in the next section.

54

The second major result is our work on the redevelopment of CDIS in the RODIN notations.
This work has been done at Praxis and Southampton, each following a different approach. By
the plenary meeting at Helsinki we decided that the approach initially taken at Praxis would not
be the best option. The reasons for choosing not to redevelop the subset first in classic B [5.1]
notations are given in Section 5.3.2.

5.3.1. Content and rationale for the CDIS subset

CDIS is an operational system supplying flight data, airport data and other support information
to air traffic controllers in the London Terminal Control Centre at West Drayton. It was deliv-
ered in 1992 and went operational in 1993. Since then it has been maintained by Praxis and
subsequently by NATS: some parts of the original system have not been used, others have been
changed and new facilities have been added. The subset used in this case study is based on the
system that was originally delivered.

There is a brief overview of CDIS and a description of the specification and design approach
used in an IEEE Software article [5.3]. The subset is fully described in a project document [5.4].

The RODIN subset includes only airport data. The subset has been chosen to be small enough
to be manageable while retaining some of the main features of the CDIS specification and
design. In particular it includes enough to illustrate:

• the distributed nature of CDIS

• the necessary size of the specification, which required us to spread the definition of op-
erations over several modules;

• the existence of concurrency in the inputs to CDIS, and the extra concurrency introduced
by the distributed design; and

• the need for several different aspects (user interface, functional and concurrency) of spec-
ification and design.

The subset documents are:

• Requirements

– Semi-formal requirements definition including tracing

– Interface control document

• Specification

– A core specification written in VVSL [5.6], where each operation is modelled as an
atomic change of state.

55

– A concurrency specification that describes where the atomicity assumptions of the
core specifcation breaks down.

– A user interface definition that describes the concrete appearance of inputs and
outputs.

• Design

– Application design which defines how the functionality of the core specification is
implemented.

– Process design which describes the behaviour of each concurrent process in the
implementation.

– Specification of low-level services relied on by the implementation.

5.3.2. Redevelopment Work

Southampton has been looking specifically at the requirements document and specification
documents of the Praxis case study. Therefore, at this stage, we have ignored all design and
interface documentation. The aims of this case study are somewhat different from the other case
studies because our goal is to use the development of (a subset of) an existing air-traffic control
system to assess the performance of the methodologies evolving within the RODIN project.
Hence, there is an immediate conflict: in order to assess the new methodologies, we need to be
able to compare our models with those of the original development, but the methodologies (in
particular Event-B) do not necessarily facilitate this assessment.

Even though classic B has many similarities with VDM (the underlying specification language
for CDIS), and there has been work done on converting one notation into the other, Event-
B is a fairly radical departure from its ancestor. This is especially true for the structuring of
large specifications. At Southampton, therefore, we do not consider a ‘translation’ to play
a significant part in this case study. Instead, we propose to use the original specification as
a guide to refinement from a more abstract viewpoint. This will also allow us to highlight
differences between Event-B and classic B.

The main features of the CDIS specification is its size and complexity. While it is inevitable
that large real world problems will produce large and complex specifications, facilities should
be provided by the specification language for managing such complexity. These structuring
mechanisms have a significant influence on the development process. In Event-B, two ap-
proaches to the structuring of large specifications have been proposed: generic instantiation
and decomposition. In the next two sections, we consider whether these approaches can be
applied to CDIS.

5.3.3. Generic Instantiation

Refinement is the means by which more and more complexity is added to an abstract specifi-
cation in order to move formally towards an implementation. Rather than performing a single

56

Development 1 Development 2

Instantiation

M1 C1

Mn Cn

N D

N D

M1’

Mn’

sees

sees

refines

sees

refines

refines

sees

refines

refines

sees

refines

sees
refines

refines

Figure 5.3: An instantiated refinement of development 2

linear refinement, it is possible to perform separate refinements which can be combined at a
later stage.

A formal development in Event-B is said to be generic with respect to the sets and constants
accumulated during the development because these can be viewed as parameters to the de-
velopment. By instantiating these sets and constants with the sets and constants of a second
development, we can get an instantiated refinement of the second development via the refine-
ment steps of the first development providing certain proof obligations are fulfilled.

Informally, the proof obligations require:

• the properties of the constants of the second development to imply the (instantiated)
properties of the first development,

57

META_DATA

PAGE
CONTENTS

RECORDS

DISPLAYMODEL

CONTEXT

sees

seessees

sees

Figure 5.4: A model for a generic display

• the most abstract model of the first development to refine the most concrete model of the
second development.

This is depicted in Figure 5.3 (where the models M′
1, . . . , M′

n are the instantiated models M1,
. . . , Mn).

