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Chapter 1

Introduction

Fault tolerance is a means for achieving dependability despite the likelihood that a system still
contains faults and aiming to provide the required services in spite of them [ALLR04]. In our
work we are focusing on developing methods supporting rigorous design of systems capable
of tolerating faults in the system environment, faults of the individual components, component
mismatches, as well as errors affecting several interacting components.

The objectives of Rodin are to contribute

1. methods for the formal specification and formal development of fault tolerant systems;

2. a tools platform and plugins which will support the use of such methods;

3. (five diverse) case studies which both drive the thinking and validate the other results.

The stated intention of the Rodin group is to make “Event-B” (a development of Jean-
Raymond Abrial’s “B” notation [Abr96]; see deliverables in WP-3 for current status) the prime
exemplar of a suitable formal method.1 In addition, members of the project have made signifi-
cant contributions to Petri Net research [BDK01], VDM [Jon80, Jon90], Z [Abr85, Hay93] and
UML [SB04, SOB04a]. The project is therefore in a unique position to explore issues around
fault-tolerance, formal methods and tool support — this exploration will both be informed by
and feed into the case studies.

This “Month 12” deliverable is the first summary of the work within the Rodin project on
such methodological issues.

Chapter 2 recaps a number of important questions which relate to formal methods them-
selves; Chapters 3–8 develop specific points where progress has already been made; Chapter 9
indicates where we will next concentrate our efforts.

1Because of the parallel evolution of documents over this first year of the Rodin project, it is obviously not
possible to have all of the examples in this deliverable comply to the description of “Event-B” in D7. This issue
will be addressed in future deliverables as the tools become available.
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Chapter 2

Issues

This chapter outlines a number of issues1 which are relevant to the sort of methodology with
which Rodin is concerned. Section 2.1 identifies questions which carry over from any formal
method where we feel it worth considering what impact the application area of Rodin (fault-
tolerant systems) might have; Section 2.3 repeats this pattern for concurrent systems since con-
currency is bound to be a major aspect of many systems of interest; Section 2.4 is concerned
more specifically with fault-tolerant systems; Section 2.2 (its order is determined so that mate-
rial is explained only once) addresses issues concerned with getting the initial specification of a
system; and Section 2.5 discusses some of the implications on tools to support formal methods
for fault-tolerant systems (there is of course a parallel WP on the specific Rodin tools).

2.1 Formal methods in general

This section covers a number of technical issues concerned with formal methods for specifica-
tion and development.

2.1.1 Building a specification from parts

There are occasions where it is desirable (or at least it appears to be so) to build up a large spec-
ification from parts. The arguments for so doing need to be closely examined partly because
there appears to be a need to “flatten” such specifications in order to develop from them. (An
old paper which sets out a challenge problem is [FJ90]. This paper was productive in the sense
that there were responses representing several methods. One of the lessons is that engineering
taste in such decompositions is as important as the formal notation.)

One interest in this area comes from the markedly different approaches taken in VDM, Z
and B.

• VDM initially [Jon80] offered no help in building up specifications; in [Jon90] a method
of “operation quotation” was suggested which facilitated the promotion of an operation
on one state –sayA– to be used in operations on states which included components of
typeA; the VDM standard [ISO95] took broadly this position but VVSL [Mid93] (which

1No attempt is made to reproduce in full material that is written at greater length elsewhere; we simply cite
source papers.
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was used in the original Praxis project on CDIS — see [Hal96]) and VDM++ [FL98,
FLM+05] both developed further ways of building up specifications;

• early versions of Z2 also struggled with the problem of promotion and a range of ap-
proaches were discussed. The eventual “schema calculus” which is seen today as stan-
dard Z [HJN94] is loved by some but seen by others as a very dangerous textual copying
mechanism which is difficult to reconcile with proofs;3 and

• B [Abr96] is, in many respects, closer to VDM than it is to (what most people cite as)
Z: for example, B has a clear textual distinction between machines, operations, pre and
post-conditions; furthermore, Abrial’s current thoughts on Event-B question the wisdom
of building up of specifications for components.

There is an argument that Z schemas are useful fordevelopinga specification and that a VDM
or B machine style is necessary as a basis of development from a specification.

One reason that this debate needs to be resumed is that the need to describe normal and
exceptional behaviour is a telling example of structuring.

2.1.2 Partial functions

Partial functions and operators occur frequently in program/system specifications and it is
therefore important to decide how to handle them in formal reasoning. Classical logic (FOPC)
does not really cope with undefined terms.

A variety of approaches have been tried – see [Jon96b, Jon95] for a (biased?) listing.
Interestingly, Jean-Raymond Abrial and Cliff Jones favour somewhat different approaches.

Abrial argues [AM02] that one needs to show that all applications of partial functions are used
within their defined domain. Jones uses a non-standard logic known as the “Logic of Partial
Functions” [BCJ84, CJ91, JM94]

Abrial and Jones discussed the issue again on Jones’ May 2005 visit to ETH and agreed
that the tooling question (cf. Section 2.5) could be decisive to the question of usability.

(There are interesting links to be investigated with the position taken by the UML group on
OCL.)

2.1.3 Role of invariants

The position taken in early VDM (cf. [Jon80]) was that data type invariants had to be implied
by post conditions. This is very like the current interpretation in (Event-)B. After the first book,
Jones switched to viewing objects with invariants as restricted types: quantifying over the type
implies that the invariant is satisfied.

This issue is worth considering again, and as with partial functions, tool support is likely to
be influential. (There are again interesting links to be investigated with the position taken by
the UML group on OCL.)

2This is “pre-Z” to most people and refers to the time when Abrial and Jones were both in PRG at Oxford.
3There was a relevant debate (which represented all of the points of view) in the Helsinki plenary Rodin

meeting between Abrial/Hall/Jones on exactly this topic.
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2.1.4 Controlling the order of operation execution

VDM essentially did nothing explicit about controlling the order in which operations can be
invoked (pre conditions are essentially proof obligations in that it is a mistake to (try to) invoke
an operation when the pre condition is false).4 The position of (original) B [Abr96] is similar.
VDM++ [FL98, FLM+05] embeds VDM ideas into an object-oriented (imperative) framework.

Event-B uses guarded statements in the style of “Action systems” [BvW98, Mor90].
A number of authors [But00, BL05, CSW03, AE04] have experimented with using process

algebraic expressions to control which operations are “available” at any point in time. Jones
has suggested that the two approaches be viewed as possible refinements (in either direction) of
each other. He also suggests that the mapping from various OOLs to the pi-calculus suggests
that a natural notation for creating instances of machines could be provided.5

2.2 Analysing systems

The notion of system itself needs careful analysis because we are clearly talking about a re-
cursive notion of “systems of systems”. Fortunately, the earlier FP-5 project DSoS produced a
careful “conceptual model” [GIJ+02].

The IST MATISSE project applied a system-level approach with B to the development of
a railway signalling system. Part of this work is described in [But02]. The work described
in [But02] is a system-level approach in the sense that is starts with an abstract formal model
of the overall system to be controlled, including relevant control behaviour. This high-level
model is then refined, adding detail about interactions between sub-components of the system,
so that formal models may be decomposed into the system under control and the embedded
controllers. Thus, rather than starting with formal models of the embedded controllers and ver-
ifying that they interact with the system under control, it starts with a model of the desirable
behaviour of the overall system and uses refinement to derive models of the embedded con-
trollers. The refinement is typically performed in several steps, and at each step it is verified
that any behaviour of the refined model is allowed by the previous model, thus ensuring that the
final detailed model is correct with respect to the original system-level model. The advantage of
our approach is that it makes it easier to deal with the complexity of the designs. We start with
a simple system-level model and introduce extra complexity one step at a time. The approach
we take is particularly suited to systems which consist of multiple distributed controllers. In the
system level model, we abstract away from any distribution and only introduce it in refinement
steps.

The railway case study presented in [But02] is a simplified version of work that we are
undertaking as part of the MATISSE project with input from one of the MATISSE partners,
Siemens Transportation Systems. The system-level model describes features of the railway
such as connections between track sections, occupancy of track sections by trains, basic move-
ment of trains and changing of track connections. The model represents safety features only
and does not represent mission-oriented features such as scheduling and routing. The paper

4This is actually a slight over-simplification in that the part of VDM more commonly associated with program-
ming language semantics does have a set of sequencing “combinators” — but these are not normally mixed with
pre/post conditions.

5An extended abstract is at [Jon05] the material has also been presented to IFIP WG2.3.
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outlines a refinement which allows the system to be decomposed into the track behaviour and
the train behaviour, with communication between the track and the trains.

2.2.1 Deriving the specification of control systems

The work (initially done in the DIRC project — see www.dirc.org.uk) on deriving specifica-
tions of control systems is extremely relevant to Rodin’s objectives. The initial publication
was [HJJ03] but the research has been presented widely and is being actively pursued within
Rodin by Joey Coleman. Coleman and Jones have a joint paper at the forthcoming (Rodin-
organised) REFT workshop. Because those proceedings are not yet available in print,6 7 we
take the liberty below of extracting from the paper an overview of the “Hayes/Jackson/Jones
approach”.

The general idea of the “Hayes/Jackson/Jones” approach [HJJ03] is simple: for many tech-
nical systems it is easier to derive their specification from one of a wider system in which
physical phenomena are measurable. Even though the computer cannot affect the physical
world directly, it is still worthwhile to start with the wider system. The message can be stated
negatively: don’t jump into specifying the digital system in isolation. If one starts by recording
the requirements of the wider (physical) system, the specification of the technical components
can then bederivedfrom that of the overall system; assumptions about the physical components
are recorded as rely-conditions for the technical components.

In order to be able to write the necessary specifications, some technical work derived from
earlier publications of Hayes, Jackson and Jones has to be brought together. The process of
deriving the specification of the software system involves recording assumptions about the non-
software components. These assumptions are recorded as rely conditions because we know how
to reason about them from earlier work on concurrency (e.g. [Jon81, Jon83a, Jon96a]). In most
cases, we need to reason about the continuous behaviour of physical variables like altitude:
earlier work by Hayes (and his PhD student Mahony) provides suitable notation [MH91]. The
emphasis on “problem frames” comes from Jackson’s publications [Jac00].

A trivial example of the HJJ approach is a computer-controlled temperature system: one
should not start by specifying the digital controller; an initial specification in terms of the actual
temperature should be written; in order to derive the specification of the control system, one
needs to record assumptions (rely conditions) about the accuracy of sensors; there will also be
assumptions about the fact that setting digital switches results in a change in temperature. Once
the specification of the control system has been determined, its design and code can be created
as a separate exercise. At all stages — but particularly before deployment — someone has
to make the decision that the rely conditions are in accordance with the available equipment.
Figure 2.1 gives an abstract view of the HJJ approach. The referenced [HJJ03] outlines this
procedure for a “sluice gate” controller. The analysis includes looking at tolerating faults by
describing weaker guarantees in the presence of weaker rely conditions.

Notice that it is not necessary to build a complete model of the physical components like
motors, sensors and relays: only to record assumptions. But even in the simple sluice gate
example of [HJJ03], it becomes clear that choosing the perimeter of the system is a crucial

6Last minute addition: proceedings now available as Technical Report: [BJRT05]
7Ian Hayes gave an invited talk on the approach at REFT-05 and Jones gave an invited talk at DSVIS-05 on

possible extensions to the approach.
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Figure 2.1: Bridging from the physical world to a digital control system

question: one can consider the physical phenomena to be controlled as the height of the gate,
or the amount of water flowing; or the humidity of the soil; or even the farm profits. Each such
scope results in different sorts of rely-conditions.

2.2.2 Domain modelling

Before describing what domain modelling is we first define the notion of a domain. There are
many definitions of what a domain is but all have a commonality. We choose the definitions
provided in [Eva04], [SM92, Old02] for the basis of this description.

A domain defines a particular level of abstraction and the areas of concern for a
description which is then presented in terms of a formal model using some suitable
language (B, UML etc).

In [Old02] a domain is described as an area in which an ”Enterprise” conducts its business;
how this is expressed and what information is contained in any description of a domain (i.e. a
domain model) depends upon the methods used to describe that information. In [Eva04] a
domain is defined as “a sphere of knowledge, influence or activity”. Domain modelling is thus
the act of describing the captured knowledge about some domain.

The Shlaer-Mellor method [SM92] provides a structure about how domains interact in the
context of some development project. In [RFW+04] this is made explicit by defining four
categories of domains:

• Application

• Service

• Architecture

• Implementation

These terms refer to the rôle that a domain model isplaying at any point in time with
respect to a given development. One project might create something that is considered to
be an application, while in another project this application is considered to be a service or
architecture.
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A application domain contains models of the “real world” for the purpose of describing
the system under consideration from the users’ point of view. The models in this domain will
use the terms and concepts of the users only.

A service domaincontains the basic services which is independent of the application do-
main for the support of the application domain. Such services might be persistence, fault
tolerance facilities etc.

