
Application of Event B to Global
Causal Ordering for

Fault Tolerant Transactions

Divakar Yadav and Michael Butler

Declarative Systems and Software Engineering
School of Electronics and Computer Science

University of Southampton
Southampton SO17 1BJ UK

Event B
B Method is a proof based formal method developed by Abrial.

Event B is event driven approach used together with B Method.

Event B provides complete framework for developing mathematical model
of distributed algorithms by

Rigorous description of problem.
Gradually introducing solution in refinement steps.
Verification of correctness of solution by discharging proof
obligations.

Atelier B, Click‘n’Prove , B Toolkit provides support for discharge of proof
obligation through automatic and interactive prover.

Fault Tolerant Transactions
Some issues on our ongoing work

Distributed System is a collection of autonomous computers spatially
separated.

Fragmentation and Replication of data is a key issue in distributed
database.

Synchronous replication techniques require that all replica are updated
before updating distributed transaction commits.

Read One Write All (ROWA) based synchronous replication requires
transaction to read one copy and write all copies.

Fault Tolerance may be achieved by either masking failures or by
following well defined behaviour suitable for recovery.

Synchronous Replication
Read One Write All (ROWA)

Sites contains the replica of data object.

Synchronous Replication
Read One Write All (ROWA)

U U

U

U
U

U

Initial value of data is U.

Synchronous Replication
Read One Write All (ROWA)

U U

U

U
U

U
Ti

Transaction Ti is submitted at site Si

Synchronous Replication
Read One Write All (ROWA)

U U

U

U
U

U
Ti

Site Si sends messages to participating sites.

Synchronous Replication
Read One Write All (ROWA)

U U

U

U
U

Ti1 Ti2

Ti3

Ti4Ti5

U
Ti

Sub transactions of Ti starts at participating sites

Synchronous Replication
Read One Write All (ROWA)

V V

V

V
V

Ti1 Ti2

Ti3

Ti4Ti5

V
Ti

Commit Commit

Commit

Commit
Commit

Commit

Distributed Transaction Ti commits only if all Sub transactions commits.

Synchronous Replication
Read One Write All (ROWA)

V U

V

V
V

Ti1 Ti2

Ti3

Ti4Ti5

U
Ti

Commit Abort

Commit

Commit
Commit

Abort

Distributed Transaction Ti Aborts if Any Sub transactions aborts.

Synchronous Replication
Read One Write All (ROWA)

U U

U

U
U

Ti1 Ti2

Ti3

Ti4Ti5

U
Ti

Abort Abort

Abort

Abort
Abort

Abort

Exchange
of Messages

If Distributed Transaction Ti Aborts, it aborts at all sites.
G None of replica is updated.

Synchronous Replication
Read One Write All (ROWA)

V V

V

V
V

Ti1 Ti2

Ti3

Ti4Ti5

V
Ti

Commit Commit

Commit

Commit
Commit

Commit

Exchange
of Messages

If Distributed Transaction Ti Commits, it commits at all sites.
G All replicas are updated.

From now onwards….
Application of Event B to

Broadcast messaging system.

Buffering of messages.

Abstract model of causal order.

Globally ordered delivery of messages.

Implementation through vector clocks.

Broadcast Messaging

P2

P3

E11

E21

E31

P1

Processes communicate by broadcasting of messages.

No loss or duplication of message.

Messages are delivered after arbitrary delays.

Some Observations

Broadcast Messaging

SETS PROCESS; MESSAGE

VARIABLES sender , receive

INITIALISATION

sender := 0 || receive := 0

INVARIANT

sender e MESSAGE 2 PROCESS

receive e PROCESS 1 MESSAGE

(p åm) e receive fi m e dom(sender)

(p åm) e receive fi p Î sender(m))

OPERATIONS
Send(pp,mm) =

SELECT mm ‰ dom(sender)
THEN

sender := sender U {mm å pp}
END;

Receive (pp,mm) =

SELECT mm e dom(sender)
¶ (pp å mm) ‰ receive
¶ pp Îsender(mm)

THEN
receive := receive U {pp å mm}

END

Happened Before Relation

The happened before relation captures causal dependency
between various events occurring in a process.

Message Send and Message Receive are message events.

Event A and B are causally related if either A k B or B k A .

Event A and B are concurrent (A || B) if A ↛ B and B ↛ A .