By using the core specification of CDIS as a guide, we can start from a more abstract viewpoint
by constructing a model of a generic display system. The context for this generic model is
made up of a hierarchy of three sub-contexts and one model (see Figure 5.4). The three sub-
contexts are generalisations of the modules AIRPORT META DATA, AIRPORT RECORDS
and AIRPORT PAGE CONTENTS in the core specification. By abstracting away the airport-
specific details, we get a clearer picture of the display functions of the system. At a later stage
in the development, we can instantiate this model with the airport-specific details from which
the Event-B model can be refined.

• META DATA. In the core specification, this module defines types for attribute iden-
tifiers and values for the airport and runway data. Here, we declare generic types for
attribute identifiers and values in the SETS clause

– Attr id

– Attr value

• RECORDS. By including META DATA via a SEES clause, we define a generic type
for records as a mapping from Attr id to Attr value

– Records ∈ Attr id → Attr value

• PAGE CONTENTS. Here, we define types for the layout of generic pages. We consider
each page to be made up of a background and a number of fields corresponding to the

58

position and appearance of values of attributes2

– Page contents :: background : Graphic background
fields : ℘(Graphic field)

– Graphic field :: id : Attr id
posn : Field position
presn : Attr value → Fld disp desc

The type Fld disp desc is meant to represent the device-independent ‘appearance’
of fields. Hence, the function presn maps values (for a particular attribute) to their
appearance.

– Page disp desc is a type representing the device-independent ’appearance’ of a
page. The intention is to combine a background with a set of Fld disp desc (to-
gether with their respective positions) to form a value of type Page disp desc that
represents the value of a single page.

Given the state that defines actual records, page contents and displays, it is then possible to
define events that compute the appearance of displays. This is depicted as the model DISPLAY
in Figure 5.4.

Once this development has been shown to behave as expected, it would be possible to instantiate
this with specific airport attributes and values from which further refinements can be made.

5.3.4. Decomposition

This approach aims to reduce the size of a model by decomposing it into a number of smaller
sub-models. This involves partitioning the events and variables so that the events of one sub-
model do not affect the variables of the other sub-models. Hence, decomposition aims to
distribute the model so that certain elements can be seen to be ‘remote’ from other elements.

Communication between distributed elements is achieved through the use of shared (or ex-
ternal) variables (i.e. state variables that are common to more than one element). Unfortu-
nately, the CDIS core specification does not exhibit this structure. It is more reminiscent of
the INCLUDES mechanism in classic B, in which an operation of the including machine can
call separate operations of the included machines to update their respective states. However, if
we are prepared to deviate from the structure of the original specification then it is possible to
make use of Event-B’s decomposition mechanism.

It is possible to decompose the DISPLAY model given in Figure 5.4 into three sub-models: a
records model, a page contents model and a (new) display model (this is shown in Figure 5.5).
One can imagine partitioning the events in DISPLAY accordingly: record-updating events be-
long to the records model, page-updating events belong to the page contents model, and display

2The record notation used here is part of our proposal to extend B with record types. Details of this can be
found in the D9: WP2 Deliverable D2.1 document.

59

NEW
DISPLAY

refines refinesrefines

DISPLAY

MODEL
RECORD
MODEL

PAGE

Figure 5.5: A decomposition of DISPLAY

META_DATA

PAGE
CONTENTS

RECORDS

seessees

NEW
DISPLAY

PAGE
MODEL

RECORD
MODEL

seesseessees sees

Figure 5.6: Putting it together

events belong to the display model. In this decomposition, the shared variable is the state rep-
resenting the actual displays because any attribute update will affect the display of its value,
and similarly, any update of the page contents will also affect the display. The combination of
the context of Figure 5.4 and the decomposed model of Figure 5.5 is shown in figure 5.6. Note
that the new models only need to see a subset of the context. That is, RECORD MODEL does
not need to see the PAGE CONTENTS sub-context, and PAGE MODEL does not need to see
the RECORDS sub-context. NEW DISPLAY requires both sub-contexts.

5.3.5. Other Issues

Another source of complexity within the CDIS core specification is the abundance of union
types. Whenever these types are used as parameters of functions, the body of the function
inevitably comprises a complicated case statement which is difficult to understand. During the
early stages of the development it would be beneficial to keep these component types separate,
and to define specialised events for each case. Indeed, the bodies of events in Event-B do not
allow branching.

60

The VVSL extensions that enable error handling within functions as well as operations are
not present in B. The specialisation of events appears to be one way in which error handling
can be incorporated into an Event-B specification. One can then, for example, define events
corresponding to exceptional circumstances in order to meet the robustness requirements of the
system.

