
Supporting Proof in a Reactive Development Environment ∗

Farhad Mehta
ETH Zurich, Department of Computer Science

Claussiusstr. 49, 8092 Zurich, Switzerland
fmehta@inf.ethz.ch

Abstract

Reactive integrated development environments for soft-
ware engineering have lead to an increase in productiv-
ity and quality of programs produced. They have done so
by replacing the traditional sequential compile, test, debug
development cycle with a more integrated and reactive de-
velopment environment where these tools are run automat-
ically in the background, giving the engineer instant feed-
back on his most recent change.

The RODIN platform provides a similar reactive devel-
opment environment for formal modeling and proof. Using
this reactive approach places new challenges on the proof
tool used. Since proof obligations are in a constant state of
change, proofs in the system must be represented and man-
aged to be resilient to these changes. This paper presents
a solution to this problem that represents proof attempts in
a way that makes them resilient to change and amenable to
reuse.

1 Introduction

One of the major issues of software engineering is the
inevitability of change. Change can occur as the result of a
change in requirements, the need for new functionality, the
discovery of bugs, etc. But these are not the only sources
of change. Smaller incremental changes are unavoidable
during the development phase of large, real world systems.
The construction of such systems is an incremental activity
since, in practice, getting things right the first time around is
not possible [4]. Modern development environments, such
as the Eclipse IDE for Java [9], support incremental con-
struction by managing change and giving the engineer quick
feedback on the consequences of the latest modification of
a program.

∗This research was carried out as part of the EU research project IST
511599 RODIN (Rigorous Open Development Environment for Complex
Systems) http://rodin.cs.ncl.ac.uk.

Formal model development is also an incremental
activity[16]. One of the major criticisms of using formal
methods in practice is the lack of adequate tool support, es-
pecially for proof. The RODIN platform [14] addresses this
by providing a similar reactive development environment
for the correct construction of complex systems using re-
finement and proof. It is based on the Event-B [1] formal
method. The development process consists of modeling the
desired system and proving proof obligations1 arising from
it.

In the correct by construction setting advocated by the
Event-B method, the proving process is seen as not merely
justifying that certain properties of the system hold, but also
as a modeling aid to help steer the course of the modeling
process. In contrast to post-construction verification, the
proving process assists modeling, in the same way testing
and debugging assists programing.

But the way the proving process is supported by formal
development tools used today does not take advantage of
this interaction between modeling and proving. The main
reason for this is that modeling and proving are treated as
isolated activities, making it hard for the user to move freely
between them in order to use proving insights to aid model-
ing.

1.1 Reactive Formal Development

From the experience of how a previous generation of
development tools [7, 3] were used, the RODIN platform
proposes a reactive development environment, similar to a
modern IDE, where the user working on a model is con-
stantly notified on the status of his proofs. To achieve this,
the tools present in the RODIN platform are run in a reac-
tive manner. This means that when a model is modified, it
is automatically:

• Checked for syntax and type errors,
• its proof obligations are generated, and

1A proof obligation is a logical statement derived from a model that
must be proved in order to guarantee that some property of the model holds.



Error Messages

Modeling Proving

Static
Checker

Proof Obl.
Generator

Proof Attempts
& Status

Unchecked
Model

Checked
Model Obligations

Proof

Proving

& Prover
PO ManagerModeling

UI

UI

Figure 1. The RODIN Tool Chain

• the status of its proofs are updated, possibly by calling
automated provers, or reusing old proof attempts.

The RODIN tool chain is illustrated in figure 1. The
user gets immediate notification on how his last modeling
change affects his proofs. Inspecting failed proofs often
gives the user a clue on how to further modify his model.
The user may then use this feedback to make further mod-
ifications to his model, or decide to work interactively on a
proof that the prover was unable to discharge automatically.
A detailed description of the RODIN tools and user inter-
face, and further benefits for using the reactive approach for
formal model development can be found elsewhere [2].

Supporting such a reactive development environment
poses new challenges for the tools involved, particularly the
prover.

1.2 A Reactive Prover - Challenges

In a reactive development environment, a change in a
model is immediately reflected as changes in proof obliga-
tions. The main challenge for a proof tool in such an envi-
ronment is to make the best use of previous proof attempts
in the midst of changing proof obligations. Reusing previ-
ous proof attempts is important since considerable compu-
tational and manual effort is needed to produce a proof.

The main difference between current approaches to
proof reuse and what is required for proof reuse in the re-
active setting is the frequency with which changes occur,
and the efficiency with which these changes need to be pro-
cessed in the reactive setting. Current approaches to rep-
resent and reuse proof attempts are not well suited for the
frequency with which some common types of change occur
in the reactive setting.

The main contribution of this paper is a new way of
representing proof attempts (proof skeletons) that can be
reused incrementally, but where explicit reuse may even be
avoided for some (recoverable) changes where proof skele-
tons are guaranteed to be resilient.