Thearchitecture domain is the domain that provides the execution environment for all the
application and service domains that have been described. The use of the term execution here
does not necessarily refer to any machine level implementation but rather some environment
that allows some form of execution [HJ89, Fuc92, GH96].

Finally theimplementation domain is reached in which is defined and modelled any pre-
existing components, operating system environments, programming languages, storage etc.

One might argue in the case of MDA as defined by the OMG8 that the purpose of the
MDA is to take (platform independent) models from the application domain and map them
into models in a concretised application domain (platform specific) via some platform which
is defined from combinations of artifacts from the service, architecture and implementation
domains which together define the set of platforms that the system may be mapped onto.

2.3 Issues concerned with concurrency

Concurrency arises both in implementations where the designer is striving for performance by
deploying many processors and is inherent in some problems. The latter case is commonly
true where there is an interface to the physical world (e.g. handling many ATMs for a bank or
processing signals from sensors which are obtaining input in real time).

The Rodin methods must therefore tackle the specification and design of concurrent sys-
tems. This section outlines some relevant research which will be re-evaluated within the Rodin
context.

2.3.1 Coping with interference

Work on specifying and reasoning about the interference which is inherent with concurrency is
addressed in many theses and papers. In particular, Jones’ rely/guarantee research is addressed
in [Jon81, Jon83a, Stø90, Col94, Xu92, Din00, BS01] The best (encyclopedic) overview is [dR01]
but there is a clear need for a more usable survey of rely/guarantee-conditions and Cole-
man/Jones hope to tackle this before the Month 24 report.

2.3.2 Refining atomicity

The notion of “atomicity” is at the heart of our understanding of concurrent execution (see,
for example, [Dij82, BJ05]) and links intimately with questions of fault tolerance [XRR+99].
(Other relevant topics include atomicity and formal refinement, atomicity and error isolation,
atomicity and error recovery, atomicity and system structuring, atomicity and stepwise system
development.)

8See www.omg.org/mda
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A Schloß Dagstuhl event was organised in April 2004 on the topic of “Atomicity” (Ro-
manovsky and Jones were two of the organisers of the event — several other members of the
Rodin team attended the exciting event).9 An overview reflecting the progress in bringing the
diverse views together has been published in the specialist journals of several of the disciplines
present (e.g. [JLRW05]); a special edition of the JUCS journal in July 2005 contains a selection
of the papers which were presented.

The Rodin group sees this sort of event as an important way both to disseminate Rodin
results and to make progress on a ubiquitous research question. They are planning a further
Schloß Dagstuhl event on the topic which will be held in March 2006.10 There will again be an
international list of participants (the other co-organisers are from Seattle and Germany) and a
mixture of research interests from databases, fault tolerance, machine architectures and theory.

Jon Burton (Newcastle) –together with Jones– have just (July 2005) begun research on a
UK-funded (EPSRC) project on “Splitting (software) atoms safely”. This project could provide
useful input to Rodin work on development methods (see [Jon03] for the motivation of this
research).

2.3.3 Process algebras and net theory

Petri nets [Rei85] and process algebras, e.g. [Hoa85, Mil89], are two of most successful formal
models for the description and analysis of concurrent and distributed systems. They can be
viewed as concurrent extensions of respectively finite automata and regular expressions.

Process algebras allow one to specify and reasoncompositionallyabout complex concur-
rent computing systems, by employing specific algebraic operators corresponding to commonly
used programming constructs. Petri nets, on the other hand, provide both agraphical repre-
sentationof such systems and, through employing the theory of partial orders and unfold-
ings [Kho03], efficient ways ofverifying their correctness as well as expressing properties
related to causality and concurrency in system behaviour. A decade ago the standard treatment
of the structure and semantics of concurrent systems provided by these two types of models was
different, making it virtually impossible to take full advantage of their relative strengths (i.e.,
compositionality and explicit asynchrony) when used in isolation. Since then the situation has
changed considerably, in particular, due to the development of the Petri Net Algebra [BDK01]
which is a generic model that embodies both Petri nets and process algebras, and thus directly
supports explicit asynchrony and compositionality. For a carefully chosen (yet flexible) algebra
of process expressions it provides corresponding well-behaved process-algebraic composition
operators on nets. The resulting model is expressive enough to model process algebras (e.g.,
CCS and CSP [Hoa85, Mil89]), within a setup provided by two consistent semantics, respec-
tively based on Petri nets and SOS rules in the style of [Plo81a]. One of the fundamental
achievements of the Petri Net Algebra was a full consistency between two seemingly different
semantics of process expressions: one based on suitably defined operational semantics rules,
and the other derived from the standard Petri net semantics and compositional mapping from
expressions to nets. Such a framework has been developed mainly for a net model based on the
basic class of nets (1-safe Place/Transition nets). However, several results have been lifted to
the high-level net framework and a concurrent specification language implemented in the PEP

9See http://www.dagstuhl.de/04181/
10See http://www.dagstuhl.de/06121/

12



toolkit [GB96]. From the point of view of Rodin, a crucial step was the development of an
extension of the Petri Net Algebra [DKK04] capable of modelling theπ-calculus [MPW92].
This has paved the way for the ongoing effort to construct a combined Petri net and process
algebra model for dealing withmobility in concurrent systems based on the KLAIM process
algebra [BBN+03]. As a result, one should be able to apply Petri net based verification tech-
niques to deal with mobile distributed systems, as described next.

Mobile systems are highly concurrent causing thus astate space explosion[Val98] during
verification. One should therefore use approach which alleviates this problem; in our case, we
employ the partial order semantics of concurrency and the corresponding Petri net unfoldings.

A finite and complete unfolding prefixof a Petri netN is a finite acyclic net which implic-
itly represents all the reachable states ofN together with transitions enabled at those states.
Intuitively, it can be obtained throughunfoldingN , by successive firings of transition, under
the following assumptions: (i) for each new firing a fresh transition (called anevent) is gener-
ated; (ii) for each newly produced token a fresh place (called acondition) is generated. IfN
has finitely many reachable states then the unfolding eventually starts to repeat itself and can be
truncated (by identifying a set ofcut-off events) without loss of information, yielding a finite
and complete prefix.

Efficient algorithms exist for building such prefixes [Kho03], and complete prefixes are
often exponentially smaller than the corresponding state graphs, especially for highly concur-
rent Petri nets, because they represent concurrency directly rather than by multidimensional
‘diamonds’ as it is done in state graphs. For example, if the original Petri net consists of 100
transitions which can fire once in parallel, the state graph will be a 100-dimensional hypercube
with 2100 vertices, whereas the complete prefix will be isomorphic to the net itself. Since mo-
bile systems usually exhibit a lot of concurrency, their unfolding prefixes are often much more
compact than the corresponding state graphs.

2.3.4 Process Algebra and Event B

In the Event-B approach, a system is viewed as a reactive system that continually executes
enabled operations in an interleaved fashion. This allows parallel activity to be easily modelled
as an interleaving of operation executions. However, while B machines are good at modelling
parallel activity, they can be less convenient at modelling sequential activity. Typically one has
to introduce an abstract ‘program counter’ to order the execution of actions. This can be a lot
less transparent than the way in which one orders action execution in process algebras such
as CSP [Hoa85]. CSP provides operators such as sequential composition, choice and parallel
composition of processes, as well as synchronous communication between parallel processes.

The paper [BL05] describes an approach to using CSP and B together in a complementary
way. B can be used to specify abstract state and can be used to specify operations of a system
in terms of their enabling conditions and effect on the abstract state. CSP can be used to give
an overall specification of the coordination of operations. To marry the two approaches, the
paper takes the view that the execution of an operation in a B machine corresponds to an event
in CSP terms. Semantically a B machine is viewed as a process that can engage in events in
the same way that a CSP process can. The meaning of a combined CSP and B specification
is the parallel composition of both specifications. The B machine and the CSP process must
synchronise on common events, that is, an operation can only happen in the combined system
when it is allowed both by the B and the CSP. The approach described in [BL05] has been
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implemented as part of the ProB model checker. ProB supports refinement checking between
B models and between combinations of CSP and B.

There is much existing work on combining state based approaches such as B with process
algebras such as CSP. The csp2B tool [But00] allows specifications to be written in a combi-
nation of CSP and B by compiling the CSP to a pure B representation which can be analysed
by a standard B tool. The CSP support by csp2B is more restricted than that supported by
PROB: csp2B does not support internal choice and allows parallel composition only at the out-
ermost level unlike the arbitrary combination of CSP operators supported by PROB. The the
CSP‖B approach of [ST04] is focused on a style of combining CSP and B where the B ma-
chines are passive and all the coordination is provided by the CSP. This means the operations
of their B machines cannot be guarded though they can have preconditions. They have devel-
oped compositional rules for proving that CSP controllers do not lead to violation of operation
preconditions.

There has been much work on combining CSP with Z and Object-Z, including [Fis97], [Smi97]
and [MD98]. Like our approach, these treat Z specifications as CSP processes and model the
composition of the CSP and Z parts as parallel composition. The work described in [MS01] de-
scribes an approach to translating Z to CSP so that CSP-Z specifications can be model checked.
This translation is not automated though. The Circus language is a rich combination of Z and
CSP allowing Z to be easily embedded in CSP specifications and providing refinement rules
for development [WC02]. We are not aware of any tools that allow for model checking of Z
and CSP specifications directly.

2.4 Specific issues to do with fault tolerance

The Rodin group is, as mentioned above, striving to make fault tolerance part of the rigorous
development process.11

(Material below in Chapter 6 should also be considered under this heading.)

2.4.1 Failure management

Critical control systems need to be able to cater for and manage failure of their sources of input
information.12 The role of failure management in an embedded control system is shown in
Figure 2.2.

Inputs may be tested for signal magnitude and/or rate of change being within defined
bounds, and for consistency with other inputs. If no failure is detected, some input values
are passed on to the control subsystem; others are only used for failure detection and manage-
ment. When a failure is detected it is managed in order to maintain a usable set of input values
for the control subsystem. This may involve substituting values, and taking alternative actions.
To prevent over-reaction to isolated transient values, a failed condition must persist for a period
of time before a failure is confirmed. Once a failure is confirmed, more permanent actions are
taken such as switching to an alternative source, altering or degrading the method of control,
engaging a backup system or freezing the controlled equipment.

11The REFT-05 Workshop [BJRT05] had this aim.
12See for example the engine control case study.
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Figure 2.2: Context diagram for failure management subsystem

The nature of failure management is that different control actions and behaviour are re-
quired, dependent on the outcome of conditional logic for each of many inputs; this can result
in complex overall behaviour. As a result it becomes difficult to identify reusable generic
components that closely map to the problem domain. One approach is to model a failure man-
agement subsystem using UML-B. The flexibility of the object-oriented structures will improve
reconfigurability and the use of formal verification will be particularly suited to safety critical
applications. Modelling functional behaviour will provide the ontology to convey functional
understanding and, through formal techniques, provide a way to map this to the code, reducing
the semantic gap.

UML-B model of failure management

As an example of using UML-B to develop failure management systems we developed a sim-
plified model and its verification. This was presented [SBEJ04b] at the 3rd International Work-
shop on Critical Systems Development with UML (CSDUML’04). Our first abstract model
captures the overall states of the system. In subsequent refinements we model the stages in
confirming a failure, the mechanism for freezing the system and the relationship between indi-
vidual inputs and the collective state of the system. In these early stages we leave many aspects
of the system under specified, saying only, for example, that an input may be detected as an
unconfirmed failure and then may either recover or become a confirmed failure; but saying
nothing about how or why these choices are made. Despite this (non-deterministic) under-
specification the model embodies important properties about the interaction of the states of
inputs that we verify by proof. To simplify the example we only considered input failures for
which the controller freezes.

This first abstract model of failure management considers the overall state of the system.
It defines the three main states of the controller in response to input validity conditions, which
are; a)normal operation, b)frozen while attempting to confirm a possible input error, and
c) hardfaulted when an input error has been confirmed. Note that once the system has hard
faulted no further events may occur (the model is intentionally deadlocked).

In this first refinement we recognise that the system state is actually an abstraction of the
states of many instances of input failure management (Figures 2.4 and 2.5). Each input has three
possible states;ok, supect, andconfirmed. Each input can have agood event (corresponding
to a valid input value being detected) or abad event (when an invalid value is detected). Some
of thesegood andbad events (depending on the state of the full collection of inputs) refine
the freeze, unfreeze andhardfault events from the abstract model. These arefirst bad (the
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Figure 2.3: Statechart diagram of the abstract machine

first input to enter the suspect state),last good andconfirm respectively. When an input has
confirmed detection of an invalid value, a guard on each transition prevents further events from
being enabled. This models the intentional deadlock in the abstract model. The refinement
relation gives the correspondence between the equivalent states of the two models. The system
is normal when no inputs have detected invalid values,frozen when at least one input has
detected an invalid value but not confirmed, andhardfaulted when an input has confirmed an
invalid value. Note that we use a ‘Petri’ style interpretation of the state model (where each
state is a variable whose value is the set of instances in that state) since this makes it easier
to specify the collective state of the class in transition guards. Verification proves that the
collective state of the inputs behaves in accordance with the overall system states;normal,
frozen andhardfaulted.