5.4. Demonstrators

The Event-B models and specification document for the CDIS subset form the tangible demon-
strator for this particular case study. These models, when used with the RODIN tools, should
demonstrate the tools’ applicability and usefulness with respect to industrial-sized projects.

5.5. Future Development

The CDIS case study has already proved to be very beneficial to the project. Although it
contains only a relatively small subset of the original CDIS specification, it is nonetheless
larger than most research case studies and it is rich in “real world” complexities.

Less progress has been made in reworking the CDIS specification and design using the RODIN-
nominated notations (Task 1.4.4) than we might have been wished; however, (as in all scientific
experiments) it has been the difficulties and failures that have been the most instructive. In
particular, it has become clear that any naive attempt at direct translation of the CDIS VVSL
specification into Event-B will simply reproduce the size and complexity deficiencies of the
original in a new form.

Future work on Task 1.4.4 will not pursue that approach further but will, instead, focus on fur-
ther development of the work started at the University of Southampton as described in section
5.3.2. This approach attempts to make use of the possible new strengths of the Event-B nota-
tion to create a new specification from the CDIS requirements. The existing CDIS specification
will serve a guide for the refinements needed rather than as a detailed route map. The strength
of this approach is that it will much better serve to evaluate the benefits of Event-B. A potential
drawback is that the resulting specification might be quite different in form from the original
VVSL specification, thus making it harder to show that the Event-B version is in some way
equivalent to it. The continuing work in this area will provide inputs to further methodological
investigations (WP2) and the tool development tasks (WP3 and WP4).

5.6. References

[5.1] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University Press,
New York, NY, USA, 1996.

61

[5.2] J. Dawes. The VDM-SL Reference Guide. Pitman Publishing, 1991.

[5.3] A. Hall. Using formal methods to develop an ATC information system. IEEE Software,
13(2):66–76, March 1996.

[5.4] A. Hall. Description of CDIS subset. RODIN/Praxis internal document S.P1286.50.2
Issue 0.3, January 2005.

[5.5] C. B. Jones. Systematic software development using VDM. Prentice-Hall, Inc., 2nd
edition edition, 1990.

[5.6] C. A. Middelburg. VVSL: a language for structured VDM specifications. Formal Aspects
of Computing, 1:115–135, 1989.

[5.7] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in
Computer Science, 2nd edition, 1992.

62

SECTION 6. INITIAL REPORT ON CASE STUDY DEVELOPMENTS
FOR CASE STUDY 5: AMBIENT CAMPUS – THE LECTURE

SCENARIO

6.1. Introduction

The overall project work on the Ambient Campus case study is focusing on

• elucidation of the specific fault tolerance and modelling techniques appropriate for
Ambient Intelligence (AmI) application domain,

• validation of the methodology developed in WP2 and the model checking plug-in for
verification based on partial-order reductions, and

• documentation of the experience in the forms of guidelines and fault tolerance templates.

More specifically, in this case study we are investigating how to use formal methods combined
with advanced fault tolerance techniques in developing highly dependable AmI applications. In
particular we are developing modelling and design templates for fault tolerant, adaptable and
reconfigurable software. The case study covers the development of several working ambient
applications (referred to as scenarios) supporting various educational and research activities.

The first year our work has focused on three major subtasks (see Project Description of Work
[6.1]):

T1.5.1. Define case study, evaluation plan, measurements and assessment criteria
T1.5.2. Produce informal specification of the ambient campus; identify problems related to

provision of fault tolerance
T1.5.3. Identify general solutions from the area of application level fault tolerance (such as

atomic actions and exception handling) to be adapted to AmI applications; apply
adapted techniques to the ambient campus system.

6.2. Major directions in case study development

During the first year we have been mainly working on the first scenario – the Ambient Lecture
scenario. This chapter provides a progress report on the Ambient Campus case study, in
particular regarding the lecture scenario. After the completion of the requirements document for
the Ambient Campus case study [6.2], two strands of work have been carried out. One involves
the development of modelling techniques that support rigorous design of the lecture scenario
using the B method (see sections 6.3.2 – 6.3.3). The other strand focuses on the feasibility study
of the hardware and software that can be used for implementing this system (see sections 6.3.4 –
6.3.5).

In the second year, we will work on rigorous specification of this scenario, on its formal
modelling using one of the RODIN formalisms (most likely B), on application of the mobility

63

abstractions which are under development in WP2 and on preparation of the second scenario. We
are planning to apply the general refinement/decomposition techniques to be developed in WP2
and to progress further with our programming experiments. It is our plan to develop a prototype
demonstration to show it during the 4th RODIN workshop in April 2006.