Structure of the paper In the next section (§2), we
present some background information on what a proof is
(§2.1), and how it is constructed in our system (§2.2). The
paper is then divided into two parts. The first part (§3)
is about proof obligation changes. We describe the types
of changes that proof obligations go through (§3.1), how
we want to react to them (§3.2), and derive requirements
on how proofs attempts should be recorded and managed
(§3.3). The second part (§4) is the main contribution of the
paper. It discusses how these requirements are met. We
start by evaluating three standard approaches used to rep-
resent proof attempts (§4.1, §4.2, §4.3) and show why they
do not fulfil our requirements. We then propose a mixed
approach (§4.4) and refine it to derive a solution (§4.5) that
fulfils our requirements. We then mention some extensions
(§5) of this solution that we have implemented, and com-
pare our solution to related work (§6). We conclude (§7) by
stating what we have achieved and its impact on proving in
the RODIN platform.
Relevance The results presented here are independent of
the Event-B method and the logic it uses. They are equally
applicable in many settings where computer aided proof is
performed. The logic used in Event-B is set theory built
on first order predicate calculus, but in this paper we only
assume that our logic is monotonic2.

2 Proofs and their Construction

We use the same notion of proof as the one in the stan-
dard sequent calculus. We first describe this formal notion
of what a proof is.

2.1 Sequents, Proof Rules & Proof Trees

A sequent is a generic name for a statement we want to
prove. A proof obligation is represented as a sequent. A

2By monotonic, we mean that the assumptions of any derived fact may
be freely extended with additional assumptions without affecting its valid-
ity



sequent has the general form H " G, where H is a finite set
of predicates (the hypotheses) which can be used to prove
the predicate G (the goal). In our setting, proof obligations
can easily contain many hundreds of hypotheses. A sequent
is proved by applying proof rules to it. A proof rule has the
general form:

A
C

where A is a finite set of sequents (the antecedents), and C is
a single sequent (the consequent). A proof rule of this form
yields a proof of sequent C as soon as we have proofs of
each sequent in A. The set of antecedents A may be empty.
In this case the rule is said to discharge the sequent C. Here
is an example of a proof rule:

A,B, C " D A,B,C " E

A,B, C " D ∧ E

A proof tree is a data-structure that combines individual
proof rules to form a larger chain of inference. In this paper
we use the terms ‘proof’ and ‘proof tree’ interchangeably.
Each node in this tree corresponds to a sequent, and may
contain a single rule application. In case a node contains
a rule application, its sequent is identical to the consequent
of the rule, and this node has child nodes whose number
and corresponding sequents are identical to the antecedents
of the rule. The root of the tree is the sequent we want to
prove. The leaf nodes of the tree that do not contain rule
applications are the remaining sub-goals that still need to
be proved. A proof is either:
Complete when there are no remaining sub-goals.
Incomplete when it has at least one remaining sub-goal.

Here is an example of an incomplete proof tree with two
rule applications and one pending sub-goal (A,B, C " E):

A,B, C " D A, B, C " E

A,B, C " D ∧ E

An example of a complete proof tree can be seen in the
next section, which describes how proofs are constructed in
our system.

2.2 Reasoners and Tactics

In the previous section we defined the structure of proof
rules, but didn’t mention where they come from. In our sys-
tem, proof rules are generated by so-called reasoners. A
reasoner is a computer program that is capable of generat-
ing proof rules. A reasoner is provided with a sequent to
prove3. It is assumed that reasoners either fail, or generate
logically valid proof rules. How this is done is not of in-
terest here. What we should take note of here is that proof

3A reasoner may also be provided with some extra input, but this has
been omitted in the presentation of this paper

rules are generated artifacts and the result of some (possi-
bly time consuming or user directed) computation done by
the reasoner.

As a first example, we may have a reasoner called conjI
that splits a conjunctive goal into two sub-goals. Taking the
sequent A,B, C " A ∧ D as input, it produces the follow-
ing proof rule (named using the name of the reasoner that
generated it):

A,B, C " D A,B,C " E

A,B, C " D ∧ E
conjI

We may also have reasoners that internally use spe-
cialised decision procedures (say, resolution or linear arith-
metic) to completely discharge their input sequents by gen-
erating rules without any antecedents:

A,B, C " D
res

A,B, C " E
arith

It is assumed that these two reasoners discharge their re-
spective input sequents as shown above. The internal details
of how these reasoners work is not of interest here.

Generating individual proof rules and putting them to-
gether is a tedious process. In order to make the task of
constructing proofs easier, our system provides the conve-
nience of tactics. Tactics provide a way to structure strate-
gic or heuristic knowledge about proof search. They pro-
vide control structures to call reasoners or other tactics to
modify the proof tree.

Internally, all tactic applications are translated, via rea-
soner calls, into proof rule applications. Tactics provide the
scaffolding that makes proof construction more convenient,
but once constructed, a proof is capable of standing on its
own. We should note here that tactics introduce a second
layer of execution (and therefore delay) when constructing
a proof.

The notion of tactics is present in some form in many
proof tools used today [12, 11]. Typically, all user level in-
teractions for proof construction are expressed via tactics
since they provide a concise and high level language to ex-
press proof construction steps.