INPUT

first_bad()
last_good()
bad()
good()
confirm()

Figure 2.4: Class diagram of the first refinement

ok suspect confirmed

all transitions have the additional 
guard,  confirmed = {}

confirm

good[ suspect/={self} ]

last_good[ suspect={self} ]

bad[ suspect/={} ]

fi rst_bad[  suspect={} ]

Figure 2.5: Statechart diagram of the INPUT class

Further details and levels of refinement can be found in the paper. In later refinements we
find that each input may consist of several different tests and that tests need to be confirmed
by some counter mechanism. Later still, we begin to distinguish the different kinds of tests
using class specialisation. The use of UML-B in this way combines the UML class structuring
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of the specification with the B refinement method. The most abstract levels of model embody
essential properties that the system must fulfil, whatever its detailed specification eventually is.

In other work on requirements engineering of failure management systems (see Chapter 3)
we have identified a similar role for requirements ‘rationale’. In future work we plan to inves-
tigate ways to integrate the abstract modelling described above with our work on requirements
engineering.

2.4.2 Determining the failure specification of a system

Section 2.2.1 has outlined the “Hayes/Jackson/Jones” approach as it applies to idealised phys-
ical components such as sensors and motors. The cited paper [HJJ03] also addresses how to
look at failures as weaker assumptions on the environment. Neatly combining the idealised and
fault tolerant specifications is currently being written up for a journal paper (by the original
three authors).

2.4.3 BPEL-like languages

One of the current active areas in web services is the design of choreography and orchestra-
tion languages to coordinate activities across a distributed set of web service providers. The
intended typical applications tend to centre on e-commerce, but bio-informatics and ambient
intelligence research also provides the occasional example.

Among the major efforts is BPEL13, for which the last official specification was published
in May 2003 [ACD+03]. The language includes a compensation feature that, while it has good
points, has some arbitrarily imposed flaws. An operational semantics of a subset of BPEL —
including its compensation mechanism — can be found in [Col04].

BPEL introduces compensation as a tool for error handling during long-running transac-
tions so that actions can be reversed after their completion. This is in contrast to BPEL’s
regular fault handling mechanism, which deals with cleaning up after actions that are currently
in progress. However, the language specification arbitrarily restricts the invocation of compen-
sation to be only within the context of a fault handler. This has the pragmatic implication that
compensation can only be used for error-handling.

Unfortunately, this is an extremely narrow view of what compensation can be used to
achieve. One of the fundamental differences between long-running transactions and short-
running (ACID) transactions is the nature of change in the environment. ACID transactions
have the implicit assumption that environmental changes are minor due to their short dura-
tion. Long-running transactions, however, cannot maintain this assumption: even the condi-
tions which initiated the transaction can be wholly or partially negated (and restored) over the
lifetime of the transaction.

Compensation, in general, is a mechanism that can be used to handle at least some of the
effects of a radically changing environment. Compensation allows a process to reverse the
effects of an action without having to literally restore the previous state as a database rollback
would. The obvious extension of this is to allow compensation to change a process’ state such
that some integrity constraint is satisfied. This would help the process adapt to environments

13http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel
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where the initial requirements for the transaction are likely to change over time, or are even
incomplete at the start of a transaction.

A fairly simple argument is made in [Col05] that the restriction on the use of compensa-
tion in BPEL be removed. The core of the argument, as described above, is that it would give
the language far more flexibility to handle changes in the process’ environment. It should be
noted that some modifications have been made to the specific structure of BPEL’s compensa-
tion construct in recent drafts of the language specification, but the restriction has remained
unchanged.

The Compensating CSP (cCSP) language was introduced by Butler et al. [BHF04] as a lan-
guage to model long running transactions in the framework of CSP process algebra [Hoa85].
The semantics of the cCSP language was described by using denotational semantics (trace se-
mantics). The paper constructs a model of long-running transactions within the framework of
the CSP process algebra, showing how the compensations are orchestrated to achieve the illu-
sion of atomicity. It introduces a method for declaring that a process is a transaction, and for
declaring a compensation for it in case it needs to be rolled back after it has committed. The
familiar operator of sequential composition is redefined to ensure that all necessary compen-
sations will be called in the right order if a later failure makes this necessary. The techniques
are designed to work well in a highly concurrent and distributed setting. In addition we define
an angelic choice operation, implemented by speculative execution of alternatives; its judi-
cious use can improve responsiveness of a system in the face of the unpredictable latencies of
remote communication. Many of the familiar properties of process algebra are preserved by
these new definitions, on reasonable assumptions of the correctness and independence of the
programmer-declared compensations.

Previously one of the authors (Butler) was involved in the development of the StAC (Struc-
tured Activity Compensation) language [BF00, BF04] for modelling long-running business
transactions which includes compensation constructs. An important difference between StAC
and cCSP is that instead of the execution of compensations being part of the definition of a
transaction block, StAC has explicit primitives for running or discarding installed compensa-
tions (reverseandacceptrespectively). This separation of theacceptand reverseoperators
from compensation scoping prevents the definition of a simple compositional semantics: the
semantics of the reverse operator cannot be defined on its own as its behaviour depends on the
context in which it is called. This necessitated the use of configurations involving installed
compensation contexts in the operational semantics for StAC. Note that BPEL also has an op-
erator for explicit invocation of compensation. A mapping from BPEL to StAC may be found
in [BFN05].

Bruni et al. [BMM05] have developed an operational semantics for a language with similar
operators to cCSP, including compensation pairs and transaction blocks (or sagas as they call
them). As in cCSP, and unlike StAC, the invocation of compensation in a saga is automatic
depending on failure or success which leads to a neater operational semantics. However, unlike
the work presented here, the operational semantics in [BMM05] is defined by using big-step se-
mantics. Big-step semantics describe how the overall results of the execution are obtained. The
big step semantics are closer to the trace semantics while our small-step semantics describes
how compensating processes should be executed. A comparison of the operators of cCSP and
the language described in [BMM05] may be found in [BBF+05].
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2.5 Role of support tools

There is no intention that this section should repeat considerations from the relevant Rodin WP
but there are some questions where tool considerations have a direct impact on methods. One
example above is the technique for handling partial functions in logic (cf. Section 2.1.2). This
section reviews some other questions of the same sort.

2.5.1 Synergy between model checking and reasoning

Development methods which are classed as “correctness by construction” (VDM and B are
certainly in this camp) obviously need tool support and the existing “Atelier-B” tools are an
outstanding example of tools which are used in industry. In this class of methods, the designer
develops and then refines abstractions.

To make the contrast as sharp as possible, model-checking is initially described in its orig-
inal form. A key advantage of model checking is that it can be applied without an initial
specification. Problems like potential deadlock can be detected from the final code. The de-
signer is not required to have recorded design abstractions. (There are of course limitations to
this “free lunch” — but they are not the issue here.)

The state explosion problem discussed in Section 2.3.3 can be tackled by using abstractions.
A key method question related to deriving synergy from correctness by construction and model
checking is the extent to which design abstractions can be carried over to model checking.
Tools could play a key role here.

2.5.2 Rigorous reasoning

Apart from the need for support tools which assist a designer to undertake completely formal
“correctness by construction”, there are interesting questions around what can be done to sup-
port “rigorous development”. (Some of these issues have been discussed in [JJLM91].) The
level of support which can be provided and, in particular, the support for tracing the impact of
changes, will obviously have an affect on the methods proposed in Rodin.

2.5.3 Role of Programming Languages

Jean-Raymond Abrial has discussed (cf. Jones’ May visit to ETH) the role of programming
languages in a world where software is developed using “correctness by construction” tech-
niques. Certainly, Abrial’s considerable success in earlier projects (e.g. Paris Metro) suggest
that the place of high-level languages will change. This could offer a resolution of the old ques-
tion of whether one needs a (full) axiomatic semantics of some of the untidier programming
languages in which many systems are constructed today.
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Chapter 3

Requirements Structure

3.1 Introduction

The structuring of requirements, supported by some means of classification (via ataxonomyof
requirements for the domain in question), has been recognized in the Rodin project as a signif-
icant early-lifecycle factor affectinginter alia the ease of modelling, design and productivity.
The issue was introduced to the project by J.-R. Abrial at the Chilworth workshop, Dec. 2004,
by means of an example structured requirements document [Abr04].

This early perspective influenced the work at Southampton on Case Study 2: “Failure De-
tection and Management for Engine Control”. This chapter is a methodological view of work
to date on Case Study 2, and constitutes a précis of our papers [SPJ05a, SPJ05b].

We consider the failure detection and management function for engine control systems as
an application domain where product line engineering is indicated. The need to develop a
generic requirement set - for subsequent system instantiation - is complicated by the addition
of the high levels of verification demanded by this safety-critical domain, subject to avionics
industry standards. Our early case study experience has suggested a candidate methodology for
the engineering, validation and verification of generic requirements using domain engineering
and Formal Methods techniques and tools.

3.2 Failure Detection and Management for Engine Control

The case study (Case Study 2 in Rodin), provided by AT Engine Controls of Portsmouth, is a
failure manager which filters environmental inputs to the engine control system, providing the
best information possible whilst determining whether a component has failed or not. The role of
failure detection and management in an embedded control system is described in Section 2.4.1.

Our approach contributes to the failure detection and management domain by presenting
a method for the engineering, validation and verification of generic requirements for product-
line engineering purposes. The approach exploits genericity bothwithin as well asbetween
target system variants. Although product-line engineering has been applied in engine and flight
control systems [Lam97, Fau00], we are not aware of any such work in the FDM domain.

Our approach contributes methodologically to product-line requirements engineering in its
integration of informal domain analysis with domain engineering that exploits both UML and
Formal Methods technology. We develop a generic requirements specification using a UML-B
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model and a tabular data schema. We present the process of domain engineering, validating and
verifying a generic model and an example instance model. The UML-B is translated to B with
the U2B tool, and then verified by model-checking with ProB; this verifies both the generic
requirement set and the system instance.

3.3 Overview of methodology

We give an overview of the prototype methodology - see Figure 3.1. The first stage is an in-
formal domain analysis which is based on prior experience. A taxonomy of the kind of generic
requirements found in the application domain is developed and, from this, afirst-cut generic
model is formed, in object-association terms, naming and relating the generic requirements.

The identification of a useful generic model is a difficult process and therefore further ex-
ploration of the model is warranted. This is done in the domain engineering stage where a
more rigorous examination of the first-cut model is undertaken, using the B-method and the
Southampton tools. In Southampton we have developed two tools to support formal system
development in B: ProB and U2B. ProB [LB03] is a model checker for B. UML-B [SOB04a] is
a profile of UML that defines a formal modelling notation using class diagrams and statecharts,
and has a mapping to the B language. The U2B [SB04] translator converts UML-B models into
B components.

The first-cut model is animated by creating typical instances of its generic requirement
objects, to test when it is and is not consistent. This stage is model validation by animation,
using the ProB and U2B tools, to show that it is capable of holding the kind of information that
is found in the application domain. During this stage the relationships between the objects are
likely to be adjusted as a better understanding of the domain is developed. This stage results in
avalidatedgeneric model of requirements that can be instantiated for each new application.

domain analysis domain 
engineering

first-cut generic 
model

validated generic 
model

previous product 
experience

Figure 3.1: Process for obtaining the generic model

For each new application instance, the requirements are expressed as instances of the rele-
vant generic requirement objects and their associations, in a tabularinstancemodel - see Figure
3.2. The ProB model checker is then used to verify that the application is consistent with the
relationship constraints embodied in the generic model. This stage, producing a verifiedcon-
sistentinstance model, shows that the requirements are a consistent set of requirements for the
domain. It does not, however, show that they are the right (desired) set of requirements, in
terms of system behaviour that will result.

The final stage, therefore, is to add dynamic features to the instantiated model in the form of
variables and operations that model the behaviour of the objects in the domain and to animate
this behaviour so that the instantiated requirements can be validated. This final stage of the
process - “validate instantiation” in Figure 3.2 - is work in progress.
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Figure 3.2: Process for using the generic model in a specific application

3.4 Conclusion

We have illustrated a product-line approach to the rigorous engineering, validation and verifi-
cation of generic requirements for critical systems such as failure management and detection
for engine control. The approach can be generalised to any relatively complex system compo-
nent where repetitions of similar units indicate an opportunity for parameterised reuse but the
extent of differences and interrelations between units makes this non-trivial to achieve. The
product-line approach amortises the effort involved in formal validation and verification over
many instance applications.