Later on, we will develop the second scenario, evaluate the applicability of the process-based
modelling techniques (WP2) in this case study and apply the mobility plug-in (WP4) to model-
check mobility and fault-tolerance specific properties of the Ambient Campus scenarios.

The rest of this chapter discusses in detail the progress that has been made, along with the
recommendations for further work to be done.

6.3. Achieved results

The first major result is the development of the requirements document written to capture the
main characteristics of the system for supporting the lecture scenario of the Ambient Campus
case study [6.2]. This system is meant to support mobile devices such as Personal Digital
Assistants (PDAs) communicating with each other through wireless network supported by
hotspots. The use of wireless network provides a challenge – among others – in the way
communications are conducted, where loss of communication might become a common issue.
This leads to a requirement for the system to tolerate and handle communication losses
appropriately. An overview of the requirements document is given in section 6.3.1.

In order to implement the Ambient Campus system, a formal approach for designing the
architecture for supporting mobile devices is taken. This design is performed using the B method
and through several refinements, the Context-Aware Mobile Agents (CAMA) system specifying
the scenario is formulated. More details on this system and its development process are discussed
in section 6.3.2.

Mobile device potentials are not fully exploited without introducing mobile agents. In our case, a
mobile agent is a representation of the human user; it is a piece of software that allows a human
user to interact with the services provided on a wireless location through his/her mobile device.
Our work on developing the techniques for formal specification of mobile agents and their
functionality is summarized in section 6.3.3.

Considerable amount of work has also been done on the preliminary exploration of the mobile
devices and the underlying technologies that are to be used in the lecture scenario. These include
the hardware (such as PDAs and hotspots) as well as the software (such as the middleware for
supporting mobile agents, programming language and platform support) that are needed for the
implementation and the demonstration of the lecture scenario. Sections 6.3.4 and 6.3.5 cover the
hardware and software technologies respectively.

6.3.1. Requirements document

Based on the methodological approach outlined by J.-R. Abrial [6.3], we prepared a

64

requirements document for the Ambient Campus case study. This document focuses on the
lecture scenario. In particular, we introduce Ambient Campus Environment (ACE) concept to
cover entities that are needed to support the running of the lecture scenario. These include the
PDAs, desktop computers, software agents (to be run on the PDAs and desktop computers), as
well as hotspots to enable wireless communication among the software agents.

For better understanding and clarity, the requirements are classified into several categories. The
taxonomy of the lecture scenario requirements is as follows:

1. EN – this requirement covers general requirements regarding the environment, including

statements on the required properties of users and ACE.

2. FT – this requirement deals with fault tolerance issues: the system should be able to tolerate
a number of abnormal situations such as connectivity loss, failures of PDAs and desktop
computers, violation of time constraints and fire alarms. These requirements define a set of
related abnormal situations.

3. ST – the requirement of this category specifies the states that an agent can fall into, and how
the agents change their states depending on the role or activity they are performing at a
particular time.

4. SV – this requirement defines service requirements and restrictions that ACE should provide.

5. QL – the QL requirement sets additional requirements related to the quality of service, such
as performance and resource usage that certain services provided by the agents need to
satisfy.

6. SE – this requirement captures issues related to security, such as access permission,
authorization and shared resource access.

7. TT – the requirement of this category lists the delays and timeouts associated with various

services or service quality requirements.

Using this taxonomy, the full requirements were constructed; readers are recommended to
consult [6.2] for a thorough description and full explanation of these requirements. In this
section, we show some important excerpts from the requirements document.

6.3.1.1. Location and connectivity

Location refers to a room on campus that has a hotspot providing wireless connectivity.
Connectivity area may reach beyond the room or even cover several rooms. Connectivity areas
may also overlap (Figure 6.1).

The users (i.e. people) involved in the scenario are teachers and students. There is one teacher
and several students involved in each lecture activity. Teacher and student users are represented
by software agents in the ACE: the teacher agent is run on the desktop computer present in the

65

room whereas each student agent is run on an individual PDA (see Figure 6.2). The users control
the actions of their agents through a graphical user interface presented on their device (desktop
computer or PDAs).

When a student carrying a PDA moves from one location to another, there is a possibility that
his/her agent will experience a loss of connection, and re-connection later (see Figure 6.1). This
should be handled appropriately by the system.

6.3.1.2. Possible lecture activities

One of the most important aspects of the scenario is the representation of the activities that can
be performed during a lecture. Typical activities might include:

• Registration of students
At the beginning of a lecture, the teacher takes attendance of the students. Students
register to the lecture through their PDA, and there is an authentication process to ensure
that only authorised students will be allowed to participate in the ACE-supported lecture
scenario.