We may, for instance, define a tactic auto that splits all
conjunctions in a goal (by calling the reasoner conjI in a
loop till it is no longer applicable) and then tries a series
of automated reasoners (res and arith) on all pending sub-
goals on the resulting proof tree. Applying this tactic on a
proof tree with only the initial root sequent A,B, C " D∧E
gives us the following complete proof tree:

A,B, C " D
res

A,B, C " E
arith

A,B, C " D ∧ E
conjI

This proof tree, and its construction (using auto) will be
used as a running example throughout this paper.



We use the term proof attempt to denote some record of
the construction of a proof. We say that a proof attempt is
applicable for a given proof obligation if this proof attempt
can be used to reconstruct a proof for the given proof obli-
gation. For applicability we also require that if the proof
attempt is the record of a complete proof, the reconstructed
proof should also be complete.

Since proof construction is a layered process (tactics call
reasoners, generating rules), we have a choice of what we
want to record as a proof attempt. This choice is governed
by the requirements we have on the applicability of proof
attempts when their proof obligations change. The next sec-
tion discusses proof obligation changes and concludes with
these requirements.

3 Proof Obligation Changes

We start by describing the different types of proof obli-
gation changes that we treat in this paper and the required
effects of these changes on the applicability of proof at-
tempts. The changes are presented in the order of the fre-
quency (from our experience) with which they occur:

1. Adding hypotheses: Common modeling changes, such
as importing a new theory, or adding a new property
to the system being modeled, result in new hypotheses
being added to almost all proof obligations. Since the
logic we use is monotonic, we should not allow this
sort of change to make a previous proof attempt inap-
plicable.

2. Removing unused hypotheses: It is often the case that
the user chooses to remove or replace a property he
thinks is wrong or redundant. The properties of a sys-
tem are reflected as hypotheses in almost all proof obli-
gations. The removal of a property therefore results in
the removal of a hypothesis in a large number of proof
obligations. Removing a hypothesis from a proof obli-
gation per se renders its previous proof attempt inap-
plicable. But proof attempts typically only use a small
subset of the hypotheses present in a proof obligation.
Removal of unused hypotheses from a proof obligation
should not make its previous proof attempt inapplica-
ble.

3. More severe changes Next come changes to proof obli-
gations that do not fit in the above two categories, for
instance the removal of a hypothesis that is used in a
proof, or the change of a goal that the proof manipu-
lates. In these cases it is clear that the previous proof
attempt is no longer applicable and needs to be modi-
fied, either automatically or interactively.

3.1 Characterising Changes

In general, changes to a proof obligation can be classi-
fied into two categories with respect to how they affect the
applicability of a previous proof attempt:
Recoverable Those changes for which the system can au-

tomatically and efficiently guarantee that a previous
proof attempt is still applicable. Previous proof at-
tempts in this case need not be modified. We want
changes 1 and 2 to fall in this category.

Irrecoverable Those changes for which the system cannot
guarantee that a previous proof attempt is still applica-
ble. In this case a proof attempt may need to be modi-
fied (automatically or interactively) to account for this
change. Change 3 falls under this category.

The next section describes how the system should react
to changes in each of these categories.

3.2 Reacting to Changes

Automatically reacting to proof obligation changes as
they happen gives the user immediate feedback on how his
last modeling change affects his proof development. But au-
tomatically reacting to a change should not result in a loss
of some previous proof effort. In this section we describe
how the system should react to change, keeping these two
points in mind.

We start by making a distinction between reacting to a
change, and recovering from it. The system reacts every
time it notices that a proof obligation has changed. Recov-
ering from a change means that the system, at the end of the
recovery process, ensures that the current proof attempt is
applicable for the changed proof obligation. Reacting to a
change may mean recovering from it, but later in this sec-
tion we will see that this is not always desirable.

We would always like to recover from a recoverable
proof obligation change (as defined in §3.1) since:

• Recovery is guaranteed to succeed.
• Recovery is not computationally intensive.
• The previous proof attempt is not modified.
In this case, recovery only involves checking that the

proof attempt is still applicable and marking it as such.
On the other hand, if the change is irrecoverable, the pre-

vious proof attempt is now inapplicable. Recovering from
such a change requires the creation of a new proof, possi-
bly with the help of a previous proof attempt. Reacting to
such changes by trying to immediately recover from them
is undesirable because:

• Recovery may fail.
• Recovery may be computationally intensive
• Recovery may need user interaction.
• The previous proof attempt may be lost.



The user typically does not want to spend time and re-
sources on proving proof obligations after every modeling
change, but only at points where he thinks his model is sta-
ble enough to be worthy of proof effort. At other points in
the development, the model may be unstable or incomplete,
resulting in incomplete or unstable proof obligations. Im-
mediate recovery from such changes would mean that time
and effort is spent on proving proof obligations that will
change in the very near future. A more serious consequence
of this is that any previous proof attempt would be modified,
or even lost. The user should be able to make experimen-
tal changes without worrying about the system modifying
his proofs. Since the system does not have a way of know-
ing the intent of a modeling change, the best thing to do
in this case would be to mark any previous proof attempt
as now being inapplicable. The user can later make this
proof attempt applicable again, either by undoing his mod-
eling change, or explicitly asking the system to recover by
reusing a previous proof attempt.