The methodology and tools presented are work in progress. During the domain analysis
phase we found that considering the rationale for requirements revealed key issues, which are
properties that an instantiated model should possess. At the moment, however, these are not
enforced by the generic model. Key issues are higher level requirements that could be expressed
at a more abstract level from which the (already validated) generic model is a refinement. The
generic model could then be verified to satisfy the key issue properties by proof or model
checking. This matter is considered in [SBEJ04a] which gives an example of refinement of
UML-B models in the failure management domain. The domain analysis process of Figure 3.1
would then be elaborated as shown in Figure 3.3.

domain analysis domain 
engineering

verify key 
issues

previous product 
experience

first-cut generic 
model

validated generic 
model

key-issues abstract 
model

final verified generic 
model

Figure 3.3: Elaboration of domain analysis process to show refinement of key issues

Further development is required to validate instance models, as per Figure 3.2. Whilst
an instance model can be verified against the constraints embodied within the generic model
(i.e. that it is a valid instantiation of the generic model), it may be the wrong configuration.
That is, it may specify the wrong run-time behaviour. A further stage to validate the specific
configuration is envisaged. Formal refinement could be utilised to add new variables and events
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to represent the dynamic behaviour of the system. This would allow the specific configuration
to be validated via animation.

We have indicated that requirements for support tools are emerging from the case study;
such tools are being specified and planned. Simple database support is required for product
line data definition: maintenance and evolution of the sets of requirement instance definition
tables that define application product instances.

The work identified the need for finer-grained diagnosis of invariant violation in ProB:
ProB could be enhanced to provide, for example, a data counterexample causing an invariant
violation. A related need is for validation and debugging support for bulk data upload. Given
that much of this validation is based on the object types and associations in the generic class
model of the requirements, this is again a job for a database tool. We are also examining ways
to feed such data counterexamples back to the UML diagram of the generic model; clearly a
more user-friendly approach.
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Chapter 4

Linking UML and B

The Rodin project will re-develop and enhance the UML-B profile [SOB04b], which is a profile
of the UML that is precise and semantically well defined via equivalence to B. UML-B includes
a constraint and action language,µB, that is derived from B.

4.1 Motivation

The methodological motivation for linking UML and B can be considered from two viewpoints.
From the point of view of a typical UML user, linking with B brings greater rigour and precision
to specifications and provides access to verification tools. However, since Rodin is primarily a
formal methods development project we concentrate on this viewpoint. The main reasons for
linking UML and B from this viewpoint are to:

1. build specifications from parts,

2. help choose coherent useful abstractions,

3. provide a more accessible notation for new users.

4.1.1 Building specifications from parts

UML-B brings the abstract data type approach, upon which object-orientation is based, to B
specification. UML-B provides a mechanism to specify the state and associated behaviour of
a kind of abstraction and then to apply (i.e. ‘lift’) that specification to an indeterminate set of
abstractions that participate in a wider specification. Analogous facilities exist in Z (schema
promotion) and VDM (Modules) but B lacks this facility. B has an encapsulation mechanism
(machines) that allows variables to be grouped with the operations that act upon them. It is
also possible, via machine renaming, to instantiate several instances of a machine. However,
there is no mechanism to use the behaviour defined in this way to specify an indeterminate
or variable set of instances. For example, in Z, ‘promotion’ enables schemas to be used to
define a behaviour that is then promoted and bound to a set of instances at a higher level. This
limitation is overcome in U2B by explicitly modelling the set of instances within the B and
modelling each class feature with a function whose domain is the set of instances. UML-B
adopts the UML state machine specification notation as a means of expressing the primary
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state-transition behaviour of a specification part. Again, this can be applied to each instance
kind and lifted to describe a set of such instances.

4.1.2 Choosing coherent useful abstractions1

The main difficulties in writing a formal specification are the need to commit to abstractions
at an early stage and the difficulty of subsequently altering these abstractions.Abstractionsare
needed to achieve aclose mappingbetween model concepts and the problem domain.Pro-
gressive evaluationvalidates the chosen abstractions before too much reliance is placed on
them (premature commitment). Improved animators and model checkers would provide this
exploratory evaluation. The problem is compounded by the difficulty of visualising abstrac-
tions in a mathematical notation. Graphical representation of formal models provides better
visibility of abstractions and how they interact to compose the whole. This is valuable when
assessing abstractions thereby alleviating premature commitment. A graphical design tool de-
creasesviscosity(the effort of changing abstractions) since the diagrammatic symbols represent
significant mathematical infrastructure and are therefore much quicker to re-arrange.

4.1.3 Provide a more accessible notation for new users

UML, despite not having a formal semantics has proved relatively popular in industry. By bas-
ing a formal notation on the UML, these users get a familiar feel during their introduction to the
method. The automation of large amounts of ‘infrastructure’ B, represented by diagrammatic
symbols, allows new users to concentrate on smaller additions of particular constraints and
actions. This provides a good lead-in to formal specification in B. The diagrammatic specifica-
tion also allows users to better visualise the specification for validation purposes. In a textual
B specification it is sometimes possible to lose sight of the real-world mapping of mathemati-
cal constructs so that the specification, although perhaps consistent, may not specify what was
intended.

4.2 An Object-Oriented Approach

The UML is based on an object-oriented modelling approach including the following key con-
cepts: objects, encapsulation, class, generalisation/specialisation and messages. State machines
can be used to model the behaviour of the objects. We utilise and deviate from these concepts
as described below. (Definitions are from [RJB98]).

Anobjectis a concrete manifestation of an abstraction; an entity with a well-defined bound-
ary and identity that encapsulates state and behaviour.For our abstract systems modelling, ob-
jects are an abstraction of parts of a system that include state and events associated with those
parts of the state. The state is modelled by attributes (variables of basic types), associations
(variables whose type is based on a set of objects) and state machines. Events are defined by
a guard (i.e., predicate on the state) that shows when they can occur and a substitution that
shows how the state is changed by the event. For our modelling, object encapsulation is not
important because the variables represent abstract state and we are only concerned with the

1The terms in italics in this paragraph are taken from the cognitive dimension framework [Gre89], which
provides a broad-brush qualitative tool for assessing notations and interfaces.
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Figure 4.1: UML-B model of a telephone book

effect operations have on the state, not how they achieve it. Sometimes events affect the state
of other objects and we indicate this by specifying the change of value directly or by using a
‘subroutine’ of the other object. A form of encapsulation is provided by ‘Packages’, which are
used to modularise the model into, for example, sub-models and refinements.

A classis a description of a set of objects that share the same attributes, operations, re-
lationships and semantics.We use classes to define sets of similar objects and ‘specialisa-
tion/generalisation’ relationships to show that the specialised class’ objects are a subset of the
generalised class’ objects that have some additional or refined features.

A messageis a specification of a communication between objects...Since we do not aim
to ‘modularise’ a specification using encapsulation, message passing between objects is not
applicable. The operations in our model represent events that occur spontaneously.

A (behavioural)state machineis a behaviour that specifies the sequences of states an object
goes through during its lifetime in response to events, together with its responses to those
events.We use state machines to model the conceptual state of an object which is additional to
any state modelled by other variables of the object. The transitions represent the behaviour of
events of the objects.

Modelling can be useful for many stages in the realisation of a system component. For
example, [Dan02] classifies models into conceptual (analysis of the real world problem), spec-
ification (model of the requirements) and implementation (explanation of the built system). We
envisage that UML-B could be used for any of these stages but currently we concentrate on
conceptual modelling.

4.3 Overview of UML-B

To give a flavour of UML-B, consider the specification of the telephone book in Figure 4.1.
The classes,NAME andNUMB represent people and telephone numbers respectively. The
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associationrole, pbook, represents the link from each name to its corresponding telephone
number. Multiplicities on this association ensure that each name has exactly one number and
each number is associated with, at most, one name. The table showsµB conditions and actions
for some of the operations. The add operation of classNAME has the stereotype�create�
which means that it adds a new name to the class. It takes a parameternumb, which must be
an instance of the class,NUMB, but not already used in a link of the associationpbook (see
µB operation guard), and uses this as the link for the new instance (seeµB operation action).
The remove operation has noµB action; its only action is the implicit removal of self from the
classNAME.
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Chapter 5

Records in Event-B

Motivated by the need to specify the CDIS subset (CS4) in Event-B, we will have to represent
some VDM constructs in B notation. Records (orcomposites) are used frequently in the CDIS
subset, and VDM specifications in general, so it is worthwhile investigating how records (with
arbitrary field types) can be defined and manipulated in B. More generally, it would be benefi-
cial to incorporate some subtyping/inheritance-like properties of records to enable the reuse of
such structures, and to allow better conceptual modelling during a development.

We begin with a brief overview of composites in VDM, and this is followed by a ‘property-
oriented’ definition of record types in B notation. We propose some syntactic sugar to make
such definitions more succinct.

5.1 VDM Composites

A composite type consists of a name followed by a list of component (field) names, each of
which is accompanied by its type. In general, this looks like:

type name :: componentname1 : componenttype1
...

componentnamen : componenttypen

It is possible to constrain the type by including an invariant for the values of the components.
State in VDM is declared as a special kind of record whose components are the state vari-

ables which can be accessed and modified viaoperations(functions having side effects on the
state).

5.2 A Property-Oriented approach in B

This approach attempts to mimic the record type definitions of VDM by using theSETS, CON-
STANTS andPROPERTIES clauses of B machines. One of the motivations of this work is to
enable a stepwise development of complex record structures by introducing additional fields as
and when they become necessary. This is akin to inheritance in object-oriented programming in
which classes arerestrictedor specialisedby introducing additional attributes. A coalgebraic
view of classes and objects [Jac96] gives a natural semantics for inheritance.
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CONTEXT Func
SETSR ; A ; B
CONSTANTS r1 , r2 , set r1 , set r2
PROPERTIES

r1 ∈ R→ A∧
r2 ∈ R→ B∧

set r1 ∈ R× A→ R∧

∀ ( r , a ) . ( r ∈ R∧ a∈ A⇒ r1 ( set r1 ( r , a ) ) = a ) ∧
∀ ( r , a ) . ( r ∈ R∧ a∈ A⇒ r2 ( set r1 ( r , a ) ) = r2 ( r ) ) ∧

set r2 ∈ R× B→ R∧

∀ ( r , b ) . ( r ∈ R∧ b∈ B⇒ r2 ( set r2 ( r , b ) ) = b ) ∧
∀ ( r , b ) . ( r ∈ R∧ b∈ B⇒ r1 ( set r2 ( r , b ) ) = r1 ( r ) ) ∧

r1 ⊗ r2 ∈ R→→ A× B
END

Figure 5.1: A simple record type

Using coalgebraic specification techniques, we present a B machine to model the composite
type R, which is declared as follows:

R :: r1 : A

r2 : B

That is,R is a record with two fields,r1 andr2, of typeA andB respectively. In B, we begin
by declaring three deferred setsR, A andB in theSETSclause. This is shown in Figure 5.1.
The setsA andB correspond to the typesA andB in the declaration and, as such, these could be
interpreted as specific B types (such asNAT), or could themselves be record types. However,
the setR represents the record type that we are trying to specify. This remains deferred until
we are sure that we do not want to refine it by introducing additional fields. Instead, we specify
properties of the set within thePROPERTIES clause.

Two accessorfunctions are declared in theCONSTANTS clause to retrieve the fields of a
record instance:r1 retrieves the value of the field of typeA, andr2 retrieves the value of the
field of typeB. In addition, we have declared two functions that update these fields. That is,
given a record instancer and an elementa of typeA, set r1(r, a) returns a new record whose
r1 field has valuea. Similarly, set r2(r, b) updates ther2 field.

The properties of these functions are also defined in thePROPERTIES clause. In particu-
lar, note that thesetfunctions do not change the other fields, and for every pair of values from
A andB there is a record instance whose fields have these values. (This is expressed succinctly
using the⊗ (direct product) operator.) It is possible to infer other properties of the observ-
able values, such as the commutativity of differentsetfunctions:ri(set rn(set rm(r, x), y)) =
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CONTEXT FuncR
REFINES Func
SETSC
CONSTANTS Q , r3 , set r3
PROPERTIES

Q⊆ R∧

r3 ∈ Q→ C ∧

set r3 ∈ Q× C→ Q∧

set r1 [ Q× A ] ⊆ Q∧
set r2 [ Q× B ] ⊆ Q∧

∀ ( r , a ) . ( r ∈ Q∧ a∈ A⇒ r3 ( set r1 ( r , a ) ) = r3 ( r ) ) ∧
∀ ( r , b ) . ( r ∈ Q∧ b∈ B⇒ r3 ( set r2 ( r , b ) ) = r3 ( r ) ) ∧
∀ ( r , c ) . ( r ∈ Q∧ c∈ C⇒ r3 ( set r3 ( r , c ) ) = c ) ∧
∀ ( r , c ) . ( r ∈ Q∧ c∈ C⇒ r1 ( set r3 ( r , c ) ) = r1 ( r ) ) ∧
∀ ( r , c ) . ( r ∈ Q∧ c∈ C⇒ r2 ( set r3 ( r , c ) ) = r2 ( r ) ) ∧

( r1 ⊗ r2 ⊗ r3 ) [ Q ] = A× B× C
END

Figure 5.2: A restricted record type

ri(set rm(set rn(r, y), x)) if n 6= m, for all i (i.e. they are indistinguishable from the user’s
point of view).