• Material dissemination
Teacher can distribute lecture related materials, such as lecture notes, reading list or
timetable/venue changes directly to students’ PDAs.

• Organisation of students into groups
Students may be organised into groups to do a group task or to allow group discussions.
Enforcement of group policies (such as only those within the same group can talk to each
other) will be observed in the scenario.

• Individual task
From time to time, teacher may give students a task to do individually. This includes
those tasks for assessing the progress of each student, so we need to ensure that the
submissions from the students are handled appropriately.

• Group task
The teacher may also give tasks to be performed through collaborative effort by students
in groups. As with the individual tasks, the submission of the group tasks must be
handled appropriately.

Figure 6.1: Location and connectivity area

66

• Questions from students
Students might be more inclined to ask questions on materials they do not understand if
they can do it quietly through their PDA. The teacher can then answer the questions
privately or if he/she thinks it will benefit the whole class, the answer can be broadcast to
all. The teacher could also pass the questions to the class to see if any of the students can
provide an answer.

More activities can possibly be added later, but for now we think the above set should provide
enough challenge for developing and testing the software system to support the lecture scenario.

The requirements document also addresses emergency, failure and timing requirements, these
can be found in [6.2].

The following sections discuss the framework and infrastructure for implementing the Ambient
Campus case study.

6.3.2. CAMA system

The Context-Aware Mobile Agents (CAMA) system consists of a set of locations and basic
coordination functionality provided by the middleware. Active entities of the system are agents.

TA

SA

SA

SA

SA
SA

SA

SASA

SA

SA

SA

SA
SA

SA

SA

Wireless Connectivity Area

Desktop computer

PDA

TA Teacher Agent

SA Student Agent

Figure 6.2: Arrangement of Ambient Campus Environment

67

An agent is a piece of software that conforms to some formal specification. The requirements for
agents are developed using the B Method. Each agent is executed on its own platform. The
platform provides an execution environment and an interface to the location middleware. Agents
coordinate their execution through a Linda-type coordination tuple space to ensure their
asynchrony and anonymity. More specifically, they communicate through the special construct
of the coordination space called scope, which structures their coordination. An agent can
cooperate only with other agents through participation in a common scope. Agents can logically
and physically migrate from a location to another location. Migration from a platform to a
platform is also possible using logical mobility. An agent is built as a combination of one or
more roles. Each role is a formal specification of a specific functionality so that a composition of
specifications of all the roles forms the specification of the agent. Each role is a result of the
decomposition of an abstract scope model so that each concrete run-time scope is an instantiation
of an abstract scope model.

6.3.2.1. Formal development of CAMA system

The formal development process of the CAMA system consists of several steps. First, we create
abstract specifications of the middleware (location) and the scopes to be supported by the
system. Then we develop (by the stepwise refinement method) specifications of different roles
participating in scopes. Finally, we compose an agent specification as a combination of several
developed roles (i.e. agent interfaces) and the default functionality defining the agent behaviour
outside scopes.

Agent specification can be further refined by adding more details and custom functionality.
Communication compatibility of different agents is ensured by the fact that all agents are
developed by the formal refinement method from the same abstract specifications of different
roles and the middleware. Therefore, agents can collaborate making safe assumptions about the
functionality of their peers.

The B Method [6.3] (further referred to as B) is an approach for the industrial development of
highly dependable software. The method has been successfully used in the development of
several complex real-life applications. The tool support available for B provides us with the
assistance for the entire development process. For instance, Atelier B [6.4], one of the tools
supporting the B Method, has facilities for automatic verification and code generation as well as
documentation, project management and prototyping. The high degree of automation in verifying
correctness improves scalability of B, speeds up development and, also, requires less
mathematical training from the users.

The development methodology adopted by B is based on stepwise refinement. While developing
a system by refinement, we start from an abstract formal specification and transform it into an
implementable program by a number of correctness preserving steps, called refinements. A
formal specification is a mathematical model of the required behaviour of a (part of a) system. In
B, a specification is represented by a set of modules, called abstract machines. An abstract
machine encapsulates state and operations of the specification and as a concept is similar to a
module or a package.

68

We have started some initial work on application of the model-checking mechanisms to
verification of agent properties. In particular, we are interested in the behaviour of
communicating multi-agent systems, including their fault tolerant aspects. For this purpose, we
are developing the CAMA semantics and multi-stage translation process from CAMA to Petri
nets. This work is carried out as a joint activity between WP4 work on mobility plug-in and
WP1. In our approach [6.5], Klaim process algebra [6.6] and pi-calculus will be employed for the
intermediate representation and transformation into Petri nets. The model checking technique
adopted in our work is a partial-order model-checking based on Petri net unfoldings.