Transitivity : A k B & B k C G A k C

Events Ordering
Some Observations

P1

P2

E6

E1

E4E2

E1 k E2

E1 || E3

P3 E3

E5

E2 k E4

E1 k E2 & E2 k E4 G E1 k E4

Some Observations

Causal Ordering of Messages
Some Observations

P2

P3

E11 E12

E21

E31

P1

E22

E32

M1 M2

M1

E31

) shows violation of global causal ordering.Message M1 (

Causal Ordering of Messages
Some Observations

P2

P3

E11
E13

E21

E31

P1

E23

E33

M1 M2

Message M1 () shows violation of global causal ordering.

E31

M1

P2

P3

P1

M1 M2 M3 M4

Causal Ordering of Messages
to Broadcast System

M1 k M2 M2 k M3 M1 k M2 & M2 k M3 G M1 k M3

Some Observations

Abstract Model of Causal Order
First Refinement

VARIABLES sender , receive , order

INVARIANT

order e MESSAGE 1 MESSAGE

If M1 k M2 and P has received M2, then P must have received M1

If M1 k M2 and P has sent M2, then P must have sent or received M1

order is transitive

INITIALISATION sender := 0 || receive := 0 || order := 0

Abstract Model of Causal Order
First Refinement

VARIABLES sender , receive , order

INVARIANT

order e MESSAGE 1 MESSAGE

(m1åm2)eorder ¶ (påm2)ereceive ¶ pÎsender(m1) fi (p åm1) e receive)

(m1åm2)eorder ¶ (m2åp) e sender fi ((m1åp) esender v (p åm1) ereceive)

(m1 å m2) e order ¶ (m2 åm3) e order fi (m1 å m3) e order

INITIALISATION sender := 0 || receive := 0 || order := 0

Operations

OPERATIONS

Send (pp,mm) = SELECT mm ‰ dom(sender)
THEN

order := order U ((sender~[{pp}] * {mm}) U (receive[{pp}] * {mm}))
|| sender := sender U {mm å pp}

END;

Receive (pp,mm) = SELECT mm e dom(sender)
¶ (pp å mm) ‰ receive
¶ pp Îsender(mm)
¶ Am.(m e MESSAGE ¶ (m åmm) e order

¶ pp Î sender(m) fi (pp å m) e receive)
THEN

receive := receive U {pp å mm}
END

END

Buffering of Messages
Second Refinement

To ensure globally ordered delivery of messages at a recipient process,
early message need be buffered.

For any two message M1, M2 where M1 is ordered before M2 (M1kM2),
If M2 arrives early at a process then M2 is buffered until M1 is received.

Buffering of Messages
Second Refinement

INVARIANT

buffer e PROCESS 1
MESSAGE

¶ ran(buffer) z dom (sender)

¶ ran(receive) I ran(buffer) = 0

SETS PROCESS ; MESSAGE VARIABLES sender , receive , order ,buffer

INITIALISATION sender := 0 || receive := 0 || order := 0 || buffer := 0

OPERATIONS

Arrive (pp,mm) = SELECT mm e dom(sender)
¶ (pp å mm) ‰ buffer
¶ (pp å mm) ‰ receive
¶ pp Î sender(mm)

THEN
buffer := buffer U {pp å mm}

END ;

Introducing a new event Arrive

Logical Clocks : Vector Clock

Vector Clock uses a vector of Integers of size N, where N is number of
processes in system.

Process Pi maintains a vector clock VTi.

VTi [i] is process Pi’s own logical time.

VTi [j] is process Pi’s best knowledge of time at process Pj..

Proposed by Fidge and Mattern and based on Lamport’s scalar clocks

P2

P3

P1

1,0,0

1,0,0

1,0,0

1,0,0

Applying Vector Clocks
to Broadcast System

0,0,0

0,0,0

0,0,0

P2

P3

P1

1,0,0 2,0,0

1,0,0 2,0,0

1,0,0

1,0,0

2,0,0

2,0,0

Applying Vector Clocks
to Broadcast System

0,0,0

0,0,0

0,0,0

P2

P3

P1

1,0,0 2,0,0

1,0,0 2,0,0

1,0,0

1,0,0

2,0,0

2,0,0

2,1,0

2,1,0

2,1,0

2,1,0

Applying Vector Clocks
to Broadcast System

0,0,0

0,0,0

0,0,0

P2

P3

P1

1,0,0 2,0,0

1,0,0 2,0,0

1,0,0

1,0,0

2,0,0

2,0,0

2,1,0

2,1,0

2,1,0

2,1,0 3,1,0

3,1,0

3,1,0

3,1,0

Applying Vector Clocks
to Broadcast System

0,0,0

0,0,0

0,0,0

Some Observations

VTi [i] indicates number of messages sent by
process Pi .