We propose an introduction of composite-like syntax in B, from which it would be possible
to automatically infer the sets, constants and properties necessary to declare record types, such
as those given in Figure 5.1. We also propose some syntactic sugar to alleviate the complexity
of multiple field updates. For example, instead of the expressionset r1(set r2(r, x), y) we
could haver ⊕ {r1 7→ y, r2 7→ x}.

5.3 Refining Record Types

We now investigate the effect of introducing a new accessor function andset function toR.
This is shown in Figure 5.2. The aim is to model a restricted version ofR, which we nameQ,
in which a third fieldr3 has been introduced. We propose a syntax for this as follows:

Q extends R :: r3 : C

Notice that this is a refinement of the machine given in Figure 5.1. Hence, the properties
declared in the refinement are in addition to those of the original machine. These include
the effect ofset r1 andset r2 on the new accessor functionr3, and the effect ofset r3 on the
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Figure 5.3: Possible Record Hierarchies

accessorsr1 andr2. In addition, note that we have strengthened the requirements onset r1 and
set r2 so that, however these functions are implemented, they must only update records of type
Q by returning records of typeQ (otherwise, the first two universally quantified properties of
Figure 5.2 would not make sense). The final property states that all possible field combinations
are available inQ.

5.4 Combining Records (with Common Ancestors)

In addition to a single chain of refinements, the approach to extending record types presented
above permits other, less restrictive, kinds of development. The diagrams shown in Figure 5.3
give three possible extension hierarchies. Each of these is meaningful in a coalgebraic setting.
Hence, we do not constrain the structuring ofCONTEXT machines. In(i), two different
extensions,Q and Q′, extend the same record typeR. That is, Q and Q′ have a common
ancestor. In(ii), the record typeM combines the record typesN andN′. SinceN andN′ have
no common ancestors, it is important that there are no clashes in their field names. Intuitively,
in M, we expect the fields ofN′ to remain unaffected by the set operations ofN, and vice
versa. Constraints are added to thePROPERTIES clause ofM to enforce this. Diagram(iii )
in Figure 5.3 is a combination of(i) and(ii).

5.5 State using the Property-Oriented approach

A state variable that is declared to be of typeR holds a record instance of that type. Its com-
ponents can be observed by using the accessor functions, and component modifications can be
made via theset functions. Within theOPERATIONS clause, it is possible to define opera-
tions that modify these variables directly (rather than passing records to, and returning records
from the functions declared in theCONSTANTS clause).

In order to allow additional fields to be added to a record type (via refinement), operations
that update the existing fields of a variable are defined using anANY clause. This means any
‘hidden’ fields (i.e. those fields that will be revealed later through refinement) are assigned
non-deterministically. Refined operations can then replace this non-determinism with a deter-
ministic assignment. For example, consider a variabler that is declared to be of typeR given
in Figure 5.1. An operation to update ther1 field of r could be defined as in Figure 5.4.
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Update r1 of r ( x ) =̂
PRE x∈ A THEN

ANY y WHERE
y∈ R∧
r1 ( y ) = x∧
r2 ( y ) = r2 ( r )

THEN
r := y

END
END

Figure 5.4: An update operation

In the context of the simple definition ofR (Figure 5.1), this operation is equivalent to the
substitutionr := set r1(r, x). In a context that definesr (and quantified variabley) to be of
the refined typeQ given in Figure 5.2, then this operation would be weaker than the function
set r1 because the new fieldr3 of r would be assigned non-deterministically. Of course, the
operation could be refined too in order to assign something meaningful to this field.

32



Chapter 6

Methodology for Formal Development of
Mobile Location-Based Systems

6.1 Introduction

The agent technology naturally solves the problem of decoupling complex software into smaller
parts that are easier to design, code and maintain. It helps to use distributed computing power
effectively while hiding many of the details and complexities of a hosting environment. Agent
software is designed to interact with other agents during its lifetime. To make full use of agent
communication and migration capabilities, we need to assume systems are composed dynami-
cally out of agents developed independently at different sites and for different purposes. Such
configurations are impossible if agents are merely anonymous black-boxes. Hence we need to
create a formal development methodology that would ensure interoperability of independently
designed agents and correctness of the mobile system. During the first year of RODIN we
focused our efforts on establishing the basis for achieving this.

In our view, to cooperate, agents must be based upon some common specification of their
functionality. This specification should be formally developed and verified to ensure the proper-
ties of the application composed of agents. Developers of individual agents can independently
extend the specification (using a refinement method) to add unique features without losing
compatibility with other agents derived from the same specification.

Our work is based on an asymmetric model of the agent system within thelocation-based
paradigm introduced in [IR05]. The asymmetric scheme is closer to the traditional service
provision architectures. It can support large-scale mobile agent networks in a very predictable
and reliable manner. Moreover, location-based architecture eliminates the need for employing
complex distributed algorithms or any kind of remote access. This allows us to guarantee
atomicity of certain operations without sacrificing performance and usability. This scheme
also provides a natural way of introducing context-aware computing by defining location as a
context. The main disadvantage of the location-based scheme is that an additional infrastructure
is always required to support mobile agent collaboration.

Our coordination paradigmis based on Linda [Gel85] - the dominating environment in
which a number of mobile systems are built (including Lime [PMR99], Klaim [NFP98], etc.).
Linda is a set of language-independent coordination primitives that can be used for commu-
nication and coordination between several independent pieces of software. Linda-based co-
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ordination systems support both physical mobility, such as a device with running application
travelling along with its user across network boundaries, and logical mobility, when a software
application changes its hosting environment. In the rest of the chapter we introduce the basic
elements of theCAMA (context-aware mobile agents) methodology for formal development of
mobile systems.

6.2 System structure

The CAMA (context-aware mobile agents) system consists of a set oflocations. Active enti-
ties of the system areagents. An agent is a piece of software that conforms to some formal
specification. Each agent is executed on its ownplatform. The platform provides execution
environment and interface to the location middleware. Agents communicate through the spe-
cial construct of the coordination space calledscope. An agent can cooperate only with agents
participating in the same set of scopes. Agents can logically and physically migrate from a
location to a location. Migration from a platform to a platform is also possible using logical
mobility. An agent is built on the base of one or moreroles. Role is a formal functionality spec-
ification and composition of specifications of all the roles forms the specification of the agent.
A role is the result of the decomposition of an abstractscope modeland arun-time scopeis an
instantiation of a abstract scope model.

A location is a container for scopes. It can be associated with a particular physical location
and can have certain restrictions on the types of supported scopes. It provides means for com-
munication and coordination between agents and hence constitutes the core part of the system.
We assume that each location has a unique name in the given context. To automatically create
new scopes and restrict access to existing ones, location keeps track of present agents and their
properties.

A platform provides an execution environment for an agent. It is composed of a virtual
machine for code execution, networking support and middleware for interaction with location.
A platform may be supported by PDA, smart-phone, laptop or a location server. The concept of
platform is important to clearly differentiate between a location providing coordination services
to agents and middleware that only supports agent execution.

An agentis a piece of software implementing a set of roles. The roles allow the agent to
take part in certain scopes. All agents must implement the minimal functionality called the
default role, which specifies activities outside scopes.

A scopeis a dynamic container for tuples. It provides an isolated coordination space for
compatible agents. This is achieved by restricting visibility of the tuples contained in the scope
to the participants of the scope. Scopes are initiated by an agent and then atomically created by
location when all the participants are ready. Scopes can be nested and scope participants can
create new contained scopes. Scope is defined by the set of roles and a set of logical restrictions.

A scope becomesactivatedafter some agent creates it with theCreateScopeoperation. A
scope isopenwhen there are some vacant roles in it, and isclosedwhen all the roles are taken.
A scope ispendingif some required roles are not taken yet andexpandingif all the required
roles are taken but there still some vacant roles. Closed and expanding states correspond to
working scopes, where agents can communicate. All its participants of a pending scope are
blocked until the scope state is changed into closed or expanding.

A role is an abstract description of the agentf functionality. Each role is associated with
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some scope type. An agent may implement a number of roles and can also play several roles
in the same scope or different scopes. TheCAMA approach emphasises the context-awareness
of mobile agents. The context of an agent inCAMA systems consists of the following parts:
a set of locations the agent is connected to, the state of scopes in which the agent is currently
participating (including tuples contained in these scopes) and role attributes of other agents
collaborating with the agent.

6.3 Formal Development Process

The formal development process of theCAMA system consists of several steps. First, we create
abstract specifications of the middleware (location) and the scopes that will be supported by
the system. Then we develop (by the stepwise refinement method) specifications of different
roles participating in scopes. Finally, we compose an agent specification as a combination of
several developed roles (i.e., agent interfaces) and the default functionality defining the agent
behaviour outside scopes. The agent specification can be further refined by adding more details
and custom functionality. The compatibility of different agents is ensured by the fact that all
agents were developed by the formal refinement method from the same abstract specifications
of different roles and the middleware. Therefore, agents can collaborate making safe assump-
tions about the functionality of their peers. The development process is conducted within the
formal framework of the B Method [Abr96] (further referred to as B), which is an approach
to the industrial development of highly dependable software. The tool support available for B
provides us with the assistance for the entire development process.

6.3.1 Development of scopes and roles

The specification of a scope describes general functionality of several collaborating agents (in
particular roles). The task of formal development is to use the specification as the starting point
for the derivation of specifications of the corresponding agent roles (interfaces). To guarantee
correctness of the resulting role specifications, we use formal refinement and decomposition
techniques. On the other hand, we have to take into account scope nesting, when scopes have
embedded subscopes providing an extended functionality. Subscope specifications can be nat-
urally derived from the original scope specification via refinement. After verifying the correct-
ness of refinement, we can continue the development process by decomposing the specification
into corresponding roles as described above.

As a result, we have two orthogonal development processes with the same starting point -
the original specification of a scope. Both developments arrive at role specifications describing
agent functionality in the corresponding scopes. However, the hierarchy of scopes and sub-
scopes should be reflected in the corresponding specifications of agent roles. Hence the roles
in subscopes must be the extensions of the corresponding roles in the scopes. In other words,
to guarantee the consistency of developed roles, we have to show that the subscope roles refine
the corresponding scope roles.

35



6.3.2 Agent Design

Agent design starts with selection of roles that the agent must implement. It can implement any
number of roles from different scopes. Initially roles inside of an agent are totally independent
specifications that may well correspond to several independent processes running in an agent.
Agent refinement specifies additional operations that control agent behaviour during migration,
location selection, scope creation and joining, and other activities not covered by roles. During
agent refinement process, the agent roles can also be refined, possibly by adding some new
functionality. Due to the nature of refinement, the refined roles are still compatible with the
original abstract roles.

We start building an agent specification by extending one or more roles obtained formally
through the decomposition of abstract scope models. The refinement step introduces a specifi-
cation of the minimal agent functionality called the default role. This functionally permits an
agent to talk to locations, create/join/leave scopes, and migrate. The agent may also need some
logic that glues independent interfaces and allows them to talk to each other. This is done via
the global agent variables and the special methods for accessing them. After the agent specifi-
cation is ready, it is used to build the source code for the actual agent program. The standard
work cycle of an agent looks like this: an agent detects the available locations and connects
to at least one of them, then looks for current activities on the location(s) or creates its own
new scope, and finally joins a scope and plays one of the implemented roles in it. Only when
the agent decides to play a particular role in a scope, it really starts to cooperate with other
agents. The agent is capable of understanding its peers since the role functionalities of all the
scope participants are based on the same abstract model. As a result, the composition of agent
functionalities in a scope corresponds to the initial abstract model. The correctness of a model
instantiation, which means that the scope instantiates the corresponding abstract scope model,
can be demonstrated by analysing the agent design process and assuming that there is a correct
transition from agent model to agent implementation.

6.3.3 B specification of the middleware

To ensure correct behaviour of the location-based system, the middleware of the location should
enforce a certain discipline on agents. For instance, the properties of the scopes defined upon
scope creation are preserved in spite of volatile connectivity and dynamic nature of scopes.
Moreover, this should guarantee the integrity of information about agents in locations and
scopes. These complex interdependencies should be stated explicitly and verified. We have
developed a formal specification of the location middleware which is the core of the system
[ILRT05]. It corresponds to the most complex part of the system and not only defines the
operations that the location provides to support communication between agents but also states
the properties of data structures in the location. The actual middleware implementation will be
based upon this formal model.