6.3.3. Mobile agent development

In our approach, an agent specification is built by extending one or more roles obtained formally
through decomposition of the abstract scope models. The refinement step introduces a
specification of the minimal agent functionality called the default role. This functionally permits
an agent to talk to locations, create/join/leave scopes, and do migration. Agent may also need
some logic that glues independent interfaces and allows them to talk to each other. This is done
via global agent variables and the special methods for accessing them.

Upon its completion, the agent specification is used to build the source code for the actual agent
program. The source is linked with the middleware library to get an executable agent program.
The generated agent source may run on PDAs, laptops, desktop PCs and smart-phones using the
platform-specific middleware implementation as the adaptation layer.

The standard work cycle of an agent looks like this: an agent detects the available locations and
connects to at least one of them, then it looks for the current activities on the location(s) or
creates its own new scope, and finally it joins a scope and plays one of the implemented roles in
it. Only when the agent decides to play a particular role in a scope, it really starts to cooperate
with other agents. The agents are interoperable and able to understand each other because the
role functionalities of all scope participants are based on the same abstract model. As a result, the
composition of agent functionalities in a scope corresponds to the initial abstract model.

6.3.4. Mobile technology: hardware

Before we can develop any software agents, we need to familiarise ourselves with mobile
technologies, including the hardware. This led to the purchase of several PDAs and a pair of
wireless hotspots.

The PDAs must have features for supporting wireless connection and they must be able to run
Java programs. In the end we decided to purchase four HP-IPAQ hx2750 running Microsoft
Windows Pocket PC 2003. This model is near the top of the range line at the time.

We could in theory just “piggy back” on the wireless network provided by the School of
Computing Science at the University of Newcastle through their hotspots, but we would like to
experiment with different configurations of wireless hotspots. One configuration is where the
hotspot is connected to just the desktop computer present at a location; another is where the
hotspot is connected to the campus wide network.

69

We also obtained a pretty basic desktop computer on which we installed Linux operating system.
This computer hosts the middleware (i.e. the location or tuple server) needed to coordinate the
communication among software agents. A similar installation in the lecture scenario will also be
used by teachers to deliver lecture, i.e. it will serve as a platform for hosting the teacher agent.

6.3.5. Mobile technology: software

We need customised software to provide the infrastructure for ACE such as the tuple space
server (middleware), as well as the agent software to run on the PDAs.

6.3.5.1. Architectural comparison

For the middleware, we are using the asymmetric scheme which is closer to the traditional
service provision architectures. This scheme is based on the concept of a fairly reliable
infrastructure-provided wireless connectivity. The alternative symmetric scheme can also operate
in ad-hoc networks and all the coordination functionality is implemented by the agents.

In our scheme the larger part of the coordination and controlling logic is moved to a location
server. This approach can support large-scale mobile agent networks in a very predictable and
reliable manner. It makes the better use of the available resources since most of the operations
are executed locally. Moreover, the asymmetric architecture eliminates the need for complex
distributed algorithms or any kind of transactions. This allows us to guarantee atomicity of
certain operations without sacrificing performance and usability. The scheme also provides a
natural way of introducing context-aware computing where a location is part of an agent context.
The major drawback of the asymmetric scheme is that an infrastructure support is always
required for mobile agents to collaborate.

6.3.5.2. Middleware: location/tuple server

After the initial experiments with several mobile agents middleware systems [6.6][6.7][6.8], we
decided to start the development of our own mobile agents middleware. The major rationale for
this decision is that all these systems implement ad-hoc style communication which we found to
be too heavy-weight for the available hardware. Another problem is the lack of industrial
strength implementations of ad-hoc routing algorithms. Our approach is based on the location-
based architecture where all the coordination in a location happens inside a single coordination
server. This allows us to achieve better performance and enrich the concept of coordination
space with structuring, exception handling and security features.

6.3.5.3. Java platform for PDAs

The software agents are to be written in Java. In order to run Java applications on the PDAs, we
need to first install Java Virtual Machine (JVM) on them. We investigated several JVMs that are
available for Pocket PC 2003. There are not many such JVM available, we tried (the demo
version in the case of those commercial ones) and compared several of them:

70

• eWe from Ewesoft [6.9]
eWe is a reasonably well-developed and freely available JVM, but it does not have
standard Java libraries, therefore there are some important features missing (such as
“serialization”).

• J9 from IBM [6.10]
This JVM supports standard Java libraries bar several (for example, swing) and available
to purchase for a reasonable price.