Proof attempts generated automatically (i.e. without any
user interaction) are an exception to this rule. Losing such
proof attempts is not that serious since they can be regen-
erated automatically. In this case, a system may try to im-
mediately recover from an irrecoverable change (by possi-
bly rerunning automated provers) and replace the previous
proof attempt with a new one in case this was successful.

Table 1 summarises how the system should react to re-
coverable and irrecoverable changes. From this table we see
that it is important that proof attempts are represented such
that they are recoverable whenever possible.

Change Previous Reaction
Proof Attempt

Recoverable - Recover by marking
proof attempt applicable

Irrecoverable Interactive Mark proof
attempt inapplicable

Automatic Recover with new
automatic proof attempt

Table 1. Reacting to Changes

3.3 Requirements

We conclude this section by placing three concrete re-
quirements on the way proof attempts are represented:

1. Addition or removal of unused hypotheses should be
guaranteed to be recoverable proof obligation changes.

2. The check to see if a proof attempt is applicable for a
proof obligation should be efficient.

3. For irrecoverable changes, proof attempts should be
reused incrementally to construct new proof attempts.

The next section talks about how to represent proof at-
tempts so that they fulfil these requirements.

4 Representing Proof Attempts

This section compares various alternatives we can con-
sider to represent proof attempts. As mentioned before, a
proof attempt is a record of the construction of a proof.
A proof tool must allow proofs to be saved and reloaded
from saved proof attempts. We deliberately talk of record-
ing proof attempts, and not of explicitly recording proofs as
they are defined in §2. This is because we are not bound
to recording these proofs explicitly, but only require that
the proof tool be able to reconstruct these proofs from their
proof attempts.

There are two types of information that a proof attempt
can record about the construction of a proof:

• what has been proved.
• how a proof is constructed.
Proofs are the result of a proof construction activity.

They record what has been proved. The way a proof is con-
structed though may provide more information on how the
proof was done which cannot be expressed within the proof
itself. A proof attempt may therefore record more informa-
tion from the proof construction phase than what is present
in the constructed proof. In our setting where proof obliga-
tions are subject to change, using information about how a
proof was constructed is of great importance while reusing
a proof attempt when its proof obligation changes4. At the
same time, it is also important to record what was proved
since we would like to do this reuse incrementally, and do
not want to reconstruct a proof just to check if it is still ap-
plicable for a proof obligation.

We first consider three approaches of how to record a
proof attempt that follow naturally from the way proofs are
constructed. The type of information they record are in
parenthesis:

1. Recording proofs explicitly (what)
2. Recording reasoner calls (how)
3. Recording tactic applications (how)

In the subsections that follow (§4.1, §4.2, §4.3), we first
evaluate these three ways of recording a proof attempt with
the following criteria in mind:
Efficiency: How efficient is this approach with respect to

the space required to store proof attempts, the com-
putation required to show that a proof attempt is ap-
plicable for a proof obligation, and the computation
required to reconstruct an actual proof from it?

Reusability: What possibilities do we have to reuse proof
attempts as they are represented using this approach?

4A central assumption here is that proof obligations normally do not
change so drastically that they require a radically different approach to
prove them.



As we will see, each approach has its advantages and
shortcomings. Our aim in this section is to make a reason-
able trade-off, keeping our three requirements from §3.3 in
mind. In §4.4 we propose a mixed approach, and refine this
approach in §4.5 to derive a solution (proof skeletons) that
fulfils our requirements.

4.1 Recording Proofs Explicitly

As a first attempt, we represent a proof attempt explicitly
as a proof (i.e. as a proof tree defined in §2). This approach
corresponds to the proof object view of looking at a proof
attempt and records what has been proved in full detail.

Efficiency Proof trees are large and cumbersome data
structures. Because of this, most proof tools in use today
by default avoid the explicit construction of proof trees all
together. In our setting, a proof obligation may easily con-
tain hundreds of hypotheses which are mostly repeated in
all nodes of a proof tree. Representing proof attempts in
this way therefore raises serious storage concerns. Recon-
structing a proof tree though is a trivial task; it only has to
be reloaded. Checking if a proof attempt is recoverable for
a proof obligation is also trivial; it has to be identical to the
root sequent of the proof tree. No reasoner calls are required
for both these operations.

Reusability Although this approach eliminates the need
for proof reconstruction, it gives us absolutely no way of
reusing proof attempts when proof obligations change. A
proof can only be associated with a single proof obligation:
the sequent occurring in its root node. When a proof obli-
gation changes, its proof is no more applicable.