6.4 Discussion

In this chapter we presented our advances in developing the methodology (based on formal
methods) that will allow us to fully model and build the mobile location-based systems. While
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designing our methodology we have been influenced by the requirements document written for
the Ambient Campus case study [A+05]. During the first year we have focused on modelling
middleware that supports our mobile agent abstractions. The most significant achievement is
the formal B specification of the location, i.e. the core part of the middleware presented in
[ILRT05]. The selection of the location-based architecture (discussed in [IR05]) has influenced
all the parts of our work on the case study, including the methodology. As a future work, we are
planning to investigate more closely the agent design process and apply it to the full design of
the lecture scenario of the Ambient Campus case study [A+05]. We will also conduct several
extensive experiments covering the full cycle of system development - starting from an abstract
system model and making all the steps until we get a running piece of software.
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Chapter 7

Methodology for Formal Model-Driven
Development of Communicating Systems

7.1 Introduction

Modern telecommunicating systems are usually distributed software-intensive systems provid-
ing a large variety of services to their users. Nokia Research Centre has developed a design
methodLyra[LTO04] – a UML-based[RJB98] service-oriented method specific to the domain
of communicating systems and communication protocols. The design flow of Lyra is based on
concepts of decomposition and preservation of the externally observable behaviour. The sys-
tem behaviour is modularised and organized into hierarchical layers according to the external
communication and related interfaces. It allows the designers to derive the distributed network
architecture from the functional system requirements via a number of model transformations.
This approach coincides with the stepwise refinement paradigm adopted in the B Method. We
propose a set of formal specification and refinement patterns reflecting the essential models
and transformations of Lyra. Our approach is based on stepwise refinement of a formal system
model in the B Method.

While formalizing Lyra, we single out a generic concept of a communicating service com-
ponent and propose patterns for specifying and refining it. In the refinement process the service
component is decomposed into a set of service components of smaller granularity specified
according to the proposed pattern. Moreover, we demonstrate that the process of distributing
service components between different network elements can also be captured by the notion
of refinement. The proposed formal specification and development patterns establish a back-
ground for automatic generation of formal specifications from UML models and expressing
model transformations as refinement steps. Via automation of the UML-based Lyra design
flow we aim at smooth incorporation of formal methods into existing development practice.

7.2 Pattern for specifying service component in B

Modelling Service Component in B.The service-oriented development approach is based on
decomposition of system behaviour. The notion of a service provides a convenient mechanism
for modelling and reasoning about system interactions. Therefore, the service-oriented devel-
opment paradigm is particularly suitable for the development of reactive systems, i.e., systems
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running in constant interaction with their environments.In the service-oriented development a
service component as a coherent piece of functionality which provides its services to a service
consumer via Provided Service Access Point – PSAP. The notion of a service component is a
convenient abstraction to represent service providers at the different levels of abstraction. In-
deed, on a high level of abstraction even the entire communicating system can be seen as a
service component. On the other hand, peer proxies introduced at the lowest level of abstrac-
tion can also be seen as the service components providing the physical data transfer services.
Therefore, the notion of a service component is central to the entire Lyra development process.

A service component has two essential parts: functional and communicational. The func-
tional part is a ”mission” of a service component, i.e., the service(s) which it is capable of
executing. The communicational part is an interface via which the service component receives
requests to execute the service and sends the results of service execution.

Usually execution of a service involves certain computations. We call the B representation
of this part of service componentAbstract CAlculating Machine (ACAM). The communica-
tional part is correspondingly calledAbstract Communicating Machine (ACM), while the en-
tire B model of a service component is calledAbstract Communicating Component (ACC). The
abstract machine ACC below presents the proposed pattern for specifying a service component
in B.

In our specification we abstract away from the details of computations required to execute
the service. Our specification of ACAM is merely a statement non-deterministically generating
results of service execution in case of success or failure. The communication with a service
component is conducted via two channels –inp chan andout chan – shared between the
service component and the service consumer. While specifying a service component, we adopt
a systems approach, i.e., model the service component together with the relevant part of its en-
vironment, the service consumer. Namely, we model how the service consumer places requests
to execute a service in the operationenv req and reads the results of service execution in the
operationenv resp.

The operationsread andwrite are internal to the service component. The service compo-
nent reads the requests to execute a service frominp chan as defined in the operationread.
As a result ofread execution, the request is stored into the internal data bufferinput, so it
can be used by ACAM while performing the required computing. Symmetrically the operation
write models placing the results of computations performed by ACAM into the output channel,
so it can be read by the service consumer. We reserve the abstract constantNIL to model the
absence of data, i.e., the empty channels. The operations discussed above model the ACM part
of ACC.

We argue that the machine ACC can be seen as a specification pattern which can be in-
stantiated by supplying the details specific to a service component under construction. For
instance, the ACM part of ACC models data transfer to and from the service component very
abstractly. While developing a realistic service component, this part can be instantiated with
real data structures and corresponding protocols for transferring them. In the next section we
demonstrate how Lyra development flow can be formalized as refinement and decomposition
of ACC.

MACHINE ACC
VARIABLES inp_chan, input, out_chan, output
INVARIANT
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inp_chan : INPUT_DATA & input : INPUT_DATA &
out_chan : OUT_DATA & output : OUT_DATA

INITIALISATION
inp_chan, input := INPUT_NIL, INPUT_NIL ||
out_chan, output := OUT_NIL, OUT_NIL

OPERATIONS

/ * ACM * /
env_req =

SELECT inp_chan = INPUT_NIL
THEN

inp_chan :: INPUT_DATA - {INPUT_NIL}
END;

read =
SELECT not(inp_chan = INPUT_NIL) & (input = INPUT_NIL)
THEN

input,inp_chan := inp_chan,INPUT_NIL
END;

write =
SELECT not(output = OUT_NIL) & (out_chan = OUT_NIL)
THEN

out_chan,output := output,OUT_NIL
END;

env_read =
SELECT not(out_chan = OUT_NIL)
THEN

out_chan := OUT_NIL
END

/ * ACAM* /

calculate =
SELECT not(input = INPUT_NIL) & (output = OUT_NIL)
THEN

CHOICE
output :: OUT_DATA - {OUT_NIL,OUT_FAIL}

OR
output := OUT_FAIL

END ||
input := INPUT_NIL

END;
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END

7.3 Formal Service-Oriented Development

In Lyra, a service component is usually represented as an active class with the PSAP attached
to it via the port. The state diagram depicts signalling scenario on PSAP including the signals
from and to the external class modelling the service consumer. Essentially these diagrams
suffice to specify the service component according to the pattern ACC proposed in the previous
section.

The UML2 description of PSAP of the service component is translated into the ACM part of
the corresponding machine. The ACAM part of this machine instantiates the non-deterministic
assignment of ACC by the data types specific to the modelled service component. These trans-
lations formalize the Service Specification phase of Lyra.

In the next phase of Lyra development –Service Decomposition– we decompose the service
provided by the service component into a number of stages (subservices). The service compo-
nent can execute certain subservices itself as well as request the external service components
to do it. At the Service Decomposition phase two major transformations are performed:

• the service execution is decomposed into a number of stages (or subservices), and

• communication with the external entities executing these subservices is introduced via
USAPs.

Each transformation corresponds to a separate refinement step in our approach.
According to Lyra, the flow of the service execution is orchestrated byService Director

(often called a Mediator). It implements the behaviour of PSAP of the service component as
specified earlier, as well as co-ordinates execution by enquiring the required subservices from
the external entities according to the defined execution flow.

Assume that the service componentSCspecified by the machineACC SCat the Service
Specification phase is providing the serviceS which is decomposed into the subservicesS1,
S2, andS3. Moreover, let assume that the state machine of Service Director defines the desired
order of execution: firstS1, thenS2 and finallyS3. In B such decomposition can be represented
as a refinement of our abstract pattern ACC instantiated to model SC as shown below:
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REFINEMENT ACC_R1_SC

REFINES ACC_SC

VARIABLES
curr_service, handling_flag

INVARIANT
curr_service : {SD, S1, S2,S3} &
handling_flag : BOOL & ...

INITIALISATION
curr_service, handling_flag := SD,FALSE || ...

OPERATIONS

/ * ACM * /
...

/ * ACAM’ * /

S1 = SELECT curr_service = S1
THEN handling_flag := TRUE
END;

S2 = ...
S3 = ...

director =
SELECT handling_flag = TRUE
THEN

IF curr_service = SD
THEN

curr_service := S1
ELSIF curr_service = S1
THEN

S1_data :: S1_DATA-{S1_NIL};
curr_service := S2

ELSIF curr_service = S2 ...
ELSIF curr_service = S3 ...
END ||
handling_flag := FALSE

END;

calculate =
SELECT (curr_service=CALC) & ...
THEN
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output,input := OUT_data,INPUT_NIL ||
curr_service := SD

END;
END

This step focuses on refinement of the ACAM part of ACC. As in ACAM, in the refinement
of it - ACAM’- the operationcalculate puts the results of service execution on the output
channel. However,calculate is now preceded by the operationdirector, which models Service
Director orchestrating the stages of execution. We introduce the variablesS1 data, S2 data
andS3 data to model the results of execution of the corresponding stages. The operation
director specifies the desired execution flow by assigning corresponding values to the variable
curr service. In general, execution of any stage of service can fail. In its turn, this might lead
to failure of the entire service provision. Here we omit the presentation of failures of service
provision and error recovery while specifying Service Director. The detailed description of this
can be found in [LTL+05].

Unlike in Lyra, in our B development the Service Decomposition and Service Distribution
phases are not entirely disjoint. This is explained by the fact that theINCLUDES structur-
ing mechanism enforces the master-slave relationship between components, i.e., the including
machine has complete control over the included machine. As a result, modelling of communi-
cation between two peer components is cumbersome. However, this problem can be alleviated
if the targeted service distribution is taken into account while introducing the communication
with the external service components via USAPs.

To derive the pattern for translating UML2 diagrams modelling functional and platform
distributed service architecture at these two phases we should consider two general cases:

1. the service director of SC is ”centralized”, i.e., it resides on a single network element,

2. the service director of SC is ”distributed”, i.e., different parts of execution flow are or-
chestrated by distinct service directors residing on different network elements. The ser-
vice directors communicate with each other while passing the control over the corre-
sponding parts of the flow.

In the first case, the service componentSC plays a role of the service consumer for the
service componentsSC1, SC2 andSC3. We specify the service componentsSC1, SC2 and
SC3 as separate machinesACC SC1, ACC SC2, ACC SC3 according to the proposed pattern
ACC. The process of translating their UML2 models into B is similar to specifyingSCat the
Service Specification phase. The ACM parts of the included machines specify their PSAPs. To
ensure the match between the corresponding USAPs ofSCand PSAPs of the external service
components, we derive USAPs ofSCfrom PSAPs ofSC1, SC2 andSC3.

Besides defining separate machines to model external service components, in this refine-
ment step we also define the mechanisms for communicating with them. We refine the op-
erationdirector to specify communication on USAPs. Namely, we replace non-deterministic
assignments modelling stages of service execution by the corresponding signalling scenario: at
the proper point of the execution flowdirector requests a desired service by writing into the
input channel of the corresponding included machine, e.g.,SC1 write ichan, and later reads
the produced results from the output channel of this machine, e.g.,SC1 read ochan.
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REFINEMENT ACC_R2_SC

REFINES ACC_R1_SC

INCLUDES
ACC_SC1, ACC_SC2, ACC_SC3

/ * ACM of ACC_SC* /
...

/ * ACAM’’ * /

director =
SELECT handling_flag = TRUE
THEN

IF curr_service = SD
THEN

curr_service := S1
ELSIF curr_service = S1
THEN

SC1_write_ichan(input);
S1_data <- SC1_read_ochan

ELSIF curr_service = S2 ...
ELSIF curr_service = S3 ...
END ||
handling_flag := FALSE

END;

calculate =...

END

MACHINE ACC_SC1
...

/ * ACM of ACC_SC1* /
SC1_write_ichan(SC1inp) ...

SC1read ...

SC1out<- - SC1_read_ochan ...

SC1write ...
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/ * ACAM of ACC_SC1* /
calculate...

END

Modelling the case of the distributed service director is more complex. Let assume that
the execution flow of the service componentSC is orchestrated by two service directors: the
ServiceDirector1, which handles the communication on PSAP ofSCand communicates with
SC1, andServiceDirector2, which orchestrates the execution ofS2 andS3.

The service execution proceeds according to the following scenario: via PSAP ofSC
ServiceDirector1 receives the request to provide the serviceS. Upon this, via USAP ofSC,
it requests the componentSC1 to provide the serviceS2. After the result ofS2 is obtained,
ServiceDirector1 requestsServiceDirector2 to execute the rest of the service and return the re-
sult back. In its turn,ServiceDirector2 at first requestsSC2 to provide the serviceS2 and then
SC3 to provide serviceS3. Upon receiving the result fromS3, it forwards it toServiceDirector1.
Finally, ServiceDirector1 returns to the service consumer the result of the entire serviceSvia
PSAP ofSC.