• CrEme from NSIcom [6.11]
This is one of the most comprehensive JVMs for PDA, but on the down side, it is very
expensive to purchase.

We decided to use IBM’s J9 to provide Java platform on our PDAs. J9 is chosen because it
supports all the necessary features that we intend to use for our software agent development and
it is not too expensive to purchase ($5.99 per license).

6.3.5.4. Example

We have developed a simple system to demonstrate the feasibility of ambient applications using
tuple space and PDAs where the communication is done through a wireless network. This system
allows students and a teacher to perform text-based chatting; in this application, the students use
their PDA, and the teacher uses a desktop computer, which also hosts the tuple space server.

The Java implementation can be divided into two main parts:

• jcama library providing classes for dealing with tuple space through CAMA architecture
(see section 6.3.2). At the moment, only basic in and out operations are supported,
allowing objects (such as strings, numbers and even binaries) to be placed into and taken
out of the tuple space. The final version will provide all the communication primitives
along with the scoping mechanism, exception handling and migration. We are also
planning to port the client-side middleware to other platforms and languages, such as
Symbian smartphones, .NET and Python.

• Graphical User Interface (GUI)-based agents. There are two types of agents: student and
teacher agents.

o The student agent allows student to type in a message and to send it to the tuple
space. This agent also checks the tuple space for any message addressed to it and
displays this message on the PDA (as chat history) when that happens.

o The teacher agent manages the tuple space. It picks up any message sent to the
tuple space and broadcasts it to all agents present at that time. Teacher agent can
send messages as well. It also keeps a record of all student agents currently
present, along with the chat history.

In the client-server terminology, the student agent can be considered to be the client
whereas the teacher agent, the server.

There can only be one teacher agent running at a given time, but there can be multiple student
agents. Each student agent has a unique identifier, which enables the teacher agent to distinguish

71

them. When a student agent is run, it tries to detect if there is a teacher agent present. If that is
the case, the student agent will join the chat session. If there is no teacher agent running, the
student agent cannot send any message to the tuple space. When a teacher agent is activated, it
detects any student agents currently running and automatically makes them join the chat session.
Agents can join or leave a session at any time; the system provides the functionality to handle
these events accordingly.

Screenshots of this system are given below. To obtain these screenshots, all of the agents were
run on a desktop computer, but in practice, student agents are usually run on PDAs. Since these
agents are written in Java, they can be easily ported on various platforms or devices.

Teacher runs his/her agent, and when students run theirs, they will be automatically added into
the session and they will receive a welcome message. Teacher agent lets the teacher know who
just joined the session (see Figure 6.3). Student agents can join at anytime, as long as the teacher
agent is running.

Figure 6.3: Initiation of the chat session

Teacher and students can then exchange messages through their agents, as can be seen in Figure
6.4. This screen capture also shows that one student (“Bob”) is about to leave the chat session by
invoking the “Quit” action. When this happens, teacher agent will display a message to let the
teacher know that a student had just left the chat session, but other students will not know, and
the session just continues (Figure 6.5). It is pretty straightforward to modify the system so that all
agents will be notified if anyone leaves. When the teacher agent leaves the session, the chat
session is terminated. There is nothing else that the student agents can do apart from leaving
(quitting) the session, unless the teacher agent comes back and rejoins, upon which the chat can
be resumed.

72

Figure 6.4: Sending and receiving messages during the chat session

Figure 6.5: One student agent left the session, but the chat continues

This system works well and the idea of using a tuple space enables the system to handle loss of
connection from the PDAs. When these PDAs manage to re-establish the connection, their
agents automatically retrieve all messages sent to the tuple space while they were disconnected,
hence no communication should be lost.

73

6.4. Setting the demonstrations

Ambient Campus is the only case study within the RODIN project that aims to provide (a set of)
demonstrations. At this stage, we are planning a simple demonstration to be shown during the 4th
Plenary Workshop in April 2006.

6.5. Future development

It is our plan to complete the development of the first prototype of the system supporting lecture
scenario by summer 2006. Upon this completion, we will test the system, evaluate its
development process and feedback our experience to work conducted in WP2-WP4. During the
coming 8 months we will finalise our decision about the next scenarios. The lecture scenario
could be followed by one of the following Ambient Campus scenarios: a library-based scenario
or a medical school-based scenario. The library scenario places mobile devices into the core of
activities performed in libraries. The system to be developed should enable library users to
search and locate library materials on the move, to scan texts or images directly to their mobile
device, to transfer collected data to their desktop computers, and to directly search and download
materials from the web as they found a reference to it in a library material. The medical scenario
would involve the Medical Education School of the University of Newcastle upon Tyne which
plans to equip all first year students of the Medical Faculty with PDAs from 2006. With the help
of these PDAs, the students will be able to perform a number of education activities when they
are located in one of the university campuses. We are particularly interested in supporting
distributed work of groups of students on joint presentations, essays, course work as well as in
supporting discussion groups and questions and answers sessions which follow lectures and
involve both lectures and students.