To illustrate this, here is how the proof attempt of the
proof presented in §2.2 (our running example) would look
like in this setting:

A,B, C " D A,B, C " E

A,B, C " D ∧ E (proof attempt 1)

The rule names have been omitted since they have no signif-
icance here. Trying to reuse this proof attempt for the iden-
tical proof obligation A,B, C " D ∧ E is fine. Any slight
changes though (for instance adding a hypothesis) make this
proof attempt inapplicable.

The next two sections describe proof attempts that record
how a proof was constructed.

4.2 Recording Reasoner Calls

In this approach, a proof attempt is represented as a tree
that records all reasoner calls required to construct a proof.
The structure of this tree is identical to that of a proof tree.

The nodes of this tree though do not store sequents or proof
rules, but the reasoner calls that were used to generate these
proof rules. In contrast to the previous approach, a proof
attempt now stores how a proof was constructed.

Efficiency This representation of a proof attempt requires
much less storage since we do not need to store sequents.
Reconstructing a proof from such a proof attempt now re-
quires extra computation since each proof rule needs to be
regenerated by calling the reasoner that originally generated
it. Checking that a proof attempt is applicable for a proof
obligation (even if it has not changed) is expensive since it
requires the proof to be reconstructed.

Reusability Compared to the previous approach, proof at-
tempts stored in this way give us more possibilities for reuse
when proof obligations change. This is because we now
have a layer of computation between a proof attempt and
the proof reconstructed from it. This makes it possible for
a proof attempt to recover from proof obligation changes.
How much change a proof attempt is able to recover from
depends on how well each reasoner deals with change in its
input sequent. In practice, reasoners are specialised for a
particular task and are ignorant of most details present in
their input sequents. For instance, the reasoner conjI only
needs the goal to be a conjunction and is ignorant of the
hypotheses.

Here is how the proof attempt of our running example
would look like in this setting:

conjI

res arith

(proof attempt 2)

This proof attempt is no more a proof tree, but has the same
structure. As in the previous case, trying to reuse this proof
attempt for the identical proof obligation A,B, C " D ∧ E
succeeds. If we added an extra hypothesis F , or removed a
hypothesis that was not needed by any reasoner in the proof
(say A), this proof attempt would still be reusable. In both
these cases though, this cannot be guaranteed without re-
executing each reasoner call. If the goal changes from D∧E
to just D, reuse would fail since the first reasoner call to
conjI , which requires a conjunctive goal, would fail.

4.3 Recording Tactic Applications

In §2.2 we introduced the notion of tactics and men-
tioned that all user level interactions for proof construction
are expressed using tactic applications. If one could keep
track of the sequence (i.e. a list) of tactic applications the
user used to construct a proof, this information could also
be recorded as a proof attempt. This is how proof attempts
are represented in most proof tools [12, 11].



Efficiency Proofs are reconstructed by replaying all tactic
applications in the order they were applied when construct-
ing the proof. This approach simulates the original con-
struction of the proof at the user interaction level. Since tac-
tics introduce a second level of execution to proof construc-
tion, and may call reasoners that fail, reconstructing a proof
from such a proof attempt requires the greatest amount of
computation of all three approaches. The same is true for
checking if a proof attempt is applicable for a proof obli-
gation. The amount of storage required for such a proof
attempt is the least of all three approaches.

Reusability Since this way of representing a proof at-
tempt records each user interaction with the proof tool, it
could in principle give us the greatest possibility for reusing
proof attempts. But since the way a tactic works is uncon-
strained (it may globally modify the entire proof tree) and
highly unpredictable (we have no control over what it does),
in practice we have very weak guarantees for when such a
proof attempt is reusable for changes in a proof obligation.

Going back to our running example, its proof attempt in
this setting is a list with only one tactic application:

apply(auto) (proof attempt 3)

It may be reused successfully for A,B, C " D ∧ E, and
for variations of it with the addition or removal of unused
hypotheses, and even for B,C " D. But we can make this
claim only because we know what the tactic auto does. In
general, it can be the case that the addition of a hypothesis
makes a serious change in the way a tactic works (for in-
stance the addition of a disjunctive hypothesis may trigger
a tactic to start a case distinction), leaving the remainder of
a proof attempt irrelevant and unusable. This is a recurrent
problem in proof tools where proof attempts are stored as
tactic applications [8].

We see that this approach gives us even weaker guaran-
tees (compared to §4.2) about the applicability of a tactic to
a changed proof obligation. Tactic applications are there-
fore not well suited for reuse in our setting.

Till now we have seen three approaches to represent
proof attempts that followed naturally from the way proofs
are constructed. The first three rows of table 2 (that appears
towards the end of the paper) compares these representa-
tions with respect to our requirements in §3.3. From this ta-
ble we see that no single approach fulfils our requirements.
The aim of the next section is to combine the advantages of
two of these approaches to devise a proof attempt represen-
tation that can be incrementally reused.

4.4 A Mixed Approach

Each of the three proof attempts presented till now either
recorded exactly what was proved, or how it was proved.

The aim of this section is to combine these two types of
information in order to reuse proof attempts incrementally,
and to avoid reconstructing a proof just for checking that a
proof attempt is applicable for a proof obligation.