This complex behaviour can be captured in a number of refinement steps. At first, we ob-
serve thatServiceDirector2 co-ordinating execution ofS2 andS3 can be modelled as a ”large”
service componentSC2−SC3 which provides the servicesS2 andS3. Let us note that the exe-
cution flow inSC2− SC3 is orchestrated by a ”centralized” service directorServiceDirector2.
We use this observation in our next refinement step. Namely we refine the B machine modelling
SCby including into it the machines modelling the service componentsSC1 andSC2 − SC3
and introducing the required communicating mechanisms. In our consequent refinement step
we focus on decomposition ofSC2 − SC3. The decomposition is performed according to the
proposed scheme: we introduce the specification ofServiceDirector2 and decompose ACAM
of SC2 − SC3. Finally, we single out separate service componentsSC2 andSC3 as before
and refineServiceDirector2 to model communication with them. We omit the presentation of
the detailed formal specifications – they are again obtained by the recursive application of the
proposed specification and refinement patterns.

At the consequent refinement steps we focus on particular service components and refine
them (in the way described above) until the desired level of granularity is obtained. Once all
external service components are in place, we can further decompose their specifications by
separating their ACM and ACAM parts. Such decomposition will allow us to concentrate on
the communicational parts of the respective components and further refine them by introducing
details of required concrete communication protocols.
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Chapter 8

Exception Handling in
Coordination-based Mobile Environments

Mobile agent systems have many attractive features including asynchrony, openness, dynamic-
ity and anonymity, which makes them indispensable in designing complex modern applications
that involve moving devices, human participants and software. To be comprehensive this list
should include fault tolerance, yet as our analysis shows, this property is, unfortunately, often
overlooked by middleware designers. A few existing solutions for fault tolerant mobile agents
are developed mainly for tolerating hardware faults without providing any general support for
application-specific recovery. In our recent paper [IR05] we introduce a novel exception han-
dling model that allows application-specific recovery in coordination-based systems consisting
of mobile agents. The essence of this model is in supporting flexible exception propagation
from one mobile communicating agent to another (or to a set of chosen agents) to ensure cor-
rect recovery in the situations when the agent cannot handle exceptions internally.

In this work we are focusing on coordination-based mobile environments, which are be-
coming the dominating paradigm in developing many mobile applications. In such systems
agents communicate through a tuple space using Linda-type coordination primitives allowing
them to put tuples in a tuple space shared by several agents, get them out and test for them.

8.1 Exception Propagation through Coordination Space

Our mechanism of the exception propagation is complimentary to the application-level excep-
tion handling. All the recovery actions are implemented by application-specific handlers. The
ultimate task of the mechanism is to transfer exceptions between agents in reliable and secure
way. However the enormous freedom of behaviour in agent-based systems prevents from deliv-
ering guarantees of reliable exception propagation in a general case. Although we can clearly
identify the situations when exceptions may be lost or not delivered within a predictable time
period. If application requires cooperative exception at certain moments then for that moments,
agents behaviour must be constrained to prevent any unexpected migrations or disconnections.

For agents there are three basic operation available to receive and send inter-agent excep-
tions. They are supplementary to the application-level mechanism and their functionality do
not overlap.

throw wait check
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The first operation,throw , propagates an exception to an agent or a scope. Important require-
ments is that the sending agent prior to sending an exception must have got a message from the
destination agent and they both must be in the same scope. These two variants of the operation
has the following form:

• throw(m, e) - throws exceptione as reaction to messagem. The message is used to
trace the producer and to deliver the exception to it. The operation fails if the destination
agent has already left the scope in which the message was produced.

• throw(s, e) - throws exceptione to all the participants of scopes .

The crucial requirement to the propagation mechanism is to preserve all the essential properties
of agent systems such as agents anonymity, dynamicity and openness. The exception propaga-
tion mechanism does not violate the concept of anonymity since we prevent disclosure of agent
names at any stage of the propagation process. Note thatthrow operation does not deal with
names or addresses of agents. Moreover, we guarantee that our propagation method cannot be
used to learn names of other agents.

Also the mechanism itself does not introduce any limitations on agent activities. Though
agents dynamicity an reliability of exception propagation are conflicting concepts we believe
that it is developers who must take the final decision to favour either of them. Notion of
openness is the key for building large-scale agent systems. Proper exception handling was
proved to be crucial for proper component composition. It is even more so for mobile agent
where composition is dynamic and parts of the system are developed independently. To support
large-scale compositions of exceptions-enhanced agents we are going to elaborate a formal
step-wise development procedure.

Two other operations,check andwait are used to explicitly poll and wait for inter-agent
exceptions.

• check - if there are any exception pending for the calling agents raises exceptionE(e)
which is a local envelop for the oldest pending exception.

• wait - waits until any inter-agent exception appears for the agent and raises it in the
same way as the previous operation.

8.2 Traps Mechanism

The propagation procedure expressed only with the primitives above would be too limited and
inflexible for mobile agent systems. To control propagation process in a way that account for
various agent behaviour scenario we introduce a notion oftrap. Trap is a set of rule created
by agents that controls exception propagation and exists independently of the creating agent.
Location providing a coordination space is storing and manipulating traps. A trap is essentially
a list of rules chosen depending upon the currently propagate exception.

A trap can be enabled when there is an incoming message for the agent that created the
trap. Agent may have several traps and traps are automatically organized into an hierarchical
structure. When an exception appears, the most recently added trap is activated. If the trap fails
to find a handling rule for the exception, the exception is propagated to the second most-recent
trap and so on. Agents can dynamically create, add and remove traps. The following operations
are used to build traps:
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• deliver - delivers the thrown exception to the destination agent. The exception is
stored until the destination agent is ready to react to it or the containing scope is de-
stroyed;

• relay(t) - propagates the exception to trapt which may be a trap of another agent.
Name of a trap can be only learned through negotiations with the trap owner. Owner of
the trap becomes the destination the propagated exception;

• abort - leaves the current trap and transfers control to the next in the hierarchy.

• if (condition)then ac - actionac is applied conditionally;

• . (concatenation)- forms a new action by concatenation of two other actions.

The deliver operation was designed to tolerate agent migration and connectivity fluctua-
tions. It introduces some level of asynchrony and makes the whole exception propagation
scheme more suitable to the asynchronous communication style of coordination space.relay
operation is the tool for building linked trap structures for disciplined cooperative exception
handling. Discussion and examples on this can be found in [IR05].

Preconditions for theif operation are formed from the following primitives:

• local - holds if the owner of the trap is currently connected to the hosting location

• local(a) - holds if agenta is currently connected to the hosting location

• tuple(t) - holds if there is a tuple matching templatet

• ¬, ∨, ∧ - logical operations that can be used on the predicates above

Rule preconditions and concatenation form a very expressive mechanism that may form
traps for many interesting scenarios. For example a rule in trap could make multiple delivers to
involve several agents, or, depending upon the locality of the trap owner, an exception may be
routed to the agent itself, another agent or even a trap in a different location.

8.2.1 Discussion

Our model meets all major requirements for exception handling in mobile coordination systems
that we set when we started our work. It supports asynchronous raising and handling of ex-
ceptions, ensures agent anonymity, imposes no restrictions on the agent behavior or its internal
activity, supports migrating agents and works effectively for both loosely- and tightly-coupled
communication patterns.

We have applied the general ideas behind the mechanism in the context of the Lime middle-
ware [PMR99]. More specifically we have developed an extension of the Lime system and con-
ducted a number of experiments to check the implementation. The full code of our implementa-
tion can be downloaded fromhttp://www.cs.ncl.ac.uk/ alexander.romanovsky/home.formal/limeh.zip.
The complete description of the API and Lime extended operations can be found in [IR05].
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Chapter 9

The way ahead

This “Month 12” report obviously only indicates out initial steps on “Rodin Methods”. Progress
has already been made on some important issues and we remain convinced that “tensioning”
our evolving ideas on methodology against the chosen case studies will yield a valuable contri-
bution to formal approaches to fault tolerance.

9.1 Link to Rodin Tasks

The Rodin Description of work defines the following tasks, the link with the sections above is
as follows

Task Description Chapter orSection

T2.1 Formal representations of architectural de-
sign, decomposition and mapping principles

S2.1.1, S2.2, C4, C6, C7

T2.2 Reusability, genericity, refinement S2.5, C4, C5, C6, C7
T2.3 Development templates for fault-tolerant de-

sign methods
S2.4, C3, C6, C7, C8

T2.4 Development templates for reconfigurability,
adaptability and mobility

C6, C7, C8

T2.5 Requirements evolution and traceability S2.1, S2.5, C3, C6

9.2 Addressing the issues in the next period

It would be rash to suggest that we will resolve all of the methodological issues identified above
even by the end of the whole Rodin project (even foolhardy to promise this by the “Month 24”
report): some of the questions noted above have been tackled by the world’s leading researchers
for more than a decade.

But we feel that it is important to consider even long-standing questions as we evolve and
test the Rodin methodology and tools. We might find resolutions; we can at least (try to) avoid
compounding old problems with what look like independent decisions.

We do undertake to report on our evolving thoughts on each of these issues in future deliv-
erables from this work package (rather than just describe a single method and omit to mention
any limitations).
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The next report should be able to report worked examples from the case studies.

9.3 Relevant publications not cited above

Readers might be interested in [WV01, Jon81, dRE99, Owi75, OG76, Jon83a, Jon83b, Jon96a,
Stø90, Col94, Xu92, Bue00, Din00, BS01, dR01, Plo81b, Plo03b, Plo03a, Jon96a, Bur04,
Nip04, CM92].
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[BMM05] Roberto Bruni, Herńan Melgratti, and Ugo Montanari. Theoretical foundations for
compensations in flow composition languages. InPOPL, pages 209–220, 2005.

[BS01] Manfred Broy and Ketil Stølen.Specification and Development of Interactive Sys-
tems. Springer-Verlag, 2001.

[Bue00] Martin Buechi.Safe Language Mechanisms for Modularization and Concurrency.
PhD thesis, Turku, 2000.

[Bur04] J. Burton.The Theory and Practice of Refinement-After-Hiding. PhD thesis, Uni-
versity of Newcastle upon Tyne, 2004.

[But00] Michael Butler. csp2B: A Practical Approach to Combining CSP and B.Formal
Asp. Comput., 12(3):182–198, 2000.

52



[But02] Michael Butler. A System-based Approach to the Formal Development of Em-
bedded Controllers for a Railway.Design Automation for Embedded Systems.,
6:355–366, 2002.

[BvW98] Ralph-Johan Back and Joakim von Wright.Refinement Calculus: A systematic
Introduction. Springer Verlag, 1998.

[CJ91] J. H. Cheng and C. B. Jones. On the usability of logics which handle partial func-
tions. In C. Morgan and J. C. P. Woodcock, editors,3rd Refinement Workshop,
pages 51–69. Springer-Verlag, 1991.

[CM92] J. Camilleri and T. Melham. Reasoning with inductively defined relations in the
HOL theorem prover. Technical Report 265, Computer Laboratory, University of
Cambridge, August 1992.

[Col94] Pierre Collette. Design of Compositional Proof Systems Based on Assumption-
Commitment Specifications – Application to UNITY. PhD thesis, Louvain-la-
Neuve, June 1994.

[Col04] Joseph W Coleman. Features of BPEL modelled via structural operational seman-
tics. MPhil thesis, University of Newcastle Upon Tyne, November 2004.

[Col05] Joey W. Coleman. Examining BPEL’s compensation construct. Technical Report
Series CS-TR-894, University of Newcastle Upon Tyne, March 2005.

[CSW03] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy forCircus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

[Dan02] J. Daniels. Modeling with a sense of purpose.IEEE Software, pages 8–10, Jan-
uary/February 2002.

[Dij82] Edsger W Dijkstra. On making solutions more and more fine-grained. InSelected
Writings on Computing: A Personal Perspective, pages 292–307. Springer-Verlag,
1982. (Orignially EWD622, written 26 May 1977).

[Din00] Jürgen Dingel. Systematic Parallel Programming. PhD thesis, Carnegie Mellon
University, 2000. CMU-CS-99-172.

[DKK04] R. Devillers, H. Klaudel, and M. Koutny. Petri net semantics of the finite pi-
calculus. InFORTE, volume LNCS 3235 ofLNCS, pages 309–325. Springer-
Verlag, 2004.

[dR01] W. P. de Roever.Concurrency Verification: Introduction to Compositional and
Noncompositional Methods. Cambridge University Press, 2001.

[dRE99] W. P. de Roever and K. Engelhardt.Data Refinement: Model-Oriented Proof Meth-
ods and Their Comparison. Cambridge University Press, 1999.

[Eva04] Eric Evans.Domain Driven Design. Addison Wesley, 2004.

53



[Fau00] S.R. Faulk. Product-line requirements specification (PRS): an approach and case
study. InProc. Fifth IEEE International Symposium on Requirements Engineering.
IEEE Comput. Soc, Aug. 2000.

[Fis97] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowmann and
J. Derrick, editors,Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97), pages 423–438. Chapman & Hall, 1997.