There is also a possible link with Nokia case study on developing formal technique within MDA
context (CS3). Later in the project we will analyse how to enrich the MITA framework with the
abstractions and fault tolerance solutions we are developing for this case study and if this is
possible, we will investigate further how the framework can be applied in developing this case
study.

Another possible future development – the usefulness of which we will evaluate later in the
project – is the design and implementation of the ambient campus system on other mobile
platforms such as smart-phones and laptops.

6.6. Summary

This section outlined the progress made during the first year of the Ambient Campus case study.
The major results include the completion of the requirements document; the development of the
infrastructure for supporting Ambient Campus system using the B method; the exploratory
research on the mobile technologies; and the implementation of a simple example demonstrating
our ability to develop ambient applications.

There is still a lot of work to be done, including further refinement of the ambient infrastructure

74

and the implementation of a fully featured demonstration software system. Based on the progress
that we have made so far, we expect that we will be able to meet the challenging objectives set
for this case study in the remaining two years.

6.7. Acknowledgements

We are grateful to Jean-Raymond Abrial for his insightful comments on the initial version of the
Ambient Campus requirements document.

6.8. References

[6.1] Rigorous Open Development Environment for Complex Systems (RODIN), Description

of Work, IST 6th Framework Programme, Proposal No. 511599, April 2004.
[6.2] RODIN Deliverable D4 – Traceable Requirements Document for Case Studies, Project

IST-5111599, February 2005.
[6.3] J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
[6.4] Atelier B, available from http://www.atelierb.societe.com/index_uk.html.
[6.5] A. Iliasov, V. Khomenko, M. Koutny and A. Romanovsky. On Specification and

Verification of Location-based Fault Tolerant Mobile Systems. In Proc. REFT'05 -
Workshop on Rigorous Engineering of Fault Tolerant Systems, Newcastle upon Tyne
(UK), Technical report, University of Newcastle upon Tyne, UK, July 2005.

[6.6] R. De Nicola, G. Ferrari, R. Pugliese. Klaim: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 24(5):315-330, IEEE
Computer Society, 1998.

[6.7] G. P. Picco, A. L. Murphy, G.-C. Roman. Lime: Linda Meets Mobility. Proc of the 21st
Int. Conference on Software Engineering (ICSE'99), Los Angeles (USA), May 1999.

[6.8] G. Cabri, L. Leonardi, F. Zambonelli. MARS: A Programmable Coordination Architecture
for Mobile Agents. IEEE Internet Computing, 4(4):26-35, July 2000.

[6.9] Ewe programming system, available from http://www.ewesoft.com.
[6.10] IBM’s J9, available from http://www.handango.com.
[6.11] CrEme, available from http://www.nsicom.com.

75

	Rodin_CS2_D8.pdf
	Rodin_CS2_D8.pdf
	3.1. Introduction
	3.1.1. Case Study Development
	3.1.2. Case Study Development Cycle
	
	3.1.3. Informal Requirements Stage
	3.1.4. Traceable Requirements Specification
	3.1.5. Domain Analysis
	3.1.6. Domain Engineering
	3.1.7. Requirements for a Specific Application
	3.1.8. Future Development
	3.2. Directions on RODIN Methodology and Tools
	3.2.1. Methodology
	3.2.2. Plug-in Tools

	3.3. Results and Experiences of the Technology
	3.3.1. Modelling
	3.3.2. Learning the Technology
	3.3.3. Experiences with the tools
	3.3.4. New Tool Support

	3.4. Demonstrators and Evaluation
	3.5. References

	WP1CS3_Aug05_v2.pdf
	Section 4. REPORT ON THE CASE STUDY: FORMAL TECHNIQUES IN MDA CONTEXT
	4.1 Case Study Description
	4.1.1 MITA and NOTA
	4.1.2 Network-On-Terminal Architecture

	4.2 Major Directions in Case Study Development
	4.3 Achieved Results
	4.3.1 Platform Development
	4.3.2 NOTA Platform Specification
	4.3.3 Example Service Specifications
	4.3.4 Object Orientation in B
	4.3.5 Theoretical Basis of MDA

	4.4 Demonstrators and Evaluation
	4.5 Summary
	4.6 References