A natural choice for this mixed approach is to combine
the approach of recording entire proofs (§4.1) with the one
recording reasoner calls (§4.2). We use the same reasoner
call tree, but additionally store the proof rules generated by
each reasoner call in its node. This is how the proof attempt
of our running example would look in this setting:

A,B, C " D A,B,C " E

A,B, C " D ∧ E
conjI

A,B, C " D
res

A,B, C " E
arith

(proof attempt 4)

From this mixed proof attempt we can easily extract its
explicit proof tree (proof attempt 1), or its reasoner call
tree (proof attempt 2). As in §4.1, we are guaranteed that
this proof attempt is applicable for the proof obligation
A,B, C " D ∧ E without the need to reconstruct its proof.
For any modifications of this proof obligation, its proof
needs to be reconstructed as described in §4.2.

But this reconstruction can now be done incrementally.
Each node in this tree contains a reasoner call, as well as
the proof rule it generated. The proof rule can be seen as a
cache of the result of the reasoner call. When reconstructing
a proof at such a node, this cached proof rule can be used
directly if its conclusion is identical to the sequent to be
proved. If not, the reasoner can be called again with the
new sequent to be proved. In case this succeeds, we have
a new proof rule that we can use to carry on with the proof
reconstruction. In this way it is possible to save expensive
calls to an automated reasoner at the ends of a proof tree.

For instance, reusing (proof attempt 4) when the conjunct
E in the goal changes to E′, gives us the following proof:

A,B, C " D
res

A,B, C " E′ arith

A,B, C " D ∧ E′ conjI

where we did not need to call res again to generate the
boxed inference rule.

Evaluation This approach allows us to reuse a proof at-
tempt incrementally and gives us a guarantee on its appli-
cability (when its proof obligation has not changed) with-
out having to reconstruct its proof. But this guarantee is
much weaker than the one we desire. We would like proof
attempts to still be guaranteed applicable (without reasoner
replay) for addition and removal of unused hypotheses. This



approach is also not usable in practice since it requires stor-
ing entire proof trees (via their proof rules). The next sec-
tion describes the alternative that we use in place of storing
proof rules to refine this mixed approach to solve the above
problems.

4.5 Proof Skeletons

As seen earlier (§4.1), the problem with recording proof
rules is that they are too verbose. This not only makes them
too large to store, but also too hard-wired to reuse. A proof
rule basically tells us how a pending sub-goal changes in a
proof. A change in a pending sub-goal should give us two
pieces of information:
Applicability When is this change applicable for a pending

sub-goal.
New sub-goals If applicable, what are the new pending

sub-goals that replace this pending sub-goal.
A proof rule gives us exactly this information, but not

in a modular and incremental form. The idea behind proof
skeletons is to store the changes a reasoner makes to a pend-
ing sub-goal instead of an entire proof rule as it appears in
a proof.

In §4.2 we observed that a reasoner is typically spe-
cialised for a particular task and is ignorant of most of the
details present in its input sequent. But since its output is a
proof rule, the fine details of what it actually depended on,
and what it actually modified are lost.

In order to keep this information, the output of a reasoner
needs to be made more precise. The next subsection shows
how this can be done to track how hypotheses change and
how they are used in a proof.

4.5.1 Tracking Hypotheses

The aim of this section is to come up with a way of record-
ing proof attempts that is guaranteed to be recoverable after
adding or removing unused hypotheses from proof obliga-
tions. We will use ideas from how hand-written proofs are
done to achieve this. When doing a proof by hand, one does
not start by stating all assumptions one may depend upon,
but by keeping these assumptions in mind, and letting the
proof steps dictate which assumptions are used as the proof
unfolds.

To use this idea of computing used hypotheses as the
proof unfolds, instead of returning a proof rule, a reasoner
needs to return a reduced version of the proof rule, called a
proof rule skeleton. A proof rule skeleton is identical to a
proof rule except:

1. The hypotheses of the conclusion are restricted to
those that were actually used by the reasoner.

2. Only changes to these used hypotheses (i.e. their addi-
tion or removal) are recorded in place of all hypotheses
of each antecedent.

This is what the proof rule skeletons look like for our
running example:

" D " E
" D ∧ E

conjI
C " D

res
B " E

arith

In contrast to the complete proof rules that appear in §4.4
(proof attempt 4), from the rule skeletons above we can
clearly see what hypotheses were used by each reasoner
(none for conjI , C for res and B for arith). This repre-
sentation also corresponds more closely to how proof rules
are expressed in hand-written proofs.

Using such a rule skeleton to construct a proof rule is
straightforward. Since our logic is monotonic5 we can sys-
tematically add hypotheses to the conclusion and all an-
tecedents to get a valid proof rule. For instance, we can
use the rule skeleton conjI above to construct the follow-
ing proof rule that we have used in our running example
by systematically adding the hypotheses A, B, and C (here
boxed) to its conclusion and antecedents:

A,B, C " D A,B, C " E

A,B, C " D ∧ E

A rule skeleton has greater applicability (and therefore
reusability) compared to a proof rule. For hypotheses, it
only requires that the used hypotheses from the conclusion
be present in a pending sub-goal.