VTj [i] indicates number of messages received by
process Pj sent by process Pi .

Applying Vector Clocks to
Ensure Globally Ordered Delivery of Messages

Process Pi broadcasts a message M .

A recipient process Pj delays the delivery of message M
until following conditions are satisfied

VTj [i] = VTM [i] – 1

VTj [k] ˘ VTM [k] , ! k : (1..N) & (k d i)

P2

P3

P1

1,0,0 2,0,0

1,0,0 2,0,01,0,0

0,0,0

2,0,0

Applying Vector Clocks to
Ensure Globally Ordered Delivery of Messages

Message M2 arrives early at P3 .

M1 M2

0,0,0

0,0,0

P2

P3

P1

1,0,0 1,1,0

1,0,0 1,1,0
1,0,0

0,0,0

Applying Vector Clocks to
Ensure Globally Ordered Delivery of Messages

Message M2 arrives early at P3 .

M1 M2

0,0,0

0,0,0

1,1,0

Applying Vector Clocks
Third Refinement

SETS

PROCESS ; MESSAGE

VARIABLES

sender, receive,
order, buffer,
VTP, VTM

INVARIANT

VTP e PROCESS k (PROCESS k N)

¶ VTM e MESSAGE 2 (PROCESS k N)

Introducing a new variables VTP and VTM

Applying Vector Clocks
Third Refinement

Send (pp,mm) =

SELECT mm ‰ dom(sender)

THEN

order := order U ((sender~[{pp}] * {mm})
U (receive[{pp}] * {mm}))

|| sender := sender U {mm å pp}

END;

Send(pp,mm) =
SELECT mm ‰dom(sender)

¶ VTP(pp)(pp)>= 0
¶ VTP(pp)(pp)<MAXINT

THEN
LET nVTP
BE
nVTP = VTP(pp) + { pp å VTP(pp)(pp)+1}
IN VTM(mm) := nVTP || VTP(pp) := nVTP

|| sender := sender U {mm å pp}
END;

Refinement of Operation Send

Applying Vector Clocks
Third Refinement

Receive (pp,mm) =
SELECT mm e dom(sender) ¶ (pp å mm) ‰ receive ¶ pp Îsender(mm)

¶ Am.(m e MESSAGE ¶ (måmm) e order ¶ pp Î sender(m) fi (pp å m) e receive)
THEN receive := receive U {pp å mm} || buffer := buffer - {pp åmm}
END

Recieve(pp,mm) =
SELECT

mm e dom(sender) ¶ (pp å mm) ‰ receive ¶ pp Î sender(mm)
¶ (pp å mm) e buffer
¶ Ap.(p e PROCESS ¶ p Î sender(mm) fi VTP(pp)(p) ˘VTM(mm)(p))
¶ VTP(pp)(sender(mm)) = VTM (mm)(sender(mm)) - 1

THEN
receive := receive U {pp å mm} || buffer := buffer - {pp åmm}

|| VTP(pp) := VTP(pp) + ({ q | qePROCESS ¶ VTP(pp)(q) < VTM(mm)(q) } r VTM(mm))
END

Refinement of Operation Receive

Applying Vector Clocks
Third Refinement

INVARIANT

Am1,m2,p•(m1e MESSAGE ¶ m2e MESSAGE ¶ p e PROCESS
¶ (m1 å m2) e order fi VTM (m1)(p) ¯ VTM(m2)(p))

& Ap1,m,p•(p1e PROCESS ¶ p e PROCESS ¶ me MESSAGE ¶ me dom(sender)
¶ p1 Î sender(m) ¶ VTP(p1)(p) ˘ VTM(m)(p) fi (p1 å m) e receive)

& A m,p •(p e PROCESS ¶ me MESSAGE ¶ m e dom(sender)
fi VTM(m)(p) ¯ VTP(p)(p))

¶ Ap1,p2•(p1 e PROCESS ¶ p2 e PROCESS ¶ p1Îp2 fi VTP(p1)(p2) ¯ VTP(p2)(p2))

Conclusions
We outlined how an abstract causal order is correctly implemented
through vector clocks.

Ordered delivery of messages may provide enough information
needed at the time of recovery from failures.

Adequacy of Event B to provide a complete framework for developing
mathematical models of distributed algorithms.

Illustration of use of Event B for rigorous description of problem,
gradual refinement to more concrete specifications and verification of
solution for correctness.