[FJ90] J.S. Fitzgerald and C. B. Jones. Modularizing the formal description of a database
system. In D. Bjørner, C. A. R. Hoare, and H. Langmaack, editors,VDM’90: VDM
and Z – Formal Methods in Software Development, volume 428 ofLecture Notes
in Computer Science, pages 189–210. Springer-Verlag, 1990.

[FL98] John Fitzgerald and Peter Gorm Larsen.Modelling systems: practical tools and
techniques in software development. Cambridge University Press, 1998.

[FLM+05] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Ver-
hoef. Validated Designs for Object-oriented Systems. Springer, 2005.

[Fuc92] N. E. Fuchs. Specifications are (preferably) executable.IEE, Software Engineering
Journal, 6:323–334, Sepember 1992.

[GB96] B. Grahlmann and E. Best. Pep - more than a petri net tool. InTACAS, volume
LNCS 1055 ofLNCS, pages 397–401. Springer-Verlag, 1996.

[Gel85] D. Gelernter. Generative communication in linda.ACM Computing Surveys,
7(1):80–112, 1985.

[GH96] Andy Gravell and Peter Henderson. Executing formal specification need not be
harmful. IEE/BCS Software Engineering Journal, March 1996.

[GIJ+02] M.-C. Gaudel, V. Issarny, C. B. Jones, H. Kopetz, E. Marsden, N. Moffat,
M. Paulitsch, D. Powell, B. Randell, A. Romanovsky, R.J. Stroud, and F. Taini.
Final version of DSoS conceptual model. Technical Report CS-TR-782, School of
Computing Science, Newcastle University, 2002.

[Gre89] T. R. G. Green. Cognitive dimensions of notations.People and Computers, 5,
1989.

[Hal96] Anthony Hall. Using formal methods to develop an atc information system.IEEE
Software, 13(2), 1996.

[Hay93] Ian Hayes, editor.Specification Case Studies. Prentice Hall International, second
edition, 1993.

[HJ89] I. J. Hayes and C. B. Jones. Specifications are not (necessarily) executable.IEE,
Software Engineering Journal, 4(6):320–338, November 1989.

54



[HJJ03] Ian Hayes, Michael Jackson, and Cliff Jones. Determining the specification of a
control system from that of its environment. In Keijiro Araki, Stefani Gnesi, and
Dino Mandrioli, editors,FME 2003: Formal Methods, volume 2805 ofLecture
Notes in Computer Science, pages 154–169. Springer Verlag, 2003.

[HJN94] I. J. Hayes, C. B. Jones, and J. E. Nicholls. Understanding the differences between
VDM and Z. ACM Software Engineering News, 19(3):75–81, July 1994.

[Hoa85] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

[ILRT05] A. Iliasov, L. Laibinis, A. Romanovsky, and E. Troubitsyna. Towards formal de-
velopment of mobile location-based systems. InREFT’05 – Workshop on Rigorous
Engineering of Fault Tolerant Systems, July 2005.

[IR05] A. Iliasov and A. Romanovsky. Exception handling in coordination-based mobile
environments. In29th Annual International Computer Software and Applications
Conference Edinburgh, Scotland, pages 341–350. IEEE CS Press, July 2005.

[ISO95] ISO. VDM-SL. Technical Report Draft International Standard, ISO/IEC
JTC1/SC22/WG19 N-20, 1995.

[Jac96] B. Jacobs. Inheritance and cofree constructions. InProceedings of the European
Conference on Object-Oriented Programming, volume LNCS 1098. Springer,
1996.

[Jac00] Michael Jackson.Problem Frames: Analyzing and structuring software develop-
ment problems. Addison-Wesley, 2000.

[JJLM91] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore.mural: A Formal Develop-
ment Support System. Springer-Verlag, 1991. ISBN 3-540-19651-X.

[JLRW05] C. B. Jones, D. Lomet, A. Romanovsky, and G. Weikum. The atomicity manifesto:
a story in four quarks.ACM SIGMOD Record, 34(1):63–69, 2005.

[JM94] C.B. Jones and C.A. Middelburg. A typed logic of partial functions reconstructed
classically.Acta Informatica, 31(5):399–430, 1994.

[Jon80] C. B. Jones.Software Development: A Rigorous Approach. Prentice Hall Interna-
tional, 1980. ISBN 0-13-821884-6.

[Jon81] C. B. Jones.Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University, June 1981. Printed as: Programming
Research Group, Technical Monograph 25.

[Jon83a] C. B. Jones. Specification and design of (parallel) programs. InProceedings of
IFIP’83, pages 321–332. North-Holland, 1983.

[Jon83b] C. B. Jones. Tentative steps toward a development method for interfering programs.
ACM Transactions on Programming Languages and Systems, 5(4):596–619, 1983.

55



[Jon90] C. B. Jones.Systematic Software Development using VDM. Prentice Hall Interna-
tional, second edition, 1990. ISBN 0-13-880733-7.

[Jon95] C.B. Jones. Partial functions and logics: A warning.Information Processing
Letters, 54(2):65–67, 1995.

[Jon96a] C. B. Jones. Accommodating interference in the formal design of concurrent
object-based programs.Formal Methods in System Design, 8(2):105–122, March
1996.

[Jon96b] C. B. Jones. TANSTAAFL (with partial functions). In William Farmer, Manfred
Kerber, and Michael Kohlhase, editors,Proceedings of the CADE-13 Workshop on
the Mechanization Of Partial Functions, pages 53–64, 1996.

[Jon03] C. B. Jones. Wanted: a compositional approach to concurrency. In A. McIver
and C. Morgan, editors,Programming Methodology, pages 1–15. Springer Verlag,
2003.

[Jon05] C. B. Jones. Sequencing operations and creating objects. InProceedings Tenth
IEEE International Conference on Engineering of Complex Computer Systems,
pages 33–36. IEEE Computer Society, 2005.

[Kho03] V. Khomenko. Model checking based on prefixes of petri net unfoldings. phd
thesis. Technical report, School of Computing Science, University of Newcastle
upon Tyne, 2003.

[Lam97] W. Lam. Achieving requirements reuse: a domain-specific approach from avionics.
Journal of Systems and Software, 38(3):197–209, Sept. 1997.

[LB03] M. Leuschel and M. Butler. ProB: a model checker for B. volume 2805 ofLecture
Notes in Computer Science, pages 855–874. Springer Verlag, 2003.

[LTL +05] L. Laibinis, E. Troubitsyna, S. Leppanen, J. Lilius, and Q. Malik. Formal model-
driven development of communicating systems. Technical Report 691, TUCS,
2005.

[LTO04] S. Lepp̈anen, M. Turunen, and I. Oliver. Application driven methodology for devel-
opment of communicating systems. InProc. ofFDL’04 – Forum on Specification
and Design Languages, 2004.

[MD98] Brendan P. Mahony and Song Dong. Blending Object-Z and Timed CSP: An in-
troduction to TCOZ. In20th International Conference on Software Engineering
(ICSE’98), pages 95–104, 1998.

[MH91] B Mahony and I Hayes. Using continuous real functions to model timed histo-
ries. In P. Bailes, editor,Engineering Safe Software, pages 257–270. Australian
Computer Society, 1991.

[Mid93] Cornelius A. Middelburg. Logic and Specification: Extending VDM-SL for ad-
vanced formal specification. Chapman and Hall, 1993.

56



[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mor90] Carroll Morgan.Programming from Specifications. Prentice-Hall, 1990.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.Information
and Computation, 100:1–77, 1992.

[MS01] Alexandre Mota and Augusto Sampaio. Model-checking CSP-Z: strategy, tool
support and industrial application.Sci. Comput. Program., 40(1):59–96, 2001.

[NFP98] R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a kernel language for agents
interaction and mobility.IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

[Nip04] Tobias Nipkow. Jinja: Towards a comprehensive formal semantics for a java-like
language. Manuscript, Munich, 2004.

[OG76] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Informatica, 6:319–340, 1976.

[Old02] Paul Oldfield. Domain modelling. Technical report, Technical Report of Appro-
priate Process Movement, http://www.aptprocess.com, 2002.

[Owi75] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis, De-
partment of Computer Science, Cornell University, 1975. 75-251.

[Plo81a] G. D. Plotkin. A structural approach to operational semantics. Technical Report
FN-19, Computer Science Department, University of Aarhus, 1981.

[Plo81b] G. D. Plotkin. A structural approach to operational semantics. Technical report,
Aarhus University, 1981.

[Plo03a] Gordon D. Plotkin. The origins of structural operational semantics.Journal of
Functional and Logic Programming, 2003. forthcoming.

[Plo03b] Gordon D. Plotkin. A structural approach to operational semantics.Journal of
Functional and Logic Programming, 2003. forthcoming.

[PMR99] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime: Linda meets mobility.Proc of
the 21st Int. Conference on Software Engineering (ICSE’99), Los Angeles (USA),
1999.

[Rei85] W. Reisig.Petri Nets. An Introduction. EATCS Monographs in Computer Science.
Springer, 1985.

[RFW+04] Chris Raistrick, Paul Francis, John Wright, Colin Carter, and Ian Wilkie.Model
Driven Architecture with Executable UML. Cambridge University Press, 2004.

[RJB98] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Modelling Language Refer-
ence Manual. Addison-Wesley, 1998.

57



[SB04] C. Snook and M. Butler. U2B - a tool for translating UML-B models into B. In
J. Mermet, editor,UML-B Specification for Proven Embedded Systems Design,
chapter 5. Springer, 2004.

[SBEJ04a] C. Snook, M. Butler, A. Edmunds, and I. Johnson. Rigorous development of
reusable, domain-specific components, for complex applications. In J. Jurgens
and R. France, editors,Proc. 3rd International Workshop on Critical Systems De-
velopment with UML, pages 115–129, Lisbon, 2004.

[SBEJ04b] C. Snook, M. Butler, A. Edmunds, and I. Johnson. Rigourous development of
reusable domain-specific components for complex applications. In J. Jurgens and
R. France, editors,Proc. 3rd Intl. Workshop on Critical Systems Development with
UML, Lisbon, 2004.

[SM92] Sally Shlaer and Stephen Mellor.Object-oriented Systems Analysis: Modeling the
World in Data. Prentice Hall, 1992.

[Smi97] Graeme Smith. A semantic integration of Object-Z and CSP for the specification of
concurrent systems. In John S. Fitzgerald, Cliff B. Jones, and Peter Lucas, editors,
Proceedings FME ’97, LNCS 1313, pages 62–81. Springer, 1997.

[SOB04a] C. Snook, I. Oliver, and M. Butler. The UML-B profile for formal systems mod-
elling in UML. In J. Mermet, editor,UML-B Specification for Proven Embedded
Systems, chapter 5. Springer, 2004.

[SOB04b] C. Snook, I. Oliver, and M. Butler. The UML-B profile for formal systems mod-
elling in UML. In UML-B Specification for Proven Embedded Systems Design.
Springer, 2004.

[SPJ05a] C. Snook, M. Poppleton, and I. Johnson. The engineering of generic requirements
for failure management. InProc. 11th International Workshop on Requirements
Engineering: Foundation for Software Quality (in press), Porto, June 2005. Es-
sener Informatik Beitrage.

[SPJ05b] C. Snook, M. Poppleton, and I. Johnson. Towards a methodology for rigorous
development of generic requirements patterns. InProc. REFT’05 (in press), New-
castle, UK, July 2005.

[ST04] Steve Schneider and Helen Treharne. Verifying controlled components. In
Eerke A. Boiten, John Derrick, and Graeme Smith, editors,Proceedings Inte-
grated Formal Methods, IFM 2004, Canterbury, UK, LNCS 2999, pages 87–107.
Springer, 2004.

[Stø90] K. Stølen.Development of Parallel Programs on Shared Data-Structures. PhD
thesis, Manchester University, 1990. Available as UMCS-91-1-1.

[Val98] A. Valmari. The state explosion problem. InAdvances in Petri Nets, volume LNCS
1491 ofLNCS, pages 429–528. Springer-Verlag, 1998.

58



[WC02] J.C.P. Woodcock and A. Cavalcanti. The semantics of Circus. In Didier Bert,
Jonathan P. Bowen, Martin C. Henson, and Ken Robinson, editors,Proceedings
ZB 2002, Grenoble, France, LNCS 2272, pages 184–203. Springer, 2002.

[WV01] Gerhard Weikum and Gottfried Vossen.Transactional information systems: the-
ory, algorithms, and the practice of concurrency control and recovery. Morgan
Kaufmann Publishers Inc., 2001.

[XRR+99] J. Xu, B. Randell, A. Romanovsky, R. J. Stroud, A. F. Zorzo, E. Canver, and F. von
Henke. Rigorous development of a safety-critical system based on coordinated
atomic actions. InProc. of 29th Int. Symp. Fault-Tolerant Computing. IEEE Com-
puter Society Press, 1999.

[Xu92] Qiwen Xu. A Theory of State-based Parallel Programming. PhD thesis, Oxford
University, 1992.

59