We get a proof skeleton by replacing proof rules in the
mixed proof attempt (§4.4) with proof rule skeletons. The
proof skeleton for our running example is:

" D " E
" D ∧ E

conjI

C " D
res

B " E
arith

(proof attempt 5)

Using rule skeletons instead of proof rules makes
(proof attempt 5) much more concise compared to (proof
attempt 4). Proof skeletons do not present serious storage
problems in practice since they typically do not contain a
large number of rule skeletons (which themselves only con-
tain relevant hypotheses).

From (proof attempt 5) and the initial sequent A,B, C "
D ∧ E we can reconstruct its explicit proof (proof attempt
1) using just the rule skeletons. But what we are more inter-
ested in is the applicability of this proof skeleton for other
initial sequents. For this we can recursively compute what
hypotheses need to be present in the initial sequent so that
each rule skeleton is applicable. For (proof attempt 5) we

5Monotonicity asserts that the assumptions of any derived fact may be
freely extended with additional assumptions. Over here we interpret ‘de-
rived fact’ to be a proof rule.



Is it recoverable for: How is it reused
Proof Attempt Original PO How? Original PO How? for irrecoverable
Representation ± (unused) hyps changes?
Explicit Proofs Yes guaranteed No - Not possible
Reasoner calls Yes reasoner replay Yes reasoner replay reasoner replay
Tactics Yes tactic replay maybe tactic replay tactic replay
Mixed approach Yes guaranteed Yes reasoner replay incremental
Proof skeletons Yes guaranteed Yes guaranteed incremental

Table 2. Comparing Proof Attempt Representations

can compute that if the initial sequent contains the hypothe-
ses C and B (and trivially, the goal D ∧E), each of its rule
skeletons will be applicable. This information can be stored
along with the proof skeleton as a cache of its dependencies:

Used Hyps : C, B
Goal : D ∧ E (proof attempt 5 dependencies)

These cached dependencies can be used later to efficiently
check if a proof skeleton is still applicable for a proof obli-
gation when it changes.

For (proof attempt 5) we are guaranteed that we can re-
construct a proof for any initial sequent containing the hy-
potheses C and B, and the goal D ∧ E, without doing this
reconstruction explicitly. We may now safely add all the hy-
potheses we want, or remove any unused hypotheses with-
out making our proof attempt inapplicable.

In this section we have seen five approaches to represent
proof attempts. Table 2 compares these representations with
respect to the requirements that we placed on proof attempts
in §3.3. From this table we see how we improved our rep-
resentation of a proof attempt until we arrived at one (i.e.
proof skeletons) that fulfilled our requirements.

The next section describes some extensions of the proof
skeleton approach that we use to represent proof attempts in
the RODIN platform.

5 Our Solution

For the RODIN platform we use proof skeletons to
record proof attempts as described in the previous section,
with added support for:
Hypothesis dependencies as explained here, also taking

forward inferences6 into account. A forward inference
contributes to the used hypotheses only if it produces
a hypothesis that is used further up in the proof.

Goal independence for proofs that succeed irrespective of
what goal the initial sequent has (for instance a proof
due to contradictory hypotheses).

6Forward inferences derive new hypotheses using old ones and are fre-
quently used to simplify hypotheses.

Type environment dependencies to track the identifiers
used in a proof, along with their types.

Free identifier dependencies to track which identifiers
were assumed to be undeclared in an initial sequent.

Refactoring of proof attempts when identifiers are re-
named.

The proof skeleton representation also opens up new
possibilities for revalidating and refactoring proof attempts.
Due to space limitations we are unable to elaborate on these
points and present a formal treatment of this work which
will appear later.

6 Related Work

The topic of proof reuse has been heavily studied in the
context of program verification. The KIV and KeY sys-
tems use dynamic logic to verify imperative and object ori-
ented programs. Both systems support a form of proof reuse
[13, 5] based on reasoner replay as discussed in §4.2. They
show impressive results using heuristics that are fine tuned
for their particular setting. Similar heuristics can be in-
corporated into our setting to better handle irrecoverable
changes. Our solution independently contributes to their
approach (and other replay based approaches) since proof
attempts are guaranteed resilient to simple changes where
explicit replay may be avoided.

Our solution for avoiding explicit reuse is similar to [10,
16], where a proof is generalized using meta-variables that
can be reinstantiated for proof reuse. Although more gen-
eral, this approach requires higher-order unification (which
is undecidable) for reinstantiating proofs. The authors in
[10] claim that the unification problems they encounter are
fairly simple, but we believe that in our setting (where a se-
quent may have hundreds of hypotheses), unification, even
if well behaved, would still take more time than reasoner
replay. We opt for a less general, but simpler and more
efficient solution to support the types of reuse that we fre-
quently need.

The VSE system supports proof reuse [16] over an evolv-
ing specification by explicitly transforming specifications
and proofs simultaneously using a set of predefined basic



‘development transformations’. Although this allows for a
more controlled proof reuse, we do not take this approach
due to two reasons. First, as discussed in §3.2, we do not
want to forcibly recover from every modeling change. Sec-
ondly, we believe that a proof tool should use proof obliga-
tions, and not models as a source of change. We want the
proof tool to work independently of the modeling constructs
used, allowing both to evolve independently. Our proof tool
does have the possibility of accepting ‘hints’ from the mod-
eling tools (e.g. relevant hypotheses, constant renaming),
but these have a logical meaning independent of the model-
ing formalism used.

Our approach is similar to earlier work done on the mu-
ral system for checking the consistency of proofs when
theories change [15]. Proof attempts were represented ex-
plicitly as natural deduction style proofs that could be tra-
versed and checked for consistency when their proof obliga-
tions changed. Explicit proof dependencies though were not
computed. It is unclear from the documentation how such
proof attempts could be replayed for irrecoverable changes.

Proof reuse is not such a hot topic in pure logic based
proof assistants such as Isabelle [12]. Users do reuse proof
attempts, but by rerunning tactic application scripts. This
is justified since in such systems one does not prove ‘proof
obligations’ (that are machine generated and change often),
but ‘theorems’ (that are entered by the user and are some-
what stable). Nevertheless, the need for proof management
and reuse is felt [8], the more such tools are used for veri-
fication. Recent work on theorem reuse [6] in Isabelle is a
step in this direction, but this is a post proof consideration
and requires explicit user guidance.

7 Conclusion

In this paper we have presented a solution to represent
and manage proof attempts such that:

• They are guaranteed to be resilient (still applicable) for
some simple (recoverable) changes that proof obliga-
tions frequently go through when using a reactive de-
velopment environment.

• It is efficient to check that a proof attempt is still appli-
cable when its proof obligation changes.

• For irrecoverable changes, proof attempts can be
reused incrementally to construct new proof attempts.

We have found the ideas presented in this paper impor-
tant for supporting proof within the RODIN reactive devel-
opment environment. This has facilitated better interaction
between the modeling and proving processes and has re-
sulted in a marked improvement in the usability of this tool
over the previous generation of tools [7, 3] for the B method.

Acknowledgements

The author would like to thank Jean-Raymond Abrial, Cliff
Jones, Laurent Voisin, Vijay D’Silva, Stefan Hallerstede,
Thai Son Hoang, Adam Darvas, Joseph Ruskiewicz and the
anonymous reviewers for their comments.

References

[1] J.-R. Abrial. System modeling with Event B. Cambridge,
2007. to appear.

[2] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An
open extensible tool environment for Event-B. In Z. Liu and
J. He, editors, ICFEM 2006, volume 4260, pages 588–605.
Springer, 2006.

[3] J. R. Abrial and D. Cansell. Click’n prove: Interactive proofs
within set theory. In TPHOLs 2003, volume 2758 of Lect.
Notes in Comp. Sci., pages 1–24. Springer-Verlag, 2003.

[4] K. Beck and C. Andres. Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Profes-
sional, 2004.

[5] B. Beckert and V. Klebanov. Proof reuse for deductive pro-
gram verification. In J. Cuellar and Z. Liu, editors, Proceed-
ings, Software Engineering and Formal Methods (SEFM),
Beijing, China. IEEE Press, 2004.

[6] E. Broch Johnsen and C. Lüth. Theorem reuse by proof
term transformation. In International Conference on Theo-
rem Proving in Higher-Order Logics TPHOLs 2004, pages
152–167, Sept. 2004.

[7] Clearsy. Atelier B. User Manual, 2001. Aix-en-Provence.
[8] P. Curzon. The importance of proof maintenance and reengi-

neering, 1995.
[9] Eclipse - an open development platform, official website.

http://www.eclipse.org.
[10] A. Felty and D. Howe. Generalization and reuse of tactic

proofs. In F. Pfenning, editor, Proceedings of the 5th Inter-
national Conference on Logic Programming and Automated
Reasoning, volume 822 of LNAI, pages 1–15, Kiev, Ukraine,
1994. Springer-Verlag.

[11] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system, Jan. 15 2001.

[12] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume
828 of Lecture Notes in Computer Science. Springer Verlag,
1994.

[13] W. Reif and K. Stenzel. Reuse of Proofs in Software Verifi-
cation. In J. Köhler, editor, Workshop on Formal Approaches
to the Reuse of Plans, Proofs, and Programs, IJCAI. Mon-
treal, Quebec, 1995.

[14] Rigorous Open Development Environment for Complex
Systems (RODIN) official website. http://rodin.cs.ncl.ac.uk/
index.

[15] K. J. Ross and P. A. Lindsay. Maintaining consistency under
changes to formal specifications. In FME, pages 558–577,
1993.

[16] A. Schairer and D. Hutter. Proof transformations for evolu-
tionary formal software development. In AMAST ’02, pages
441–456, London, UK, 2002. Springer-Verlag.


